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Abstract
We investigate extensions of well-known online learning algorithms such as fixed-share ofHerbster and Warmuth
(1998) or the methods proposed byBousquet and Warmuth(2002). These algorithms use weight
sharing schemes to perform as well as the best sequence of experts with a limited number of
changes. Here we show, with a common, general, and simpler analysis, that weight sharing in
fact achieves much more than what it was designed for. We use it to simultaneously prove new
shifting regret bounds for online convex optimization on the simplex in terms of the total variation
distance as well as new bounds for the related setting of adaptive regret. Finally, we exhibit the first
logarithmic shifting bounds for exp-concave loss functions on the simplex.
Keywords: Prediction with expert advice, online convex optimization, tracking the best expert,
shifting experts.

1. Introduction

Online convex optimization is a sequential prediction paradigm in which, at each time step, the
learner chooses an element from a fixed convex setS and then is given access to a convex loss
function defined on the same set. The value of the function on the chosen element is the learner’s
loss. Many problems such as prediction with expert advice, sequential investment, and online re-
gression/classification can be viewed as special cases of this general framework. Online learning
algorithms are designed to minimize the regret. The standard notion of regret is the difference
between the learner’s cumulative loss and the cumulative loss of the single best element inS. A
much harder criterion to minimize is shifting regret, whichis defined as the difference between the
learner’s cumulative loss and the cumulative loss of an arbitrary sequence of elements inS. Shift-
ing regret bounds are typically expressed in terms of theshift, a notion of regularity measuring the
length of the trajectory inS described by the comparison sequence (i.e., the sequence ofelements
against which the regret is evaluated).

In online convex optimization, shifting regret bounds for convex subsetsS ⊆ R
d are obtained

for the online mirror descent (or follow-the-regularized-leader) algorithm. In this case the shift is
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typically computed in terms of thep-norm of the difference of consecutive elements in the com-
parison sequence —seeHerbster and Warmuth(2001) andCesa-Bianchi and Lugosi(2006). In this
paper we focus on the important special case whenS is the simplex, and investigate the online
mirror descent with entropic regularizers. This family includes popular algorithms such as expo-
nentially weighted average (EWA), Winnow, and exponentiated gradient. Proving general shifting
bounds in this case is difficult due to the behavior of the regularizer at the boundary of the simplex.
Herbster and Warmuth(2001) show shifting bounds for mirror descent with entropic regularizers
using a1-norm to measure the shift. In order to keep mirror descent from choosing points too close
to the simplex boundary, they use a complex dynamic projection technique. When the comparison
sequence is restricted to the corners of the simplex (which is the setting of prediction with expert
advice), then the shift is naturally defined to be the number times the trajectory moves to a different
corner. This problem is often called “tracking the best expert” —see, e.g.,Herbster and Warmuth
(1998); Vovk (1999); Herbster and Warmuth(2001); Bousquet and Warmuth(2002); György et al.
(2005), and it is well known that EWA with weight sharing, which corresponds to the fixed-
share algorithm ofHerbster and Warmuth(1998), achieves a good shifting bound in this setting.
Bousquet and Warmuth(2002) introduce a generalization of the fixed-share algorithm, and prove
various shifting bounds for any trajectory in the simplex. However, their bounds are expressed
using a quantity that corresponds to a proper shift only for trajectories on the simplex corners.

Our analysis unifies, generalizes (and simplifies) the previously quite different proof techniques
and algorithms used inHerbster and Warmuth(1998) and Bousquet and Warmuth(2002). Our
bounds are expressed in terms of a notion of shift based on thetotal variation distance. The gener-
alization of the “small expert set” result inBousquet and Warmuth(2002) leads us to obtain better
bounds when the sequence against which the regret is measured is sparse. When the trajectory is
restricted to the corners of the simplex, we recover, and occasionally improve, the known shifting
bounds for prediction with expert advice. Besides, our analysis also captures the setting of adap-
tive regret, a related notion of regret introduced byHazan and Seshadhri(2009). It was known
that shifting regret and adaptive regret had some connections but this connection is now seen to be
even tighter, as both regrets can be viewed as instances of the samealma materregret, which we
minimize. Finally, we also show how to dynamically tune the parameters of our algorithms and re-
view briefly the special case of exp-concave loss functions,exhibiting the first logarithmic shifting
bounds for exp-concave loss functions on the simplex.

2. Preliminaries

We first define the sequential learning framework we work with. Even though our results hold in
the general setting of online convex optimization, we present them in the, somewhat simpler,online
linear optimizationsetup. We point out in Section6 how these results may be generalized. Online
linear optimization may be cast as a repeated game between the forecasterand theenvironmentas
follows. We use∆d to denote the simplex

{
q ∈ [0, 1]d : ‖q‖1 = 1

}
.

Online linear optimization. For each roundt = 1, . . . , T ,
1. Forecaster chooseŝpt = (p̂1,t, . . . , p̂d,t) ∈ ∆d ;
2. Environment chooses a loss vectorℓt = (ℓ1,t, . . . , ℓd,t) ∈ [0, 1]d ;
3. Forecaster suffers losŝp⊤

t ℓt .
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The goal of the forecaster is to minimize the accumulated loss L̂T =
∑T

t=1 p̂
⊤
t ℓt. In the now

classical problem of prediction with expert advice, the goal of the forecaster is to compete with the
best fixed component (often called “expert”) chosen in hindsight, that is, withmini=1,...,T

∑T
t=1 ℓi,t.

The focus of this paper is on more ambitious forecasters thatcompete with a richer class ofse-
quencesof components. Let[d] = {1, . . . , d}. We useiT1 = (i1, . . . , iT ) to denote a sequence in
[d]T and letLT (i

T
1 ) =

∑T
t=1 ℓit be the cumulative linear loss of the sequenceiT1 ∈ [d]T .

