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A Similarity Skyline Approach for Handling Graph Queries -A Preliminary Report

One of the fundamental problems in graph databases is similarity search for graphs of interest. Existing approaches dealing with this problem rely on a single similarity measure between graph structures. In this paper, we suggest an alternative approach allowing for searching similar graphs to a graph query where similarity between graphs is rather modeled by a vector of scalars than a unique scalar. To this end, we introduce the notion of similarity skyline of a graph query defined by the subset of graphs of the target database that are the most similar to the query in a Pareto sense. The idea is to achieve a d-dimensional comparison between graphs in terms of 𝑑 local distance (or similarity) measures and to retrieve those graphs that are maximally similar in the sense of the Pareto dominance relation. A diversity-based method for refining the retrieval result is proposed as well.

I. INTRODUCTION

Graphs have become increasingly important in modeling complex structured data in many recent real applications. These applications include Bioinformatics [START_REF] Tian | Saga: a subgaph matching tool for biological graphs[END_REF], [START_REF] Hu | Mining coherent dense subgraphs across massive biological network for fonctional discovery[END_REF], Pattern Recognition [START_REF] Conte | Thirty years of graph matching in pattern recognition[END_REF], XML documents [START_REF] Zhang | Fix: eature-based indexing technique for xml documents[END_REF], Chemical compounds [START_REF] Klinger | Chemical similarity searching using a neural graph matcher[END_REF], Social networks [START_REF] Cai | Community mining from multirelational networks[END_REF], etc. All these applications indicate the importance and the broad usage of graph databases. One can broadly classify queries against graph databases into two categories [START_REF] Zeng | Comparing stars: On approximating graph edit distance[END_REF]: [START_REF] Tian | Saga: a subgaph matching tool for biological graphs[END_REF] Graph containment search and (2) Graph similarity search. The former consists of the following two sub-problems: (i) subgraph containment search: given a graph database 𝐷 = {𝑔 1 , 𝑔 2 , . . . , 𝑔 𝑛 } and a graph query q, retrieve all graphs 𝑔 𝑖 ∈ 𝐷 such that q is a subgraph of 𝑔 𝑖 (i.e., 𝑞 ⊆ 𝑔 𝑖 ); (ii) supergraph containment search: given a graph database 𝐷 = {𝑔 1 , 𝑔 2 , . . . , 𝑔 𝑛 } and a graph query q, retrieve all graph 𝑔 𝑖 ∈ 𝐷 such that q is a supergraph of 𝑔 𝑖 (i.e., 𝑞 ⊇ 𝑔 𝑖 ). Both sub-problems consider the procedure of checking subgraph isomorphism, known to be NP-Complete. Many query processing approaches using indexing techniques have been developed to reduce the search space and then efficiently solve these two sub-problems [START_REF] Chen | Towards Graph Containment Search and Indexing[END_REF], [START_REF] Yan | Graph indexing: A frequent structurebased approach[END_REF], [START_REF] Zhang | A novel approach for efficient supergraph query processing on graph databases[END_REF], [START_REF] Zhang | Treepi: A novel graph indexing method[END_REF].

As for the second category (i.e., graph similarity search), which consists in retrieving all the graphs of the database that are structurally similar to a given graph query, has emerged as new trend due to the following reasons [START_REF] Tian | Tale : A tool for approximate large graph matching[END_REF], [START_REF] Petrakis | Similarity searching in medical image databases[END_REF]. Firstly, many real graph datasets are noisy and incomplete in nature, so approximate, rather than exact, graph matching is required. Secondly, many graph applications prefer approximate matching results rather than exact ones as they can provide more information such as what might be missing or spurious in a query or in a graph database. A number of approaches therefore have been proposed to support similarity queries on graph databases, see [START_REF] Yan | Substructure similarity search in graph databases[END_REF], [START_REF] He | Closure-tree: An index structure for graph queries[END_REF] and [START_REF] Tian | Tale : A tool for approximate large graph matching[END_REF] in the case of subgraph queries and [START_REF] Shang | Similarity search on supergraph containment[END_REF] in the case of supergraph queries. The common point of all those approaches is the fact that they impose a single measure to evaluate graph similarity. However, a graph is a complex structure by nature and involves various basic features. It is then difficult to give a meaningful definition of graph similarity using only a single index.

In this paper, we advocate that for graph similarity to be efficiently assessed, several indices are required. Each index is dedicated to measure a local distance (or similarity) between two graphs pertaining to one aspect in the graph structure. Therefore, graph similarity is now characterized by a vector of local distance measures (where each measure expresses a feature similarity) instead of a single measure. By this way, one can preserve information about similarity on several features when comparing two graphs.

