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Robust real time constrained estimation of
respiratory motion for interventional MRI on

mobile organs.
Sébastien Roujol∗, Jenny Benois-Pineau, Member, IEEE, Baudouin Denis de Senneville, Mario Ries,

Bruno Quesson, Chrit Moonen

Abstract—Real time magnetic resonance imaging is a promis-
ing tool for image-guided interventions. For applications such
as thermotherapy on moving organs, a precise image-based
compensation of motion is required in real time to allow
quantitative analysis, retro-control of the interventional device,
or determination of the therapy endpoint. Reduced field-of-view
imaging represents a promising way to improve spatial and / or
temporal resolution. However, it introduces new challenges for
target motion estimation since structures near the target may
appear transiently due to the respiratory motion and the limited
spatial coverage.

In this paper, a new image based motion estimation method
is proposed combining a global motion estimation with a novel
optical flow approach extending the initial Horn & Schunck
(H&S) method by an additional regularization term. This term
integrates the displacement of physiological landmarks into the
variational formulation of the optical flow problem. This allowed
for a better control of the optical flow in presence of transient
structures. The method was compared to the same registration
pipeline employing the H&S approach on a synthetic dataset
and in vivo image sequences. Compared to the H&S approach,
a significant improvement (p<0.05) of the DICE similarity
criterion computed between the reference and the registered
organ positions was achieved.

Index Terms—Image registration, Motion analysis, Biomedical
image processing, Magnetic resonance imaging.

I. INTRODUCTION

REAL time magnetic resonance (MR) imaging proved to
be a promising candidate for guiding non- and mini-

invasive surgical interventions [1]. The additional use of quan-
titative MR-measurements of tissue specific properties such as
MR-relaxation times or the local temperature allows monitor-
ing of the therapeutic progress and helps to determine the
endpoint of the intervention. However, quantitative measure-
ments require motion correction to enable a direct comparison
on a voxel-by-voxel basis between the dynamically acquired
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images. In the particular case of MR-guided thermal ablations,
real time MR-thermometry is used to compute temperature
maps inside the human body [2]. The temperature evolution
can be used as an accurate and immediate prediction of tissue
necrosis [3] and thus requires all temperature maps regis-
tered to a common position. Moreover, the whole registration
process has to be realized within the interval of two MR-
acquisitions to ensure the real time condition.

Typically, interventional procedures are restricted to a part
of the organ/tissue under study making reduced field of view
(FOV) imaging desirable. This would allow improvement of
the spatial and / or temporal resolution in order to decrease
partial volume effects (undesirable for quantitative analysis)
and to increase the imaging framerate (required to observe
rapid phenomena). Several strategies have been proposed that
use saturation slabs [4], outer volume suppression [5] or
interactive reduced FOV imaging [6]. However, a reduced FOV
may introduce new challenges for the target motion estimation
since structures may appear transiently due to the respiratory
motion and the limited spatial coverage.

A variety of motion estimation algorithms [7], [8] have
been suggested in the field of medical imaging. Optical flow
algorithms [9] have been proposed for motion estimation on
abdominal organs for MR-guided laser ablation [10]. Recently,
an approach using an initial global motion estimation fol-
lowed by an optical flow algorithm was developed for real
time MR-thermometry in abdominal organs [11]. Optical flow
algorithms allow the estimation of a velocity field assuming
an intensity conservation during displacement, mathematically
expressed by the optical flow equation (OFE):

Ixu+ Iyv = −It. (1)

Here u and v are the displacement vector components, and
Ix,y,t are the spatio-temporal partial derivatives of the image
pixel intensity. However, a direct estimation by minimizing
the deviation from OFE (equation 1) is an under-determined
problem and an additional constraint is required. The method
proposed by Horn and Schunck (referred to as H&S in this
paper) introduces additional physical constraints enforcing the
smoothness of the motion field [12]. They seek u(x, y) and
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v(x, y) minimizing:

E(u, v) =∫∫ (
[Ixu+ Iyv + It]

2
+ α2

[
‖∇u‖22 + ‖∇v‖22

])
dxdy,

(2)

where α2 is a weighting factor designed to link both intensity
variation and motion field regularity and ∇u and ∇v are the
spatial gradients of u(x, y) and v(x, y), respectively.

Using reduced FOV imaging, the assumption of energy
conservation may be violated due to the potential presence of
transient structures. In such conditions, Horn & Schunck’s al-
gorithm is expected to fail locally (near the transient structure)
to recover the correct motion. This is known as one of the ill-
posed problems in motion estimation, namely the occlusion
problem [12]. In detail, if a structure is only present in the
reference image, the algorithm might try to match the signal
from this structure with a different structure in the image to be
registered. To improve the robustness of the algorithm against
this effect, one can increase the value of α2 to increase the
smoothness constraint of the motion field. However, this will
reduce the ability of the algorithm to provide reliable motion
estimation in presence of complex deformations.