We start by introducing our main algorithmic tool, a generalized share algorithm. It is parametrized
by the “mixing functions”ψt : [0, 1]

(t+1)d → ∆d for t = 1, . . . , T that assign probabilities to past
“pre-weights” as defined below. In all examples discussed inthis paper, these mixing functions are
quite simple but working with such a general model makes the main ideas more transparent. We
then provide a simple lemma that serves as the starting pointfor analyzing different instances of the
generalized share algorithm.

Algorithm 1 : The generalized share algorithm.

Parameters: learning rateη > 0 and mixing functionsψt for t = 1, . . . , T
Initialization: p̂1 = v1 = (1/d, . . . , 1/d)

For each roundt = 1, . . . , T ,
1. Predict̂pt ;
2. Observe lossℓt ∈ [0, 1]d ;
3. [loss update]For eachj = 1, . . . , d define

vj,t+1 =
p̂j,t e

−η ℓj,t

∑d
i=1 p̂i,t e

−η ℓi,t
the current pre-weights,

Vt+1 =
[
vi,s
]
i∈[d], 16s6t+1

thed× (t+ 1) matrix of all past and current pre-weights;

4. [shared update] Definêpt+1 = ψt+1

(
Vt+1

)
.

Lemma 1 For all t > 1 and for allqt ∈ ∆d, Algorithm1 satisfies

(
p̂t − qt

)⊤
ℓt 6

1

η

d∑

i=1

qi,t ln
vi,t+1

p̂i,t
+
η

8
.

Proof By Hoeffding’s inequality,

d∑

j=1

p̂j,t ℓj,t 6 −1

η
ln




d∑

j=1

p̂j,t e
−η ℓj,t


+

η

8
. (1)

By definition ofvi,t+1, for all i = 1, . . . , d we then have
d∑

j=1

p̂j,t e
−η ℓj,t =

p̂i,t e
−η ℓi,t

vi,t+1
,

which entails p̂⊤
t ℓt 6 ℓi,t +

1

η
ln
vi,t+1

p̂i,t
+
η

8
.

The proof is concluded by taking a convex aggregation with respect toqt.
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3. Shifting bounds

In this section we prove shifting regret bounds for the generalized share algorithm. We com-
pare the cumulative loss

∑T
t=1 p̂

⊤
t ℓt of the forecaster with the loss of an arbitrary sequence of

vectorsq1, . . . , qT in the simplex∆d, that is, with
∑T

t=1 q
⊤
t ℓt. The bounds we obtain depend,

of course, on the “regularity” of the comparison sequence. In the now classical results on track-
ing the best expert (as inHerbster and Warmuth 1998; Vovk 1999; Herbster and Warmuth 2001;
Bousquet and Warmuth 2002), this regularity is measured as the number of timesqt 6= qt+1 (hence-
forth referred to as “hard shifts”). The main results of thispaper show not only that these results
may be generalized to obtain bounds in terms of “softer” regularity measures but that the same
algorithms that were proposed with hard shift tracking in mind achieve such, perhaps surprisingly
good, performance. Building on the general formulation introduced in Section2, we derive such
regret bounds for the fixed-share algorithm ofHerbster and Warmuth(1998) and for the algorithms
of Bousquet and Warmuth(2002).

In fact, it is advantageous to extend our analysis so that we not only compare the performance of
the forecaster with sequencesq1, . . . , qT taking values in the simplex∆d of probability distributions
but rather against arbitrary sequencesu1, . . . ,uT ∈ R

d
+ of vectors with non-negative components.

The loss of such a sequence is defined by
∑T

t=1 u
⊤
t ℓt. For fair comparison, we measure the cumu-

lative loss of the forecaster by
∑T

t=1 p̂
⊤
t ℓt‖ut‖1. Of course, whenut ∈ ∆d, we recover the original

notion of regret.
The norms‖u1‖1 , . . . , ‖uT ‖1 may be viewed as a sequence of weights that give more or less

importance to the instantaneous loss suffered at each step.Of particular interest is the case when
‖ut‖1 ∈ [0, 1] which is the setting of “time selection functions” (seeBlum and Mansour 2007, Sec-
tion 6). In particular, considering sequences‖ut‖1 ∈ {0, 1} that include the zero vector will provide
us a simple way of deriving “adaptive” regret bounds, a notion introduced byHazan and Seshadhri
(2009).

The first regret bounds derived below measure the regularityof the sequenceuT
1 = (u1, . . . ,uT )

in terms of the quantity

m(uT
1 ) =

T−1∑

t=1

DTV(ut+1,ut) (2)

where forx = (x1, . . . , xd),y = (y1, . . . , yd) ∈ R
d
+, we defineDTV(x,y) =

∑
xi>yi

(xi − yi).

Note that whenx,y ∈ ∆d, we recover the total variation distanceDTV(x,y) =
1
2 ‖x− y‖1, while

for generalx,y ∈ R
d
+, the quantityDTV(x,y) is not necessarily symmetric and is always bounded

by ‖x− y‖1. Note that when the vectorsut are incidence vectors(0, . . . , 0, 1, 0, . . . , 0) ∈ R
d of

elementsit ∈ [d], thenm(uT
1 ) corresponds to the number of shifts of the sequenceiT1 ∈ [d]T , and

we recover from the results stated below the classical bounds for tracking the best expert.

3.1. Fixed-share update

We now analyze a specific instance of the generalized share algorithm corresponding to the
update

p̂j,t+1 =

d∑

i=1

(α
d
+ (1− α)1i=j

)
vi,t+1 =

α

d
+ (1− α)vj,t+1 , 0 6 α 6 1 . (3)
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Despite seemingly different statements, this update in Algorithm 1 can be seen to leadexactly to
the fixed-share algorithm ofHerbster and Warmuth(1998) for prediction with expert advice.

