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Analyses of magnetic circuits with position changes of both massive and stranded conductors are performed via a finite element 

subproblem method. A complete problem is split into subproblems associated with each conductor and the magnetic regions. Each 
complete solution is then expressed as the sum of subproblem solutions supported by different meshes. The subproblem procedure 
simplifies both meshing and solving processes, with no need of remeshing, and accurately quantifies the effect of the position changes 
of conductors on both local fields, e.g. skin and proximity effects, and global quantities, e.g. inductances and forces. Applications 
covering parameterized analyses on conductor positions to moving conductor systems benefit from the developed approach. 
 

Index Terms—Finite element method (FEM), subdomain method, conductor systems. 
 

I. INTRODUCTION 

subproblem method (SPM) with finite element (FE) 
solutions provides advantages in repetitive analyses and 

helps improving the solution accuracy [1]-[6]. It allows to 
benefit from previous computations instead of starting a new 
complete FE solution for any variation of geometrical or 
physical data. It also allows different problem-adapted meshes 
and computational efficiency due to the reduced size of each 
SP. 

A FE-SPM is herein developed for coupling solutions of 
position change conductors in magnetic systems, with the aim 
to accurately calculate the changes of both local fields (skin 
and proximity effects, reaction fields, local forces) and global 
quantities (currents, voltages, inductances, Joule losses, 
forces). Both massive and stranded conductors are considered, 
in parameterized analyses on their positions, naturally 
extended to moving conductor systems. 

The SPM combines any changes via volume sources (VSs), 
originated from previous solutions and applied via mesh-to-
mesh projections. The developments are performed for the 
magnetic vector potential FE magnetodynamic formulation, 
paying special attention to the proper discretization of the 
constraints involved in each SP and to the resulting weak FE 
formulations and circuit relations. The method is illustrated 
and validated on test problems. 

II. COUPLED MAGNETIC SUBPROBLEMS 

A. Sequence of Subproblems 
Complete models are proposed to be split into sequences of 

SPs, gathering sets of conductors and magnetic regions. The 
SP solutions are to be added to give the complete solution. 

This offers a way to perform parameterized analyses, with a 
direct access to each change. The parameters can be the 
positions of the conductors, as well as their conductivities. 

Each SP is defined in its own domain. At the discrete level, 
this aims to decrease the problem complexity and to allow 
distinct meshes with suitable refinements and possible domain 
overlapping. No remeshing is necessary when adding a region 
or changing its position. 

B. Canonical magnetic problem 
A canonical 2-D or 3-D magnetodynamic problem p, to be 

solved at step p of the SPM, is defined in a domain Ωp, with 
boundary ∂Ωp = Γp = Γh,p ∪ Γb,p. The eddy current conducting 
part of Ωp is denoted Ωc,p and the non-conducting one Ωc,pC, 
with Ωp = Ωc,p ∪ Ωc,pC. Massive conductors belong to Ωc,p, 
whereas stranded conductors belong to Ωs,p ⊂ Ωc,pC. The 
equations and material relations of problem p are 

 curl hp = jp ,   div bp = 0 ,   curl ep = – ∂t bp  , (1a-b-c) 
 hp = µp–1 bp + hs,p ,   jp = σp ep + js,p , (2a-b) 

where hp is the magnetic field, bp is the magnetic flux density, 
ep is the electric field, jp is the electric current density, µp is 
the magnetic permeability, σp is the electric conductivity and 
n is the unit normal exterior to Ωp. Note that (1c) is only 
defined in Ωc,p (as well as ep), whereas it is reduced to the 
form (1b) in Ωc,pC. Boundary conditions (BCs) on n × hp|Γh,p

,  
n ⋅ bp|Γb,p

 or n × ep|Γe,p ⊂ Γb,p
 have to be defined, acting as surface 

sources (SSs) possibly expressed from previous solutions [2]-
[6]. 

