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FaIMS: A fast algorithm for the inverse medium problem with
multiple frequencies and multiple sources for the scalar Helmholtz

equation

S. Chaillat G. Biros

Abstract
We propose an algorithm to compute an approximate singular value decomposition (SVD) of least-

squares operators related to linearized inverse medium problems with multiple events. Such factoriza-
tions can be used to accelerate matrix-vector multiplications and to precondition iterative solvers.

We describe the algorithm in the context of an inverse scattering problem for the low-frequency time-
harmonic wave equation with broadband and multi-point illumination. This model finds many applica-
tions in science and engineering (e.g., seismic imaging, subsurface imaging, impedance tomography,
non-destructive evaluation, and diffuse optical tomography).

We consider small perturbations of the background medium and, by invoking the Born approxima-
tion, we obtain a linear least-squares problem. The scheme we describe in this paper constructs an
approximate SVD of the Born operator (the operator in the linearized least-squares problem). The main
feature of the method is that it can accelerate the application of the Born operator to a vector.

If Nω is the number of illumination frequencies, Ns the number of illumination locations, Nd the
number of detectors, and N the discretization size of the medium perturbation, a dense singular value
decomposition of the Born operator requiresO(min(NsNωNd, N)]2×max(NsNωNd, N)) operations.
The application of the Born operator to a vector requires O(NωNsµ(N)) work, where µ(N) is the cost
of solving a forward scattering problem. We propose an approximate SVD method that, under certain
conditions, reduces these work estimates significantly. For example, the asymptotic cost of factorizing
and applying the Born operator becomes O(µ(N)Nω). We provide numerical results that demonstrate
the scalability of the method.

1 Introduction

Let B(u, η) be a bilinear operator in which η is an the medium perturbation and u is the state (total scattered
field). Given η, B is a well-posed boundary value problem for u. We consider the following problem: given
data φi = Dui we want to reconstruct η. Here ui is the solution of B(ui, η) = fi, i = 1, . . . , Ne, D is a
linear observation operator, fi is a known illumination source, and Ne is the number of illumination events.
In this paper, we introduce an approximate factorization algorithm for the linearization of the operator that
maps η to φi. Such a factorization can be used with an iterative inversion scheme [9] or with Bayesian
estimation algorithms to estimate covariances [14, 32].

Inverse medium problems find applications in elasticity (full waveform inversion seismology), electro-
magnetics (ground penetrating radar), acoustics (non-destructive evaluation), diffusive transport (optical to-
mography), electrostatics (impedance tomography), and other applications. To make ideas concrete, we con-
sider the free-space frequency-domain acoustic scattering. We describe a numerical algorithm for the Born
approximation formulation of the inverse medium problem in scalar scattering [10]. Given Ne = NsNω in-
cident ("illumination") fields {u(r; s, ω)}Ns,Nω

s=1,ω=1 (where s indexes the spacial location of the source of the
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incident field and ω indexes its frequency), we record the scattered field φ(rd; s, ω) at Nd detector locations
{rd}Nd

d=1 and we seek to recover the medium perturbation η(r) by solving

φ(rd; s, ω) =

∫
H
G(rd, r;ω)η(r)u(r; s, ω) dr (1)

for η. This is a Lippmann-Schwinger scattering equation, where G(·, ·;ω) is the Green’s function for the
given scattering problem (in general not known analytically but computable by solving a boundary value
problem) at frequency ω, H is the support of η (assumed to be known), and r is a point in H . Upon
discretization using N quadrature points, we have

φ(rd; s, ω) =

N∑
j=1

G(rd, rj ;ω)η(rj)u(rj ; s, ω), (2)

where the quadrature weights have been absorbed in η(rj) and by using "=" we ignore the quadrature
discretization error. Indeed, in the rest of the paper (2) will be considered exact, that is, φ will be generated
by point scatterers located at the quadrature points {rj}Nj=1 with scattering strengths { η(rj) }Nj=1. The
problem is summarized in Figure 1.
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Figure 1: We propose an algorithm for the Born approximation of the inverse medium problem. For simplicity, we
assume that the medium perturbation is represented by a set of point scatterers in a 3-D domain H . The data consists
of measurements of the scattered field generated by separate incident fields. In our experiments, the incident fields are
generated by point sources that illuminate the region of interest—possibly at multiple frequencies. Both sources and
detectors can be located in arbitrary positions as opposed to analytic techniques which require regular geometries.

Equation (2) is linear on η. We introduce M to denote the mapping from η to φ, so that

Mη = φ.

Note that if we write the normal equations for this system, we obtain M∗Mη = M∗φ; the operator M∗M
in the normal equations is also known as the Hessian (or reduced Hessian depending on the formulation.)

Depending on the maximum illumination frequency, and the distance between H the detectors and
the sources, M may have a numerically low rank. We will like to compute an approximation to M so
that the cost of applying M or its pseudoinverse to a vector are as small as possible. For example, when
reconstructing η one approach is to use a Krylov iterative method like the LSQR and Conjugate Gradient
(CG) method for the normal equations [9, 29]. To analyze the cost of such an iterative solver, let us define
the cost of the forward scattering solver as µ(N,Nd), or simply µ(N) (assuming Nd ≤ N ). Then, the cost
of an iterative method would be NsNωµ(N) per matvec, which can be quite high if NsNω is large or if we
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have an expensive forward scattering solver. Also using a Krylov method requires preconditioning typically
based on limited-memory BFGS or Lanczos preconditioners [2, 16, 20]. Constructing BFGS preconditioners
has similar complexity with inverting M [27]. Lanczos methods can be used and offer a viable alternative
to our approach but are more difficult to implement correctly [18]. Another approach is to use spectral
preconditioning methods [1] or multigrid [6, 3]. Our method can be combined with spectral preconditioning
methods, for example construct coarse and fine spaces.

Finally one could form M and use a dense factorization algorithm, say, use an classical SVD factoriza-
tion [15]. A dense SVD is prohibitively expensive1 because its work complexity isO(min(NsNωNd, N)]2×
max(NsNωNd, N)).

