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Abstract In an uplink transmission of a coded orthogonal frequency division multiple
access (C-OFDMA) system, channel estimation, time and frequency synchronization has to
be addressed. For this purpose a control data, i.e. a known training sequence called “pream-
ble” and pilot sub-carriers are used. As an alternative to the classic scheme and in order to
maximize the data rate, we propose a non-pilot aided estimator based on an iterative architec-
ture that does not require pilot sub-carriers. Our approach combines 1/ the so-called minimum
mean square error successive detector to estimate the signal sent by each user 2/ a recursive
method estimating the CFOs. Various algorithms such as the extended Kalman filter, the
sigma-point Kalman filters and the extended H∞ filter are tested and their performances
are compared in terms of convergence speed and estimation accuracy. When considering an
interleaved OFDMA uplink system over a Rayleigh fading channel, simulation results clearly
show the efficiency of the proposed algorithm in terms of CFO estimation and bit error rate
performances.

Keywords OFDMA · Extended Kalman filter · Sigma-point Kalman filter ·
Extended H∞ filter · Carrier frequency offset

1 Introduction

Multiuser orthogonal frequency division multiplexing (OFDM) system, also known as
orthogonal frequency division multiple access (OFDMA), is used in many new
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communication standards, such as WiMAX (802.16x) [1] and 3GPP long-term evolution
(LTE) for the downlink [2]. Unlike the conventional OFDM case where all sub-carriers are
assigned to a single user, each sub-carrier is exclusively assigned to a particular user in an OF-
DMA network. The communication link between each user and the base station is modeled
by a time-varying channel, whose response differs from one user to another. For simultaneous
transmissions, OFDMA allocation algorithms [3] aim at exploiting this spectral diversity to
allocate to the different users the communication resources, such as power, constellation size
and necessary bandwidth to maximize the link efficiency. However, like OFDM, OFDMA is
sensitive to:

– timing errors between the incoming signal and the base station (BS) references used for
reception and demodulation in the uplink case: they lead to inter-block interferences (IBI)
and can be avoided by using a sufficiently long cyclic prefix between two adjacent OF-
DMA bursts. However, to maintain acceptable data throughput, the cyclic-prefix length
must be chosen just greater than the length of the channel impulse response (CIR).

– carrier frequency offsets (CFOs): without CFO estimations and compensations, orthogo-
nality between sub-carriers is no longer satisfied; this results in inter-channel interferences
(ICI) as well as multiple access interferences (MAI).

The above problems have to be solved during an OFDMA transmission. Timing synchroniza-
tion, CFO estimation, MAI correction and channel estimation are performed using a known
training sequence called “preamble” composed of a few OFDMA symbols at the beginning
of the OFDMA frame. Then, pilot sub-carriers are inserted in the frame to make the coherent
detection robust against variations of CFOs over the frame. See Fig. 1.

The CFO estimation problem for OFDMA uplink transmissions using the preamble has
been recently addressed in several papers. In [3], Morelli et al. illustrate various schemes for
CFO estimation among different sub-carrier allocation strategies. In [4], the CFO estimation
is obtained by comparing the phases of two identical received OFDMA symbols. In [5],
Zhao et al. use an extended Kalman filter (EKF) to estimate the CFO. However, channels
are assumed to be preliminarily estimated and this assumption is not necessarily satisfied
in real cases. Indeed, during the uplink synchronization stage, the channel state information
(CSI) is not available, and hence has to be estimated either jointly with the CFO or after CFO
compensation.

In order to correct the MAI, the CFO has to be compensated. In the so-called “direct
method”, the CFOs are compensated by multiplying the complex envelope of the signal
before the fast Fourier transform (FFT) step at the receiver. However, there is a performance

T
ofdma

:  time duration of the OFDMA frame

known training sequence

1stOFDMA Symbol 2 ndOFDMA Symbol 3 rdOFDMA Symbol (P−1)thOFDMA Symbol PthOFDMA Symbol 
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Fig. 1 Example of an OFDMA frame composed of P OFDMA symbols with a preamble composed of two
OFDMA symbols and a determined number of pilot sub-carriers
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degradation because the CFO compensation of the desired user may increase the CFOs of the
other users. As an alternative, new correction methods have been proposed. More particularly,
in [6] the CFO compensation is implemented by mitigating the effects of the major lobes and
the side lobes of the frequency response of the signals received from each user. The CFO
estimation can be obtained calculating the phase shifts of two identical received OFDMA
symbols in the time domain. In [7], CFO compensation is based on a circular convolution
after the FFT step. The authors suggest using the method presented in [8] to estimate the
CFOs. However, both methods only work for subband carrier allocation strategy (CAS). Con-
sequently, in [9], the authors extend the concept proposed in [7] to a system with interleaved
or generalized CAS. In that case, the CFOs are corrected via a circular convolution after
the FFT step, but an interference-cancellation step is required. The authors suggest again
to use the method presented in [8] to estimate the CFOs. In [10], the authors carry out the
CFO correction through a linear detection and the CFO estimation is performed by using a
high-resolution subspace method. In [11], Hou et al. propose a minimum mean square error
successive detector (MMSE-SD) to suppress the MAI, but the CFO is assumed to be known.

In the above approaches channel estimation is not included. The joint CFO/ channel esti-
mation has been also investigated. In [12] and [13], Pun et al. study how to obtain the joint
maximum likelihood estimations of the channels and the CFOs of multiple users. Thus in
[12], a conventional expectation-maximization (EM) is first proposed: during the E-step the
received signals transmitted by each user, namely the “complete data”, are estimated. During
the M-step, all the CFOs and the channels are jointly estimated by using these complete data.
To simplify the optimization issue, the value of the channel is replaced by its expression
depending on the CFO in the criterion to be minimized. Therefore, only the CFO of each
user has to be estimated. Even if the criterion is explicitly given, the authors do not mention
the estimation method used. For instance, exhaustive grid search could be considered as
suggested by the same authors in [13]. To reduce the computational cost, the authors in [12]
suggest using the space alternating generalized expectation-maximization (SAGE). In that
case, instead of simultaneously estimating every-user parameters, one iteration of the EM
algorithm is dedicated to one user. Instead of addressing a multi-dimensional optimization
issue, the authors in [13] use the so-called alternating projection estimator. This method con-
sists in iteratively estimating the CFO of one user, by means of an exhaustive grid search over
the possible range of the CFO value, and by setting the other CFOs to their last updated values.
In [14], Xiaoyu et al. propose two iterative estimation approaches using the SAGE method.
Nevertheless, the EM-based algorithms do not necessarily converge to the global extremum.
An initialization step is therefore required. Another drawback of the above methods is the
high computational cost due to the iterative estimation and the exhaustive grid search. To
obtain a maximum data rate, alternative estimation approaches using the preamble and pilot
sub-carriers have been proposed. In [15], the authors propose a subspace based blind CFO
estimation algorithm. It consists of a high-resolution signal-processing technique to estimate
the CFO without pilot sub-carriers. Nevertheless, more sub-channels than users are required.
For certain values of CFOs, a grid search approach leads to a sub-optimal estimation. In
[16], a blind method to estimate CFOs based on a linear precoder is proposed. Using two
OFDMA symbols, the idea is to establish a time correlation using a precoder which gives a
second-order moment based blind CFO estimation for each user.