The fields hs,p and js,p in (2a-b) are VSs. The source hs,p is 
usually used for fixing a remnant induction. The source js,p 
fixes the current density in inductors. With the SPM, hs,p is 
also used for expressing changes of permeability and js,p for 
changes of conductivity, or for adding portions of inductors 
[4]-[6]. For changes in a region, from µq and σq for problem q 
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to µp and σp for problem p, the associated VSs hs,p and js,p are 

 hs,p = (µp–1 – µq–1) bq ,   js,p = (σp – σq) eq . (3a-b) 

Each problem p is constrained via the so defined VSs and 
SSs from parts of the solutions of other problems. This offers 
a wide variety of changes [2]-[6]. The complete solution is 

 u = upp!P" , with u # h,b, j,e, ...  (4) 

with P an ordered set of SPs. A correction can become a 
significant source for any of its source problems, which is 
inherent to large perturbation problems. In this case, an 
iterative process between the related SPs has to be done till 
convergence up to a desired accuracy [4]. In addition to the 
iterations between SPs, classical inter-problem iterations are 
needed in nonlinear analyses. Each solution up can then be 
calculated as a series of corrections up,i (with i the sub-SP 
(SSP) index), i.e. 

 up = up,ii! = up,1 +up,2 +...  (5) 

C. Canonical b-Conform Weak Formulation 
Equations (1b-c) are fulfilled via the definition of a 

magnetic vector potential ap and an electric scalar potential vp, 

   curl ap = bp ,  ep = – ∂t ap – grad vp , with up = grad vp . (6a-b-c) 

The weak b-conform ap-formulation of problem p is given 
by the weak form of the Ampère equation (1a), i.e. [4], 

  (µp
!1 curlap, curla ')"p

+ (hs,p, curla ')"p
!( js,p,a ')"p

 

  +(! p !t ap,a ')"c,p
+(! pup,a ')"c,p

= 0 , !a '" Fp
1(#p ) , (7) 

where Fp1(Ωp) is a curl-conform function space defined on 
Ωp, gauged in Ωc,pC, and containing the basis functions for ap 
as well as for the test function a' (at the discrete level, this 
space is defined by edge FEs; the gauge is based on the tree-
co-tree technique); ( · , · )Ω denotes a volume integral in Ω of 
the product of its vector field arguments. 

D. Mesh-to-Mesh Projection of VSs 
Some parts of a previous solution aq serve as sources (VSs) 

in a subdomain Ωs,p ⊂ Ωp of the current problem p. At the 
discrete level, this means that this source quantity aq has to be 
expressed in the mesh of problem p, while initially given in 
the mesh of problem q. This is done via a projection method 
[7] of its curl limited to Ωs,p, i.e.  

  (curlaq-p,curla ')!s,p
=(curlaq,curla ')!s,p

,"a '# Fp
1(!s,p ) , (8) 

where Fp1(Ωs,p) is a gauged curl-conform function space for 
the p-projected source aq-p (the projection of aq on mesh p) 
and the test function a'. 

III. CONDUCTORS IN PROBLEM SPLITTINGS 

A. Massive Conductors 
The circuit relation of a massive conductor Ωc,p, relating its 

current Ip and voltage Up (circulation of – up along the 
conductor) changes, due to contributions from a problem q 
(possibly gathering several SP solutions), is obtained by using 
a' = grad v' = u' as test function in (7) [9], i.e. 

    (! p !t ap,u ')"c,p
+(! pup,u ')"c,p

#( js,p,u ')"c,p
= I p , (9) 

with js,p given by (3b) with (6b-c), i.e. 

 js,p = (σp – σq) eq = – (σp – σq) (∂t aq + uq) . (10) 

Adding a massive conductor – For a newly added Ωc,p, (9) 
gives its initial current and voltage (Ip,1 and Up,1). These are 
accurately calculated, with actual skin and proximity effects, if 
problem p is solved with (7) and (9) with sources from 
problem q. If solution p is only initially known for Ωc,p alone, 
with no contribution from solution q, only its own skin effect 
is then considered. This can give a good initial approximation 
of its circuit relation, that can be further improved with an 
additional component of solution p with source q. 

Changing a massive conductor – For an Ωc,p already 
considered as a source of problem q, that added some regions, 
previous components of solution p (e.g. ap,1 and up,1) are 
known. The current iteration on problem p aims at calculating 
this solution change (e.g. ap,2 and up,2), which can be done at 
two levels. As a first approximation, if no current change is 
allowed (Ip,2 = 0) and proximity effects due to solution q are 
neglected (thus with no need to solve (7)), ap,2 = 0 and (9) 
simply leads to a voltage change, via up(,2) (the SSP index is 
omitted to lighten the expressions) given by 

 (up,u ')!c,p
="(#t aq,u ')!c,p

. (11) 

For the accurate level considering proximity effects, ap and up 
need to be solved with (7) and (9), usually with hs,p = 0 and 
σq = 0, i.e. (3b) reduced to js,p = σp eq. This leads to the 
accurate circuit relation change. 