Contributions. To summarize, our goal is to design an algorithm that approximates M and scales “well”
with N , Nω, Ns and Nd, for the low frequency regime.2 Our main contribution is the construction of Mε,
an approximate singular value decomposition for M based on the following algorithmic components:

• a rank-revealing randomized factorization. We have used the algorithm 4.4 proposed in [18] that
combines randomization with the power iteration.

• preprocessing of the incident field u using an SVD to transform the incoming field and data and reduce
the dimension of Ns;3

• and a recursive SVD that can be used to approximately compute the SVD of M = [M1 M2]
t given

the approximate SVDs of M1 and M2.

Using these components, we construct Mε an approximate SVD factorization for M whose, given
the incident field, the total work complexity is O(Nωµ(N,Nd)Rs), where Rs depends on the problem
geometry and the maximum frequency but is independent of Ns, asymptotically. In our implementation,
we use a direct evaluation for the scattered field µ(N,Nd) = NNd. Using a fast multipole acceleration
the complexity can be reduced to µ(N,Nd) = N + Nd for the low frequency. We test our algorithm on
problems in which the scatterer size varies from 1/10 to five wavelengths. Our algorithm supports arbitrary
distributions of sources, detectors and frequencies. For the purposes of demonstrating the quality of the
approximation, we use one of the simplest methods of solving inverse problems, the truncated SVD. 4

Outline of FaIMS: First, we reduce the number of incident fields from Ns to Rs using the randomized
SVD. Then, we decompose M into Nω smaller submatrices Mω of size RsNd × N (1 ≤ ω ≤ Nω). We
compute the approximate SVD of each small matrix by using the randomized SVD. We apply a low rank ap-
proximation whenever possible, leading to a compression of the matrix and a speed-up of the computations.
We combine the approximate SVDs of the Mω to approximate the SVD of M, Mε, using the recursive
SVD. This recursive SVD provides a precise characterization of the inverse problem and allows us to easily
apply the pseudo-inverse of Mε to the data. We have termed the overall algorithm “FaIMS”. This algorithm

1For example, if Nω = 10, Ns = 100, Nd = 102, and N = 1003, we will need over one month of computation to compute
the SVD on a single core 2 Gigaflops/sec machine.

2We mean that given a minimum and a maximum frequency, the algorithm scales well as we increase the number of sample
frequencies within the given frequency range.

3This preprocessing step, as we describe it in this paper is valid only in the case in which the detectors are the same for all of
the sources.

4To clarify, we do not advocate using the truncated SVD as an inversion method and do not we use it to demonstrate a new
inversion scheme since we do not consider noise and regularization issues.
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can handle efficiently a large number of sources and frequencies which lead to better resolution (Fig. 2). The
storage complexity of FaIMS is O(NR), where R is the overall rank of the approximation to M. FaIMS
achieves this complexity estimate since it does not require the assembly of M. It only requires matrix-vector
multiplications with submatrices of M.
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Figure 2: We report the isosurfaces η = 0.25ηmax for the scatterer model of a biplane with size one wavelength.
The incident field for results on the left column is generated with one point sources excited at a single frequency. For
the results of the right columns, we generate the incident field by using12 sources and 8 frequencies. The mesh size is
N = [51]3 and the scattered field is measured at 162 detectors located on a sphere enclosing the biplane. The results
of the inversion with a single source and single frequency already enables to find the object location but the addition
of more sources and frequencies permits to obtain better accuracy.

Limitations. FaIMS, works well when (1) the detectors, the sources, and the support of η are well sep-
arated and (2) the maximum excitation frequency is small enough. If these two conditions are met, the
mapping φ = Mη will be sufficiently low rank to result in computational savings. If the first condition
(well-separateness) is not met, a more elaborate block decomposition of M is required (resembling tree de-
compositions for fast-multipole methods and hierarchical matrices) to construct approximations to M. The
second condition (maximum frequency) is much harder to circumvent.

Our analysis in this paper is not related to a specific inversion scheme but on approximating M in
order to accelerate its application to a vector. To demonstrate the approximation, we use truncated SVD for
synthetic examples in which the data has no noise. In a realistic inverse problem one needs to account for
noise, model errors, approximation errors, and incorporate more sophisticated regularization techniques.
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Also, we are considering neither sparse reconstruction ideas for η [7, 19] nor adaptive reconstruction
schemes [4, 17]. We assume that the location of the detectors is independent of the source location and
frequency.

In our computations, we know the Green’s function in analytic form so that the scattered field due to N
scatterers can be evaluated at Nd detectors in O(N + Nd) work and storage using a fast multipole scheme
[8, 33]. However, this is not a fundamental limitation of the algorithm. Any forward-scattering method
with good complexity and accuracy features can be used in FaIMS without changing the behavior of the
algorithm. In higher frequencies, such solvers are harder to construct. In the general case one needs to solve
a forward problem in order to evaluate the scattered field given a background medium.

Finally, we haven’t pursued randomization in the frequency domain. The input-output operator depends
nonlinearly on the frequency and randomization techniques for linear operators are not directly applicable.
However, the block decomposition of FaIMS allows a heuristic greedy algorithm for the different frequen-
cies. We will present results on this approach in a future paper.

Related work for problems with multiple sources. Our work has been inspired by the work in [25], in
which a fast analytic SVD based on Fourier analysis was used for the case in which the sources and detectors
are uniformly distributed on the boundary of a regular geometry (plane, cylinder, or sphere) and the scat-
terer is uniformly discretized in the domain of the corresponding regular geometry. The problems considered
in [25] were reconstructions of absorption and diffusion coefficients for optical tomography problems for-
mulated in the frequency domain. With FaIMS, we can consider detectors on arbitrary geometries and point
sources at arbitrary locations, as FaIMS only requires a fast forward scattering solver.

Let us mention that there is work for forward and inverse problems with multiple sources in the geo-
physics community for reducing the number of sources using linear combinations [22, 28, 19]. However,
we could not find work that extends of these ideas to the inverse medium problem.