In the above approaches, the OFDMA frame duration is usually higher than the coherence
time (Tc) of the channel. In this case, the CSIs need to be updated by using pilot sub-carriers.
In this paper, we suggest using a shorter OFDMA frame so that the CSIs do not change. The
sub-carriers are no longer necessary to update the CSIs and can be removed. The data rate
is hence increased, but the CFO may vary from one symbol to another. Then, we propose
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a non-aided iterative receiver that combines an MMSE-SD with a CFO estimator based on
optimal filtering. It should be noted that the preamble is kept (in order) to perform the timing
synchronization, to estimate the CSI for the whole frame and to provide an initial estimation
of the CFO.

To compare estimation performances, four CFO estimation methods dedicated to non-
linear estimation are studied: on the one hand, we analyze the relevance of local estimation
methods such as the extended Kalman filter (EKF) and the extended H∞ filter [17], which
are based on a first-order linearization of the state-space representation of the system around
the last available state estimation. On the other hand, we investigate estimation methods such
as the sigma-point Kalman filters [18] including the unscented Kalman filter (UKF) and the
central difference Kalman filter (CDKF).

The paper is organized as follows. The OFDMA system and the signal models are pre-
sented in Sect. 2. Section 3 shows how estimates of the synchronization parameters can be
exploited to restore orthogonality among the received user signals. In Sect. 4, the computa-
tional complexity of the proposed algorithm is addressed. In Sect. 5, various simulations have
been performed. Firstly, the channel is assumed to be exactly known. The results obtained
confirm the efficiency of our approach. Then, the influence of the channel estimation error on
the CFO estimator is studied. In Sect. 6, conclusions are drawn and perspectives are given.
Appendix A highlights the differences between Kalman filtering and H∞ filter, whereas
Appendix B provides details about SPKF.

In the following, (.)H , (.)T and (.)∗ denote the hermitian, transposition and conjugate
operations respectively. In addition Re(.) denotes the real part of (.), diag(.) is a square zero
matrix, the main diagonal of which is (.) and Iq is the identity matrix of size q .

2 System Description

Let us consider an OFDMA network consisting of a single BS and U simultaneously inde-
pendent users. See Fig. 2. The available bandwidth B is divided among N sub-bandwidth,
and we assume its fair distribution between each user, namely Bu = B/U .

The signal received by the BS is a superposition of the contributions from the U active
users. In the following, let Su be the OFDMA symbol emitted by the uth user with u ∈
{1, . . . , U }:

Su = [Su(0), Su(1), . . . , Su(N − 1)]T (1)

IFFT CP P/S

S1(N)

X1

User 1
Channel1, CFO1, 

AWGN1

IFFT CP P/S
XU

User U ChannelU, CFOU, 
AWGNU

BS

Remove 
CP

FFTS/P
R

S1(2)

SU (N)

SU (2)

SU (1)

S1(1)

Fig. 2 OFDMA system model

123



A Non-Pilot Aided Iterative Carrier Frequency Offset Estimator

According to the frequency allocation of each user [3], Su(k) is non-zero if the kth car-
rier is allocated to the uth terminal mobile, for k ∈ {0, . . . , N − 1}. Then, let us introduce
the column vector S that contains the information symbols to be transmitted along the N
sub-carriers:

S = S1 + S2 + · · · + SU (2)

The corresponding transmitted signal from the uth user is given by:

Xu(n) = 1√
N

N−1∑

k=0

Su(k)e j2πnk/N (3)

where −Ng ≤ n ≤ N − 1 and Ng < N is the length of the cyclic prefix (CP). More-
over, let us assume that the channel impulse response of the uth user at time n is hu =
[hu(0), hu(1), . . . , hu(Lu − 1)]T where Lu is the length of the maximum channel delay
spread and Ng ≥ max

u
(Lu) so that the cyclic prefix discards the IBI. We suppose a multi-

path Rayleigh quasi-static frequency selective channel. Hence, hu does not vary during an
OFDMA frame.

The U incoming waveforms are naturally combined by the receiver antenna. The resulting
received signal at time n can hence be expressed as follows:

R(n) =
U∑

u=1

Ru(n) + B(n) (4)

where B(n) is a complex white Gaussian noise with zero mean and variance σ 2
b while Ru(n)

is the signal received from the uth user. At the receiver, due to the propagation conditions,
time offset and CFO are induced in the baseband signal. As presented by Morelli in [3], the
received signal after the cyclic prefix removal can be written as follows:

Ru(n) = 1√
N

N−1∑

k=0

Su(k)Hu(k)e j2πn(k+εu)/N (5)

where Hu(k) = ∑Lu−1
l=0 hu(l)e− j2π(lk+τuk+τuεu)/N is the channel frequency response asso-

ciated to the kth sub-carrier of the uth user and with εu and τu the normalized CFO to the
sub-carrier spacing and the timing error related to the uth user, respectively.

To restore orthogonality among each user sub-carrier, the synchronization error vector ε

must be estimated to compensate the CFOs.

ε = [ε1, ε2, . . . , εU ] (6)

By choosing an appropriate cyclic prefix length, namely Ng = max
u

{τu + Lu}, the effects of

the uplink timing errors are counteracted, i.e they are incorporated as a part of their channel
responses. 1 Thus, the received signal contains no IBI and (4) can be rewritten as:

R(n) =
U∑

u=1

e j2πnεu/N Au(n) + B(n) (7)

1 τu and Lu are supposed to be known. The signal is assumed to be synchronized in time.