Proposition 2 With the above update, for allT > 1, for all sequencesℓ1, . . . , ℓT of loss vectors
ℓt ∈ [0, 1]d, and for allu1, . . . ,uT ∈ R

d
+,

T∑

t=1

‖ut‖1 p̂⊤
t ℓt −

T∑

t=1

u⊤
t ℓt 6

‖u1‖1 ln d
η

+
η

8

T∑

t=1

‖ut‖1

+
m(uT

1 )

η
ln
d

α
+

∑T
t=1 ‖ut‖1 −m(uT

1 )− 1

η
ln

1

1− α
.

We emphasize that the fixed-share forecaster does not need to“know” anything about the sequence
of the norms‖ut‖. Of course, in order to minimize the obtained upper bound, the tuning parameters
α, η need to be optimized and their values will depend on the maximal value ofm(uT

i ) for the
sequences one wishes to compete against. In particular, we obtain the following corollary, in which
h(x) = −x lnx− (1− x) ln(1− x) denotes the binary entropy function forx ∈ [0, 1]. We recall1

thath(x) 6 x ln(e/x) for x ∈ [0, 1].

Corollary 3 Suppose Algorithm1 is run with the update (3). Letm0 > 0. For all T > 1, for all
sequencesℓ1, . . . , ℓT of loss vectorsℓt ∈ [0, 1]d, and for allq1, . . . , qT ∈ ∆d withm(qT

1 ) 6 m0,

T∑

t=1

p̂⊤
t ℓt −

T∑

t=1

q⊤t ℓt 6

√√√√T

2

(
(m0 + 1) ln d+ (T − 1) h

(
m0

T − 1

))
,

wheneverη andα are optimally chosen in terms ofm0 andT .

If we only consider vectors of the formqt = (0, . . . , 0, 1, 0, . . . , 0) thenm(qT1 ) corresponds to the
number of timesqt+1 6= qt in the sequenceqT

1 . We thus recoverHerbster and Warmuth(1998, The-
orem 1) andBousquet and Warmuth(2002, Lemma 6) from the much more general Proposition2.

Proof of Proposition 2 Applying Lemma1 with qt = ut/ ‖ut‖1, and multiplying by‖ut‖1, we
get for allt > 1 andut ∈ R

d
+

‖ut‖1 p̂⊤
t ℓt − u⊤

t ℓt 6
1

η

d∑

i=1

ui,t ln
vi,t+1

p̂i,t
+
η

8
‖ut‖1 . (4)

We now examine

d∑

i=1

ui,t ln
vi,t+1

p̂i,t
=

d∑

i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)
+

d∑

i=1

(
ui,t−1 ln

1

vi,t
− ui,t ln

1

vi,t+1

)
. (5)

For the first term on the right-hand side, we have

d∑

i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)
=

∑

i :ui,t>ui,t−1

(
(ui,t − ui,t−1) ln

1

p̂i,t
+ ui,t−1 ln

vi,t
p̂i,t

)

1. As can be seen by noting thatln
(

1/(1− x)
)

< x/(1− x)

5



+
∑

i : ui,t<ui,t−1

(
(ui,t − ui,t−1) ln

1

vi,t︸ ︷︷ ︸
60

+ui,t ln
vi,t
p̂i,t

)
. (6)

In view of the update (3), we have1/p̂i,t 6 d/α andvi,t/p̂i,t 6 1/(1 − α). Substituting in (6), we
get

d∑

i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)

6
∑

i :ui,t>ui,t−1

(ui,t − ui,t−1) ln
d

α
+


 ∑

i: ui,t>ui,t−1

ui,t−1 +
∑

i: ui,t<ui,t−1

ui,t


 ln

1

1− α

= DTV (ut,ut−1) ln
d

α
+




d∑

i=1

ui,t −
∑

i : ui,t>ui,t−1

(ui,t − ui,t−1)




︸ ︷︷ ︸
=‖ut‖1−DTV (ut,ut−1)

ln
1

1− α
.

The sum of the second term in (5) telescopes. Substituting the obtained bounds in the first sum of
the right-hand side in (5), and summing overt = 2, . . . , T , leads to

T∑

t=2

d∑

i=1

ui,t ln
vi,t+1

p̂i,t
6 m(uT

1 ) ln
d

α
+

(
T∑

t=2

‖ut‖1 − 1−m(uT
1 )

)
ln

1

1− α

+

d∑

i=1

ui,1 ln
1

vi,2
− ui,T ln

1

vi,T+1︸ ︷︷ ︸
60

.

We hence get from (4), which we use in particular fort = 1,

T∑

t=1

‖ut‖1 p̂⊤
t ℓt − u⊤

t ℓt 6
1

η

d∑

i=1

ui,1 ln
1

p̂i,1
+
η

8

T∑

t=1

‖ut‖1

+
m(uT

1 )

η
ln
d

α
+

∑T
t=1 ‖ut‖1 − 1−m(uT

1 )

η
ln

1

1− α
. �

3.2. Sparse sequences: Bousquet-Warmuth updates

Bousquet and Warmuth(2002) proposed forecasters that are able to efficiently compete with
the best sequence of experts among all those sequences that only switch a bounded number of
times and also take a small number of different values. Such “sparse” sequences of experts appear
naturally in many applications. In this section we show thattheir algorithms in fact work very well
in comparison with a much larger class of sequencesu1, . . . ,uT that are “regular”—that is,m(uT

1 ),
defined in (2) is small—and “sparse” in the sense that the quantity

n(uT
1 ) =

d∑

i=1

max
t=1,...,T

ui,t

6
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is small. Note that whenqt ∈ ∆d for all t, then two interesting upper bounds can be provided. First,
denoting the union of the supports of these convex combinations byS ⊆ [d], we haven(qT1 ) 6 |S|,
the cardinality ofS. Also,

n(qT
1 ) 6

∣∣∣
{
qt, t = 1, . . . , T

}∣∣∣,

the cardinality of the pool of convex combinations. Thus,n(uT
1 ) generalizes the notion of sparsity

of Bousquet and Warmuth(2002).
Here we consider a family of shared updates of the form

p̂j,t = (1− α)vj,t + α
wj,t

Zt
, 0 6 α 6 1 , (7)

where thewj,t are nonnegative weights that may depend on past and current pre-weights and
Zt =

∑d
i=1 wi,t is a normalization constant. Shared updates of this form were proposed by

Bousquet and Warmuth(2002, Sections 3 and 5.2).
Apart from generalizing the regret bounds ofBousquet and Warmuth(2002), we believe that

the analysis given below is significantly simpler and more transparent. We are also able to slightly
improve their original bounds.

