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Abstract

We investigate extensions of well-known online learnirgpaithms such as fixed-sharetéérbster and Warmuth
(1998 or the methods proposed Bousquet and Warmutf2002. These algorithms use weight

sharing schemes to perform as well as the best sequence eftexpth a limited number of

changes. Here we show, with a common, general, and simpédysas, that weight sharing in

fact achieves much more than what it was designed for. Wetusesimultaneously prove new

shifting regret bounds for online convex optimization oa gimplex in terms of the total variation

distance as well as new bounds for the related setting otizdapgret. Finally, we exhibit the first

logarithmic shifting bounds for exp-concave loss funcsion the simplex.

Keywords: Prediction with expert advice, online convex optimizatitnacking the best expert,

shifting experts.

1. Introduction

Online convex optimization is a sequential prediction daga in which, at each time step, the
learner chooses an element from a fixed convexSsahd then is given access to a convex loss
function defined on the same set. The value of the functiorherchosen element is the learner’s
loss. Many problems such as prediction with expert adviegusntial investment, and online re-
gression/classification can be viewed as special casessofeneral framework. Online learning
algorithms are designed to minimize the regret. The stahdation of regret is the difference
between the learner's cumulative loss and the cumulatise ¢b the single best elementdh A
much harder criterion to minimize is shifting regret, whishdefined as the difference between the
learner’'s cumulative loss and the cumulative loss of artrayi sequence of elementséh Shift-
ing regret bounds are typically expressed in terms ofst#, a notion of regularity measuring the
length of the trajectory it described by the comparison sequence (i.e., the sequerbenoénts
against which the regret is evaluated).

In online convex optimization, shifting regret bounds fonegex subsets C R¢ are obtained
for the online mirror descent (or follow-the-regulariziegder) algorithm. In this case the shift is
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typically computed in terms of the-norm of the difference of consecutive elements in the com-
parison sequence —seterbster and Warmutf2001) andCesa-Bianchi and Lugoé2006). In this
paper we focus on the important special case wHdn the simplex, and investigate the online
mirror descent with entropic regularizers. This familyludes popular algorithms such as expo-
nentially weighted average (EWA), Winnow, and exponeadagradient. Proving general shifting
bounds in this case is difficult due to the behavior of the laagger at the boundary of the simplex.
Herbster and Warmut(2001) show shifting bounds for mirror descent with entropic legaers
using al-norm to measure the shift. In order to keep mirror descemh fthoosing points too close
to the simplex boundary, they use a complex dynamic prajedgchnique. When the comparison
sequence is restricted to the corners of the simplex (whiche setting of prediction with expert
advice), then the shift is naturally defined to be the numibeeg the trajectory moves to a different
corner. This problem is often called “tracking the best eXpe-see, e.g.Herbster and Warmuth
(1998; Vovk (1999; Herbster and Warmut{2001); Bousquet and Warmutf2002); Gyorgy et al.
(2009, and it is well known that EWA with weight sharing, which oesponds to the fixed-
share algorithm oHerbster and Warmut(il998), achieves a good shifting bound in this setting.
Bousquet and Warmutf2002) introduce a generalization of the fixed-share algorithng prove
various shifting bounds for any trajectory in the simplexowéver, their bounds are expressed
using a quantity that corresponds to a proper shift onlyrigjettories on the simplex corners.

Our analysis unifies, generalizes (and simplifies) the presly quite different proof techniques
and algorithms used iklerbster and Warmutfl1998 and Bousquet and Warmutf2002. Our
bounds are expressed in terms of a notion of shift based aotilevariation distance. The gener-
alization of the “small expert set” result Bousquet and Warmutf2002 leads us to obtain better
bounds when the sequence against which the regret is mdaswsparse. When the trajectory is
restricted to the corners of the simplex, we recover, andsiooally improve, the known shifting
bounds for prediction with expert advice. Besides, ourysislalso captures the setting of adap-
tive regret, a related notion of regret introduced Higzan and Seshadhf2009. It was known
that shifting regret and adaptive regret had some conmechat this connection is now seen to be
even tighter, as both regrets can be viewed as instanceg shthealma materegret, which we
minimize. Finally, we also show how to dynamically tune tlaegmeters of our algorithms and re-
view briefly the special case of exp-concave loss functierkibiting the first logarithmic shifting
bounds for exp-concave loss functions on the simplex.

2. Preliminaries

We first define the sequential learning framework we work wiiten though our results hold in
the general setting of online convex optimization, we pneigem in the, somewhat simplemline
linear optimizatiorsetup. We point out in Sectighhow these results may be generalized. Online
linear optimization may be cast as a repeated game betwedordtasterand theenvironmenias
follows. We useA, to denote the simpletg € [0,1] : |q||; = 1}.