Our method can be viewed as an operator approximation. In general, there exist several methods to
approximate and compress matrices based on randomization. The method we are using here was developed
in a series of papers in [23, 26]. Other approximation schemes (for example the CUR matrix decomposition
developed in [24]) could be used, however the algorithm described in [18] requires only matrix-vector mul-
tiplications, it is easy to implement and has nearly optimal accuracy and stability properties when combined
with the power method.

Our recursive factorization scheme essentially uses the randomized SVD on blocks of M and combines
them again using the randomized SVD. Alternative block recursive QR factorizations [11, 12] can be used
instead. The latter approach is more accurate than our scheme (see §4.2). The main advantage of our method
is that it is much simpler to implement.

Finally, let us comment on randomized SVD-like decompositions for high-order tensors [21]. Such de-
compositions are relevant because the forward operator M can be viewed as a third-order tensor that maps
the incident field and the medium perturbation to data. One could explore a randomized tensor decomposi-
tion, but we have not pursued this approach in this paper.

Outline. In Section 2, we state the problem formulation. In Section 3, we give a summary of the algorithm
FaIMS. In Section 4 we present the SVD algorithms that are required in the overall method (presented in
Section 5). Finally, in Section 6, we present numerical results for the reconstruction of various point scatterer
locations.
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Notation. In Table 1, we summarize all the symbols used throughout this article. We use Roman letters to
denote continuous scalar fields and operators, bold lower case letters to denote finite dimensional vectors,
and bold upper case letters to denote finite dimensional linear operators.

k(r) wavenumber;
k0 background medium wavenumber;
λ wavelength λ = 2π/k;
η(r) perturbation of the background medium; k2(r) = k20 + η(r);
G Green’s function of the homogeneous infinite medium characterized by k0;
H support of the anomaly η (a cube of L3);
L edge size of H;
ω indexes the frequency of the incident field;
s indexes the location of the source of the incident field;
N number of point scatterers in H;
Nd number of detectors;
Nω number of incident wave frequencies (ω1, . . . , ωNω);
Ns number of spherical wave source locations (point sources);
M overall input-output operator (∈ CNsNωNd×N );
r position in space z);
rd detector locations;

Table 1: List of the main symbols used in this article.

2 Definition of the inversion formula

The time-harmonic scalar wave equation is given by

∇2v(r) + k2(r)v(r) = −s(r), (3)

where s is the source term and k is the wavenumber. We consider the case k2(r) = k20 + η(r), where k20
is the wavenumber of the background medium and η is the unknown perturbation. If we denote the total
scattered field as the sum of the incident field u and the scattered field φ, v = φ + u, eq. (3) becomes

∇2φ(r) + k20φ(r) = −η(r)(φ(r) + u(r)). (4)

Using the Born approximation, we neglect −η(r)φ(r) and we obtain

∇2φ(r) + k20φ(r) = −η(r)u(r). (5)

We introduce the free-space Green’s function G given by

G(r, r′) =
exp(ik0|r− r′|)

4π|r− r′|
. (6)

The solution of eq. (5) can be obtained as a convolution with G and is given by

φ(rd; s, ω) =

∫
H
G(rd, r;ω)η(r)u(r; s, ω)dr. (7)
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Equation (7) is the forward problem, in which, given η, we can compute φ. In the inverse problem, we seek
to recover the anomaly η given φ(rd; s, ω), a set of measurements generated byNsNω known incident fields
and measured at Nd detector locations.

After discretization of η(r) (which we will denote it by η ∈ CN ), for a given source s, frequency ω
and detector d (the quadrature weights are absorbed in η and we ignore the discretization error) equation (7)
becomes

φω
ds =

N∑
j

Gω
dju

ω
jsηj ,

which we write in a matrix form φ = Mη. To demonstrate the quality of our approximation to M, we invert
for η by first computing Mε, the approximate SVD of M, which we then use to apply the pseudo-inverse of
Mε on φ. In our experiments the incident field is u(r; s, ω) = G(r; s, ω), a spherical wave corresponding
to a point source.

3 Summary of FaIMS

Before presenting the details of FaIMS (section 5) let us outline the basic steps in the algorithm. Recall that
our main goal is to avoid the NsNωNdN complexity of applying M to a vector.

We introduce a preprocessing step in which use singular value decomposition to reduce the number
of incident fields. This step is analogous to source recombination techniques that have appeared in the
literature. In the next two steps, we compute the inputs for the recursive SVD (section 4.2): the approximate
SVD of Mω for a fixed frequency ω. Then we use the recursive SVD to combine the individual approximate
SVDs for each frequency. Overall, FaIMS has four main steps:

1. Incident field SVD. For each frequency, we preprocess the incident field uω using the randomized
SVD [18] (section 4.1) to compress the number of incoming fields uω and data φω and reduce the
number of sources from Ns to Rω

s .

2. Forward problem SVD. For every frequency, we compute the approximate SVD of the Green’s
function Gω by applying the randomized SVD. Each matrix Gω ∈ CNd×N is approximated by a
matrix of rank by lower or equal to a constant which we denote Rω

g . 5

3. Single frequency-multiple sources SVD. Once we have computed the approximate SVDs of the
Green’s functions, we can combine them for a fixed frequency using the algorithm presented in sec-
tion 5. Each matrix Mω ∈ CRω

s R
ω
g×N is approximated by a matrix of rank Rω.

4. Overall SVD. Using the results of step C, we apply the recursive SVD (section 4.2) to obtain the
approximate SVD of the complete system matrix M.

As mentioned before, once Mε, the approximate SVD of M is computed, we can combine it with a
regularization operator and solve the linearized medium problem using an iterative method.

In the following section, we present the randomized and recursive algorithms that we use to construct
Mε. The randomized SVD allows fast approximation of low-rank matrices, using a matrix-vector multipli-
cation. Then the recursive SVD enables to obtain the approximate SVD of the matrix M = [M1 M2]

t

given the approximate SVDs of M1 and M2. This algorithm is faster than a standard SVD when low rank
5The compression of the Green’s function seems specific to our forward problem formulation; it is not. A finite element or

finite-difference-based forward solver can be used in place of G.
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approximations of M1 and M2 are available. It also provides better memory locality than applying the
randomized SVD directly to M. In Table 3, we summarize the notation for the approximate ranks of the
operators that appear in FaIMS.

step A B C D
approximate rank Rω

s Rω
g Rω R

size initial matrix Ns ×N Nd ×N Rω
sR

ω
g ×N NωR

ω ×N

Table 2: Notation for the approximate ranks of operators that appear in the four steps of FaIMS.