We focus on choices of the weightswj,t that satisfy the following conditions: there exists a
constantC > 1 such that for allj = 1, . . . , d andt = 1, . . . , T ,

vj,t 6 wj,t 6 1 and C wj,t+1 > wj,t . (8)

The next result improves on Proposition2 whenT ≪ d andn(uT
1 ) ≪ m(uT

1 ), that is, when the
dimension (or number of experts)d is large but the sequenceuT

1 is sparse.

Proposition 4 Suppose Algorithm1 is run with the shared update (7) with weights satisfying the
conditions(8). Then for allT > 1, for all sequencesℓ1, . . . , ℓT of loss vectorsℓt ∈ [0, 1]d, and for
all sequencesu1, . . . ,uT ∈ R

d
+,

T∑

t=1

‖ut‖1 p̂⊤
t ℓt −

T∑

t=1

u⊤
t ℓt 6

n(uT
1 ) ln d

η
+
n(uT

1 )T lnC

η
+
η

8

T∑

t=1

‖ut‖1

+
m(uT

1 )

η
ln

maxt6T Zt

α
+

∑T
t=1 ‖ut‖1 −m(uT

1 )− 1

η
ln

1

1− α
.

Proof The beginning and the end of the proof are similar to the one ofProposition2, as they do not
depend on the specific weight update. In particular, inequalities (4) and (5) remain the same. The
proof is modified after (6), which this time we upper bound using the first condition in (8),

d∑

i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)
=

∑

i :ui,t>ui,t−1

(ui,t − ui,t−1) ln
1

p̂i,t
+ ui,t−1 ln

vi,t
p̂i,t

+
∑

i :ui,t<ui,t−1

(ui,t − ui,t−1)︸ ︷︷ ︸
60

ln
1

vi,t︸ ︷︷ ︸
>ln(1/wi,t)

+ui,t ln
vi,t
p̂i,t

. (9)

7



By definition of the shared update (7), we have1/p̂i,t 6 Zt/(αwi,t) andvi,t/p̂i,t 6 1/(1− α). We
then upper bound the quantity at hand in (9) by

∑

i : ui,t>ui,t−1

(ui,t − ui,t−1) ln

(
Zt

αwi,t

)
+


 ∑

i : ui,t>ui,t−1

ui,t−1 +
∑

i : ui,t<ui,t−1

ui,t


 ln

1

1− α

+
∑

i : ui,t<ui,t−1

(ui,t − ui,t−1) ln
1

wi,t

= DTV(ut,ut−1) ln
Zt

α
+
(
‖ut‖1 −DTV(ut,ut−1)

)
ln

1

1− α
+

d∑

i=1

(ui,t − ui,t−1) ln
1

wi,t
.

Proceeding as in the end of the proof of Proposition2, we then get the claimed bound, provided that
we can show that

T∑

t=2

d∑

i=1

(ui,t − ui,t−1) ln
1

wi,t
6 n(uT

1 ) (ln d+ T lnC)− ‖u1‖1 ln d ,

which we do next. Indeed, the left-hand side can be rewrittenas

T∑

t=2

d∑

i=1

(
ui,t ln

1

wi,t
− ui,t ln

1

wi,t+1

)
+

T∑

t=2

d∑

i=1

(
ui,t ln

1

wi,t+1
− ui,t−1 ln

1

wi,t

)

6

(
T∑

t=2

d∑

i=1

ui,t ln
C wi,t+1

wi,t

)
+

(
d∑

i=1

ui,T ln
1

wi,T+1
−

d∑

i=1

ui,1 ln
1

wi,2

)

6

(
d∑

i=1

(
max

t=1,...,T
ui,t

) T∑

t=2

ln
C wi,t+1

wi,t

)
+

(
d∑

i=1

(
max

t=1,...,T
ui,t

)
ln

1

wi,T+1
−

d∑

i=1

ui,1 ln
1

wi,2

)

=

d∑

i=1

(
max

t=1,...,T
ui,t

)(
(T − 1) lnC + ln

1

wi,2

)
−

d∑

i=1

ui,1 ln
1

wi,2
,

where we usedC > 1 for the first inequality and the second condition in (8) for the second inequal-
ity. The proof is concluded by noting that (8) entailswi,2 > (1/C)wi,1 > (1/C)vi,1 = 1/(dC) and
that the coefficientmaxt=1,...,T ui,t − ui,1 in front of ln(1/wi,2) is nonnegative.

We now generalize Corollaries 8 and 9 ofBousquet and Warmuth(2002) by showing two specific in-
stances of the generic update (7) that satisfy (8). The first update useswj,t = maxs6t vj,s. Then (8)
is satisfied withC = 1. Moreover, since a sum of maxima of nonnegative elements is smaller than
the sum of the sums,Zt 6 min{d, t} 6 T . This immediately gives the following result.

Corollary 5 Suppose Algorithm1 is run with the update(7) with wj,t = maxs6t vj,s. For all
T > 1, for all sequencesℓ1, . . . , ℓT of loss vectorsℓt ∈ [0, 1]d, and for allq1, . . . , qT ∈ ∆d,

T∑

t=1

p̂⊤
t ℓt −

T∑

t=1

q⊤
t ℓt 6

n(qT1 ) ln d

η
+
η

8
T +

m(qT
1 )

η
ln
T

α
+
T −m(qT

1 )− 1

η
ln

1

1− α
.