Online linear optimization. For eachround=1,...,T,
1. Forecaster choos@s = (i, .. .,Pdt) € Aa;
2. Environment chooses a loss vectpt= ({1 4,...,%4q,) € [0, 1] ;

3. Forecaster suffers logs ¢, .
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The goal of the forecaster is to minimize the accumulates igs = ST ¢ 4. In the now
classical problem of prediction with expert advice, thelgiddhe forecaster is to compete with the
best fixed component (often called “expert”) chosen in higtus that is, withmin;—; 7 Ethl Uiy
The focus of this paper is on more ambitious forecastersdbaipete with a richer class ae-
quencef components. Lefd] = {1,...,d}. We usei’ = (i,...,ir) to denote a sequence in
[d]” and letLy(iT) = S__, ¢;, be the cumulative linear loss of the sequefice [d]”.

We start by introducing our main algorithmic tool, a genieral share algorithm. It is parametrized
by the “mixing functions™y; : [0, 1](t+1)d — Agfort =1,...,T that assign probabilities to past
“pre-weights” as defined below. In all examples discussetispaper, these mixing functions are
quite simple but working with such a general model makes thgndeas more transparent. We
then provide a simple lemma that serves as the starting fasiahalyzing different instances of the
generalized share algorithm.

Algorithm 1: The generalized share algorithm.

Parameters: learning rate; > 0 and mixing functions), fort =1,...,T
Initialization: p; = vy = (1/d,...,1/d)

Foreachround =1,...,T,

1. Predictp, ;

2. Observe losg; € [0,1]¢;
3. [loss updateFor eachj =1, ..., d define
Dt e b

Vjt+1 =
J,t+ d ~ —nt,
Yoy Dige Mt

Vi1 = [vis) il 1<s<tp1  thed x (t+ 1) matrix of all past and current pre-weights;
4. [shared update] Defing ., = ¢y41 (V4 1)

the current pre-weights,

Lemmal Forall ¢t > 1 and for allq, € Ay, Algorithm1 satisfies

d

N T 1 Vit+l 7
P —qy) £ < — Qipln —— + =
( t t) n ZZ:; ? Dit 8

Proof By Hoeffding’s inequality,

d d

~ 1 L,
ijvt ljp < —1In X:Pj,te nhie | 4 . 1)
j=1 n j=1 8

Pige "

d

By definition ofv; 1,1, foralli = 1,. .., d we then have Zﬁjvt e it =
- Vi t+1
J=1 ’

which entails B, £; < 4i; + Ly Zitet 3
n Pit
The proof is concluded by taking a convex aggregation wispeet tog,. [ |



3. Shifting bounds

In this section we prove shifting regret bounds for the gelimed share algorithm. We com-
pare the cumulative IosgjthlfatT ¢, of the forecaster with the loss of an arbitrary sequence of
vectorsqy, . .., g in the simplexA,, that is, Withsz:1 q; ¢;. The bounds we obtain depend,
of course, on the “regularity” of the comparison sequencethé now classical results on track-
ing the best expert (as iHerbster and Warmuth 19980ovk 1999 Herbster and Warmuth 2001
Bousquet and Warmuth 200)2his regularity is measured as the number of tigpeg g, (hence-
forth referred to as “hard shifts”). The main results of thager show not only that these results
may be generalized to obtain bounds in terms of “softer” lagy measures but that the same
algorithms that were proposed with hard shift tracking imdnachieve such, perhaps surprisingly
good, performance. Building on the general formulatiomodticed in Sectior2, we derive such
regret bounds for the fixed-share algorithnHsfrbster and Warmutfi998 and for the algorithms
of Bousquet and Warmuit2002).

In fact, it is advantageous to extend our analysis so thatotvenly compare the performance of
the forecaster with sequenags . . . , g taking values in the simple&; of probability distributions
but rather against arbitrary sequeness. .., ur € Ri of vectors with non-negative components.
The loss of such a sequence is definedBj , u, £;. For fair comparison, we measure the cumu-
lative loss of the forecaster By, p, £:||u;|:. Of course, whem; € A4, we recover the original
notion of regret.

The norms||u; ||, , ..., ||lur|, may be viewed as a sequence of weights that give more or less
importance to the instantaneous loss suffered at each Gteparticular interest is the case when
|luel|, € [0, 1] which is the setting of “time selection functions” (S8kim and Mansour 20QSec-
tion 6). In particular, considering sequendes||, € {0, 1} that include the zero vector will provide
us a simple way of deriving “adaptive” regret bounds, a motiaroduced byHazan and Seshadhri
(2009.