123



H. Poveda et al.

where Au(n) corresponds to the nth sample of the OFDMA symbol only affected by the
propagation channel and which can be expressed as:

Au(n) = 1√
N

N−1∑

k=0

Su(k)Hu(k)e j2πnk/N (8)

By using (4), each received OFDMA symbol can be rewritten in a matrix form as follows:

R = [R(0), R(1), . . . , R(N − 1)]T = GS + B (9)

where B = [B(0), B(1), . . . , B(N − 1)]T is a column vector that contains N consecutive
samples of the additive noise. In addition, the N × N transmission matrix G is defined by:

G =
U∑

u=1

EuHuQu (10)

where:

Eu = diag
[
1, e j2πεu/N , . . . , e j2π(N−1)εu/N

]
(11)

Qu is a diagonal matrix where the kth coefficient of the main diagonal is given by:

Qu(k, k) =
{

1 if Su(k) )= 0
0 elsewhere

(12)

and

Hu =





Hu(0) Hu(1) . . . Hu(N − 1)

Hu(0) Hu(1)e
j2π
N . . . Hu(N − 1)e

j2π(N−1)
N

. . . . . . . . . . . .

Hu(0) Hu(1)e
j2π(N−1)

N . . . Hu(N − 1)e
j2π(N−1)2

N




(13)

Due to the CFO, the received OFDMA symbol column vector R includes interferences both
from the user itself and from all the other users.

In the next section, we analyze the way to estimate the CFO and to correct the MAI in
order to obtain the decoded signals of each user.

3 Frequency Offset Estimation and User Detection

In uplink OFDMA systems after performing the CFO/channel estimation using the preamble,
receiver performances could be affected by the MAI caused by the CFO variations over all
the OFDMA frame. In this section, a method is proposed to mitigate this impact.

The idea is to correct the MAI and to estimate the signals sent from all users in the system
using the MMSE-SD. These estimated signals called the “MMSE-SD preambles” play the
role of the pilot sub-carriers and are used to estimate the CFOs using the optimal filtering. 2

See Fig. 3.
It should be noted that the preamble is kept to perform the timing synchronization, to

estimate the CSI for the whole frame and to provide an initial estimation to the CFO. See
Fig. 4.

2 It should be noted that a preliminary study was presented in [19].

123



A Non-Pilot Aided Iterative Carrier Frequency Offset Estimator

Fig. 3 Proposed OFDMA
receiver architecture using
optimal filter estimator
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iteration 1

Optimal filter 
based

CFO estimation
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1,1
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U,1
^

MMSE-SD 
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Optimal filter 
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CFO estimation

A1,2

AU,2

1,2
^

U,2
^

MMSE-SD 
iteration i

Optimal filter 
based

CFO estimation

A1,i
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1,i
^

U,i
^
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^

^

^

^

^

ε

T
ofdma

:  time duration of the OFDMA frame

known training sequence

1stOFDMA Symbol 2 ndOFDMA Symbol

T
ofdma

 <<T
c

to be retrieved
  Information 

time (s)

: data sub−carriers

fourier transform of the
 pth OFDMA symbol

frequency (Hz)

T
c
:  coherence time of the channel

R
3

R
P−1 R

P

Fig. 4 OFDMA frame composed of P OFDMA symbols with a preamble composed of two OFDMA symbols
and no pilot sub-carriers

3.1 MAI Suppression MMSE Successive Detection

According to [11], the MMSE-SD is robust against near-far effect, produced by the strong
MAI. These phenomena are induced by the difference that may exist between two users in
terms of the propagation loss. Instead of a joint multiuser decoding, we propose to com-
bine a MMSE pre-detection scheme with an ordered successive detection. The detection of
transmitted interleaved OFDMA signal components operates in two major steps:

– interference cancelling (IC): during this step, the previous “detected” OFDMA signal
components are subtracted out of the received signal. Indeed, let Ŝũ,i be the estimation of
the signal sent by the ũth user at the i th iteration of the MMSE-SD, where 1 ≤ i ≤ Imax
and Imax denotes the maximum iteration number. The user’s decoding order is denoted
as ũ where ũ ∈ {1, . . . , U }; when ũ = 1, it is associated with the maximum signal to
interference-plus-noise ratio 3 (SINR) among the users whereas ũ = U represents the
user with the lowest SINR. In addition the so-called (ũ + 1)th order MMSE-SD residual
at the i th iteration Yũ+1,i∀ũ )= 1 is the difference between the received signal R and
the components transmitted by the detected users (namely those corresponding to the ũ
highest SINRs) and Y1,i = R∀i . See Fig. 5.

3 The BS calculates the SINRs, then the signal is decoded in an ordered way [11].
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Fig. 5 Iterative MMSE-SD
using Kalman filter estimator and
MAI suppression for BPSK
modulation
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The IC steps can be summarized as follows:

Yũ+1,i = Yũ,i − Ĝũ,i Ŝũ,i (14)

= R −
ũ∑

l=1

Ĝl,i Ŝl,i (15)

with Ĝũ,i =
{∑U

ũ=1 Êũ,i HũQũ if ũ = 1
Ĝũ−1,i

(
IN − Qũ−1

)
if 2 ≤ ũ ≤ U

(16)

where Êũ,i = diag
[
1, e j2πε̂ũ,i−1/N , . . . , e j2π(N−1)ε̂ũ,i−1/N

]
and ε̂ũ,i is the estimation of the

CFO associated with the ũth user at the i th iteration. 4 A new iteration begins when all
the users have been processed and when the estimation ε̂ũ,i , using the recursive estimator
approach proposed in the next sub-section, has been performed.

– interference suppression (IS): this step aims at removing the interference stemming from
the as-yet undecoded components. The purpose of this step is hence to filter the ũth order
MMSE-SD residual Yũ,i . By denoting σ 2

s the signal power allocated on each of the sub-
carriers, Wũ,i the suppression weight matrix for the selected ũth user at the i th iteration
satisfies [11]:

Wũ,i =
(

σ 2
b

σ 2
s

I + GH
ũ,i Gũ,i

)−1

GH
ũ,i (17)

Then, (17) is used to decode the selected user and to obtain the estimated signal sent by
uth user. 5

Ŝũ,i (k) = argmin
Ωm∈

∥∥Tũ,i (k) − Ωm
∥∥2 (18)

with: Tũ,i = QũWũ,i Yũ,i

where ! = {Ω1,Ω2, . . . Ωm, . . . ΩM } is the modulation constellation. At that stage, (18)
makes it possible to obtain the estimated signal of the ũth user.

Âũ,i = HũQũ Ŝũ,i =
[

Âũ,i (0), Âũ,i (1), . . . , Âũ,i (N − 1)
]

(19)

In the next section, those estimated signals, the “MMSE-SD preambles” are used to
estimate the CFO of each user.