8
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The second update we discuss useswj,t = maxs6t e
γ(s−t)vj,s in (7) for someγ > 0. Both

conditions in (8) are satisfied withC = eγ . One also has that

Zt 6 d and Zt 6
∑

τ>0

e−γτ =
1

1− e−γ
6

1

γ

asex > 1 + x for all realx. The bound of Proposition4 then instantiates as

n(qT
1 ) ln d

η
+
n(qT

1 )Tγ

η
+
η

8
T +

m(qT1 )

η
ln

min{d, 1/γ}
α

+
T −m(qT

1 )− 1

η
ln

1

1− α

when sequencesut = qt ∈ ∆d are considered. This bound is best understood whenγ is tuned opti-
mally based onT and on two boundsm0 andn0 over the quantitiesm(qT

1 ) andn(qT
1 ). Indeed, by

optimizingn0Tγ +m0 ln(1/γ), i.e., by choosingγ = m0/(n0 T ), one gets a bound that improves
on the one of the previous corollary:

Corollary 6 Letm0, n0 > 0. Suppose Algorithm1 is run with the updatewj,t = maxs6t e
γ(s−t)vj,s

whereγ = m0/(n0 T ). For all T > 1, for all sequencesℓ1, . . . , ℓT of loss vectorsℓt ∈ [0, 1]d, and
for all q1, . . . , qT ∈ ∆d such thatm(qT1 ) 6 m0 andn(qT

1 ) 6 n0, we have

T∑

t=1

p̂⊤
t ℓt −

T∑

t=1

q⊤
t ℓt 6

n0 ln d

η
+
m0

η

(
1 + ln min

{
d,
n0 T

m0

})

+
η

8
T +

m0

η
ln

1

α
+
T −m0 − 1

η
ln

1

1− α
.

As the factorse−γt cancel out in the numerator and denominator of the ratio in (7), there is a
straightforward implementation of the algorithm (not requiring the knowledge ofT ) that needs to
maintain onlyd weights.

In contrast, the corresponding algorithm ofBousquet and Warmuth(2002), using the updates
p̂j,t = (1−α)vj,t+αS−1

t

∑
s6t−1(s−t)−1vj,s or p̂j,t = (1−α)vj,t+αS−1

t maxs6t−1(s−t)−1vj,s,
whereSt denote normalization factors, needs to maintainO(dT ) weights with a naive implemen-
tation, andO(d lnT ) weights with a more sophisticated one. In addition, the obtained bounds are
slightly worse than the one stated above in Corollary6 as an additional factor ofm0 ln(1 + lnT ) is
present inBousquet and Warmuth(2002, Corollary 9).

4. Adaptive regret

Next we show how the results of the previous section, e.g., Proposition2, imply guarantees
in terms of adaptive regret —a notion introduced byHazan and Seshadhri(2009) as follows. For
τ0 ∈ {1, . . . , T}, theτ0-adaptive regretof a forecaster is defined by

Rτ0−adapt
T = max

[r, s] ⊂ [1, T ]
s+ 1− r 6 τ0

{
s∑

t=r

p̂⊤
t ℓt − min

q∈∆d

s∑

t=r

q⊤ℓt

}
. (10)

Adaptive regret is an alternative way to measure the performance of a forecaster against a changing
environment. It is a straightforward observation that adaptive regret bounds also lead to shifting

9



regret bounds (in terms of hard shifts). Here we show that these two notions of regret share an even
tighter connection, as they can be both viewed as instances of the samealma materbound, e.g.,
Proposition2.

Hazan and Seshadhri(2009) essentially considered the case of online convex optimization with
exp-concave loss function (see Section6 below). In case of general convex functions, they also
mentioned that the greedy projection forecaster ofZinkevich (2003) —i.e., mirror descent with a
quadratic regularizer— enjoys adaptive regret guarantees. This forecaster can be implemented on
the simplex in timeO(d) —see, e.g.,Duchi et al.(2008). We now show that the simpler fixed-share
algorithm has a similar adaptive regret bound.

Proposition 7 Suppose that Algorithm1 is run with the shared update (3). Then for allT > 1, for
all sequencesℓ1, . . . , ℓT of loss vectorsℓt ∈ [0, 1]d, and for allτ0 ∈ {1, . . . , T},

Rτ0−adapt
T 6

1

η
ln
d

α
+
τ0 − 1

η
ln

1

1− α
+
η

8
τ0 .

In particular, whenη andα are chosen optimally (depending onτ0 andT )

Rτ0−adapt
T 6

√
τ0
2

(
τ0 h

(
1

τ0

)
+ ln d

)
6

√
τ0
2

ln(edτ0) .

Proof For 1 6 r 6 s 6 T andq ∈ ∆d, the regret in the right-hand side of (10) equals the re-
gret considered in Proposition2 against the sequenceuT

1 defined asut = q for t = r, . . . , s and
0 = (0, . . . , 0) for the remainingt. Whenr > 2, this sequence is such thatDTV (ur,ur−1) =
DTV (q,0) = 1 andDTV (us+1,us) = DTV (0, q) = 0 so thatm(uT

1 ) = 1, while ‖u1‖1 = 0.
Whenr = 1, we have‖u1‖1 = 1 andm(uT

1 ) = 0. In all cases,m(uT
1 ) + ‖u1‖1 = 1. Specializing

the bound of Proposition2 to the thus defined sequenceuT
1 gives the result.