We propose an approach based on the notion of similarity skyline to support graph similarity search. Roughly speaking, the similarity skyline of a graph query is defined by the subset of graphs of the target database that are the most similar to the query in a Pareto sense. The idea is to achieve a ddimensional comparison between graphs in terms of d local distance (or similarity) measures and to retrieve those graphs that are maximally similar in the sense of a defined similaritydominance relation. In summary, we made the following contributions in this paper:

• We introduce the notion of graph compound similarity and then define the similarity-dominance relationship between graphs. • Based on that relationship, we give a formal definition of the graph similarity skyline, i.e., graphs of the target database that are maximally similar to a graph query in a Pareto sense.

• To reduce the resulting skyline (which is often quite large), we propose a method to extract a subset which is as diverse as possible, but with an acceptable size. The rest of the paper is organized as follows. Section 2 provides some preliminary notions. Related work is discussed in Section 3. Section 4 describes some well-known measures for graph similarity and their semantic properties. In Section 5, we introduce the notion of similarity skyline to support graph similarity queries. Section 6 proposes a detailed example. Section 7 presents a method for refining the retrieval result. Section 8 concludes the paper.

II. PRELIMINARIES

A. Reminder About Skyline Queries

Skyline queries [START_REF] Borzsonyi | The skyline operator[END_REF] are a popular and powerful paradigm for extracting interesting objects from a multi-dimensional dataset. They rely on Pareto dominance principle which can be defined as follows:

Definition 1. Let r be a set of d-dimensional data points and 𝑝 = (𝑝 1 , 𝑝 2 , . . . , 𝑝 𝑑 ) and 𝑞 = (𝑞 1 , 𝑞 2 , . . . , 𝑞 𝑑 ) two points of r. p is said to dominate (in the Pareto sense) q iff on every dimension 𝑝 𝑖 ≤ 𝑞 𝑖 (for 1 ≤ 𝑖 ≤ 𝑑) and on at least one dimension 𝑝 𝑗 < 𝑞 𝑗 .

For simplicity and without loss of generality, we assume that the smaller the value 𝑝 𝑖 , the better. We say then that p dominates (is preferred to) q and we denote this by 𝑝 ≻ 𝑞.

Definition 2. The skyline of r is the set of points which are not dominated by any other point.

Skyline queries compute the set of Pareto-optimal tuples in a relation, i.e., those tuples that are not dominated by any other tuple in the same relation.

Example 1. Consider a database containing information about hotels as shown in Table I (where dimension d = 2). Consider a person who looks for a hotel that is as close as possible to the beach and having a low price. One can check that the resulting skyline S contains 𝐻 2 , 𝐻 4 and 𝐻 6 . For instance, 𝐻 1 is dominated by 𝐻 2 , and 𝐻 7 by 𝐻 6 .

B. Some Basic Definitions

Definition 3 (Graph). A graph g is defined as a 4-tuple (V, E, L, l) where V is the set of vertices, E is the set of edges, L is the set of labels and l is a labeling function that maps each vertex or edge to a label in L.

For ease of presentation, graphs refer here to undirected labeled graphs. Note that different nodes could have the same label and the size of g is defined as |𝑔| = |𝐸(𝑔)| (i.e., the size of a graph is the number of its edges).

Definition 4 (Graph isomorphism). Given two graphs g = (V, E, L, l) and g' = (V', E', L', l'), g is isomorphic to g' (denoted by 𝑔 ≈ 𝑔 ′ ) if there exists a bijection 𝑓 :