The first regret bounds derived below measure the regutafittye sequence! = (u1, ..., ur)

in terms of the quantity
T—1

m(u{) = Z Drv (s, uy) (2
t=1

where fore = (z1,...,24),y = (y1,...,94) € R}, we defineDry(z,y) = >, -, (2 — ).
Note that whene, y € A4, we recover the total variation distanter (z,y) = 1 ||z — yl|;, while
for generake, y € ]Rii, the quantityDrv (x, y) is not necessarily symmetric and is always bounded
by ||z — yl/,. Note that when the vectors; are incidence vector®,...,0,1,0,...,0) € R? of
elementsi; € [d], thenm(ul) corresponds to the number of shifts of the sequetce [d]”, and

we recover from the results stated below the classical botordracking the best expert.

3.1. Fixed-share update

We now analyze a specific instance of the generalized shgogitin corresponding to the
update

d

~ «
Pit+1 = Z (E + (1 — a)]lz':j> Vi1 =

i=1

+ (1 — @)vj 41, 0<a<l. (3)

SH e
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Despite seemingly different statements, this update irodtigm 1 can be seen to leagixactlyto
the fixed-share algorithm dierbster and Warmutf1998) for prediction with expert advice.

Proposition 2 With the above update, for &l > 1, for all sequenceg€y, ..., £r of loss vectors
¢, €[0,1)%, and for alluy, ... ,ur € RY,
uuumd n\
=T 1
ZHut”1 p; £ — ZutTE < gz ([t
t=1 t=1 t=1
T
pmel)y, Sl —m) -1, 1
7 7 l—a

We emphasize that the fixed-share forecaster does not n8letbie” anything about the sequence
of the normg|u,||. Of course, in order to minimize the obtained upper boureltuhing parameters
a,n need to be optimized and their values will depend on the malxiralue ofm(u; Ty for the
sequences one wishes to compete against. In particulahtamdhe following corollary, in which
h(z) = —zlnz — (1 — z)In(1 — ) denotes the binary entropy function forc [0, 1]. We recalf
thath(z) < zln(e/x) for z € [0, 1].

Corollary 3 Suppose Algorithni is run with the updated). Letm > 0. Forall 7" > 1, for all
sequenceg,, . .., £r of loss vectors, € [0,1], and for allq, ..., qp € Ag withm(qT) < my,

T T
T m
=Ty _ Tp < |1 _ 0
tz:;pt et tz:;qt et\ 2<(m0—|—1)lnd+(T 1) h<T—1 ,

whenever and a are optimally chosen in terms oty andT.

If we only consider vectors of the forgy, = (0,...,0,1,0,...,0) thenm(q?) corresponds to the
number of timegy,, ; # q, in the sequence! . We thus recovererbster and Warmui998 The-
orem 1) andBousquet and Warmutf2002, Lemma 6) from the much more general Proposi2on

Proof of Proposition 2 Applying Lemmal with q; = w/ ||u.||;, and multiplying by|ju,||,, we
get for allt > 1 andu,; € R%

d
. 1 Vi t4+1
leally B7 0 — € < o 3 wigln =+ Sy (4)
° it

We now examine
d

d vi 1 1 d 1 1
Z u; ¢ In ZA’H_I = Z (u“ In — —u;;—1In —> —I—Z <Ui,t—1 In — —u;;In > . (5)
im1 Dit bi ‘ Vit Vi, t+1

v
i=1 BL bt i=1

For the first term on the right-hand side, we have

d
1 1 1
Z (uz’,t In 5 uj -1 1In v_> = Z <(uzt —Uj—1)In— 4+ u;;—11In Lt)
it ;

i—1 2, i > pz t Dit

1. As can be seen by noting that(1/(1 — z)) < z/(1 — z)



1 i
+ Z <(Uit Uztl)ln_+uztlnu>- (6)

. (Y
i <ui g1 1t Pigt

<0

In view of the update3), we havel /p; ; < d/a andv;;/p;; < 1/(1 — «). Substituting in §), we
get

1 1
Z UipIn — — w1 1In —
Dit (%R

i=1

< Z (Wi — Uip—1) lng + Z Ujp—1 + Z u;t | In !