5. Online tuning of the parameters

The forecasters studied above need their parametersη andα to be tuned according to various
quantities, including the time horizonT . We show here how the trick ofAuer et al.(2002) of having
these parameters vary over time can be extended to our setting. For the sake of concreteness we
focus on the fixed-share update, i.e., Algorithm1 run with the update (3). We respectively replace
steps 3 and 4 of its description by the loss and shared updates

vj,t+1 =
p̂

ηt
ηt−1

j,t e−ηtℓj,t

∑d
i=1 p̂

ηt
ηt−1

i,t e−ηtℓi,t

and pj,t+1 =
αt

d
+ (1− αt) vj,t+1 , (11)

for all t > 1 and allj ∈ [d], where(ητ ) and(ατ ) are two sequences of positive numbers, indexed
by τ > 1. We also conventionally defineη0 = η1. Proposition2 is then adapted in the following
way (whenηt ≡ η andαt ≡ α, Proposition2 is exactly recovered).

10
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Proposition 8 The forecaster based on the above updates(11) is such that wheneverηt 6 ηt−1

andαt 6 αt−1 for all t > 1, the following performance bound is achieved. For allT > 1, for all
sequencesℓ1, . . . , ℓT of loss vectorsℓt ∈ [0, 1]d, and for allu1, . . . ,uT ∈ R

d
+,

T∑

t=1

‖ut‖1 p̂⊤
t ℓt −

T∑

t=1

u⊤
t ℓt 6

(
‖ut‖1
η1

+

T∑

t=2

‖ut‖1
(

1

ηt
− 1

ηt−1

))
ln d

+
m(uT

1 )

ηT
ln
d(1 − αT )

αT
+

T∑

t=2

‖ut‖1
ηt−1

ln
1

1− αt
+

T∑

t=1

ηt−1

8
‖ut‖1 .

Due to space constraints, we only instantiate the obtained bound to the case ofT -adaptive regret
guarantees, whenT is unknown and/or can increase without bounds.

Corollary 9 The forecaster based on the above updates withηt =
√(

ln(dt)
)
/t for t > 3 and

η0 = η1 = η2 = η3 on the one hand,αt = 1/t on the other hand, is such that for allT > 3 and for
all sequencesℓ1, . . . , ℓT of loss vectorsℓt ∈ [0, 1]d,

max
[r,s]⊂[1,T ]

{
s∑

t=r

p̂⊤
t ℓt − min

q∈∆d

s∑

t=r

q⊤ℓt

}
6
√

2T ln(dT ) +
√

3 ln(3d) .

Proof The sequencen 7→ ln(n)/n is only non-increasing after roundn > 3, so that the defined
sequences of(αt) and(ηt) are non-increasing, as desired. For a given pair(r, s) and a givenq ∈ ∆d,
we consider the sequenceνT1 defined in the proof of Proposition7; it satisfies thatm(uT

1 ) 6 1 and
‖ut‖1 6 1 for all t > 1. Therefore, Proposition8 ensures that

s∑

t=r

p̂⊤
t ℓt − min

q∈∆d

s∑

t=r

q⊤ℓt 6
ln d

ηT
+

1

ηT
ln
d(1− αT )

αT︸ ︷︷ ︸
6dT

+

T∑

t=2

1

ηt−1
ln

1

1− αt
︸ ︷︷ ︸

6(1/ηT )
∑T

t=2
ln(t/(t−1))=(ln T )/ηT

+

T∑

t=1

ηt−1

8
.

It only remains to substitute the proposed values ofηt and to note that

T∑

t=1

ηt−1 6 3η3 +
T−1∑

t=3

1√
t

√
ln(dT ) 6 3

√
ln(3d)

3
+ 2

√
T
√

ln(dT ) .

6. Online convex optimization and exp-concave loss functions

By using a standard reduction, the results of the previous sections can be applied to online
convex optimization on the simplex. In this setting, at eachstept the forecaster chooseŝpt ∈ ∆d

and then is given access to a convex lossℓt : ∆d → [0, 1]. Now, using Algorithm1 with the
loss vectorℓt ∈ ∂ℓt(p̂t) given by a subgradient ofℓt leads to the desired bounds. Indeed, by the
convexity ofℓt, the regret at each timet with respect to any vectorut ∈ R

d
+ with ‖ut‖1 > 0 is then

bounded as

‖ut‖1
(
ℓt(p̂t)− ℓt

(
ut

‖ut‖1

))
6
(
‖ut‖1 p̂t − ut

)⊤
ℓt .

11



6.1. Exp-concave loss functions

Recall that a loss functionℓt is calledη0-exp-concave ife−η0 ℓt is concave. (In particular, exp-
concavity implies convexity.)Bousquet and Warmuth(2002) study shifting regret for exp-concave
loss functions. However, they define the regret of an elementqT

1 of the comparison class (a sequence
of elements in∆d) by

T∑

t=1

(
ℓt
(
p̂t

)
− q⊤

t ℓt

)
(12)

whereℓt =
(
ℓt(e1), . . . , ℓt(ed)

)
and e1, . . . ,ed are the elements of the canonical basis ofR

d.
This corresponds to the linear optimization case studied inthe previous sections. However, due to
exp-concavity, (1) can be replaced by an application of Jensen’s inequality, namely,

ℓt
(
p̂t

)
6 − 1

η0
ln




d∑

j=1

p̂j,t e
−η0 ℓt(ej)


 .

Hence the various propositions and corollaries of Sections3 and4 still hold true for the regret (12)
up to some modifications (deletion of the terms linear inη, assumption of exp-concavity, bounded-
ness no longer needed). For the sake of concreteness, we illustrate the required modifications on
Proposition4.

Proposition 10 Suppose Algorithm1 is run with the shared update (7) with weights satisfying the
conditions(8) and for the choiceη = η0. Then for allT > 1, for all sequencesℓ1, . . . , ℓT of
η0–exp-concave loss functions, and for all sequencesu1, . . . ,uT ∈ R

d
+,

T∑

t=1

‖ut‖1 ℓt
(
p̂t

)
−

T∑

t=1

u⊤
t ℓt 6

(uT
1 ) ln d

η0
+
n(uT

1 )T lnC

η0

+
m(uT

1 )

η0
ln

maxt6T Zt

α
+

∑T
t=1 ‖ut‖1 −m(uT

1 )− 1

η0
ln

1

1− α
.