4 The matrix Hũ is assumed to have been estimated using the preamble.
5 For example in BPSK modulation Ŝũ,i = sign

(
QũWũ,i Yũ,i

)
.
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3.2 Optimal Filter Based Estimator

The CFO is estimated by a recursive method. Let us introduce the state-space model to esti-
mate the CFO, that is the representation of what happens during one OFDMA symbol. It is
defined by the following state-space model:

State equation:

εũ,i (n) = εũ,i (n − 1) + w(n) (20)

Measurement equation:

R̂ũ,i (n) = Âũ,i (n)e j2πnεũ,i (n)/N + Bũ(n)

= f (εũ,i (n)) + Bũ(n) (21)

where w and Bũ are white zero-mean gaussian noises with variances assumed to be σ 2
w and

σ 2
ũ respectively. It should be noted that σ 2

w is very low and can even be equal to 0. In this
latter case, the CFO is assumed to be constant during one OFDMA symbol.

Let us introduce a third state-space equation that is used in the general case for H∞ filter-
ing to focus on a linear combination of the state-vector components. Here, as the dimension
of the state vector is equal to 1, one has:

zũ,i (n) = Lεũ,i (n) (22)

where L is equal to 1.
As the state-space model is non-linear due to (21), we suggest studying four kinds of

algorithms:

– The EKF [21] consists in analytically propagating the Gaussian Random Variable (GRV)
through the system dynamics, by means of a first-order linearization (Taylor expansion)
of the non-linear Eq. (21) around the last available estimate of the state vector. See
Appendix A. However, due to the first-order approximation, the EKF may sometimes
lead to large errors when evaluating the mean and the covariance matrix of the GRV that
undergoes the non-linear transform.

– When dealing with the SPKF [18], the state distribution is still approximated by a Gauss-
ian distribution, but is now characterized by a set of points lying along the main eigenaxes
of the GRV covariance matrix. Then, these so-called sigma points propagate through the
non-linear system (21). A weighted combination of the resulting values makes it possible
to estimate the mean and the covariance matrix of the transformed random vector, i.e. the
random variable that undergoes the non-linear transformation. On the one hand, the UKF
is based on the unscented transformation [18]. When the density is odd, the weights are
chosen to provide the exact 2nd order Taylor expansion around the mean of the random
variable. On the other hand, the CDKF is based on the 2nd order Sterling polynomial
interpolation formula. Note that when using the sigma-points approach, we avoid calcu-
lating the Jacobian.
Remark: the UKF was proposed by their authors as an alternative to the EKF to avoid the
linearization step. Nevertheless, Lefebvre et al. [22] proved that the sigma point approach
corresponds to a weighted statistical linear regression (WSLR). The difference between
CDKF and UKF stands in the way the mean and the covariance matrix of the transformed
GRV is calculated; the weights are not the same. The CDKF uses only a single scalar
scaling parameter as opposed to the three required by the UKF. 6 See Appendix B.

6 For details about SPKF algorithm, the reader is referred to [18].
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– The H∞ approach was introduced in the field of control engineering in 1981. Its pur-
pose is to minimize the worst possible effects of the disturbances on the estimation error.
According to [23], H∞ estimation is more robust to uncertainties than Kalman filtering-
based estimation. No statistical assumptions have to be made on the model noise w and
the measurement noise Bũ . They are just assumed to have finite energies. Although H∞
filter has been widely used in the field of control, less studies have been conducted by the
signal processing community for the last years.
Here, as we address a non-linear estimation issue, we suggest using the so-called
“extended H∞ filter”. 7 Initial works were conducted by Burl [17]; it consists of a first-
order linearization around the last available estimation of the state vector. This filter aims
at minimizing the H∞ norm of the transfer operator that maps the discrete time noise
disturbances to the estimation error, as follows :

J∞
ũ,i = sup

∑N−1
n=0 ‖ẑũ,i (n) − zũ,i (n)‖2

V −1
∑N−1

n=0 ‖Bũ(n)‖2 + W −1
∑N−1

n=0 ‖w(n)‖2 + ‖ε̂ũ,i (0) − εũ,i (0)‖2

(23)

where V and W are positive weighting parameters tuned by the designer to achieve
performance requirements.
Since the minimization of (23) is often impossible, the following sub-optimal H∞ prob-
lem is usually considered:

J∞
ũ,i < γ 2 (24)

where γ is the prescribed noise attenuation level.
At that stage, the H∞ estimator is the same as the one defined for the Kalman approaches
to update the state estimation, but the state-error variance is updated in a different way.
See Appendix A.

To improve the estimation, we use a MAI cancellation strategy as in [5]. The results from
the (n − 1)th recursion are used to estimate and eliminate different users’ signals in the nth
recursion.

MAI estimation: R̂(est)
ũ,i (n) = Âũ,i (n)e j2πnε̂ũ,i (n−1)/N (25)

MAI correction: R̂ũ,i (n) = R(n) −
U∑

j=1, j )=ũ

R̂(est)
ũ,i (n) (26)

After some recursions, the algorithm makes its possible to estimate the value of the uth
user CFO.

4 Computational Complexity

We now look at the complexity of the frequency synchronization scheme presented in the
previous section. We begin with the MMSE-SD step. At each iteration and for each user,
the MMSE-SD performs the inversion of a matrix of size N × N in order to calculate the
suppression weight matrix Wũ,i . This matrix inversion requires O(N 3) operations. Thus, the
overall complexity of the MMSE-SD step is O(ImaxU N 3).

7 It should be noted that the unscented H∞ filter has been recently proposed in [20].
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Next, we consider the estimation step. As the dimension of the state vector is equal to 1, the
optimal filtering step requires the computation of O(1) operations for each user and for each
iteration. Thus, the overall complexity of the estimation step is O(ImaxU ). In the following,
we choose the SPKF to performs the CFO estimation, in order to avoid the linearization step.

Now, we can conclude that the overall complexity of the proposed iterative architecture
is bounded by O(ImaxU N 3).