TIUG UG 1 1 UG U b1 1 Uy <Ujt—1

1
= Dry (ug, ug—1) 111— Zuzt_ Z (it — wit—1) lnl_a-

T UGE UG 1

=||lut|l; —Drv (ut,ut—1)

The sum of the second term iB)(telescopes. Substituting the obtained bounds in the firataf
the right-hand side ind), and summing over=2,...,T, leads to

T d vs 1
Zzui’tln Z/f"‘l <m(u ln— (ZHutHl—l— m(u )) lnl

—

We hence get fromd)), which we use in particular far= 1,

T
> el B/ & — w6 < Zuzlln -+3 ZHWHI
t=1

+M ZtluutHl_l_ m(u )ln 1
n O‘ n 1—a

3.2. Sparse sequences: Bousquet-Warmuth updates

Bousquet and Warmut{2002 proposed forecasters that are able to efficiently compétte w
the best sequence of experts among all those sequencesnthawetch a bounded number of
times and also take a small number of different values. Sspharse” sequences of experts appear
naturally in many applications. In this section we show thatr algorithms in fact work very well
in comparison with a much larger class of sequences. . , ur that are “regular'—that isp (u?),
defined in @) is small—and “sparse” in the sense that the quantity

d
= max u
Z et ot

i=1 ”
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is small. Note that whegq, € A, for all ¢, then two interesting upper bounds can be provided. First,
denoting the union of the supports of these convex comlinatbyS C [d], we haven(q?) < |9,
the cardinality ofS. Also,

n(qr{)é ‘{qt, t=1,...,

the cardinality of the pool of convex combinations. Thugy?!) generalizes the notion of sparsity
of Bousquet and Warmuit2002).
Here we consider a family of shared updates of the form

pjt=(1— v+ a—2t 0<a<, (7)

where thew,; are nonnegative weights that may depend on past and cumeswegights and
Zy = Zlewi,t is a normalization constant. Shared updates of this formevpeoposed by
Bousquet and Warmuif2002, Sections 3 and 5.2).

Apart from generalizing the regret boundsBbusquet and Warmutf2002), we believe that
the analysis given below is significantly simpler and moams$parent. We are also able to slightly
improve their original bounds.

We focus on choices of the weights; ; that satisfy the following conditions: there exists a
constantC' > 1 suchthatforalj =1,...,dandt=1,...,T,

Vit < Wyt <1 and ij,Hl = Wit - (8)

The next result improves on Propositi@rwhenT < d andn(ul) < m(u?), that is, when the
dimension (or number of expertg)is large but the sequeneg’ is sparse.

Proposition 4 Suppose Algorithmi is run with the shared updat&) with weights satisfying the
conditions(8). Then for allT” > 1, for all sequenceg,, ..., £7 of loss vectorg; € [0,1]%, and for
all sequencesy, ..., ur € R,

T
n(uy)Ind )T InC 77
Znutul Pl - Zut g2l )ind nlu #§ 2l

N -
n m(uf) I Xe<T Z Zt el — m(uf) -1 In 1 .
n « n 11—«

Proof The beginning and the end of the proof are similar to the ori&rgposition2, as they do not
depend on the specific weight update. In particular, inétiggl@d) and &) remain the same. The
proof is modified after®), which this time we upper bound using the first conditiond} (

d

1 1 1
Z(uztln — Uj g 11n—> = Z (i — wig—1)In — +u;z 1111Lt
pzt Vit

i=1 By >u pz t pz t

1 t
+ E (uit —uiz—1) In— +u;;ln L . (9
o . ———— Vit p, t
1 ~uz,t<uz,t71 <0
>In(1/w; ¢)



By definition of the shared updaté)(we havel /p;: < Z¢/(awj) andv; ¢/pie < 1/(1 — «). We
then upper bound the quantity at hand 3 lfy

Z 1
Z (uit —uiz—1)In <a t' > + Z Uip—1 + Z u; ¢ | In T

. wzt . .
1IUG UG 1 ’ TIUG L2 UG 1 —1 1iU ¢ <Uj t—1

1
+ Z (ui,t — u,-7t_1) In

Ws ¢

Ty <ugp—1

d
Z 1
= Dpv(us,ui—1) lngt + (Jlwell; — Drv(ws, ue—1)) In - + Zz:; (uit —uiz—1)In

1

wzt

Proceeding as in the end of the proof of Proposiipwe then get the claimed bound, provided that
we can show that

T d
1

g g Uit — u,tllnw <nl)(Ind+TnC) — |lui |, Ind,
2.t

t=2 i=1

which we do next. Indeed, the left-hand side can be rewrdten

T d 1 1
> +ZZ (ui,t In ‘ — Ujt—1 anJ't>

/AN
—
L=

N
<. )
Il

T d
C w; 141
max_ ;¢ E In——— | + E max_ ;¢ — E u;1 In
t=1,....T Wi ¢ — t=1,....T ’LUZ T+1 Wi,2

t=2 ) =1
d

d
1 1
- Z <t:nl1£.1.:.>(Tui7t> <(T —1)InC+1n wi72> — Zuivl In ——

i—1 %,2

where we used’ > 1 for the first inequality and the second condition &y for the second inequal-
ity. The proof is concluded by noting tha)(entailsw; » > (1/C)w; 1 > (1/C)v;1 = 1/(dC) and
that the coefficientnax;—; .7 u;+ — u; 1 in front of In(1/w; 2) is nonnegative. |

We now generalize Corollaries 8 and Bifusquet and Warmui2002 by showing two specific in-
stances of the generic updai® (hat satisfy §). The first update uses; ; = maxs<; vj . Then @)
is satisfied withC' = 1. Moreover, since a sum of maxima of nonnegative elementmadlar than
the sum of the sums7; < min{d, ¢t} < T'. This immediately gives the following result.