𝑉 → 𝑉 ′ , such that 1) ∀𝑣 ∈ 𝑉, 𝑓 (𝑣) ∈ 𝑉 ′ and l(v) = l'(f(v)) and; 2) ∀(𝑢, 𝑣) ∈ 𝐸, (𝑓 (𝑢), 𝑓(𝑣)) ∈ 𝐸 ′ , and l(u, v) = l'(f(u), f(v)). Definition 5 (Subgraph isomorphism). Given two graphs g = (V, E, L, l) and g' = (V', E', L', l'), g is subgraph isomorphic to g' if there exists an injection 𝑓 : 𝑉 → 𝑉 ′ such that 1) ∀𝑣 ∈ 𝑉, 𝑓 (𝑣) ∈ 𝑉 ′ and l(v) = l'(f(v)) and; 2) ∀(𝑢, 𝑣) ∈ 𝐸, (𝑓 (𝑢), 𝑓(𝑣)) ∈ 𝐸 ′ and l(u, v) = l'(f(u), f(v)). Definition 6 (Subgraph v.s. supergraph). Given two graphs g = (V, E, L, l) and g' = (V', E', L', l'), g is called a subgraph of g' (or g' is a supergraph of g), denoted as 𝑔 ⊆ 𝑔 ′ (or 𝑔 ′ ⊇ 𝑔),
if there exists a subgraph isomorphism from g to g'. Definition 7 (Maximum common subgraph, mcs). Given two graphs 𝑔 1 and 𝑔 2 , the maximum common subgraph of 𝑔 1 and 𝑔 2 is the largest (i.e., the maximum number of selected vertices) connected subgraph of 𝑔 1 that is subgraph isomorphic to 𝑔 2 , denoted as 𝑔 ′ = 𝑚𝑐𝑠(𝑔 1 , 𝑔 2 ).

III. RELATED WORK

Our proposal can be related to the works in the areas of skyline queries and similarity queries on graph databases.

Skyline queries.

They have received a lot of attention over the recent years. Several research efforts have been made to develop efficient algorithms and to introduce different variants for skyline queries [START_REF] Pei | Probabilistic skylines on uncertain data[END_REF], [START_REF] Yiu | Efficient processing of top-k dominating queries on multi-dimensional data[END_REF], [START_REF] Khalefa | Skyline query processing for incomplete data[END_REF], [START_REF] Hadjali | Possibilistic contextual skylines with incomplete preferences[END_REF]. Up to our knowledge, no work related to skyline queries exists in a graph data context, except the recent work by Zou et al. [START_REF] Zou | Dynamic skyline queries in large graphs[END_REF] where dynamic skyline queries in a large graph have been studied. In our case, a different kind of skyline (i.e., similarity skyline) over a set of graphs (rather than a single large graph) is investigated.

Similarity queries. Similarity search of graphs is a vital operation in many recent applications. As indicated in Section I, this kind of graph search is conducted thanks to similarity queries that aim at finding graphs in the target database that are similar, but not necessarily isomorphic, to a given graph query. A number of approaches have been developed to support similarity queries. Grafil [START_REF] Yan | Substructure similarity search in graph databases[END_REF] performs substructure similarity search in a large scale graph database. It returns all the graphs of the database that approximately contain the graph query. C-Tree [START_REF] He | Closure-tree: An index structure for graph queries[END_REF] is another tool for subgraph similarity search which focuses on the edit distance between the query and its candidate matches. Tale [START_REF] Tian | Tale : A tool for approximate large graph matching[END_REF], unlike most previous graph matching tools which treat every node in a graph equally, proposes an innovative matching technique that distinguishes nodes by their importance in the graph structure. This technique first matches the important nodes of a graph query, and then progressively extends these matches. Recently, Shang et al. [START_REF] Shang | Similarity search on supergraph containment[END_REF] have proposed a technique to deal with supergraph queries where the notion of maximum common subgraph plays a key role. The problem of interest is converted into a 𝜎-missing subgraph detection problem, where 𝜎 is the error tolerance threshold. All the graphs of the queried database such that the mcs-based distance measure to the graph query considered is less than 𝜎, are returned as answers. Both C-Tree and Tale rely on the edit distance to measure similarity between graphs whereas the works done in [START_REF] Yan | Substructure similarity search in graph databases[END_REF] and [START_REF] Shang | Similarity search on supergraph containment[END_REF] use the notion of maximum common subgraph for computing that similarity.

As can be seen all the approaches that support similarity queries on graph data make use of a unique index to measure similarity between two graphs. So doing, similarity between two graph structures is not wholly captured since some similarities pertaining to some features of graph are missed. This is mainly due to the fact that each index of graph similarity can be seen as a local measure that expresses only a resemblance w.r.t. one aspect in a graph structure (see Section IV). Compared with the above work, our approach, on the one hand, relies on a compound similarity measure between graphs and, on the other hand, returns a set of similarity dominant graphs in a Pareto sense to answer a graph query.

IV. GRAPH SIMILARITY MEASURES: SOME SEMANTIC PROPERTIES

Several models have been proposed [START_REF] Bunke | On a relation between graph edit distance and maximum common subgraph[END_REF], [START_REF] Bunke | A graph distance metric based on the maximal common subgraph[END_REF], [START_REF] Wallis | Graph distances using graph union[END_REF] to measure the similarity (or distance) between two graphs. Hereafter, we present the most widely accepted measures to determine similarities between graphs1 .

