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A Novel Damage Sensitive Feature Based on State-Space
Representation

ABSTRACT

Damage detection in civil structure is a challeggiiask, mainly
because of the strong environmental variations #red variable and
unknown excitation. There is still a lack of a rebulamage detection
process. Taking advantage of the development ohtimdinear dynamical
systems theory which represents times seriesecanstructed state-space,
a novel damage sensitive feature vector is propdstdistical modelling
using extreme value theory is conducted to claseigasurement as
damaged or undamaged. The whole approach is m@stedo case studies.
The first one is a simple 4dof mass/spring numenwadel, damaged by
stiffness reduction. The second one is a concre@mbsubjected to
temperature variations to simulate realistic coodd. Damage is
introduced buy loading cycles.

From 30% of stiffness reduction, damage is cowyedtitected with a
monotonic trend. In the more realistic case, oely frue detection are
observed before macro-cracking whereas all ponetsvall classified after.
Furthermore, the method is robust against stramgéeature variations.

INTRODUCTION

For few years, vibration-based Structural Healthnktwing (SHM) process is
presented in terms of statistical pattern recagmifil]. The extraction of Damage
Sensitive Feature (DSF), in which high dimensiorhblation data are compressed
into low dimensional vectors, takes a central pladtis process. The main challenge
IS to preserve information about structure conditiéor this purpose, the paradigm of
nonlinear dynamical systems offers some promisihgitias [2, 3, 4, 5]. The
information contained in time-series is extractesing reconstructed state-space
representation [6]. Among the numerous candidattifes, the Lyapunov Exponents
(LE) have been particularly studied [7, 8, 9]. Thene related to the long term
predictability of dynamical system. To be more gegctwo trajectories initially close
in the state space will diverge as time evolves @it exponential rate proportional to
LE. But two remarks can be formulated on theirasedamage sensitive feature. First,
the practical calculation of LE is very time consognas trajectories need to be
followed for several thousand of time steps [10]efl, since damage manifests itself
as local irregularities in the signal (due to opgrand closing of cracks or loosened
assembly) it should be more visible if short eviolhs of trajectories are considered.
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This leads to the proposition of a new damage semseature referred to as Jacobian
Feature Vector (JFV) [11]. It is formed by the caments of the Jacobian matrix of
the dynamic estimated in the reconstructed stateesp

Once DSF are extracted from measurement, each i8whBs to be classified as
damaged or undamaged (when the aim is limited tnadea detection). In civil
structures, since only data from the undamaged atatavailable, damage is detected
by comparison with the undamaged database. Thetistdt classification is carried
out in two steps. First, the Mahalanobis distanicéhe new DSF vector from the
undamaged database is calculated to provide arsealae. Then, exceedances
statistical model is used to set classificationeshold for control charts. This
modelling is related to extreme value theory whihmore accurate in determining
control limits when dealing with tails of an unknowistribution.

The proposed approach is tested on two case stuihesfirst one is a 4 dof
mass/spring/damper numerical model, and the seam®&l is a concrete beam
subjected to temperature variations.

The first section of the paper details the thecaétbackground of the new DSF
and the statistical modelling. Then the case stuglie presented before discussing the
results in the third section.

THEORETICAL BACKGROUND
Sate-Joace Damage Senditive Feature

The evolution of any dynamical system can be reprtes! as a trajectory in it state-
space where each dimension is a degree of freedran it is impossible to measure
all dof, as in instrumented civil structures, om@ ceconstruct qualitatively the state-
space based on the measurement of only one sicaéaséries by using the delayed
coordinates method [6].

The scalar time seriefx)=x(1).,...,x(N)is transformed into a collection of
n-dimensional vectors:
X(k)={x(k),x(k+r),...,x(k+(n—1)r)}. (1)
The first minimum of the autocorrelation functiontbe first zero of the mutual
information function of(x) provides an estimate of[12]. Then the best embedding
dimension, is estimated with th&alse nearest neighbors method [13]. More details
on the reconstruction procedure can be found ih [14

In the reconstructed state-space, the dynamicttraysan be represented by the
evolution operatoF, which links one point to the next one, in a tayey:

X (k+1)=F (X (k)). )
If Y (k) is a close neighbour &f(k), and notingdX; = X (k+i)-Y (k+i), the
first order Taylor expansion &fintroduces the Jacobian matrix calculated at tuet p
X (k) ie I[X(k)]:
0%, = J[ X (k) |oX,+0]oX,
OX, = I[ X (k+1)JI[ X (k) [oX, +0]oX,|.
To evaluate the Jacobian matrix with experimentthdthe first steps of the

method used to estimate the Lyapunov exponenterapgoyed [10]. The algorithm
presented hereafter is illustrated in Figure 1.
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A fiducial pointX (k) is chosen in the reconstructed state space, sndhé@arest

neighbors, noted, (k), i=1...r, are selected to form a neighborhood. The
difference vectors are constructed as follows
X (K) ={ X (K) =Y (K)[i =1,....r} . 4)

The least-square method is used to evaluate tldbidacmatrix as the best linear
mapping between the neighborhotdsdk+1 (Eg.4 and Eq.5).