Corollary 5 Suppose Algorithni is run with the updatg7) with w;; = max.<;v;s. For all
T > 1, for all sequenceg,, ..., £r of loss vectord; € [0,1]¢, and for allqy, ..., qr € Ay,

T n(qq )lnd n m(qlT) T T-— m(qlT) -1 1
E V4 E e, < T+ —"21n— | .
D £t — q; £t & " +8 + p na—l— o nl—a
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The second update we discuss uges = maxs<; €’ v, in (7) for somey > 0. Both
conditions in B) are satisfied with’ = 7. One also has that
1

Zt<d and Zy < E 6_77—:1 _Wé
— €
720

2=

ase” > 1+ z for all realz. The bound of Propositiod then instantiates as

T T T : _ Ty _
n(qi)nd n n(qi) Ty Ly m(qi ) min{d, 1/7} LT migy)—1, 1
n n 8 n o n 1—«

when sequences; = g, € A, are considered. This bound is best understood whisrnuned opti-
mally based orf” and on two boundsng andng over the quantitiesn(q?) andn(q!). Indeed, by
optimizingngTy + mg In(1/7), i.e., by choosing: = mq/(no T'), one gets a bound that improves
on the one of the previous corollary:

Corollary 6 Letmg, ng > 0. Suppose Algorithrhis run with the updatey; ; = max,<; 67(3‘%]- s

wherey = myg/(no T). For all T > 1, for all sequencegy, . .., £r of loss vectord; < [0,1]%, and
forall qy,...,qr € Agsuch thatm(ql) < mg andn(g?) < ng, we have
T T
. Ind . T
ZptTEt — Zq?ﬂt < o + ULy <1+ln mln{d, nO—})
t=1 t=1 N n mo

1 T—mp—1, 1
plp MOy =y 2 07 2y
8 no«a n

1l—a

As the factorse=7* cancel out in the numerator and denominator of the rati@)nthere is a
straightforward implementation of the algorithm (not rigipg the knowledge ofl") that needs to
maintain onlyd weights.

In contrast, the corresponding algorithm Bdusquet and Warmut{2002), using the updates
Pjt = (1—a)v;+aS; Secio1(s—t)tujs0r Dy, = (1—a)vj+aS;,  maxee1(s—t) v,
whereS; denote normalization factors, needs to maintai@1’) weights with a naive implemen-
tation, andO(d In T") weights with a more sophisticated one. In addition, theiobthbounds are
slightly worse than the one stated above in Corolas an additional factor ofig In(1 + InT) is
present irBousquet and Warmuit2002, Corollary 9).

4. Adaptive regret

Next we show how the results of the previous section, e.gpdiition2, imply guarantees
in terms of adaptive regret —a notion introducedHigzan and Seshadh2009 as follows. For
70 € {1,...,T}, thery-adaptive regretf a forecaster is defined by

s s
Rro—adapt _ max P l—min > q' by . (10)
T [r,s] C [1,T] ; o qud; t

s+1—r<T9

Adaptive regret is an alternative way to measure the pedaooa of a forecaster against a changing
environment. It is a straightforward observation that digapregret bounds also lead to shifting



regret bounds (in terms of hard shifts). Here we show thatio notions of regret share an even
tighter connection, as they can be both viewed as instarfcége Gsamealma materbound, e.g.,
Proposition2.

Hazan and Seshadi{&009 essentially considered the case of online convex optimizavith
exp-concave loss function (see Sect®below). In case of general convex functions, they also
mentioned that the greedy projection forecasteZiokevich (2003 —i.e., mirror descent with a
guadratic regularizer— enjoys adaptive regret guarant€bis forecaster can be implemented on
the simplex in time)(d) —see, e.g.Duchi et al.(2008. We now show that the simpler fixed-share
algorithm has a similar adaptive regret bound.