A. Graph Edit Distance

Graph edit distance [START_REF] He | Closure-tree: An index structure for graph queries[END_REF], [START_REF] Bunke | On a relation between graph edit distance and maximum common subgraph[END_REF] is based on graph edit operations needed to transforme one graph to another. Generally, the set of edit operations considered includes: insertion or deletion of a vertex/edge and relabeling of a vertex/edge. Each edit operation is associated with a cost (a non-negative real number) according to the amount of distortion that it introduces in the transformation. Let e op be an edit operation and c(e op) its cost. The cost of a sequence of edit operations, 𝑠 = (𝑒 𝑜𝑝 1 , . . . , 𝑒 𝑜𝑝 𝑛 ) is given by

𝑐(𝑠) = ∑ 𝑛 𝑖=1 𝑐(𝑒 𝑜𝑝 𝑖 ).
The choice of elementary edit operations and their cost represent a difficult task in practice. The cost of a transformation of an element to another can be regarded as a distance function between the two elements. We assume here a uniform distance measure: the distance between two vertices/edges is 1 if they have different labels; otherwise it is 0. Definition 8 (Graph edit distance). The edit distance between two graphs 𝑔 1 and 𝑔 2 is equal to the minimum cost, taken over all sequences of edit operations, that transform 𝑔 1 into 𝑔 2 , i.e.,

𝐷𝑖𝑠𝑡 𝐸𝑑 (𝑔 1 , 𝑔 2 ) = 𝑚𝑖𝑛 𝑠∈𝐸 𝑜𝑝 𝑐(𝑠) (1)
where E op denotes the set of all sequences of edit operations that transform 𝑔 1 into 𝑔 2 .

The smaller 𝐷𝑖𝑠𝑡 𝐸𝑑 (𝑔 1 , 𝑔 2 ), the more similar the two graphs. One can easily check that the edit distance between isomorphic graphs is zero. The sequence of edit operations those are necessary for transforming 𝑔 1 into 𝑔 2 is: (i) one edge deletion, (ii) one edge relabeling, (iii) one vertex relabeling, (iv) one edge insertion. By considering uniform distance measures, one can check that this sequence is the best one (i.e., the shortest). So,

𝐷𝑖𝑠𝑡 𝐸𝑑 (𝑔 1 , 𝑔 2 ) = 4.
It is worth noticing that, in a graph database querying context, this distance measure provides information on features that both a graph of the target database and the graph query at hand disagree.

B. Mcs-Based Distance

Bunke et al. [START_REF] Bunke | A graph distance metric based on the maximal common subgraph[END_REF] have developed another kind of measure for graph similarity. It is based on the maximum common subgraph (mcs).

Definition 9 (Similarity based on the mcs). Given two graphs 𝑔 1 and 𝑔 2 , the graph similarity based on the mcs is defined as,

𝑆𝑖𝑚 𝑀𝑐𝑠 (𝑔 1 , 𝑔 2 ) = |𝑚𝑐𝑠(𝑔1,𝑔2)| 𝑚𝑎𝑥(|𝑔1|,|𝑔2|) , where |𝑚𝑐𝑠(𝑔 1 , 𝑔 2 )| denotes the number of edges in 𝑚𝑐𝑠(𝑔 1 , 𝑔 2 ).
Clearly, the larger the mcs of two graphs the greater their similarity. The measure 𝑆𝑖𝑚 𝑀𝑐𝑠 is normalized (i.e., 0

≤ 𝑆𝑖𝑚 𝑀𝑐𝑠 (𝑔 1 , 𝑔 2 ) ≤ 1) since |𝑚𝑐𝑠(𝑔 1 , 𝑔 2 )| ≤ 𝑚𝑎𝑥(|𝑔 1 | , |𝑔 2 |).
Now, the graph distance measure, 𝐷𝑖𝑠𝑡 𝑀𝑐𝑠 , derived from 𝑆𝑖𝑚 𝑀𝑐𝑠 writes:

𝐷𝑖𝑠𝑡 𝑀𝑐𝑠 (𝑔 1 , 𝑔 2 ) = 1 -𝑆𝑖𝑚 𝑀𝑐𝑠 (𝑔 1 , 𝑔 2 ) (2)
Such a measure is proved to be a metric in [START_REF] Bunke | A graph distance metric based on the maximal common subgraph[END_REF] and leads to a distance in [0, 1]. The major advantage of the mcs-based approach is the fact that it does not require the use of any cost function, thereby avoiding the main drawback of edit-distance-based approach. From a database querying point of view, this kind of similarity conveys information on the amount of features that both a graph of the queried database and a graph query agree.