5 Simulation Results

We consider an OFDMA IEEE 802.16 WirelessMANTM interleaved uplink system, which
involves 4 users sharing 512 sub-carriers and with a cyclic prefix set to Ng = 128. The
carrier frequency is at fc = 2.5 GHz and the channel bandwidth is set to B = 10MHz. The
duration of an OFDMA symbol is Ts = N/B and Ns Ts << Tc, where Tc is the coherence
time of the channel and Ns is the number of OFDMA symbols in the OFDMA frame. The
users’ normalized CFO errors are due to the difference between the frequency carrier and
local oscillators, and also to the users movement. A transmission over a Rayleigh quasi-static
frequency selective channel composed of 3 multipaths is supposed. QPSK is used to modu-
late the information bits. γ = 103; V = 1 when using the H∞ filter. One assumes that there
is state noise w(n) with very small variance, e.g. W = 10−3 and σ 2

w = 10−3.
We assume the channel estimation and a CFO pre-estimation have been performed using

the preamble. The algorithm aims at estimating the “MMSE-SD preambles” of the 4 users,
and then estimating the CFOs for each OFDMA symbol so that the coherent detection can
be robust against variations over all the OFDMA frame. We propose to carry out three kinds
of tests.

5.1 Test 1: Recursive Estimation Using Perfectly Estimated MMSE-SD Preambles

In this first case, we assume that the “MMSE-SD preambles” have been perfectly estimated
at the receiver. We test our CFO estimation algorithms for users with different CFO. The
users’ CFO estimation errors are considered fixed during one OFDMA symbol. We perform
500 Monte-Carlo runs. Based on preliminary tests, we notice that the EKF, UKF and CDKF
provide very similar results, with the difference that the UKF and the CDKF avoid the line-
arization step. Therefore, in the following we only show the results obtained when using a
SPKF. According to Fig. 6, our approach makes it possible to accurately estimate the CFO
recursively using a CDKF. It should be noted this is the recursive estimation of the CFO over
only one OFDMA symbol.

5.2 Test 2: Non-Pilot Aided Estimation

In this second case, the receiver estimates the “MMSE-SD preambles”. The simulation results
are focused on the first user of the system. The users’ CFO errors vary between the differ-
ent OFDMA symbols (but they are considered fixed during one OFDMA symbol). They
are modeled as independent zero-mean Gaussian random variables with a variance of σ 2

c f o.
Figure 7 shows the results in terms of CFO estimation over one OFDMA symbol. The pro-
posed algorithm provides an estimation of the CFO in an iterative way by using an UKF. As
expected, the first iteration leads to poor performances, but iterating our approach especially
up to 5 times leads to good performances. In Fig. 8, we show the performances of our algo-
rithm in terms of BER. The estimation is done by using either the Kalman filter (KF) with
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Fig. 7 MMSE-SD combined with UKF approach for CFO estimation

an error of 3 dB over the variance or the H∞ filter. In addition, we show the results when
the direct method is used when considering a perfectly estimated CFOs. We clearly see that
the results of the proposed method are better after performing the fourth iteration. A gain of
around 1 dB at a BER of 10−2 is obtained using the proposed method with the H∞ filter at
the fifth iteration in comparison with the direct method of multiply the complex envelope
of the signal before the FFT. In [9] and [10], the algorithms tend to the theoretical value.
However in [9], more subchannels than users are required. In addition, a training sequence
is required in [10].

In Fig. 9, we show the results in terms of minimum mean square error (MMSE). Based
on previous tests, the results in [16] are better than the results in [15] in terms of CFO esti-
mation performances. So we propose a comparative study with the multiuser interference
resilient (MUI) approach proposed in [16]. Note that the algorithm proposed in [16] needs
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two OFDMA symbols to do the estimation. A gain of 4 dB at a MMSE of 10−4 is obtained
between the MUI method and the proposed method at the third iteration using a KF. In addi-
tion, in Fig. 10 we compare the KF and the H∞ filter in terms of convergence speed, for
a Eb/No = 10 dB, for different errors over the noise variance when using the KF and for
different values of γ when using the H∞ filter. Firstly, we consider an error over the variance
of 3 and 5 dB. Secondly, we assume no error over the variance. We can see that the conver-
gence speed of the KF is affected by the noise variance error. For the lowest values of γ , the
convergence may be slightly faster. If the value of γ increases, the H∞ filter performances
tend to be the same as KF ones. See Appendix A.
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Fig. 10 Comparison of the filters in terms of convergence speed

5.3 Test 3: Influence of the Channel Impulse Response

In this third case, we propose to analyze the influence of the channel impulse responses vari-
ations over the receiver performances. The CFO estimation is performed by a KF, knowing
the noise characteristics. The simulation results are focused on the first user of the system.
We assume that the channel impulse responses have small variations in time over the OF-
DMA frame. We denote ĥu the estimated channel impulse response for each user using the
preamble and hũ the real value of the channel response for each user. In a first test, we assume
a normalized random error over each symbol |ĥu −hũ | < 10−2 whereas |ĥu −hũ | < 10−1 in
a second test. The results obtained at the fifth iteration for the different BER with a different
error over the channels are shown in Fig. 11. One can notice that the performances of the
architecture are not really affected by a small variations on the channel.
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6 Conclusions and Perspectives

The non-pilot aided MAI suppression scheme for an interleaved OFDMA uplink transmis-
sion followed by the CFO estimation algorithm based on optimal filtering can jointly estimate
and detect respectively each user’s CFO and frame, with no need of pilot sub-carriers. This
enables a maximum transmission data rate.

In addition, simulation results demonstrate that the proposed scheme can effectively sup-
press the MAI caused by a relatively large CFO, sufficiently robust to CFO variations. The
decoding of interleaved OFDMA is an ordered serial processing that combines interference
suppression and interference cancellation techniques. The iterative decoding applies simple
hard interference cancellation techniques, resulting in moderate complexity.

The CFO estimation performances of the four different approaches give quite similar
results. On the one hand, one advantage of the SPKF is that it does not need the calculations
of Jacobians or Hessians. In those cases, the computational complexity is lower. On the other
hand, when using the H∞ filter, no information about the noise statistics is required.

Acknowledgments We would like to thank Pedro Ramos from the University of Zaragoza-Communication
Technologies Group, for the fruitful discussions we had with him concerning sigma point Kalman filtering.
This work was partially supported by the National Bureau of Science, Technology and Innovation of Panama
(SENACYT).