4 Randomized and recursive SVDs

4.1 Randomized SVD

There has been a significant amount of work on randomized algorithms for low rank approximations of
matrices. In our work, we use an algorithm proposed in [18] (algorithm 4.4). We briefly summarize its main
steps here for completeness but we omit the power iteration, which is required in order to obtain the error
estimates we give below. Let M be a matrix of size m× n. Then the randomized SVD method computes r,
Φ, Λ and Ψ, with singular values σ1 ≤ σ2 ≤ . . . ≤ σmin(m,n) such that ‖ΦΛΨ∗ −M‖ ≤ εσr+1. Here σr+1

is the r + 1 singular value of M and ∗ denotes the conjugate transpose. Here Φ and Ψ are matrices of size
respectively m× r and n× r, where r are the number of singular values greater than a prescribed accuracy
ε. Λ is the diagonal matrix of size r × r containing the corresponding singular values.

Computing the approximate SVD requires finding Q such that

‖QQ∗M−M‖ ≤ εσr+1, (8)

end the constant ε is nearly independent of the size and rank of the matrix when the power iteration is
used. So for notational simplicity in the following ε ≈= 1. The main component of the algorithm is the
application of M to a random matrix G. In [18], G is chosen to be a Gaussian random matrix. The algorithm
is summarized below in Algorithm 1 (we use MATLAB notation). To avoid the need to precompute the
matrix rank, we use an error estimate (Algorithm 1). If the complexity of the matvec is µ(m,n), then the
complexity of the algorithm is O(µ(m,n)` + µ(n,m)r + m`2 + nr2). Assuming m < n, the complexity
is O(µ(m,n)` + nr2). If we have a dense matrix, the complexity is O(mn`). It follows that the overall
complexity of this approximate factorization is O(`nm) for work and O(rm+ rn) for storage.

4.2 Recursive SVD

Let M1 and M2 be two matrices of size m× n. We wish to construct the approximate SVD of

M =

[
M1

M2

]
(9)

assuming we know the approximate SVDs of M1 and M2. Let M1 = Φ1Λ1Ψ
∗
1 and M2 = Φ2Λ2Ψ

∗
2.

For notational simplicity let r be the rank of the approximations for both M1 and M2 so that Φi ∈ Cr×r,
i = 1, 2. We seek to compute U, V and Σ so that Mε = UΣV∗ and ‖M −Mε‖ is smaller than a
prescribed tolerance.
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Algorithm 1 Randomized SVD

1: Inputs: M ∈ Cm×n, ε.
2: Outputs: approximate rank r, Φ,Λ,Ψ such that M ≈ ΦΛΨ∗.
3: r = 1
4: ` = r + 20
5: Create G (Gaussian random matrix G ∈ Cn×`)
6: R = MG
7: [Ur,Sr,Vr] = SVD(R)
8: Q(:,1 : r) = Ur(:,1 : r)
9: error estimate = ‖MG−QQ?MG‖

10: if error estimate > ε× Sr(1,1) then
11: Increase r (e.g., r = r + 0.05m)
12: Goto 4
13: end if
14: T = M?Q
15: [Φ,Λ,W] = SVD(T?)
16: Ψ = QΦ

First, observe that M can be written as

M = ΦT, where Φ =

[
Φ1 0
0 Φ2

]
∈ C2m×2r and T =

[
Λ1Ψ

∗
1

Λ2Ψ
∗
2

]
∈ C2r×n. (10)

We can apply the randomized SVD algorithm to T to compute T = UTΣTV∗T . Then, the SVD factors of
M are U = ΦUT , Σ = ΣT , and V = VT .

Remark. The SVDs of Mi are not necessary. All we need are Φ1 and Φ2, so that

T =

[
Φ∗1M1

Φ∗2M2

]
and the algorithm proceeds by computing the approximate SVD of T.

Complexity. The complexity of computing the SVD of T is 2Rrn, where R ≤ 2r the numerical rank
of T. The cost of applying M on a vector is O(mr) + O(Rn). The overall storage requirements are also
O(mr) +O(Rn).

Accuracy. We will assume that Φi are known approximately, that is ‖ΦiΦ
∗
iMi −Mi‖ ≤ σr+1 and

Mi = Mε,i + Ei. Let M = Mε + E indicate the approximation of M due to approximation errors in the
Mi blocks. Let U be the approximate range-space basis for Mε computed by the recursive SVD algorithm.
Then,

‖UU∗M−M‖ = ‖UU∗(Mε + E)− (Mε + E)‖
≤ ‖UU∗Mε −Mε‖+ ‖UU∗E−E‖
≤ σ(Mε)R+1 + 2σr+1

≤ σ(M)R+1 + 2σr+1

9



where the last line follows by σ(Mε)R+1 ≈ σ(M)R+1, due to the stability of singular values due to small
perturbations. Indeed, from Theorem 8.6.2 in [15] (also see [30, 31]) the error between the singular values
of A + E and the ones of A is bounded, i.e. |σk(A + E)− σk(A)| ≤ ‖E‖2, ∀k. Therefore, assuming that
σ(M)R+1 ≈ σr+1, we get

‖UU∗M−M‖ ≤ 3σr+1. (11)

Hence if we have L levels of recursion, we observe a factor of L + 1 larger error. In our experiments, we
did not observe this dependency and the recursive SVD is as accurate as applying the randomized SVD
directly to M. As mentioned in the introduction, classical dense linear recursive QR factorizations can be
used instead [12]. Using those methods the approximation of the range space of M error does not depend
on the recursion depth, but they are harder to implement and parallelize (something that we do not discuss
here).