C. Gu-Based Distance

Graph union(Gu)-based distance measure, introduced by Wallis et al. [START_REF] Wallis | Graph distances using graph union[END_REF], is based on the idea of graph union. Graph union (rather than the larger of two graphs) is used to model the size of the problem.

Definition 10 (Gu-based similarity). Given two graphs 𝑔 1 and 𝑔 2 , the graph similarity based on graph union is defined as,

𝑆𝑖𝑚 𝐺𝑢 (𝑔 1 , 𝑔 2 ) = |𝑚𝑐𝑠(𝑔1,𝑔2)| |𝑔1|+|𝑔2|-|𝑚𝑐𝑠(𝑔1,𝑔2)| ,
where the denominator represents the size of union of the two graphs in the set theoretic sense 2 .

This similarity measure is also normalized and its behaviour is somewhat close to 𝑆𝑖𝑚 𝑀𝑐𝑠 . It is easy to see that 𝑆𝑖𝑚 𝐺𝑢 (𝑔 1 , 𝑔 2 ) ≤ 𝑆𝑖𝑚 𝑀𝑐𝑠 (𝑔 1 , 𝑔 2 ) holds as well (which means that 𝑆𝑖𝑚 𝐺𝑢 is a stronger measure than 𝑆𝑖𝑚 𝑀𝑐𝑠 ). The use of graph union [START_REF] Wallis | Graph distances using graph union[END_REF] is motivated by the fact that changes in the size of the smallest graph that keep 𝑚𝑐𝑠(𝑔 1 , 𝑔 2 ) constant are not taken into account in 𝑆𝑖𝑚 𝑀𝑐𝑠 (𝑔 1 , 𝑔 2 ) whereas the measure 𝑆𝑖𝑚 𝐺𝑢 (𝑔 1 , 𝑔 2 ) does take this variation into account.

The graph distance measure derived from 𝑆𝑖𝑚 𝐺𝑢 can be written as:

𝐷𝑖𝑠𝑡 𝐺𝑢 (𝑔 1 , 𝑔 2 ) = 1 -𝑆𝑖𝑚 𝐺𝑢 (𝑔 1 , 𝑔 2 ) (3) 
It was also proved to be a metric and gives values in [0, 1]. Example 4. Let us again consider the graphs provided in Example 2. Using (3), the Gu-based distance measure between 𝑔 1 and 𝑔 2 is

𝐷𝑖𝑠𝑡 𝐺𝑢 (𝑔 1 , 𝑔 2 ) = 1 - |𝑚𝑐𝑠(𝑔1,𝑔2)| |𝑔1|+|𝑔2|-|𝑚𝑐𝑠(𝑔1,𝑔2)| = 0.50, where |𝑚𝑐𝑠(𝑔 1 , 𝑔 2 )| = 4 (see Example 3) and |𝑔 1 | = |𝑔 2 | = 6.
In a database querying context, this type of similarity gives also information about the number of agreements between a graph of the queried database and a graph query.

V. GRAPH SIMILARITY SKYLINE

This section is devoted to define the notion of similarity skyline for supporting graph similarity search without the need for specifying a global similarity measure between graph structures.

From now on, we assume that graph similarity is a compound notion, i.e., in order to assess similarity between graphs we consider a vector of distance measures. Each measure can be regarded as a local similarity expressing the extent to which two graphs are similar w.r.t. some features or aspects.

Definition 11 (Graph Compound Similarity, GCS). Let g and g' be two graphs, a graph compound similarity between g and g' is a vector of local distance measures denoted by

𝐺𝐶𝑆(𝑔, 𝑔 ′ ) = (𝐷𝑖𝑠𝑡 1 (𝑔, 𝑔 ′ ), 𝐷𝑖𝑠𝑡 2 (𝑔, 𝑔 ′ ), . . . , 𝐷𝑖𝑠𝑡 𝑑 (𝑔, 𝑔 ′ )),
where 𝐷𝑖𝑠𝑡 𝑖 (𝑔, 𝑔 ′ ), for i = 1, . . ., d, stands for a local graph distance measure.

Let now 𝐷 = {𝑔 1 , 𝑔 2 , . . . , 𝑔 𝑛 } be a graph database and q a graph similarity query (i.e., this means that the user is interested in graphs of D that are the most similar to q). Since a global similarity between graphs is not available, the idea is to proceed with a d-dimensional comparison between graphs in terms of d (local) distance measures to retrieve graphs that are maximally similar in the sense of the following similaritydominance relation.