We now turn to the more ambitious goal of controlling regretsof the form
∑T

t=1

(
ℓt
(
p̂t

)
−ℓt(qt)

)

where lossesℓt are exp-concave.Hazan and Seshadhri(2009) constructed algorithms withT–
adaptive regret of the order ofO(ln2 T ) and running in timepoly(d, log T ). They also constructed
different algorithms withT–adaptive regret bounded byO(lnT )) and running timepoly(d, T ).

Next, we show the first logarithmic shifting bounds for exp-concave loss functions. However,
we only do so against sequencesqT1 of elements in∆d, i.e., we offer here no general bound in terms
of linear vectorsuT

1 that would unify here as well the view between tracking bounds and adaptive
regret bounds. Besides, we get shifting bounds only in termsof hard shifts

s(qT1 ) =
∣∣{t = 2, . . . , T : qt 6= qt−1

}∣∣ .

Obviously, getting unifying bounds in terms of soft shifts of sequencesuT
1 of linear vectors is an

important open question, which we leave for future research. To get our bound, we mix ideas of
Herbster and Warmuth(1998) andBlum and Kalai(1997). We define a prior over the sequences of
convex weight vectors as the distribution of the following homogeneous Markov chainQ1, Q2, . . .:
The starting vectorQ1 is drawn at random according to the uniform distributionµ over∆d. Then,

12
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givenQt−1, the next elementQt is equal toQt−1 with probability1 − α and with probabilityα is
drawn at random according toµ. In the sequel, all probabilitiesP and expectationsE will be with
respect to this Markov chain. Now, the convex weight vector used at timet > 1 by the forecaster is

p̂t =
E

[
Qt e

−η0Lt−1(Q
t−1

1
)
]

E

[
e−η0Lt−1(Q

t−1

1
)
] , where Lt−1(Q

t−1
1 ) =

t−1∑

s=1

ℓs(Qs) (13)

(with the convention that an empty sum is null). For this forecaster, we get the following perfor-
mance bound, whose proof can be found in appendix.

Proposition 11 For all T > 1, for all sequencesℓ1, . . . , ℓT of η0–exp-concave loss functions
taking values in[0, L], the cumulative loss of the above forecaster is bounded for all sequences
q1, . . . , qT ∈ ∆d by

T∑

t=1

ℓt(p̂t)−
T∑

t=1

ℓt(qt) 6

(
s(qT

1 ) + 1
)
(d− 1)

η
max

{
1, ln

e η LT(
s(qT

1 ) + 1
)
(d− 1)

}

+
s(qT1 )

η
ln

1

α
+
T − s(qT

1 )− 1

η
ln

1

1− α
.

Under the imposition of a bounds0 on the numbers of hard shiftss(qT1 ) and up to a tuning ofα in
terms ofs0 andT , the last two terms of the bound are smaller thanT h(s0/T ) 6 s0 ln(es0/T ) and
therefore, the whole regret bound isO

(
(ds0/η0) lnT

)
.
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Appendix A. Proof of Proposition 8

We first adapt Lemma1.

Lemma 12 The forecaster based on the loss and shared updates(11) satisfies, for allt > 1 and for
all qt ∈ ∆d,

(
p̂t − qt

)⊤
ℓt 6

d∑

i=1

qi,t

(
1

ηt−1
ln

1

p̂i,t
− 1

ηt
ln

1

vi,t+1

)
+

(
1

ηt
− 1

ηt−1

)
ln d+

ηt−1

8
,

wheneverηt 6 ηt−1.

Proof By Hoeffding’s inequality,

d∑

j=1

p̂j,t ℓj,t 6 − 1

ηt−1
ln




d∑

j=1

p̂j,t e
−ηt−1 ℓj,t


+

ηt−1

8
.

By Jensen’s inequality, sinceηt 6 ηt−1 and thusx 7→ x
ηt−1

ηt is convex,

1

d

d∑

j=1

p̂j,t e
−ηt−1ℓj,t =

1

d

d∑

j=1

(
p̂

ηt
ηt−1

j,t e−ηtℓj,t

)ηt−1

ηt

>


1

d

d∑

j=1

p̂

ηt
ηt−1

j,t e−ηtℓj,t




ηt−1

ηt

.

Substituting in Hoeffding’s bound we get

p̂⊤
t ℓt 6 − 1

ηt
ln




d∑

j=1

p̂

ηt
ηt−1

j,t e−ηtℓj,t


+

(
1

ηt
− 1

ηt−1

)
ln d+

ηt−1

8
.

Now, by definition of the loss update in (11), for all i ∈ [d],

d∑

j=1

p̂

ηt
ηt−1

j,t e−ηtℓj,t =
1

vi,t+1
p̂

ηt
ηt−1

i,t e−ηtℓi,t ,

which, after substitution in the previous bound leads to theinequality

p̂⊤
t ℓt 6 ℓi,t +

1

ηt−1
ln

1

p̂i,t
− 1

ηt
ln

1

vi,t+1
+

(
1

ηt
− 1

ηt−1

)
ln d+

ηt−1

8
,

valid for all i ∈ [d]. The proof is concluded by taking a convex aggregation overi with respect to
qt.

The proof of Proposition8 follows the steps of the one of Proposition2; we sketch it below.