Proposition 7 Suppose that Algorithrhis run with the shared updat&). Then for allT” > 1, for
all sequenceg,, ..., £y of loss vectorg; € [0,1]%, and for allry € {1,...,T},
1. d m—-1 1 n

RTo—adapt < ZlnZ 1 i )
T ’I’}n()é+ 7 nl—a+87—0

In particular, whenn and « are chosen optimally (depending anand 1)

—ada 1
RP dapt /70 oh{ —)+Ind) < i In(edr) .
2 70 2

Proof Forl < r < s < T andq € Ay, the regret in the right-hand side dfQ) equals the re-
gret considered in Propositichagainst the sequenagl defined asu; = g fort = r,...,s and
0 = (0,...,0) for the remaining.. Whenr > 2, this sequence is such thBy (u,,u,—1) =
I)T\/(q7 0) =1 andDTv(usH,uS) = DTv(O,q) = 0so thatm(ulT) = 1, while Hulﬂl = 0.
Whenr = 1, we havel|u, ||, = 1 andm(u]) = 0. In all casesin(uf) + ||uq||, = 1. Specializing
the bound of Propositio@ to the thus defined sequenag gives the result. [ |

5. Online tuning of the parameters

The forecasters studied above need their paramgtarsl o to be tuned according to various
guantities, including the time horizdh. We show here how the trick dfuer et al.(2002 of having
these parameters vary over time can be extended to ourgseEir the sake of concreteness we
focus on the fixed-share update, i.e., Algorithrmun with the update3). We respectively replace
steps 3 and 4 of its description by the loss and shared updates

nt
S—1 —nil ¢
p;y e " a
Vi1 = —2— and  pji1 = gt + (1 — ) vjeg s (11)
Z?:1 iy temmbie

forall ¢ > 1 and allj € [d], where(n,) and(«.,) are two sequences of positive numbers, indexed
by 7 > 1. We also conventionally defingy = n;. Proposition2 is then adapted in the following
way (whenn, = n anda; = «, Propositiorn? is exactly recovered).

10
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Proposition 8 The forecaster based on the above upddfely is such that whenevey, < 1
ando; < az_q forall t > 1, the following performance bound is achieved. ForalE> 1, for all

sequenceg, . .., £y of loss vectorg; € [0,1]%, and for allu,, ..., ur € RZ,
T
Sl B 6 - Zdﬂ Owujmmm@—fﬁyw
=1
N m(ul) n d(1 — ar) Z [l In n ZT: Mi—1 i
nr —y -1 l-—a =1 8 b

Due to space constraints, we only instantiate the obtaioeedto the case df'-adaptive regret
guarantees, wheh is unknown and/or can increase without bounds.

Corollary 9 The forecaster based on the above updates with= |/(In(dt))/t for ¢ > 3 and

1o = m = n2 = n3 on the one handy; = 1/t on the other hand, is such that for &l > 3 and for
all sequenceg;, ..., £r of loss vectorg; < [0, 1],

T . T
max {;pt 4 — ;glAnd;q Et} < V2T In(dT) + /31n(3d) .

[r,s]C[1,T]

Proof The sequence — In(n)/n is only non-increasing after round > 3, so that the defined
sequences dfy;) and(r;) are non-increasing, as desired. For a given pair) and a givery € A,
we consider the sequeneg defined in the proof of Propositiofy it satisfies thain(u!) < 1 and
|lue||; < 1forallt> 1. Therefore, PropositioB ensures that

s T T
. Ind 1 d(l-o 1 1 3
Zp,j—ﬂt manq 4 < —+_1DM+ Z hll _1_2771681‘
t=r nr ar i -1 — Oy p
<dT

<(/n7) Z{ls Wt/ (t=1))=(n T) /97

It only remains to substitute the proposed values;@&nd to note that

+2\/_\/ (dT) . -

6. Online convex optimization and exp-concave loss functins

By using a standard reduction, the results of the previouioses can be applied to online
convex optimization on the simplex. In this setting, at esiglpt the forecaster choosgs € A,
and then is given access to a convex léss A; — [0,1]. Now, using Algorithm1 with the
loss vectort, € 9¢.(p,) given by a subgradient df, leads to the desired bounds. Indeed, by the
convexity of¢;, the regret at each timewith respect to any vectar, € R% with ||lu,||, > 0is then

bounded as
~ u ~ T
\W%(Ma»%(—L))<mmmm—m>a
el
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6.1. Exp-concave loss functions

Recall that a loss functiofy is calledr,-exp-concave it~ “ is concave. (In particular, exp-
concavity implies convexity.Bousquet and Warmutf2002 study shifting regret for exp-concave
loss functions. However, they define the regret of an elempEaf the comparison class (a sequence
of elements i\ ;) by

> (4(B) —al ) (12)
t=1
where¢, = ({(e1),...,l(eq)) andes,..., e, are the elements of the canonical basisR6f
This corresponds to the linear optimization case studigbérprevious sections. However, due to
exp-concavity, 1) can be replaced by an application of Jensen’s inequahiypeaty,

d
(P < o | e
1o =

Hence the various propositions and corollaries of SectBasd4 still hold true for the regretl(2)

up to some modifications (deletion of the terms lineaw,iassumption of exp-concavity, bounded-
ness no longer needed). For the sake of concreteness, steailithe required modifications on
Propositiord.