Appendix

A Kalman Filter versus H∞ Filter

In this appendix, our purpose is to compare the H∞ filter and the KF when estimating model
parameters, by comparing the Ricatti equations of both algorithms. Given the state-space
representation in (20)–(22).
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On the one hand, the KF satisfies the following Riccati equation:

Pũ,i (n + 1|n) = Pũ,i (n|n) + σ 2
w (27)

Pũ,i (n|n) = Pũ,i (n|n − 1) − Kũ,i (n)Ψũ,i (n)Pũ,i (n|n − 1) (28)

where Pũ,i (n|n) and Pũ,i (n|n −1) are the a posteriori and the a priori error variances at time

n for the ũth user at the i th iteration, Ψũ,i (n) = ∂ f (εũ,i )

∂εũ,i
|εũ,i =ε̂ũ,i (n−1) = j2πn

N
e

j2πε̂ũ,i (n−1)

N

and Kũ,i (n) = Pũ,i (n|n − 1)Ψ ∗
ũ,i (n))ũ,i (n)−1 is the Kalman gain of the filter, with

)ũ,i (n) = Ψũ,i (n)Pũ,i (n|n − 1)Ψ ∗
ũ,i (n) + σ 2

ũ . The estimation update is given as follows:

ε̂ũ,i (n|n) = ε̂ũ,i (n|n − 1) + Re(χũ,i (n)) (29)

χũ,i (n) = Kũ,i (n){R̂ũ,i (n) − f {ε̂ũ,i (n|n − 1)}} (30)

On the other hand, given weight scalars V and W and provided that:

P∞
ũ,i (n + 1|n)−1 + Ψ ∗

ũ,i (n)Ψũ,i (n) − γ −2 > 0 (31)

the H∞ filter satisfies:

P∞
ũ,i (n + 1|n) = P∞

ũ,i (n|n) + W (32)

= P∞
ũ,i (n|n − 1){1 −

[
Ψ ∗

ũ,i (n) 1
]

×M−1
ũ,i

[
Ψũ,i (n)

1

]
P∞

ũ,i (n|n − 1)} + W

where

Mũ,i =
[

V 0
0 − γ 2

]
+

[
Ψũ,i (n)

1

]
P∞

ũ,i (n|n − 1)
[
Ψ ∗

ũ,i (n)1
]

=
[

Ψũ,i (n)P∞
ũ,i (n|n − 1)Ψ ∗

ũ,i (n) + V Ψũ,i (n)P∞
ũ,i (n|n − 1)

P∞
ũ,i (n|n − 1)Ψ ∗

ũ,i (n) P∞
ũ,i (n|n − 1) − γ 2

]

K ∞
ũ,i (n) = P∞

ũ,i (n|n − 1)Ψ ∗
ũ,i (n){)∞

ũ,i (n)}−1 (33)

and

)∞
ũ,i (n) = Ψũ,i (n)P∞

ũ,i (n|n − 1)Ψ ∗
ũ,i (n) + V (34)

Let us first assume that P∞
ũ,i (n|n − 1) = Pũ,i (n|n − 1). In addition, as it is often done

when dealing with H∞ filter in signal processing, let us set V and W to σ 2
ũ and σ 2

w respec-
tively. This implies that K ∞

ũ,i (n) = Kũ,i (n) and )∞
ũ,i (n) = )ũ,i (n). Then, let us compare

P∞
ũ,i (n + 1|n) and Pũ,i (n + 1|n). For this purpose, Mũ,i must be inverted in (32). Among the

approaches that could be considered such as the matrix inversion lemma, we suggest using
the one based on the Schur complement [24] for the sake of simplicity. Indeed by defining
the Schur complement ϒũ,i (n) of )∞

ũ,i (n) in Mũ,i as follows:
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ϒũ,i (n) = {P∞
ũ,i (n|n − 1) − γ 2}

− P∞
ũ,i (n|n − 1)Ψ ∗

ũ,i (n){)∞
ũ,i (n)}−1Ψũ,i (n)P∞

ũ,i (n|n − 1)

= Pũ,i (n|n − 1)

− {Pũ,i (n|n − 1)Ψ ∗
ũ,i (n){)ũ,i (n)}−1}Ψũ,i (n)Pũ,i (n|n − 1) − γ 2

= Pũ,i (n|n − 1) − Kũ,i (n)Ψũ,i (n)Pũ,i (n|n − 1) − γ 2

= Pũ,i (n|n) − γ 2 (35)

Then, M−1
ũ,i can be expressed as the product of three matrices, the coefficients of which are

defined from the coefficients of Mũ,i and the Schur complement ϒũ,i (n) as follows:

M−1
ũ,i =

[
1 −K ∗

ũ,i (n)

0 1

] [
)ũ,i (n)−1 0

0 ϒũ,i (n)−1

] [
1 0

−Kũ,i (n) 1

]

= ,ũ,i (n)-ũ,i (n).ũ,i (n) (36)

We can rewrite the Riccati recursion (32) as:

P∞
ũ,i (n + 1|n) = Pũ,i (n|n − 1) + σ 2

w

−Pũ,i (n|n − 1)
[
Ψ ∗

ũ,i (n) 1
]
,ũ,i (n)-ũ,i (n).ũ,i (n)

[
Ψũ,i (n)

1

]
Pũ,i (n|n − 1)

= Pũ,i (n|n) − Pũ,i (n|n){Pũ,i (n|n) − γ 2}−1 Pũ,i (n|n) + σ 2
w (37)

Hence, since Pũ,i (n|n) is scalar, the solution of the Riccati equation when using the H∞ filter
satisfies:

P∞
ũ,i (n + 1|n) = P∞

ũ,i (n|n) + σ 2
w = Pũ,i (n|n) − Pũ,i (n|n)2

Pũ,i (n|n) − γ 2 + σ 2
w

= Pũ,i (n|n) + Qγ
ũ,i (n) + σ 2

w = Pũ,i (n|n) + {σγw
ũ,i }2

= Pũ,i (n + 1|n) + Qγ
ũ,i (n) (38)

Therefore, H∞ filtering can be seen as a Kalman filtering with a model-noise variance equal
to {σγw

ũ,i }2 = Qγ
ũ,i (n) + σ 2

w. If Qγ
ũ,i (n) > 0, {σγw

ũ,i }2 > σ 2
w . For parameter tracking, the

larger the state-noise variance is, the easier it is to follow the parameter variations, especially
when the parameters are subject to brutal variations. Nevertheless, the larger the noise-model
variance is, the larger the variance of the estimated parameters over time is. It should be noted
that when γ tends to +∞, Qγ

ũ,i tends to zero and P∞
ũ,i (n + 1|n) tends to Pũ,i (n + 1|n).