Definition 12 (Similarity-dominance relation). Given a graph query q and two graphs g and g', we say that g' is similaritydominated by g in the context of q, denoted by 𝑔 ≻ 𝑞 𝑔 ′ , iff the following two statements hold:

1) ∀𝑖 ∈ {1, . . . , 𝑑}, 𝐷𝑖𝑠𝑡 𝑖 (𝑔, 𝑞) ≤ 𝐷𝑖𝑠𝑡 𝑖 (𝑔 ′ , 𝑞), 2) ∃𝑘 ∈ {1, . . . , 𝑑}, 𝐷𝑖𝑠𝑡 𝑘 (𝑔, 𝑞) < 𝐷𝑖𝑠𝑡 𝑘 (𝑔 ′ , 𝑞).

Roughly speaking, the relation 𝑔 ≻ 𝑞 𝑔 ′ holds if g is not less similar to q than g' in all dimensions and (strictly) more similar to q than g' in at least one dimension. One can observe that g is potentially more interesting than g' as a retrieval graph. Therefore, the set of graphs that are the most similar to q are those that are not dominated (in the sense of Definition 12). Such graphs, called Pareto-optimal graphs, represent what we denote by the graph similarity skyline (GSS):

𝐺𝑆𝑆(𝐷, 𝑞) = {𝑔 ∈ 𝐷| ∕ ∃𝑔 ′ ∈ 𝐷, 𝑔 ′ ≻ 𝑞 𝑔} (4) 
where 𝑔 ′ ≻ 𝑞 𝑔 means that g is similarity-dominated by g'.

To illustrate the above approach, we provide in the next section an example where d = 3. GCS(g, q) is then a vector of three components expressed by the local distance measures described in Section IV, i.e., 𝐺𝐶𝑆(𝑔, 𝑞) = (𝐷𝑖𝑠𝑡 𝐸𝑑 (𝑔, 𝑞), 𝐷𝑖𝑠𝑡 𝑀𝑐𝑠 (𝑔, 𝑞), 𝐷𝑖𝑠𝑡 𝐺𝑢 (𝑔, 𝑞)).

VI. AN ILLUSTRATIVE EXAMPLE

Let 𝐷 = {𝑔 1 , 𝑔 2 , 𝑔 3 , 𝑔 4 , 𝑔 5 , 𝑔 6 , 𝑔 7 } be a graph database and q a graph similarity query, as shown in Fig. 3. In order to provide the most interesting answers to q, one can compute the graph similarity skyline GSS(D, q). It is easy to see that • Graph 𝑔 5 may be a good compromise between the three measures 𝐷𝑖𝑠𝑡 𝐸𝑑 , 𝐷𝑖𝑠𝑡 𝑀𝑐𝑠 and 𝐷𝑖𝑠𝑡 𝐺𝑢 . Let us now take a look at the results obtained when using only a single similarity measure between graphs. If we are interested in the best 𝑘 (= 3) answers, 𝑔 3 is then returned for instance by the edit-distance-based approach as answer to the user, but with the skyline-based approach 𝑔 3 is not returned as answer since 𝑔 5 does better than it.

|𝑔 1 | = 6, |𝑔 2 | = 7, |𝑔 3 | = 7, |𝑔 4 | = 6, |𝑔 5 | = 8, |𝑔 6 | =9, |𝑔 7 | =

VII. REFINING GRAPH SIMILARITY SKYLINE

One of the problems that may arise when computing the set GSS (and a skyline in general) is its size which is often quite large. From a user point of view, it is very desirable to have a suitable criterion to select a small interesting subset of graphs of the skyline GSS. One solution is to use the criterion of diversity [START_REF] Mcsherry | Diversity-conscious retrieval[END_REF] to select a subset of graphs which is as diverse as possible and then provide the user with a picture of the whole set GSS.

