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ON A QUESTION OF SERRE

ALEXANDER D. RAHM

Consider the Borel–Serre compactification [1] of the quotient of hyperbolic
3–space H by a finite index subgroup Γ in a Bianchi group, and in particular
the following question which Serre poses on page 514 of the quoted article.
Consider the map α induced on homology when attaching the boundary

∂(Γ\Ĥ) into the Borel–Serre compactification Γ\Ĥ of the orbit space Γ\H.

Question 1. How can one determine the kernel of α (in degree 1) ?

Serre uses a global topological argument and obtains the rank of the kernel

of α in H1

(
∂(Γ\Ĥ)

)
. But he keeps asking what submodule precisely this

kernel is.
With a local topological study, we can decompose the kernel of α into its

parts associated to each cusp, both in first and second degree homology.
Our main result is the following, for which we consider the cellular struc-

ture on Γ\Ĥ induced by Bianchi’s fundamental polyhedron.

Theorem 2. The boundary ∂(Γ\Ĥ) is included as a sub-cellular chain com-

plex into the Borel–Serre compactification Γ\Ĥ in the following way.

(0) All vertices of Γ\Ĥ are equivalent modulo the image of the 1–cells
(they define the same class in degree 0 homology).

(1) For each orbit of cusps, exactly one of the two attached 1–cells is the
boundary of a 2–chain.

(2) The boundary of the Bianchi fundamental polyhedron is the union
over the attached 2–cells.

Proof.

(0) is obvious since the orbit space Γ\Ĥ is path-wise connected.
(1) will be proved cusp-wise in lemma 3.
(2) follows from Poincaré’s theorem on fundamental polyhedra, which

tells us that the 2–dimensional facets of the Bianchi fundamental
polyhedron inside hyperbolic space appear in pairs modulo the action
of Γ, with opposite signs. The 2–cells which we attach at the cusps
are by construction unique modulo the action of Γ.

�

Let T be the 2–torus joined to Γ\H at a cusp. We decompose T in the
classical way into a 2–cell, two 1–cells and a vertex (see figure 2).

Lemma 3. The inclusion of T into the Borel–Serre compactification of Γ\H
makes exactly one of the 1–cells of T become the boundary of a 2–chain.
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Figure 1. Intersection of the fundamental polyhedron for
SL2(OQ(

√
−6 )) with the imaginary half-plane

Proof. Consider the fundamental rectangle F for the action of the cusp
stabiliser on the plane joined to H at our cusp. There is a sequence of
rectangles in H obtained as translates of F orthogonal to all the geodesic
arcs emanating from the cusp. This way, the portion of the fundamental
polyhedron which is nearest to the cusp, is trivially foliated by (locally
homeomorphic to the Cartesian product of a geodesic arc with) translates
of F (see figure 1 for the case Γ = SL2(OQ(

√
−6 )), where the fundamental

polyhedron admits one cusp at ∞ and one cusp at
√
−6
2 ). The boundaries of

these translates are subject to the same identifications by Γ as the boundary
of F . So in the quotient space by the action of Γ, the image of T is wrapped
into a sequence of layers of tori. And therefore in turn, the 3-dimensional
interior of the Bianchi fundamental polyhedron is wrapped around the image
of T along the entire surface of the latter. Hence, there is a neighbourhood of
the image of T that is homeomorphic to Euclidean 3–space with the interior
of a full torus removed. Now, considering the cell structure of the torus
(see figure 2), we see that precisely one of the 1–cells can be contracted in
the interior of the image of the Bianchi fundamental polyhedron. The other
1–cell is linked with the removed full torus and thus remains uncontractible
in the Borel–Serre compactification of Γ\H. �

Corollary 4. The map α induced on integral homology by the inclusion of

the boundary ∂(Γ\Ĥ) into the Borel–Serre compactification Γ\Ĥ is deter-
mined as follows.

• In degree 0, it is the augmentation map.
• In degree 1, it is a surjection onto the non-cuspidal part of the ho-
mology, for each orbit of cusps vanishing on exactly one of the two
attached 1–cells, and injective from the set of remaining 1–cells.

• In degree 2, it is the map the kernel of which admits as generator
the union of all torus 2–cells.
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Figure 2. Cell structure of the 2–torus

Proof. Consider the cellular decomposition of Γ\H with only 3–cell the
Bianchi fundamental polyhedron. Consider the chain map induced by in-

cluding the boundary ∂
(
Γ\Ĥ

)
as a sub-cellular chain complex into the

Borel–Serre compactification Γ\Ĥ. As a sub-chain inclusion, this chain map
is injective and preserves cycles. So we only have to divide out the bound-

aries in Γ\Ĥ. In degree n, we carry this out applying theorem 2 (n). �

Recall the identification [1, page 512] between coproduct of cusp stabilis-
ers and first degree homology of the boundary of the quotient of hyperbolic
3–space by Γ,
(∐

Γcusp
∼=
)∐

Γab
cusp

∼=
∐

H1(Γcusp; Z) ∼=
∐

H1(T; Z) ∼= H1(∂(Γ\H); Z),

where the coproduct runs over the orbits of cusps modulo Γ; and for the
first identification, we need to make Γ torsion-free (by passing to a finite
index subgroup or to PSL2 of the ring of integers). Consider the map α
induced on homology when attaching the boundary into the Borel–Serre
compactification of Γ\H. Passing to the elements in the cusp stabiliser in Γ
which identify the endpoints of an edge of F to yield a 1–cell of T, we
conclude the following from theorem 2.