When we assume that there is no noise model (which means that σ 2
w = 0) and by using

(31) and (38), it can be seen that the H∞ filter exists only if:

γ 2(1 + Ψ ∗
ũ,i (n)Ψũ,i (n)Pũ,i (n|n)) − 2Pũ,i (n|n) > 0

(39)

One has Ψ ∗
ũ,i (n)Ψũ,i (n) = 4π2n2

N 2 and:

γ 2 >
2Pũ,i (n|n)

1 + 4π2n2

N 2 Pũ,i (n|n)

(40)

Given the range of values that the CFOs may have, e.g. εũ,i (n) ∈ [−1, 1], the error
variance Pũ,i (n|n) is rather smaller than N 2/4π2n2 for n < N − 1. Therefore,
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γ 2 > Pũ,i (n|n), Qγ
ũ,i (n) > 0 and P∞

ũ,i (n + 1|n) > Pũ,i (n + 1|n). In addition since
Pũ,i (n + 1|n + 1) < Pũ,i (n|n), Qγ

ũ,i (n + 1) < Qγ
ũ,i (n). Therefore, the solution to the

Ricatti equation for the H∞ filter can be seen as an upper bound of the Kalman a priori
error variance. For parameter estimation, whereas Kalman filtering with no model noise cor-
responds to the RLS, the equations describing H∞ filtering corresponds to a Kalman filter
with a model noise, the variance of which decreases in time.

B Sigma-Point Kalman Filter

Given the state-space representation in (20) and (21), and when a SPKF is considered, the
gain and the error variance are related as follows:

Pũ,i (n + 1|n) = Pũ,i (n|n) + σ 2
w (41)

Pũ,i (n|n) = Pũ,i (n|n − 1) − Kũ,i (n)Pr̃
ũ,i (n)K ∗

ũ,i (n) (42)

where

Kũ,i (n) = {Pεr̃
ũ,i (n)}{Pr̃

ũ,i (n)}−1

is the gain of the filter, Pεr̃
ũ,i (n) is the covariance between the state prediction error and the

innovation r̃ũ,i = rũ,i (n) − r̂ũ,i (n), where rũ,i (n) = R̂ũ,i (n), and Pr̃
ũ,i (n) is the innovation

variance.
Let us introduce ρ = 1, that is the length of the state vector. The first step of the algorithm

is to calculate the sigma points:

X ε
ũ,i (n|n − 1) =

[
X ε

0,ũ,i (n|n − 1) X ε
1,ũ,i (n|n − 1) X ε

2,ũ,i (n|n − 1)
]

(43)

=
[
ε̂ũ,i (n − 1) ε̂ũ,i (n − 1) + ξ

√
Pũ,i (n − 1) ε̂ũ,i (n − 1) − ξ

√
Pũ,i (n − 1)

]

– where ξ = √
1 + κ, κ = α2 − 1 and 10−3 < α ≤ 1 when using the UKF

– where ξ =
√

3 when using the CDKF.

Since the state noise is zero, the estimation is updated as follows:

ε̂ũ,i (n|n − 1) = ,2
m=0w

a
m X ε

m,ũ,i (n|n − 1) (44)

– where wa
0 = κ/(1 − κ) and wa

m = 1/[2(1 + κ)] when using the UKF
– where wa

0 = 2/3 and wa
m = 1/6 when using the CDKF.

The sigma points are propagated through the non-linear function (21):

Y ε
ũ,i (n|n − 1) = f {X ε

ũ,i (n|n − 1)} (45)

The measurement equation is updated in time:

r̂ũ,i (n) = ,2
m=0w

a
mY ε

m,ũ,i (n|n − 1) (46)

On the one hand, using the UKF, the covariances are calculated as follows:

Pũ,i (n|n − 1) = ,2
m=0w

c
m ||X ε

m,ũ,i (n|n − 1) − ε̂ũ,i (n|n − 1)||2

Pr̃
ũ,i (n) = ,2

m=0w
c
m ||Y ε

m,ũ,i (n|n − 1) − r̂ũ,i (n)||2 + σ 2
ũ

Pεr̃
ũ,i (n) =

,2
m=0w

c
m{X ε

m,ũ,i (n|n − 1) − ε̂ũ,i (n|n − 1)}{Y ε
m,ũ,i (n|n − 1) − r̂ũ,i (n)}∗
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where wc
0 = wa

0 + 3 − α2 and wc
m = 1/[2(1 + κ)].

On the other hand, using the CDKF, the covariances are calculated as follows:

Pũ,i (n|n − 1) = w
c1
1 ||X ε

1,ũ,i (n|n − 1) − X ε
2,ũ,i (n|n − 1)||2

+ w
c2
1 ||X ε

1,ũ,i (n|n − 1) + X ε
2,ũ,i (n|n − 1) − 2X ε

0,ũ,i (n|n − 1)||2

Pr̃
ũ,i (n) = w

c1
1 ||Y ε

1,ũ,i (n|n − 1) − Y ε
2,ũ,i (n|n − 1)||2

+ w
c2
1 ||Y ε

1,ũ,i (n|n − 1) + Y ε
2,ũ,i (n|n − 1) − 2Y ε

0,ũ,i (n|n − 1)||2 + σ 2
ũ

Pεr̃
ũ,i (n) =

√
w

c1
1 Pũ,i (n|n − 1)[Y ε

1,ũ,i (n|n − 1) − Y ε
2,ũ,i (n|n − 1)]∗

where wc1
m = 1/36 and wc2

m = 1/18.
Finally the estimation is updated as follows:

ε̂ũ,i (n|n) = ε̂ũ,i (n|n − 1) + Re(Kũ,i (n){rũ,i (n) − r̂ũ,i (n)}) (47)

References

1. IEEE Standard (2006) Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access
System; Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile
Operation in Licensed Bands, IEEE Std 802.16e-2005. http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=1603394&userType=inst.

2. 3GPP Standard (2009) Technical Specification Group Radio Access Network; Evolved Universal
Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 8), 3GPP TS 36.213 V8.8.0.
http://www.etsi.org/deliver/etsi_ts/136300_136399/136304/08.08.00_60/ts_136304v080800p.pdf.

3. Morelli, M., Jay Kuo, C. C., & Pun, M. O. (2007). Synchronization techniques for orthogonal frequency
division multiple access (OFDMA): A tutorial review. Proceedings of the IEEE, 95, 1394–1427.

4. Morelli, M. (2004). Timing and frequency synchronization for the uplink of an OFDMA system. IEEE
Transaction on Communication, 45(2), 296–306.

5. Zhao, P., Kuang, L., & Lu, J. (2006). Carrier frequency offset estimation using extended Kalman
filter in uplink OFDMA systems. ICC ’06, June 2006, vol. 6, pp. 2870–2874.