Let S be a subset of GSS. The diversity of S means that the graphs it includes should be dissimilar amongst each other. The goal is to extract from GSS a subset 𝕊 of size k (a user-defined parameter) with a maximal diversity. Adapted from [START_REF] Kukkonen | Ranking-dominance and many-objective optimization[END_REF], the proposed approach defines the diversity of S (⊆ 𝐺𝑆𝑆) of size k by a vector 𝐷𝑖𝑣(𝑆) = (𝑣 1 , 𝑣 2 , 𝑣 3 ) such as

𝑣 𝑖 = 𝑚𝑖𝑛{𝐷𝑖𝑠𝑡 𝑖 (𝑔, 𝑔 ′ )|𝑔, 𝑔 ′ ∈ 𝑆},
where 𝐷𝑖𝑠𝑡 1 = 𝐷𝑖𝑠𝑡 𝑁 -𝐸𝑑 (the normalized version of the distance 𝐷𝑖𝑠𝑡 𝐸𝑑 obtained using the function f(x) = x/(1+x)), 𝐷𝑖𝑠𝑡 2 = 𝐷𝑖𝑠𝑡 𝑀𝑐𝑠 and 𝐷𝑖𝑠𝑡 3 = 𝐷𝑖𝑠𝑡 𝐺𝑢 . The value 𝑣 𝑖 expresses the diversity in the 𝑖 𝑡ℎ dimension of the subset S.

To identify the subset 𝕊 of interest, we consider all subsets 𝑆 ⊆ 𝐺𝑆𝑆 with |𝑆| = 𝑘 (i.e., the size of 𝑆 is 𝑘) as candidates and apply the following steps:

Step 1. For each dimension i (i = 1,. . .,3), rank-order all candidates subsets S in decreasing way according to their diversity 𝑣 𝑖 in that dimension. Let 𝑟𝑎𝑛𝑘 𝑖 (𝑆) be the rank of S w.r.t. 𝑖 𝑡ℎ dimension. Rank value 1 means the best diversity value and rank value M means the worst diversity value (M is the number of subsets of size k of the set GSS).

Step 2. Evaluate a candidate S by: 𝑣𝑎𝑙(𝑆) = ∑ 𝑖=1,...,3 𝑟𝑎𝑛𝑘 𝑖 (𝑆). The subset that minimizes this criterion (i.e., minimizes the sum of its positions in all ranks) is considered as a subset with a maximal diversity. So, 𝕊 is characterized by

𝑣𝑎𝑙(𝕊) = 𝑚𝑖𝑛 𝑆 𝑣𝑎𝑙(𝑆)

where 𝑆 ⊆ 𝐺𝑆𝑆 and |𝑆| = 𝑘.

Example 5. Let us come back to the example given in section VI, where 𝐺𝑆𝑆(𝐷, 𝑞) = {𝑔 1 , 𝑔 4 , 𝑔 5 , 𝑔 7 }. Assume now that the user is interested in the best k (= 2) graphs w.r.t. the diversity criterion. One can easily check that the set of all candidates contains 6 subsets of size k, see Table IV. 

VIII. CONCLUSION

In this paper, we have proposed an alternative approach to support graph similarity search. The key concept of this approach is the notion of graph similarity skyline we introduced. This kind of skyline allows retrieving all graphs of the queried database that are not dominated in the sense of the similarity-dominance relation defined. Namely, graphs those are maximally-similar to the graph query at hand. Each answer graph is provided to the user with a vector of scores showing different similarities pertaining to different features. We have also shown how to select a maximally diverse subset of a graph similarity skyline.

We plan to conduct some experiments on real-life data to demonstrate the effectiveness and efficiency of the approach. To this end, a system implementing it is underway.
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 3 Let us come back to Example 2. The mcsbased distance measure between 𝑔 1 and 𝑔 2 is calculated as follows. First, the 𝑚𝑐𝑠(𝑔 1 , 𝑔 2 ) is identified, see Fig. 2. Then, by applying (2), we obtain 𝐷𝑖𝑠𝑡 𝑀𝑐𝑠 (𝑔 1 , 𝑔 2 ) = 1 -|𝑚𝑐𝑠(𝑔1,𝑔2)| 𝑚𝑎𝑥(|𝑔1|,|𝑔2|) = 0.33, where |𝑚𝑐𝑠(𝑔 1 , 𝑔 2 )| = 4 and 𝑚𝑎𝑥(|𝑔 1 | , |𝑔 2 |) = 6.
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TABLE II INFORMATION

 II ABOUT |𝑀𝑐𝑠(𝑔 𝑖 , 𝑞)|

		|𝑀𝑐𝑠(𝑔𝑖, 𝑞)|
	(𝑔1, 𝑞)	4
	(𝑔2, 𝑞)	4
	(𝑔3, 𝑞)	4
	(𝑔4, 𝑞)	3
	(𝑔5, 𝑞)	5
	(𝑔6, 𝑞)	5
	(𝑔7, 𝑞)	6