5 FaIMS

Using the randomized and recursive SVD we can now describe the complete algorithm for the reconstruction
of η. We recall that, for a fixed frequency ω, the forward problem is given by

φω
ds =

N∑
j=1

Gω
djηju

ω
js, d = 1, . . . , Nd, s = 1, . . . , Ns, (12)

where φω
ds is the set of measurement at the detector locations. We write (12) using a matrix notation as

φω
s = Mω

s η where Mω
s = Gω diag(uω

s ). The overall algorithm can be stated as follows:

• STEP A: For each frequency, reduce the number of incident fields.

• STEP B: For each frequency, compute an approximate range-space basis for Gω using Algorithm 1.

• STEP C: Combine the approximations of Mω
s to build an approximation for Mω.

• STEP D: Combine Mω to build an overall approximation of M using the recursive SVD.

Inputs. We specify the domain (unit cube) size L defined in wavelengths λ units (H is the domain [0;L]3),
the source locations, the detector locations, the number of points N that will be used to discretize H , and
the incident wave frequencies ω1,...,Nω .

STEP A: Reducing the number of incident fields. This is a preprocessing stage that requires the eval-
uation of uω(r) at the scatterer positions. The reduction is done separately for each frequency ω. Let us
introduce the approximate SVD of uω = ΦωΛωΨω∗ (where uω = [uω

1 . . .u
ω
Ns

]t ∈ CNs×N ) with rank
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Rω
s ≤ Ns. Then (12) becomes

φω
ds =

N∑
j=1

Gω
djηju

ω
js, d = 1, . . . , Nd, s = 1 . . . Ns

=

N∑
j=1

Gω
djηj

Rω
s∑

l′=1

Λω
l′Φ

ω
l′jΨ

ω
l′s

Ns∑
s=1

Ψω∗
ls φ

ω
ds =

N∑
j=1

Gω
djηj

Rω
s∑

l′=1

Λω
l′Φ

ω
l′j

Ns∑
s=1

Ψω∗
ls Ψω

l′s

φ̂
ω

dl =
N∑
j=1

Gω
djηjΛ

ω
l Φω

lj ,

φ̂
ω

dl =

N∑
j=1

Gω
djηjû

ω
jl, d = 1, . . . , Nd, l = 1 . . . Rω

s .

In other words, we use the orthonormality of the Ψω and transform the incident fields and the data to obtain

φ̂
ω

dl ≈ Gω diag (ûω
jl)η , 1 ≤ l ≤ Rω

s , 1 ≤ ω ≤ Nω, (13)

where φ̂
ω

dl = Ψω∗
l φω and ûω

l = Λω
l Φω

l . Here Φω
l denotes the l-th column of the matrix Φω ∈ CN×Rω

s and
Ψω

l denotes the l-th column of the matrix Ψω ∈ CNs×Rω
s . As we increase the number of sources, for fixed

noise we expect that the rank Rω
s will be much smaller than Ns. 6

STEP B: Computation of the randomized SVD of Gω. For each frequency ω, we compute the approx-
imate SVD of the matrix Gω, Gω

ε = Φω
g Λω

g Ψω∗
g ∈ CNd×N using the randomized SVD (section 4.1). We

use Rω
g to denote the rank of Gω

ε ; Rω
g depends on the approximation tolerance for the SVD and satisfies

Rω
g ≤ Nd, N .

STEP C: Combine the SVDs of all sources for a fixed frequency. To combine the approximate SVDs
of the Rs sources for a fixed frequency, we compute the approximate SVD of GωDω

1
...

GωDω
Rs

 ∈ CRsNd×N , (14)

where Gω ∈ CNd×N and Dω
` = diag(ûω

` ) ∈ CN×N . Instead of computing directly the approximate SVD
of this large matrix, we use the approximate SVD of Gω computed during step B; Gω

ε = Φω
g Λω

g Ψω∗
g . More

precisely, we compute the approximate SVD of

Bω =

 Λω
g Ψω∗

g Dω
1

...
Λω

g Ψω∗
g Dω

Rs

 ∈ CRsRω
g×N

6A similar approach could be followed for φds to guide numerical rank selection in the building of the approximate SVD of M.
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We compute Bω
ε , the approximate SVD of Bω with the randomized SVD. Rω denotes its approximate rank.

Finally, we transform the data accordingly, i.e. we replace dω
1
...

dω
Rs

 ∈ CRsNd by

 Φω∗
g dω

1
...

Φω∗
g dω

Rs

 ∈ CRsRω
g . (15)

This transformation is beneficial when applying Gω to a vector has a work complexity that is larger than
applying the approximate factorization of Gω.

STEP D: Recursion over frequencies. In the last step, we combine the Nω approximate SVDs of Mω

(corresponding to Nω frequencies) computed in step C. We apply the recursive SVD (section 4.2). Let R
denote the number of selected singular values (smaller than a prescribed tolerance). We define T, W and
S such that Mε = TSW?. T and W are two matrices of size NωRsR

ω
g ×R and N ×R respectively. S is

a diagonal matrix of size R. Instead of applying directly the recursive SVD to combine Nω frequencies, we
apply recursively this algorithm to combine two frequencies at each level of the recursion tree (see Fig. 3).
One possible optimization would be to omit visiting all the leaves of the frequency tree (guided by changes
in the approximate rank) to reduce the number of frequencies for which we need to solve the problem.

Mω1
ε Mω2

ε Mω4
ε Mω5

ε Mω6
ε Mω7

ε Mω8
ε

level 3

level 2

Mε = USV∗

Mω3
ε

level 1

Figure 3: Instead of applying directly the recursive SVD (section 4.2) on Nω frequencies, we apply the algorithm
recursively to combine two frequencies at each level of the recursion tree (this example is given for the case Nω = 8).

This completes the calculation of the approximation of M. Note that the transformation of the data
is not necessary and desired if we want to apply the approximate M to a vector. The modification of the
algorithm so that the matvec is applied quickly without transforming the data is straightforward. Finally, the
construction of the pseudoinverse is immediate.

Overall complexity estimate for work and storage. Let µ(N) be the cost of solving a forward or adjoint
Helmholtz problem assuming Ns ≤ N and Nd ≤ N . Also let Rs = maxω R

ω
s .