B. Stranded Conductors 
For a stranded conductor or coil Ωs,p, the circuit relation 

relating its current Ip and voltage Up changes is 

       (!t ap, j ')"s,p
+(!t aq, j ')"s,p

+Rp Ip =#Up , (12) 

where Rp is the coil resistance and j' is a global test function 
defined for the considered coil as 

 j' = js,p = Ns/Ss t , (13) 

with Ns its number of turns, Ss its total surface area and t the 
unit vector tangent to the coil direction [8], [9].  

Adding a stranded conductor – If Ωs,p is newly added, (12) 
relates its initial Ip,1 and Up,1, including the effect of solution 
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q via the term (∂t aq, js,p)Ωs,p
. Solving (7) with this conductor, 

together with (12), is required. 
Changing a stranded conductor – If Ωs,p was already 

considered as a source of problem q, previous components of 
solution p (e.g. ap,1, Up,1 and Ip,1) are known. Changes of this 
solution p are then given by (7) and (12), with again the need 
to calculate the contribution (∂t aq, js,p)Ωs,p

 in (12). 
If no current change is allowed in Ωs,p, i.e. Ip(,2) = 0, the 

associated solution of (7) is simply ap,(2) = 0. Relation (12), 
with (13), is thus reduced to 

 Up =! ("t aq, js,p )#s,p
, (14) 

giving the voltage change Up(,2) and consequently the 
inductance change of the coil. 

The contribution in (12) from a previous solution q, i.e. 
(∂t aq, js,p)Ωs,p

, gains to be evaluated indirectly from integrals 
on the modified regions that were sources of aq; this avoids 
any integration in Ωs,p which would need to project aq on its 
mesh. For this, in the SP sequence, one gets back to the 
previous iteration of problem p preceding problem q (or, in the 
newly added conductor case, one considers the actual problem 
p), and uses aq and ap, respectively, as test functions in their 
formulations, i.e. (to lighten the development, one omits with 
no limitation the possible contributions of massive conductors) 

(µp
!1 curlap, curlaq )"p

+ (hs,p, curlaq )"p
!( js,p,aq )"p

=0,  (15) 

(µq
!1 curlaq, curlap )"q

+ (hs,q, curlap )"q
!( js,q,ap )"q

 

                            +(! q !t aq,ap )"c,q
+(! q uq,ap )"c,q

= 0  (16) 

Subtracting the resulting expressions, i.e. (15) to (16), with 
Ωp ≡ Ωq, hs,q = (µq–1 – µp–1) bp (3a), js,q = – (σq – σp) (∂t ap + up) 
(10) and usually hs,p = 0 and σp = 0, one has 

( js,p,aq )!s,p
="((µq

"1 "µp
"1)(curlap + curlaq ), curlap )!p

 

                               +(! q (!t (ap + aq )+uq ),ap )"c,p
. (17) 

Only some integrals on the modified regions of problem q 
(where µq and µp differ) remain with the term (js,p, aq)Ωs,p

, 
which is the time primitive of the term to be evaluated, thus 
via the other remaining integrals. This is a remarkable result 
that allows a very accurate calculation of the inductance 
change, in particular in non-destructive testing problems. 

If the primary coil is excited with a fixed current (Ip,1), its 
proper field remains unchanged whatever the reaction field of 
the added regions. Its inductance change Lp,2 is calculated 
with (14) and (17). If voltage excited, or excited via an 
external electric circuit, its inductance change gives a current 
correction (Ip,2). There is no need to solve again the correction 
primary coil problem. Its solution is simply obtained by 
weighting the primary solution (ap,2 = ap,1 Ip,2 / Ip,1). An 
iterative process, on the SSP indices, can be done between the 
primary coil problem and the added region problems. 