  Now the graph similarity vectors 𝐺𝐶𝑆(𝑔 𝑖 , 𝑞), for i = 1,. . .,[START_REF] Zeng | Comparing stars: On approximating graph edit distance[END_REF], are shown in TableIII. By applying (4), the set of Pareto optimal graphs, i.e. the graph similarity skyline, is given by 𝐺𝑆𝑆(𝐷, 𝑞) = {𝑔 1 , 𝑔 4 , 𝑔 5 , 𝑔 7 }.One can easily check that 𝑔 2 (resp. 𝑔 3 ) / ∈ 𝐺𝑆𝑆(𝐷, 𝑞) since it is dominated by 𝑔 7 (resp. 𝑔 5 ) and 𝑔 6 / ∈ 𝐺𝑆𝑆(𝐷, 𝑞) since it is dominated by 𝑔 1 . Thus, the graphs of 𝐷 that are maximally similar to q are 𝑔 1 , 𝑔 4 , 𝑔 5 and 𝑔 7 . Indeed,• Graph 𝑔 1 is the most interesting w.r.t. the measure 𝐷𝑖𝑠𝑡 𝑀𝑐𝑠 . This is due to the two following reasons: i) 𝑔 1 satisfies a maximum number of features required by 𝑞 than other graphs with the same size; ii) 𝑔 1 and 𝑞 are of the same size. But, 𝑔 1 is the less interesting w.r.t. to superfluous and missing features. Graph 𝑔 4 is the best w.r.t. the measure 𝐷𝑖𝑠𝑡 𝐸𝑑 . This means that it is the most interesting w.r.t. to the numbers of disagreements with 𝑞. On the other hand, 𝑔 4 is much less satisfactory w.r.t. to the agreements with 𝑞 in the sense of the mcs notion. • Graph 𝑔 7 is the most interesting w.r.t. the measure 𝐷𝑖𝑠𝑡 𝐺𝑢 . This is due to the fact that 𝑔 7 ⊃ 𝑞. But, it is the less interesting w.r.t. a superfluous feature-based criterion.

			TABLE III	
			DISTANCE MEASURES	
		𝐷𝑖𝑠𝑡 𝐸𝑑 (𝑔𝑖, 𝑞) 𝐷𝑖𝑠𝑡𝑀𝑐𝑠(𝑔𝑖, 𝑞) 𝐷𝑖𝑠𝑡𝐺𝑢(𝑔𝑖, 𝑞)
	(𝑔1, q)	4	0.33	0.50
	(𝑔2, q)	4	0.43	0.56
	(𝑔3, q)	3	0.43	0.56
	(𝑔4, q)	2	0.50	0.67
	(𝑔5, q)	3	0.38	0.44
	(𝑔6, q)	4	0.44	0.50
	(𝑔7, q)	4	0.40	0.40

•

  𝑔5} 0.83 0.50 0.60 𝑆3 = {𝑔1, 𝑔7} 0.87 0.60 0.67 𝑆4 = {𝑔4, 𝑔5} 0.80 0.62 0.73 𝑆5 = {𝑔4, 𝑔7} 0.83 0.70 0.77 𝑆6 = {𝑔5, 𝑔7} 0.75 0.50 0.61Now, steps 1 and 2 lead to the results depicted in TableV.

	TABLE IV		
	CANDIDATES WITH THEIR DIVERSITY
	𝑣1	𝑣2	𝑣3
	𝑆1 = {𝑔1, 𝑔4} 0.86 0.67 0.80
	𝑆2 = {𝑔1,		

Table V -

 V (b), one can easily see that 𝑣𝑎𝑙(𝑆 1 ) is the minimal value. So, 𝕊 = 𝑆 1 = {𝑔 1 , 𝑔 4 }.

				TABLE V		
			EVALUATION OF ALL CANDIDATES.	
	(a) Ranks (𝑟𝑖 = 𝑟𝑎𝑛𝑘𝑖). 𝑟1 𝑟2 𝑟3	(b) Val(𝑆𝑖). ∑ 𝑖=1,...,3 𝑟𝑖
	𝑆1	2	2	1	𝑆1	5
	𝑆2	3	5	6	𝑆2	14
	𝑆3	1	4	4	𝑆3	9
	𝑆4	4	3	3	𝑆4	10
	𝑆5	3	1	2	𝑆5	6
	𝑆6	5	5	5	𝑆6	15
	From					

Due to space limitation, the computational complexity analysis of each measure is not addressed here.

This similarity measure looks like the Jaccard index used to measure similarity between two sets A and B, i.e., 𝐽(𝐴, 𝐵) = |𝐴 ∩ 𝐵| / |𝐴 ∪ 𝐵|.
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