• STEP A: The cost of reducing the number of incident fields is the cost for the construction of the
low rank SVDs for matrices of size Ns ×N for each frequency ω. The cost of a single frequency is
O(Rsµ(N)) and the overall cost is O(RsNωµ(N)) (where Rs ≤ Ns).

• STEP B: The cost of the computation of the randomized SVD of Gω ∈ CNd×N for a fixed frequency
is O(Rω

g µ(N)) so that the total cost of this step is O(Rω
gNωµ(N)) (where Rω

g ≤ Nd).

12



• STEP C: The cost of combining the sources is reduced to the cost of the computation of the random-
ized SVD of Bω ∈ CRsRω

g×N : O(RωRsR
ω
gN) for each frequency (with Rω ≤ min(RsR

ω
g , N)). So

that the total cost of this step is O(RωRsNωR
ω
gN).

• STEP D: Let R be the approximate rank of M. Let Rg = maxω R
ω
g . Let L = logNω and let R` be

the rank of the operator at a node at level ` (assuming for simplicity that all such nodes have the same
rank) and RL = Rω. For the leaves of frequency tree, the cost per leaf is RLRsµ(N) or RLRsRgN .
The total cost for the leaves is NωRLRsRgN . For an internal node, the cost to combine the SVDs
of its children is R`(2R`+1N) and the total cost at level ` is 2`R`(2R`+1N). The worst case is there
is not compression as we traverse the tree or equivalently R` ≈ (R/2`). Then the overall cost of
traversing the tree (omitting constants) is

∑L−1
`=1 2`R`(2R`+1N) ≤ O(R2N logNω).

Therefore the overall complexity of FaIMS is

O((Rs +Rg)Nωµ(N)) +O(RωRsNωRgN) +O(R2N logNω).

Note that applying the randomized SVD algorithm directly to M has costO(RNsNωµ(N))+O(R2N).
Since Rω ≤ R, Rs ≤ Ns and assuming RgN ≤ µ(N), the overall complexity of FaIMS same as applying a
randomized SVD directly to M up to the logNω factor. (IfR logNω ≤ NsNωµ(N)/N , then the complexity
is similar.)

However, FaIMS provides better locality in the calculations (and thus, better potential for parallel scal-
ability). Most important if we do not have an optimal solver (i.e., µ(N)� RgN ) FaIMS will be faster than
direct SVD since it requires Nω(Rs +Rg) solutions of a scattering problem as opposed to NsNωR.

In each of the four steps of FaIMS, we perform a low rank approximation of the system matrix. Because
this matrix is defined by the values of a function on a given discretization, its rank is constant even though
we use a coarser discretization. As a result for large enough numbers of sources, detectors, excitation
frequencies and/or discretization of H , the values of Rs, Rg, Rω and R are constant. As a result the final
complexity estimate becomes

O(µ(N)Nω +Nωµ(N)).

As we remarked before, one can also reduce the Nω factor by avoiding vising all the leaves of the tree. One
can use a greedy method in which new frequencies are added only if there is sufficient change in the rank.
We have not explored this approach in this paper.

Storage. For the step A, the storage of the Nω singular vectors is order NωRsN . For the step B, the
storage of theNω singular vectors is orderNωRgN . For the step C, the cost isNωRωN . Finally, the storage
cost of the combined matrices in step D is O(RN). The storage of the singular vector of the approximate
SVD of M is also O(RN).

6 Numerical experiments

We present several source-receiver-scatterer configurations to illustrate the performance of FaIMS. We
demonstrate the capability of placing detectors and sources on arbitrary geometries and the overall scal-
ability of the proposed algorithm. We verify the accuracy of the algorithm using two scatterer geometries:
a cross-like planar geometry of point scatterers and a biplane-like 3D geometry of point scatterers. We gen-
erate the scattered field using single-scattering forward problem approximations (Born Approximation). In
each example, the wave velocity of the background medium is set to one. We are focused on demonstrating
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the scalability aspects of our algorithm, so we do not consider noise or regularization. The algorithm has
been implemented in MATLAB and our experiments took place on a AMD Opteron workstation. The tol-
erance ε in the randomized SVD algorithm has been set to 10−9 in all of our experiments. The truncation
parameter (regularization) we used to invert the approximate factorization of M, was 10−8σ1, where σ1 is
the maximum singular value of M.

6.1 Description of the test problems

Definition of the main parameters used in our tests.

• The Nω incoming field frequencies are equispaced in the [ωmin, ωmax] interval.

• Length scales are measured in terms of the smallest wavelength λ := 2π/ωmax. (The higher the
frequency, the lower the compression of the operators and thus, the higher the computational cost of
the inversion.) We also use the parameter L = 12λ.

Specification of the target medium perturbations and parameters for the different numerical experi-
ments.

• Cross-like geometry. We consider two test problems based on a simple cross-like geometry located
at the z = 6λ plane.

– For the Cross A (Fig. 4A), the detectors are regularly spaced on the plane z = L and the sources
on the plane z = 0.

– For the Cross B, the detectors and sources are located on arbitrary geometries (Fig. 4B).

We verify the accuracy of our approximate SVD reconstruction on the Cross A scatterer model with
size λ. We use four sources with multiple excitation frequencies to generate the incident fields and
measure the scattered fields at [21]2 detectors. The computational domain is discretized with a linear
grid with size [21]2. Also on these two test problems, we verify the scalability of the algorithm with
increasing N , Nd, Ns and Nω

7 and demonstrate the effectiveness of a low rank approximation. See
Table 3 for a summary of the problem and scatterer model sizes used in this set of experiments.

N ωmin ωmax Nω Ns Nd scatterer size (λ)
112 50 100 8 16 102 0.01 and 1
212 50 100 16 64 202 0.01 and 1
412 50 100 32 256 402 0.01 and 1
812 50 100 64 1024 802 0.01 and 1

Table 3: Cross-like geometry: Summary of the parameters used to verify the scalability of FaIMS. In the following,
we will refer to one of those four tests by the mesh size, i.e., N = 112, N = 212, N = 412 or N = 812.