Proposition 10 Suppose Algorithr is run with the shared updat&) with weights satisfying the
conditions(8) and for the choice; = 1. Then for allT" > 1, for all sequencedq,...,{r of
no—exp-concave loss functions, and for all sequences. ., ur € Ri,

T T T T
. Ind ThnC
Z luell, (D)) — Zu:ft < (uj)In N n(uj)TIn
t=1 t=1 To o
T
muf) | maxer 7 Ny fwll —mw) -1, 1
"o «Q 1o 11—«

We now turn to the more ambitious goal of controlling regofthe form>>/_, (¢,(p,) —¢:(q;))
where lossed; are exp-concave.Hazan and Seshadh{2009 constructed algorithms witf'—
adaptive regret of the order ¢f(In? T') and running in timepoly(d, log T'). They also constructed
different algorithms witi"'—adaptive regret bounded I6}(1n 7°)) and running timepoly(d, T').

Next, we show the first logarithmic shifting bounds for exgricave loss functions. However,
we only do so against sequenegsof elements im\, i.e., we offer here no general bound in terms
of linear vectorsu? that would unify here as well the view between tracking bauadd adaptive
regret bounds. Besides, we get shifting bounds only in tefhard shifts

s(al)=|{t=2,....T : q, £ q,1}|

Obviously, getting unifying bounds in terms of soft shiffssequences! of linear vectors is an
important open question, which we leave for future reseaii@chget our bound, we mix ideas of
Herbster and Warmutf1998 andBlum and Kalai(1997). We define a prior over the sequences of
convex weight vectors as the distribution of the followirantogeneous Markov cha@, Q., . . .:
The starting vecto@, is drawn at random according to the uniform distributjoover A ;. Then,

12



A NEW LOOK AT SHIFTING REGRET

given@Q,_,, the next elemen®), is equal toQ,_; with probability 1 — « and with probabilitya is
drawn at random according ja In the sequel, all probabilitieB and expectationg will be with
respect to this Markov chain. Now, the convex weight vecgaduat time > 1 by the forecaster is

E[Qt e—noLt—1(Q§’1)} t—1
P, = ., where L,_1(Q"H =) 14,Q, 13
P g =@ =2 L@ (13)

(with the convention that an empty sum is null). For this éarster, we get the following perfor-
mance bound, whose proof can be found in appendix.

Proposition 11 For all T > 1, for all sequenced;,...,{r of ng—exp-concave loss functions
taking values in0, L], the cumulative loss of the above forecaster is bounded If@eguences

qlv'-.vqTeAdby

T T
. (laD+ 1)@= Iy, enLlT
;ft(pt) ;ft(fh) < n {1’ : (s(qf) + 1)(d -1) }
Lol 1 T—s@)-1, 1
n « n 1—«

Under the imposition of a boungh on the numbers of hard shift§g?) and up to a tuning of: in
terms ofsy andT’, the last two terms of the bound are smaller tiain(so/7") < so In(eso/T) and
therefore, the whole regret bounddg (dso/no) InT).

13
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A NEW LOOK AT SHIFTING REGRET

Appendix A. Proof of Proposition 8
We first adapt Lemma.

Lemma 12 The forecaster based on the loss and shared updafgsatisfies, for alk > 1 and for
a” qt S Ad,

1 1
(P Z%t(—ln———ln > (———)l d+ 2=t L
M—1  Pig M Vi1 N Me—1 8

whenever; < ;1.

Proof By Hoeffding’s inequality,

d
~ ¢ Nt—1
p',tél,t _ ln p te —Mt—145¢ + .
; PP Z 8

nt—1

By Jensen’s inequality, sineg < n;_1 and thuse — =" 7 is convex,

nt—1
Nt Nt

d
B

nt—1

nt

d
DT =lz<z’f"§ ) T
d d J

Substituting in Hoeffding’s bound we get

&IH

1 (& 11 M
B < ——In| ) Pl e +<———>1nd+—‘.
Mt = N M1 3

Now, by definition of the loss update itX), for all i € [d],

d ¢ 1 nt
o~ — ANt — p— .
§ :p tt 1 ntéj t 1t—1 e Meli ’

it
which, after substitution in the previous bound leads taileguality

I 1 1 1 1
P& < &t+—1 . W +<———>1 d+ M=l
-1 Dit Mt Vil N M—1 8

’Uz',t+1

valid for all i € [d]. The proof is concluded by taking a convex aggregation owvéth respect to
q;- u

The proof of Propositiom follows the steps of the one of Propositignwe sketch it below.