OX (k1) = 3,[ 0X,, (K) ]
OX (k+2)=3,[ 0X,, (k+1)].

A previous study [11] has shown that the sensjtitotdamage is improved if the
mapping does not include the initial neighborhobénce, the components df
(Eq.5) are used to form a feature vector which wl referred to as the Jacobian
Feature Vector (JFV).

()

JFV =3,(). (6)
This process is repeated for 100 fiducial pointesgthe state-space. The number
of neighbors,r, is set to twice the number of parameters to henated in the
Jacobian matrix.
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Figure 1. lllustration of the JFV calculation algorithm  Figure 2. Mahalanobis vs Euclidian
distance

Novelty Detection

In order to compare a point from a set of poiriits,dalculation of the Mahalanobis
distance (MD) is common. Unlike Euclidian distandetakes into account the
correlations between coordinates (Figure 2). lesisisvidely spread in outlier analysis
or novelty detection [15]. It converts a multivaeaDSF to a scalar value which is
easier to analyse with statistical modelling.

If the reference baseline is characterized by annveator JFV and a covariance
matrix C,,. , the square MD of th& JFV vector is:

Di2 = (JFVi _JF_V)T (CJFV )_l(JFVi _JF_V) (7)

Satistical Modelling

The use of control charts implies the setting afited limit. Using the normal
hypothesis to set the limit can lead to wrong vamee extreme events reside in the
tails which are poorly modelled when the naturghef distribution in unknown. To
overcome this problem, it is possible to consitier\tariableY, which represents the
exceedances @ over a threshold. Regardless the distribution Bf if u is in the tail



of D, the distribution ofY will follow a Generalized Pareto Distribution (GP[16].
This is an equivalent of the central limit theorEmextreme values. A special case of
GPD is the exponential distribution which is easfitt Thus, ford > u:

u-x

F(d)=P(D<d)=1-(1-F ()) exr{Tj ®)

with o, the scale parameter.
The calibration of the model starts by the deteatnim of the thresholdy. It is
done by choosing a number of exceedakcesnong a sample of size taken from

the undamaged databafé,,...,d,}. These values are sorted in descending order
{d,,=d,,=...2d,,}. Then,u is associated with thk order statisticsd,,,and
F (u)is estimated by the empirical distribution of D.

k
u=d_ ., k<m and F(u)=1- . 9
(W=1-—— (©)
The parameter is estimated using maximum loglikehood method.[16]
~ k
UZEZdi.m : (10)
ki

Finally, since only data from the undamaged staewaailable, the classification of
a new sampld as damaged or undamaged is done with a hypotiestig o improve
the robustness of control charts, it is commonadwsier a run op measurements
instead of each measurement individually [18]. €bgr the null hypothesis
(undamaged state) is rejecte@ tonsecutives values dfexceed the control limit:

H,:d <CL, H,:d>CL i=1..p. (11)

The control limit is fixed with respect to a probiyp « of type | error. So, with the

verified assumption thati are independent is the probability thap successive

values exceed the control limit when the statexdamaged.
1

a=P(D>CL)" =[1-F(CL)]"=F(CL)=1-a". (12)
CL is calculated using Eg.12 and inversing Eq.8.

Database repartition
When a learning process is involved in patterngeitmon, data are usually split in
three parts to control the quality of the training.
» The reference baseline is composed of half of tiimnaged database. It is
used as reference for Mahalanobis distance calmulat
* The classification base is composed of a quartetthef undamaged
database. It is used to estimate the parametdlse cftatistical model and
fixes the control limit.
* The test base is composed of a quarter of the waglesindatabase and all
damaged base. It is used to test the damage detentithod.