IV. APPLICATION EXAMPLES 

To illustrate and validate the SPM, TEAM problem 17 is 
studied, dealing with a jumping ring [10]. This problem is well 
adapted to the SPM, allowing tests of progressive levels of 
difficulty, from magnetostatic to magnetodynamic problems, 
from frequency to time domain, from axisymmetric to 3-D 
models, from current to voltage sources, etc., also with 
moving bodies. Furthermore it needs accurate calculations of 
global quantities, e.g. self and mutual inductances and forces. 
The basic rig comprises an exciting coil plus a set of inner 
cores, various plates, and conducting rings. Progressive sets of 
experiments include the main coil in air, the main coil with 
laminated iron core, then above a large conducting plate, then 
with one ring added. A search coil can be added as well. These 
are axisymmetric, from magnetostatic to magnetodynamic, 
problems. They can go up to 3-D problems with other 
positions of the plates. 

Adding a magnetic core – For a sinusoidal input current of 
1 A at 50 Hz in the main coil (500 turns, inner radius 40 mm, 
width 37.5 mm and height 100 mm), the primary coil solution 
(a1) is a source for the reaction field of an added inner 
magnetic core (µr = 300, height 150  mm, radius 25 mm, 
bottom 12 mm below the main coil), calculated as a correction 
solution (a2) (Fig. 1). Two different meshes are used (Fig. 1). 
Adding these two solutions, the coil-core solution is obtained 
and checked to be similar to the complete solution. The coil 
reactance components are X1,1 = 5.2 Ω (calculated from (12)) 
and X1,2 = 14.3 Ω (calculated from (14) with (17)), of which 
the sum is 19.5 Ω, checked to be equal to the coil reactance for 
the complete problem.  

Adding a massive conductor – For an interval of positions 
of an added massive conducting ring (σ = 2.08 107 S/m, inner 
radius 38.5 mm, width 6.35 mm and height 25.4 mm) and the 
sinusoidal input current in the main coil, the eddy current 
densities in the ring (Fig. 2) and the ensuing forces are 
calculated. The magnetic core is present. This is done with the 
SPM, decoupling the meshes of the magnetic source (coil and 
magnetic core) and of the moving ring, and the classical 
approach with remeshing for any new position of the ring. 
From these results, Fig. 3 shows the height of the ring versus 
the input current. For a similar accuracy, a speed-up factor of 
about 100 is obtained with the SPM, thanks to the no-
remeshing and the reduction of the computational domain for 
each position change of the ring. The speed-up factor 
increases with the number of positions considered. The 
primary coil reactance change is again calculated with high 
accuracy, e.g. for the ring 12.5 mm above the main coil, 
X1,3 = –6.7 Ω (calculated from (14) with (17)), giving for the 
total reactance 12.8 Ω calculated for the complete problem. 
The ring resistance is also correctly calculated, R3 = 3.7 Ω, in 
perfect accordance with the complete problem. 

Adding a stranded conductor – The accuracy obtained with 
the SPM approach on the calculation of the mutual inductance 
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between the main coil and a search coil (50 turns, inner radius 
100 mm, width 50 mm and height 12 mm) is pointed out in 
Fig. 4. A significant speed-up factor is again obtained with the 
SPM (about 120) in comparison with the classical approach. 

   
 

   
Fig. 1. Top: Field lines for the primary coil alone (b1, left), for the added inner 
core (b2, middle) and the total field (b=b1+b2, right). Bottom: associated 
meshes. The conducting ring and the search coil are shown but are still 
inactive (i.e. not included in the meshes). 

     
Fig. 2. Field lines (b3) and eddy current density (j3) in the added conducting 
ring, without (left; only a2,1) and with (right; up-dating a2 and a3) coupling 
with the inner core (real part), pointing out the need of iterations between SPs. 

   
Fig. 3. Height of the ring versus input current (50 Hz). 

 
Fig. 4. Mutual inductance as a function of distance between the main coil and 
a search coil. 

V. CONCLUSIONS 

The developed SPM allows efficient parameterized FE 
studies of magnetic systems with changes of position and 
characteristics of conductors. Both massive and stranded 
conductors can be considered, with accurate calculations of 
skin and proximity effects, and thus of all the resulting 
quantities: Joule losses, forces, resistances, inductances, 
currents and voltages. The use of distinct meshes for the SP 
gives significant facilities. The method can naturally be 
extended to deal with moving systems, with non-linearities, 
which will be further developed. 
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