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Abstract— This paper presents a design process and simulation 
results of a 5 x 1 linear antenna array with phase shifters for 60 
GHz beam steering applications. The antenna array has been 
designed using a membrane process in order to achieve high 
radiation efficiency and good radiation characteristics. The same 
process can be used to manufacture Micro-Electro-Mechanical 
Systems (MEMS) switches and phase shifters. The maximum 
gain of the developed antenna array is 9.0 dBi and the radiation 
efficiency is 87 %. The array consists of 5 equally spaced 
monopole antennas which each has a gain of 3.2 dBi. The 
reflection coefficient of the antenna elements is better than -13.5 
dB at the desired frequency range from 57 to 64 GHz and the 
minimum isolation between the adjacent antenna elements is 10.4 
dB. The phase shifter which is used for steering the beam of the 
antenna array has been implemented with MEMS switches and 
switched transmission lines. The phase shifter enables a phase 
shift from -80° to +80° by 20° steps. The losses of the phase 
shifters are less than 2 dB. The results reveal that the membrane 
technology is a good option for implementing beam steering 
antenna systems for 60 GHz communications applications. 

I. INTRODUCTION 
Multiantenna techniques such as Multiple-Input and 

Multiple-Output (MIMO) and beam steering can be used to 
increase data transmission rates or reliability of wireless 
communications systems [1]. The beam steering has been 
considered as one of the key technologies for 60 GHz 
communication e.g. by the IEEE 802.11ad standardization 
working group. It has two advantages compared to single 
antenna systems: increased gain due to use of antenna array 
and possibility to reduce interference by steering the beam to 
the desired direction. Drawbacks are increased complexity and 
power losses in the phase shifters and antenna array feeding 
structure. The phase shifters are used for steering the beam of 
the antenna array. Several phased antenna array designs have 
been already introduced in the literature for 24 GHz in [2], 
and for 60 GHz in [3] - [5]. In [2] the phase shifting is done in 
LO domain. In [3] the phase shifters have been realized with a 
Butler matrix network, in [4] with a Rotman lens and in [5] 
with Micro-Electro-Mechanical Systems (MEMS) technology. 

At millimeter wave frequencies antennas which are 
manufactured on normal substrate materials have often low 
radiation efficiency and poor radiation properties. This is 
mainly due to surface waves which store energy inside the 
substrate and losses of the substrate. The efficiency of the 
antenna can be increased by replacing the substrate with a thin 
membrane layer. The use of membrane provides reduction of 
losses, dispersion effects as well as suppression of higher 
order substrate modes. In addition, the manufacturing costs of 
the membrane processed antennas are relatively low. Previous 
designs using membrane structure are Yagi-Uda antennas for 
60 GHz and 77 GHz frequency ranges [6], membrane-
supported end-fire antennas for 45 GHz [7] and membrane-
supported double folded slot antennas for 60 GHz [8]. This 
paper combines beam steering techniques and a membrane 
supported antenna array for the first time at 60 GHz. The 
antenna array has been designed to operate at the unlicensed 
frequency band from 57 to 64 GHz for short range very high 
data rate communications applications. 

The remainder of the paper has been organized as follows; 
Section II presents the structure of the designed antenna array 
together with a short description of the membrane process 
which can be used to manufacture the antenna array. The 
phase shifters and the feeding network are presented in 
Sections III and IV, respectively. Finally, the simulation 
results of the antenna array are given in Section V. 

II. ANTENNA ARRAY 
The structure of the 5x1 linear antenna array is presented in 

Fig. 1. The array consists of 5 equally spaced monopole 
antennas which are fed by coplanar waveguides (CPW). The 
array has been designed on a 20 µm thick benzocyclobutene 
(BCB) membrane. The characteristic impedance of the CPW 
and the monopoles is 50 Ω. The array has been designed so 
that the total surface area of the membrane would be 35 mm2 
which is the maximum size for the manufacturing process. 
The thin membrane area is surrounded by a 500 µm thick 
High Resistive (HR) silicon wafer. The thick HR silicon wafer  
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Fig. 8. Simulated transmission coefficients between adjacent antenna 
elements. 

 

  
(a) 

 
(b) 

Fig. 9. Total gain patterns of the 5x1 antenna array in (a) the XZ-plane (phi = 
0°) and (b) the YZ-plane (phi = 90°). 

 

 
Fig. 10. Total gain patterns of the 5x1 antenna array in the XZ-plane (phi = 0°) 
with three different phase shift values. 

 

B. Antenna array with phase shifters 
The simulated reflection coefficient for each antenna 

element of the 5x1 linear antenna array are shown in Fig. 7. 
The matching is better than -13.5 dB at the desired frequency 
range. The minimum isolation between the adjacent antenna 
elements is 10.4 dB as shown in Fig 8. The isolation was tried 
to improve by adding wave traps between the antenna 
elements. However, adding the wave traps lead to worse 
matching and it was decided to leave them out from the design. 

The radiation pattern of the antenna array is presented in 
Fig. 9 when all the ports are fed in phase. Normally, the 
maximum radiation direction of the linear antenna array 
would be towards the Z-axis but the surrounding substrate 
material tilt the radiation pattern towards the Y-axis. Also this 
finding indicates how important it is to take into account the 
supporting substrate in the design process and simulations. 
The maximum total gain of the antenna array is 9.0 dBi and it 
is achieved when θ = 330° and φ = 90°. The coordinate system 
is presented in Fig. 1. 

The radiation patterns of the antenna array with three 
different phase shift values are presented in Fig. 10 for the 
XZ-plane. The phase shifter enables a phase shift from -80° to 
+80° with 20° steps. The beam of the antenna array can be 
tilted ±30° and the maximum variation of the total gain level 
is less than 3 dB at this angle range. 

VI. CONCLUSIONS 
In this work a 5x1 linear antenna with phase shifters has 

been designed for 60 GHz beam steering applications. The 
antenna array has been designed using the membrane 
technology in order to achieve high radiation efficiency and 
good radiation characteristics. The matching of the antenna 
elements is better than -13.5 dB and the minimum isolation 
between the adjacent antenna elements is 10.4 dB at the 
desired frequency range from 57 to 64 GHz. The maximum 
total gain of the antenna array is 9.0 dBi and the radiation 
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efficiency is 87 %. The phase shifters designed for the antenna 
array enable a phase shift from -80° to +80° with 20° steps. 
The beam steering feature was demonstrated by showing the 
radiation pattern of the antenna array with different phase shift 
values. The beam steering antenna array will be manufactured 
and the performance of the prototype will be verified with 
measurements in the future. 
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