Proof of Proposition 8 Applying Lemmal2 with g, = u,/ ||u.||,, and multiplying by||u||,, we
get for allt > 1 andu, € RY,

15



||ut\|1ﬁ:£t—u;r£t Zu”ln———Zu”ln
Dit Vi t+1

1 Mt—1
+ ||u — — — |JInd+ — ||u¢l|; . (14
fully (5 = = i+ 252 ], (19
We will sum these bounds ovér > 1 to get the desired result but need to perform first some
additional boundings fot > 2; in particular, we examine

d d
1 1 1 1
—Zuzvtln,\— — —Zumln
M—1 —t bit T - Vi t+1
d d
1 1 ; 1
:—Z(ui,tln,\——um 1111—>_|_Z<u2t 1 %]n >, (15)
Mt—1 izl Pit P Nt—1 Uzt Mt Vi t+1
where the first difference in the right-hand side can be bedras in 6) by
d 1 1
Z Ui pIn — — i1 In—
— Dit Vit
=1
1 V.
< Z <(uzt —Uip—1)In — + uj 11HLt> + Z Uztlnﬁ
TIUGEZ UG 1 pl’t i 1 UG <Ugg—1 Pist
d 1
< Drv(wg,we—1)In— 4 ([Jwgll; — Dy (ug, ue—1)) In
(a7 — Q¢
d(l —« 1
< Drv(up )i 80 L (16)
ar 1—oy

where we used for the second inequality that the shared eiputl) is such that /p; ; < d/o and
vit/Dit < 1/(1 — oy), and for the third inequality, that; > ar andz — (1 — x)/z is increasing
on (0,1]. Summing {5) overt = 2,...,T using (L6) and the fact that, > nr, we get

T _ d ; j
< m(ul)1 (1—ar) ZHUtHl] 1 Z(ul’lln 1 Wy 1 >

+
nr = M1 - \m o vz T UiT41
= — ——

An application of (4) —including fort = 1, for which we recall thap; ; = 1/d andn;, = ng by
convention— concludes the proof. |
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Appendix B. Proof of Proposition 11

Proof By the definition of exp-concavity and by application of Jamis inequality to the distribution
P; over(A,4)* with density

1

L ( tfl) e—noLt,1('r§71) x 1
E|:e—770 t—1(7Tq ]

o

with respect to the marginal distribution Bfover (A,)?, we have that

E {e—ﬁoLt(Qﬁ)]

E [e—noLH@i*)} '

exp(—no 4 (py)) = eXP(—ﬁo 2 (Et[Qt])) > Ey [GXP(—WO gt(Qt))] =

Thus, a telescoping sum appears,
T

T
1 = 1 T
6(py) = ——Ine M4P) < — Z InE|e L@
g ) g - ” [ ]

It suffices to lower bound the expectation. To do so, we definell sequences’ the set of the
sequences df weight vectors that only shift wher(f does and that at each such shift arelose
to the corresponding values of thg

S&r;f:{s]fe)(k: VtG{Q,...,]{?}, st#st_l = rt?ért—l
and vte{l,...,k}, s;=(1—¢)r;+ ew, for somew; € X} .
Note that the second defining constraint is equivalent tgdinge constraint only at the shifting times

of r’f, in view of the first constraint. Since exp-concave loss fiams are in particular convex, we
T
getthatforalls; € S, ,r,

T T
th (st) < (1—¢ Z (q;) +z—:Z€t (wy) th (q;) +eLT.
=1 t=1 t=1

Thus,

1 lnE[e_"OLT(QlT)] <~ L mE|emwir@D)

o Mo

H{Q’{ESS qT}]

;zt q;) +eLT — % InP(S, 4r) -

Furthermore, we show by induction othat for allt > 1

s(gT
P(S.q) > ¥ (1 — a) @D (et 1) )
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This is true fort = 1 asS. 4, = (1 — €)g; + X has aP—probability given by itg.—probability,
which is equal te?~! 4(X) = 471, and as by convention;(q,) = 0. Besides, when > 2, we
have by definition of® (cf. its defining transition probability distributions) @Saai (cf. thes! can
only shift when theg} do) that

(1—a) P(S_ 1) when ¢; = q;,_;

£,q,

P(S, ) = _
( &‘11) { a IP’(S&qtlﬂ) w(Sep,) = aed™? IP’(S&qu) when q; # q;_,

which concludes the induction.
Substituting the obtained bound, we have proved so far that

T

3 s(qf)
;Et@t) - ;Et((h) <elT — 77_101n (ed_l(l - a)t_S(Q?)—l <a5d_l> “ > .

e € [0,1] is a parameter of the analysis, it can be optimized to mirémiz

oy Bla) F1)E -1 1n§

Mo

and get the claimed bound. This is achieved by choosing

E:min{l (s<q{>+1)<d—1>}.

noLT
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