Corollary 5. From each cusp stabiliser Γcusp, precisely one generator of

the Abelianization Γab
cusp is in the kernel of α :

∐
orbits of cusps

Γab
cusp −→ Γab.

Proposition 6. For any Bianchi group with units {±1}, the vertical 2–cell
of constant imaginary part zero (above the real axis) in the boundary of the
Bianchi fundamental polyhedron admits, after being projected to the quotient
space, a boundary consisting only of the cycle in the attached infinitely far
torus, coming from the top edge of this 2–cell.

Proof. By the natural inclusion of SL2(Z) into any Bianchi group, we obtain
a natural inclusion of the modular tree for SL2(Z) into the cell complex of the
Bianchi group, when including the upper half-plane into three-dimensional
upper half-space at constant imaginary part zero (above the real axis). The
boundary of the fundamental domain for SL2(Z) in the upper half-plane
vanishes when passing to the quotient of the action. The considered inclusion
maps this fundamental domain to the 2–cell in question, so the assertion
follows. �
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Corollary 7. The cycle obtained from this top edge by the matrix

(
1 1
0 1

)

identifying its endpoints, generates the kernel of the map induced on first
degree homology by sending the 2–torus into the compactified quotient space,
replacing the cusp at infinity.

Corollary 8. The matrix

(
1 1
0 1

)
does not pass to the Abelianization of

any Bianchi group.

The latter statement can also be obtained from the decomposition of this
matrix as a product of finite order matrices in SL2(Z), which is included
naturally into every Bianchi group.

Together with theorem 2, we obtain the following corollary, which has
already been obtained by Serre [1, page 519].

Corollary 9. The matrix

(
1 ω
0 1

)
, with ω an element giving the ring of

integers the form Z[ω], passes to the Abelianization of the Bianchi group
SL2(Z[ω]).

The long exact sequence.

Corollary 10. Let Γ be a torsion-free subgroup of finite index in a Bianchi
group. Then the long exact sequence induced on integral homology by the
map α concentrates in

H3(Γ) = 0 → 〈∪iTi〉 //

⊕
i〈Ti〉

α2
//

⊕
i〈Ti〉/〈∪iTi〉 ⊕Hcusp

2

rrff
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f

Hcusp
2

⊕
i〈xi〉

//

⊕
i〈xi, yi〉

α1
//
⊕

i〈yi〉 ⊕Hcusp
1

rrff
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f

Hcusp
1 ⊕{vanishing

ideal } //

⊕
i Z

α0

augmentation
// Z → 0

where xi and yi denote the cycles generating H1(Ti), and the maps without
labels are the obvious restriction maps making the sequence exact.

Proof. We take into account that the virtual cohomological dimension of the
Bianchi groups is 2, and apply corollary 4. �

Note that the cuspidal homology satisfies equality of ranks between Hcusp
2

and Hcusp
1 , because the naive Euler-Poincaré characteristic vanishes.



ON A QUESTION OF SERRE 5

Figure

3. Bottom
facets for
SL2(OQ(

√
−6 ))

Example. The case Γ = SL2(OQ(
√
−6 )).

There are fifteen orbits of edges, labelled
(s, s′), (s′, s′′), (r,∞), (∞,∞′), (∞′,∞′′),
(b, a), (a, s′), (a, u), (u, v), (a′′, v), (b, o),
(o′, b′), (u, r′), (r′′, v) and (o, r′). The re-
maining edges of the Bianchi fundamental
polyhedron, which we assemble from fig-
ures 1 and 3, are subject to identifications
with those edges by Γ = SL2(OQ(

√
−6 )).

The boundary of the quotient of the
Bianchi fundamental polyhedron isT∞ +Ts.
The kernel of ∂2 is the direct sum of 〈T∞〉
and 〈Ts〉. Therefore, H2(Γ;Q) ∼= Q. The
kernel of ∂1 is

〈(s, s′)〉
⊕〈(s′, s′′)〉
⊕〈(a, u) + (u, v) + (v, a′′)〉
⊕〈(∞,∞′)〉
⊕〈(∞′,∞′′)〉
⊕〈(r′, u) + (u, v) + (v, r′′)〉
⊕〈(b, o) + (o′, b′)〉
⊕〈(o, r′) + (r′, u) + (u, a) + (a, b) + (b, o)〉.

The image of ∂2 is

〈(s, s′)〉
⊕〈(a, u) + (u, v) + (v, a′′)− (s′, s′′)〉
⊕〈(∞,∞′)〉
⊕〈(r′, u) + (u, v) + (v, r′′)− (∞′,∞′′)〉
⊕〈(o, r′) + (r′, u) + (u, a) + (a, b) + (b, o)〉
⊕〈−(o, r′) + (a′′, v) + (v, r′′)− (a, b) + (o′, b′)〉,

whence we se that H1(Γ;Q) ∼= Q2.
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