• Biplane geometry. We consider a test problem with a more complex geometry. The sources and
detectors are located on a sphere (Fig. 4D). We consider two scatterer model sizes: λ and 5λ. We use
162 detectors, 12 sources, 8 frequencies and we set N = 513.

7 Given a minimum and a maximum frequency, we verify that the algorithm scales well as we increase the number of sample
frequencies in this range.
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Figure 4: Definition of the three test problems we have used to test FaIMS. We use two geometries of point scatterers :
a cross (A and B) and a biplane. For the cross A, we generate the incident field by sources and detectors regularly
spaced on the planes z = 0 and z = 12λ respectively. For the Cross B test problem, the detectors and point sources
are located on two arbitrary geometries. For the biplane-like geometry, the sources and detectors are located on a
sphere. The triangulation of the biplane geometry is used for visualization only. To generate the data, we compute the
scattered field due to point scatterers located at the vertices of the mesh.

6.2 Results

Cross A. We first verify the accuracy of our approximate SVD reconstruction. In Table 4, we report the
relative error on the approximation normalized by the value of the maximum singular value. We also com-
pute the relative error between FaIMS and the SVD MATLAB function on the singular values (normalized
by the value of the maximum singular value). Finally, we report the relative error between FaIMS and the
SVD MATLAB function on the approximation of the inverse.

To verify the efficiency and accuracy of our algorithm, we solve the inverse problem both using our
FaIMS algorithm and the LSQR MATLAB function. The termination tolerance in the LSQR algorithm is
set to 10−5. On Fig. 5, we report η, the results of the inversion, for various mesh sizes and for the scatterer
model of the cross geometry with size λ. The left column plots represent the results of FaIMS and the right
column plots the results with the LSQR. The mesh sizes handled using the LSQR function are limited due to
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Figure 5: Cross A : We report η, the result of the inversion, at the z = 6 λ plane for the scatterer model cross A with
size λ. The left column represents the results using FaIMS (A,C,E) and the right column the results using the LSQR
MATLAB function with tolerance set to 10−5 (B,D). The red points represent the true point scatterer locations. The
two methods produce very similar results. 16



Nω = 4 Nω = 8 Nω = 16 Nω = 32

‖M−UΣV∗‖/σmax 3.07 10−6 2.34 10−6 2.10 10−6 2.01 10−6

‖Σ−Σmatlab‖/σmax 1.00 10−7 3.12 10−7 1.73 10−7 1.90 10−7

‖η − ηmatlab‖/ηmatlab 1.72 10−2 2.29 10−2 1.19 10−2 2.95 10−2

Table 4: We report the relative error on the approximation normalized by the value of the maximum singular value. We
also compute the relative error between FaIMS and the SVD MATLAB function on the singular values (normalized by
the value of the maximum singular value). Finally, we report the relative error between FaIMS and the SVD MATLAB
function on the approximation of the inverse. The scatterer model is the Cross A with size λ. We use four sources with
multiple excitation frequencies to generate the incident fields and measure the scattered fields at [21]2 detectors. The
computational domain is discretized using a Cartesian grid of size [21]2.

memory constraints.8 Both methods lead to a good accuracy of the reconstruction. In both cases, the larger
the problem is, the better the reconstruction. The accuracy of FaIMS is slightly better. The reason is that we
terminated LSQR early.

In Figure 6, we report the CPU time for the four main steps of FaIMS: the reduction of the number of
incident fields, the computation of the approximate SVDs of the Green’s functions, the combining of the
approximate SVDs for all sources for a fixed frequency and the combining of the approximate SVDs for all
frequencies, for the two scatterer model sizes (0.01λ and λ). We normalize the CPU time by the total CPU
time required to generate the incident field (which is linear in Nd, Nω, Ns and N ). We note that the smaller
the cross size is, the smaller the CPU time. This is due to the effectiveness of the low-rank approximation.
For the scatterer model with size λ, the major CPU cost is the combining of the approximate SVDs for all
sources whereas, as expected, this step takes a small portion of time for the scatterer model with size 0.01λ.
Again, as we increase N the normalized CPU time of each step is reduced. This result is in agreement with
our complexity estimate.

In Table 5, we report the normalized total CPU time of the inversion both with FaIMS and with the LSQR
MATLAB function. Again the scatterer model is the Cross A with size 0.01λ and λ. For the LSQR solver,
the total inversion time is independent of the scatterer model size whereas FaIMS benefits from low rank
approximations at the low frequency regime. FaIMS is clearly faster than the LSQR MATLAB function.
In Figure 7, we illustrate the level of compression according to the scatterer model and problem sizes. For
each major step of the algorithm, we report the compression rates against the frequency or the level in the
tree for the combining of the approximate SVDs for all frequencies. The ranks are normalized by the full
rank. Because the inverse problem is ill-posed, the singular values decay very fast. We use a truncated SVD
to regularize the formulation.

Cross B. For this second example, the sources and detectors are located on arbitrary geometries. We
report the results of the inversion η for the case of N = 812 on Fig. 8 (left: scatterer model with size 0.01λ;
right: scatterer model with size λ). This example illustrates the ill-posedness of the problem. For the lowest
frequency, only a small number of singular values are selected and the algorithm is very fast. In Figure 9,
we report the CPU time for the four main steps of FaIMS: the reduction of the number of incident fields, the
computation of the approximate SVDs of the Green’s functions, the combining of the approximate SVDs

8We could also use a simple matrix free approximation. In that case, the limitation is the maximum number of iterations allowed.
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A: Reducing the number of sources B: approximate SVDs of the Green’s functions
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C: Combining the approximate SVDs for all sources D: Combining the approximate SVDs for all frequencies

Figure 6: We report the normalized (by the time to “solve” (evaluate in our case) the forward problem) CPU time
for each of the main steps of FaIMS against the mesh size. The scatterer model is the Cross A with size 0.01λ (plain
lines) and λ (dashed lines). The smaller is the cross size, the smaller is the normalized CPU time for each step. This
is due to the low rank approximation at the low frequency regime. For the scatterer model with size λ, the major CPU
consuming step is the combining of the SVDs for all sources whereas, as expected, this step consumes only a small
portion of time for the scatterer model with size 0.01λ.
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N = [11]2 N = [21]2 N = [41]2 N = [81]2