CASE STUDIES
Casestudy 1

The first case study (CS1) is a 4 dof mass/spramgfer numerical model, excited
by a white noise. The system is solved by a foortter Runge-Kutta method sampled
at 30Hz. Damage is introduced by reducing thenstd$ in traction of the sprirkg to



simulate opening and closing of a crack (FigureT8g database is composed of 120
times series of 8192 values at the undamaged state90 damaged one with a
reduction of stiffness by 10% every 10 measurem@ittis case is a first test for the
damage detection algorithm, with very clean dathramexternal variations.
Casestudy 2

To test the robustness of the approach, it hase tedied on more realistic data. In
civil engineering structures, environmental vaoasi cause large fluctuations of
damage indexes making damage detection very difficu

This second case study is a 200x12x10cm fibre awiafl concrete beam (
Figure 4). To simulate environmental variationgfda-red lights are used to heat the
beam on one face, up to 50°C. Damage is introdbgefbur points flexion cycles
with an increasing load. While temperature fluasatvibration measurements are
recorded through 4 uniaxial accelerometers placethe top. Accelerometers will be
referred as #1 to #4 from the right to the lefthed beam. The excitation is an 800Hz
band-limited noise and is produced by an electradya shaker. For each
measurement sequence, 5 times series are recdtded.time series counts 8192
points at 2048Hz. The undamaged and the damagebtasas are composed of 210
times series each (42 sequences).
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Figure3. CSL: Numerical mode Figure4. CS2: Concrete beam dimensions[cm]

RESULTSAND DISCUSSION

The reconstruction procedure suggests that thenaptielays are 6 and 3 for
respectively CS1 and CS2, and reconstruction diimerts 7 for both. This leads to
JFV formed by 49 components.
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Figureb. P-P plot for accelerometer 2 Figure 6. Q-Q plot for accelerometer 2

To determine the control limit, the probability tyjpe | error is set to 0.01 and
between 15 exceedances are used to calibrateatfstical models. The quality of the
model can be assessed by the quantile and prapgbit (Figure 5 and Figure 6). As
most of the points lay on the central line for d&w@meter #2 (CS2), the fit is
acceptable. Similar results are obtained for athaalels.



The Figure 7 presents the Mahalanobis distandarasion of the percentage of
stiffness decrease. The filled markers indicates the null hypothesis is rejected
(three consecutive points exceed the control lifdif)ly one false alarm is detected.
From 30% of stiffness reduction, all measuremergsarrectly classified (except one
point). Furthermore, the MD presents a monotoréndras damage increase; this
could lead to a quantification of the degree ofrddgtion. This simple case, with
very clean data, proves that the proposed DSFso$f@ame promising abilities.
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Figure 7. CSL: Mahalanobis distance asfunction of the per centage of siffnessreduction

The task is more complicated in more realistic domts. Figure 8 shows the
control charts for each accelerometer. There ameosil no differences between
sensors, it is not possible to locate the damalge. Means that it affects the global
behavior of the beam significantly.

All the undamaged points in the test base are dtyrelassified since no false
alarms are detected. On the other hand, betweesunee@ent sequences 44 and 60
only few points are classified as damaged (1 foteleacometer #1 to 7 for
accelerometer #2). This indicates that the damadaced by the first cycles of
loading does not affect significantly the dynamfctlee beam. It is likely that only
micro-cracking is developing during the early loggi. However, the few true
detections alert that a slight change occurs irbé@n. Beyond the 8Gequence, all
points are detected as damaged and the changerng stetween 60 and 61. It is
related to the apparition of the first macro-cragkich modifies considerably the
behavior of the beam.

Once the macro-cracking appears, the MD presenttivas which are not related
to the severity of damage but more likely to thegerature fluctuations. Since it is
not present before the sequence 60, the crackmglsmv amplifies the sensitivity to
environmental variations. In spite of this increhsariability, the damage detection
algorithm keeps correctly classifying the measuréme
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Figure 8. From top right, to bottom left : Accelerometer #1 to #4 ; Mahalanobis distance for each
sequence of measurement

CONCLUSION

A damage detection strategy is proposed. It is éorfoy a new damage sensitive
feature based on state-space embedding of timesséMiore precisely, the damage
sensitive feature is formed by the evaluation eftacobian matrix of the evolution of
trajectories in the state space. Then, the Mahhiarlistance compares a new vector
to a reference database, converting the multidimeak vector information into a
unique scalar value. The classification is finaiyried out through control charts, in
which the control limit is set using extreme vadtitistics modeling.

The global approach is tested successfully on plsidhdof mass/spring numerical
model. It is able to detect damage from 30% ofr&#s reduction, with no false
alarms. When tested on a concrete beam subjectéohding cycles, as well as
temperature variations, only few true detections abserved during the micro-
cracking. As soon as macro-cracking occurs, altpoare classified as damaged in
spite of a greater dispersion due to temperatuotuhtions.

To enhance the method, further investigations a@n dtatistical modeling are
needed. Indeed, it appears that in spite of thdl syp& | error probability selected,
some false alarms can occur depending on the itepadf measurements in the three
bases (train, classification and test). It is intgair to work on the selection of these
bases and on their minimum size required to aclgewd statistical modeling.

The robustness of the algorithm has to be confiroredifferent case studies and
compared to other damage sensitive features like series models (AR) or modal
analysis.
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