Proof of Proposition 8 Applying Lemma12 with qt = ut/ ‖ut‖1, and multiplying by‖ut‖1, we
get for allt > 1 andut ∈ R

d
+,
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‖ut‖1 p̂⊤
t ℓt − u⊤

t ℓt 6
1

ηt−1

d∑

i=1

ui,t ln
1

p̂i,t
− 1

ηt

d∑

i=1

ui,t ln
1

vi,t+1

+ ‖ut‖1
(

1

ηt
− 1

ηt−1

)
ln d+

ηt−1

8
‖ut‖1 . (14)

We will sum these bounds overt > 1 to get the desired result but need to perform first some
additional boundings fort > 2; in particular, we examine

1

ηt−1

d∑

i=1

ui,t ln
1

p̂i,t
− 1

ηt

d∑

i=1

ui,t ln
1

vi,t+1

=
1

ηt−1

d∑

i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)
+

d∑

i=1

(
ui,t−1

ηt−1
ln

1

vi,t
− ui,t

ηt
ln

1

vi,t+1

)
, (15)

where the first difference in the right-hand side can be bounded as in (6) by

d∑

i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)

6
∑

i : ui,t>ui,t−1

(
(ui,t − ui,t−1) ln

1

p̂i,t
+ ui,t−1 ln

vi,t
p̂i,t

)
+

∑

i : ui,t<ui,t−1

ui,t ln
vi,t
p̂i,t

6 DTV (ut,ut−1) ln
d

αt
+
(
‖ut‖1 −DTV (ut,ut−1)

)
ln

1

1− αt

6 DTV (ut,ut−1) ln
d(1− αT )

αT
+ ‖ut‖1 ln

1

1− αt
, (16)

where we used for the second inequality that the shared update in (11) is such that1/p̂i,t 6 d/αt and
vi,t/p̂i,t 6 1/(1 − αt), and for the third inequality, thatαt > αT andx 7→ (1 − x)/x is increasing
on (0, 1]. Summing (15) overt = 2, . . . , T using (16) and the fact thatηt > ηT , we get

T∑

t=2

(
1

ηt−1

d∑

i=1

ui,t ln
1

p̂i,t
− 1

ηt

d∑

i=1

ui,t ln
1

vi,t+1

)

6
m(uT

1 )

ηT
ln
d(1 − αT )

αT
+

T∑

t=2

‖ut‖1
ηt−1

ln
1

1− αt
+

d∑

i=1

(
ui,1
η1

ln
1

vi,2
− ui,T

ηT
ln

1

vi,T+1︸ ︷︷ ︸
>0

)
.

An application of (14) —including for t = 1, for which we recall that̂pi,1 = 1/d andη1 = η0 by
convention— concludes the proof. �
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Appendix B. Proof of Proposition 11

Proof By the definition of exp-concavity and by application of Jensen’s inequality to the distribution
Pt over(∆d)

t with density

rt1 7−→ 1

E

[
e−η0Lt−1(r

t−1

1
)
] e−η0Lt−1(r

t−1

1
) × 1

with respect to the marginal distribution ofP over(∆d)
t, we have that

exp
(
−η0 ℓt(p̂t)

)
= exp

(
−η0 ℓt

(
Et[Qt]

))
> Et

[
exp
(
−η0 ℓt(Qt)

)]
=

E

[
e−η0Lt(Qt

1
)
]

E

[
e−η0Lt−1(Q

t−1

1
)
] .

Thus, a telescoping sum appears,

T∑

t=1

ℓt(p̂t) =

T∑

t=1

− 1

η0
ln e−η0ℓt(p̂t) 6 − 1

η0
lnE

[
e−η0LT (QT

1
)
]
.

It suffices to lower bound the expectation. To do so, we define for all sequencesrk1 the set of the
sequences ofk weight vectors that only shift whenrk1 does and that at each such shift areε–close
to the corresponding values of thert:

Sε,rk
1

=
{
sk1 ∈ X k : ∀t ∈ {2, . . . , k}, st 6= st−1 ⇒ rt 6= rt−1

and ∀t ∈ {1, . . . , k}, st = (1− ε)rt + εwt for somewt ∈ X
}
.

Note that the second defining constraint is equivalent to thesame constraint only at the shifting times
of rk1 , in view of the first constraint. Since exp-concave loss functions are in particular convex, we
get that for allsT1 ∈ Sε,qT

1

,

T∑

t=1

ℓt(st) 6 (1− ε)

T∑

t=1

ℓt(qt) + ε

T∑

t=1

ℓt(wt) 6

T∑

t=1

ℓt(qt) + εLT .

Thus,

− 1

η0
lnE

[
e−η0LT (QT

1
)
]
6 − 1

η0
lnE

[
e−η0LT (QT

1
)
I{

QT
1
∈S

ε,qT
1

}
]

6

T∑

t=1

ℓt(qt) + εLT − 1

η0
lnP

(
Sε,qT

1

)
.

Furthermore, we show by induction ont that for allt > 1,

P
(
Sε,qt

1

)
> εd−1(1− α)t−s(qT

1
)−1
(
αεd−1

)s(qT
1
)
.
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This is true fort = 1 asSε,q1 = (1 − ε)q1 + εX has aP–probability given by itsµ–probability,
which is equal toεd−1 µ(X ) = εd−1, and as by convention,s(q1) = 0. Besides, whent > 2, we
have by definition ofP (cf. its defining transition probability distributions) and Sε,qt

1

(cf. thest1 can
only shift when theqt

1 do) that

P
(
Sε,qt

1

)
>

{
(1− α) P

(
Sε,qt−1

1

)
when qt = qt−1

α P
(
Sε,qt−1

1

)
µ(Sε,rt) = α εd−1

P
(
Sε,qt−1

1

)
when qt 6= qt−1 ,

which concludes the induction.
Substituting the obtained bound, we have proved so far that

T∑

t=1

ℓt(p̂t)−
T∑

t=1

ℓt(qt) 6 εLT − 1

η0
ln
(
εd−1(1− α)t−s(qT

1
)−1
(
αεd−1

)s(qT
1
))
.

ε ∈ [0, 1] is a parameter of the analysis, it can be optimized to minimize

εLT +

(
s(qT1 ) + 1

)
(d− 1)

η0
ln

1

ε

and get the claimed bound. This is achieved by choosing

ε = min

{
1,

(
s(qT

1 ) + 1
)
(d− 1)

η0LT

}
.
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