0.01λ
FaIMS 1.03 0.23 0.14 0.13

LSQR 11.6 (1) 413.6 (1) X X

λ
FaIMS 15.0 24.7 9.3 10.2

LSQR 13.1 (14) 407.7 (11) X X

Table 5: We report the normalized (by the time to solve the forward problem) CPU time against the mesh size using
FaIMS and using the LSQR MATLAB function. For the LSQR we also report the number of iterations (number in
parentheses).
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Figure 7: Cross A : For each major step of the algorithm, we report the compression rates against the frequency or
the level in the tree. The ranks are normalized by the full rank. The scatterer model is the Cross A with size 0.01λ
(plain lines) and λ (dashed lines). We report the results for the four mesh sizes (red: N = 812, black: N = 412, blue:
N = 212 and green: N = 112). Because the useful information is limited, the rank is not dependent of the mesh size.
As a result, the larger the mesh is, the larger the compression. Moreover, the larger the scatterer model is, the smaller
the compression. Finally, we remark that at each step, the algorithm keeps compressing the information.
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Figure 8: We report η at the z = 6 λ plane. The scatterer model is the Cross B with size 0.01λ (left) and λ (right). The
6561 detectors are located on the geometry presented on Fig. 4B. We generate the data using incident fields generated
by 1024 sources on the geometry presented on Fig. 4B and 64 frequencies.

N = [11]2 N = [21]2 N = [41]2 N = [81]2

0.01λ
FaIMS 4.14 0.35 0.21 0.25

LSQR 6.4 (1) 295.6 (2) X X

λ
FaIMS 18.2 44.5 12.4 14.5

LSQR 9.5 (49) 309.8 (71) X X

Table 6: We report the normalized (by the time to solve the forward problem) CPU time against the mesh size using
FaIMS and using the LSQRMATLAB function. For the LSQRMATLAB function we also report the number of iterations
(number in parentheses).

for all sources for a fixed frequency and the combining of the approximate SVDs for all frequencies, for the
two scatterer model sizes (0.01λ and λ). We normalize the CPU time by the total CPU time to generate the
incident field (which is linear inNd, Nω, Ns and N ). The smaller the cross size is, the smaller the CPU time
since low-rank approximations are effective. For the scatterer model with size λ, the major CPU consuming
step is the combining of the approximate SVDs for all sources whereas, as expected, this step consumes
only a small portion of time for the scatterer model with size 0.01λ. In Table 6, we report the normalized
total CPU time of the inversion both with FaIMS and with the LSQR function. Again the scatterer model
is the Cross B with size 0.01λ and λ. For the LSQR solver, the total inversion time is independent of the
scatterer model size whereas FaIMS benefits from low rank approximations at the low frequency regime.
FaIMS is clearly faster than the LSQR MATLAB function and than the forward solver at low frequencies.

In Figure 10, we report the level of compression according to the scatterer model and problem sizes.

Biplane. This last example demonstrates the ability of the algorithm to recover complex geometries. The
scatterer model is a biplane-like geometry with size λ or 5λ. On Figures 11 (size λ) and 12 (size 5λ), we
report the results of the inversion η under a tabular form. Each row corresponds to a particular plane Oxy,
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C: Combining the approximate SVDs for all sources D: Combining the approximate SVDs for all frequencies

Figure 9: We report the normalized (by the time to solve the given forward problem) CPU time for each main step of
our inversion algorithm against the mesh size. The scatterer model is the Cross B with size 0.01λ (plain lines) and λ
(dashed lines).
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Figure 10: Cross B : For each major step of the algorithm, we report the compression rates against the frequency.
The ranks are normalized by the full rank. The scatterer model is the Cross B with size 0.01λ (plain lines) and λ
(dashed lines). We report the results for the four mesh sizes (red: N = 812, black: N = 412, blue: N = 212 and
green: N = 112).
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Figure 11: Results of the inversion for the scatterer model of the biplane with size λ. Each row corresponds to a
particular plane Oxy, Oxz or Oyz. The left column corresponds to a 3-D view of the isosurfaces (η = 0.25ηmax) and
the right column corresponds to a 2-D slice, respectively from top to bottom at the planes z = 0, y = 0 and x = 0.
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Oxz or Oyz. The left column corresponds to a 3-D view of the isosurfaces (η = 0.25 ∗ ηmax) and the right
column corresponds to a 2-D slice at the median plane. For the scatterer model with size λ, the inversion is
as accurate. We can already distinguish the main components of the biplane. For example, on the Oxz view,
we can separate the two floats of the plane. However, we cannot see the two wings or say that the shape is
a biplane. Again, this is due to the ill-posedness of the problem at low frequencies. On the other hand, for
the scatterer model with size 5λ, the system matrix is nearly full rank. As a result, the inversion is more
accurate. We can clearly see the two wings, the two floats and the fin of the biplane.

7 Conclusions

In this paper, we have presented FaIMS, a method for the inverse medium problem for the time-harmonic
scalar wave equation. FaIMS uses a randomized SVD algorithm to compute SVDs of small submatrices
and then applies a recursive SVD algorithm to reconstruct the overall factorization. Its complexity estimate
is orders-of-magnitude smaller than the standard SVD factorization. The method is matrix-free, it only
requires matrix-vector multiplication for the forward and adjoint problems. We showed that the factorization
error in the singular values is bounded by the smallest largest singular value that we truncate in the rank
approximation. The numerical efficiency and accuracy of the method is demonstrated in several numerical
experiments in the low frequency (0-10 wavelengths) regime for the case of point scatterers. FaIMS can
handle detectors and sources located on arbitrary geometries.

In future work, we intend using our approximate SVD factorization as a preconditioner with a Newton-
Krylov-Multigrid iterative method for full nonlinear inversion method (for example, for problems in which
G is not analytically available [5]). Another interesting question is how do tune the accuracy of the approx-
imation to M given a noise level and a regularization operator. Also, our ongoing work includes adaptive
algorithms and parallelization of the method. For higher frequencies, ideas discussed in [13] can be explored
to construct directional low-rank approximations.
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