6. Dai, X. (2007). Carrier frequency offset estimation and correction for OFDMA uplink. IET Commu-
nication, 1(2), 261–273.

7. Choi, J., Lee, C., Jung, W., & Lee, Y. (2000). Carrier frequency offset compensation for uplink of
OFDM-FDMA systems. IEEE Communication Letters, 4(12), 414–416.

8. Moose, P. H. (1994). A technique for orthogonal frequency division multiplexing frequency offset
correction. IEEE Transactions on Communications, 42(10), 2908–2914.

9. Huang, D., & Letaief, K.B. (2005). An interference cancellation scheme for carrier frequency offsets
correction in OFDMA systems. IEEE Transactions on Communications, 53(7), 1155–1165.

10. Cao, Z. Tureli, U., Yao, Y., & Honan, P. (2004). Frequency synchronization for generalized OFDMA
uplink. Globecom ’04, Dec. 2004 , pp. 1071–1075.

11. Hou, S. W., & Ko, C. C. (2008). Intercarrier interference suppression for OFDMA uplink in time
and frequency selective Rayleigh fading channels. VTC ’08, May 2008, pp. 1438–1442.

12. Pun, M. O., Shang-Ho, T., & Jay Kuo, C. C. (2004). An EM-based joint maximum likelihood
estimation of carrier frequency offset and channel for uplink OFDMA systems. VTC ’04, Sept. 2004,
vol. 1, pp. 598–602.

13. Pun, M. O., Shang-Ho, T., & Jay Kuo, C. C. (2004). Joint maximum likelihood estimation of carrier
frequency offset and channel for uplink OFDMA systems. Globecom ’04, Nov. 2004, vol. 6, pp.
3748–3752.

14. Xiaoyu, F., Minn, H., & Cantrell, C. (2006). Two novel iterative joint frequency-offset and channel
estimation methods for OFDMA uplink. GLOBECOM ’06, Nov.–Dec. 2006, vol. 3, pp. 1–6.

15. Cao, Z., Tureli, U., & Yao, Y. D. (2004). Deterministic multi-user carrier frequency offset estimation
for interleaved OFDMA uplink. IEEE Transactions on Communications, 52(9), 1585–1594.

16. Movahedian, M., Yi Ma, M., & Tafazolli, R. (2008). An MUI resilient approach for blind CFO
estimation in OFDMA uplink. PIMRC ’08, Sept. 2008, pp. 1–5.

17. Burl, J. B. (1998). H∞ estimation for nonlinear systems. IEEE Signal Processing Letters, 5(8), 199–202.

123

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1603394&userType=inst
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1603394&userType=inst
http://www.etsi.org/deliver/etsi_ts/136300_136399/136304/08.08.00_60/ts_136304v080800p.pdf


H. Poveda et al.

18. Van der Merwe, R. (2004). Sigma-point Kalman filters for probabilistic inference in dynamic state-space
models, PhD thesis, OGI School of Science and Engineering, Oregon Health and Science University,
Portland, 2004, pp. 35–37, 50–71.

19. Poveda, H., Ferré, G., Grivel, E., & Ramos, P. (2009). A blind iterative carrier frequency offset
estimator based on a Kalman approach for an interleaved OFDMA uplink system. EUSIPCO ’09,
Aug. 2009, pp. 378–382.

20. Li, W., & Jia, Y. (2010). H-infinity filtering for a class of nonlinear discrete-time systems based on
unscented transform. Signal Processing, 90(12), 3301–3307.

21. Haykin, S. (1996). Adaptative filter theory (pp. 328–333). Englewood: Prentice Hall.
22. Lefebvre, T., Bruyninckx, H., & De Schutter, J. (2002). Comment on a new method for the nonlinear

transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic
Control, 47(8), 1406–1408.

23. Hassibi, B., Sayed, A. H., & Kailath, T. (1999). Indefinite-quadratic estimation and control, a unified
approach to H2 and H∞ theories. Philadelphia: Society for Industrial and Applied Mathematics
(SIAM).

24. Brezinski, C. (1988). Other manifestations of the Schur complement. Linear Algebra and Its Appli-
cations, 111, 231–247.

Author Biographies

Héctor Poveda received the diploma of engineer in electronics and
telecommunications in 2006 from the Technological University of Pan-
ama (Panama) and his MSc degree in digital signal and image process-
ing from the University of Bordeaux (France) in 2008. He is currently
with the Signal and Image Research Group at IMS Laboratory, Uni-
versity of Bordeaux. His research interests are in wireless communi-
cation theory including the design of estimation approaches estimation
for multi-carrier systems.

Guillaume Ferré received the diploma of engineer in electronics and
telecommunications engineering (ENSIL) at the University of Limo-
ges (France) in 2003 and received the PhD degree in 2006 from the
Limoges University of Technology. From 2006 to 2008 he worked
as senior researcher at Xlim and IMS Laboratories. He is currently
associate professor at the ENSEIRB-MATMECA engineer school of
Bordeaux (France). His main research interests are in wireless commu-
nication theory, including synchronization and channel estimation for
multi-carrier systems.

123



A Non-Pilot Aided Iterative Carrier Frequency Offset Estimator

Eric Grivel received the diploma of engineer in electronics in 1996
and the PhD degree in signal processing from the University of
Bordeaux (France) in 2000. He is currently an Associate Professor
with the Telecommunications Department at the ENSEIRB-MATM-
ECA, a graduate national engineering school in Bordeaux. He also
belongs to the Signal and Image Research Group at IMS Labo-
ratory, University of Bordeaux. His research interests include the
design of estimation and detection approaches for signal processing
with applications in mobile communication, speech processing, radar,
etc.

123


	A Non-Pilot Aided Iterative Carrier Frequency Offset Estimator Using Optimal Filtering for an Interleaved OFDMA Uplink System
	Abstract
	1 Introduction
	2 System Description
	3 Frequency Offset Estimation and User Detection
	3.1 MAI Suppression MMSE Successive Detection
	3.2 Optimal Filter Based Estimator

	4 Computational Complexity
	5 Simulation Results
	5.1 Test 1: Recursive Estimation Using Perfectly Estimated MMSE-SD Preambles
	5.2 Test 2: Non-Pilot Aided Estimation
	5.3 Test 3: Influence of the Channel Impulse Response

	6 Conclusions and Perspectives
	Acknowledgments
	Appendix
	A Kalman Filter versus Hinfty Filter
	B Sigma-Point Kalman Filter

	References