Therefore, the first step of this study was to hypothesize
that a combination of intensity and landmark registration could
be used to improve the robustness of the registration against
transient structures. Such combinations have been proposed in
the past such as in [13] where a large number of landmarks
were employed for brain registration. This method was further
extended to deal with a smaller number of points (manually
defined) for interactive registration of medical images [14].
In these approaches, both intensity and landmark metrics
were minimized sequentially inside an iterative minimization
process. Several unified minimization frameworks were also
proposed. In [15] the algorithm was designed to obtain a
final motion field fitting each pre-estimated landmark motion.
In the presented application, due to the low SNR, a non-
negligible uncertainty of the landmark correspondence may
be expected and would thus strongly affect such registration
approach. Another solution proposed by Becciu et al. [16],
attempts to use tags obtained from an MR-tagged sequence in
their registration method for cardiac contraction assessment.
Unfortunately, this MR-sequence is generally unsuitable for
interventional MRI, since images are tagged by regular lines
where the signal has been removed. Recently, a variational
approach, integrating segmented region motion, was proposed
for large displacement estimation [17]. This method uses a
linearized OFE deviation together with regularization terms
which include the correspondence of region displacements in
the image plane. Despite the interest of such an approach
in general purpose video sequences, its application to MRI
sequences is not straightforward due to the inherent difficulties
of segmentation of frames into spatially coherent regions.
Recently, a grid-based deformation model was proposed [18],
but was also shown to be sensitive/limited by the landmark
extraction process according to the authors.

In this paper, we propose a new real-time motion estimation

method for MRI sequences which can operate in the case
of reduced FOV imaging. The preliminary results of this
approach can be found in [19]. The contribution of the paper is
twofold. We first define the two stage interventional protocol
for a robust choice of constraint points and then formulate
the constrained optical flow estimation by introducing an
additional regularization term in the H&S method. In our
formulation, the introduction of a smooth weighting function
allows for a local control of the influence of constraint points.
Furthermore, in order to ensure the real-time requirement
together with a short latency, all computationally intensive
calculations are off-loaded to a dedicated graphics processing
unit (GPU). The proposed algorithm is referred to as con-
strained motion estimation (CME) in the scope of this paper.
It was compared with the same registration pipeline employing
the H&S optical flow approach. Algorithm evaluations were
conducted on both synthetic data and cardiac and kidney MR-
images of healthy volunteers under free breathing conditions.

II. MATERIAL AND METHODS

The proposed CME algorithm is a two-step procedure (see
Fig. 1). The first step consists of selecting the constraint
points along the boundary of the organ in the reference
image of the time series. In a second step the motion is
estimated for each image as follows: a global translational
motion estimation is performed and used to initialize a local
estimation of the displacement of constraint points. Non-
physiological constraint point displacements are automatically
identified and corresponding constraint points are discarded.
The displacements of the constraint points are then integrated
into the constrained optical flow algorithm (using the global
estimated motion as preconditioning) to obtain the final motion
field. A detailed description of each algorithm step is presented
in the next sections.

Fig. 1: General scheme of the algorithm. Prior to the inter-
vention, constraint points are automatically extracted from a
reference image (Step 1). Then, during the procedure, the
motion field is estimated for each frame (Step 2).

A. Step 1: Constraint point selection

Anatomical points are localized and tracked over time in
order to guide and to constrain the motion estimation of the
target. To select them, anatomical structures such as organ
boundaries, which remain present during the acquisition and
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follow the target, are suitable. For this, a region of interest
(ROI) is manually set around the target of the reference image.
The contour of the ROI is first extracted and then regularly
sampled in space to obtain a set of N points surrounding
the target. To allow a certain degree of freedom on the
ROI drawing, a refinement of the location of the N points
is performed by moving them near feature points computed
on the reference image. Due to the abundance of works in
stereo matching and image retrieval, a large amount of feature
point detectors has been tested and reported in literature
[20]. The critical point is the stability of these methods with
respect to affine transformations of the image plane, lightening,
scale variations and noise. In the case of MR images, the
noise and deformable motion are the main factors. According
to the evaluation in [20], the Harris-Stephens detector [21]
appeared to provide a good compromise between robustness
and computation time. The feature point detection is based on
the following response function:

R(x, y) = Det(Mx,y)− k.Tr(Mx,y)
2, (3)

with
Mx,y =

∑
i,j∈S

wi,j

(
I2x IxIy
IxIy I2y

)
i,j

, (4)

where (x, y) denotes the spatial coordinates, Det denotes the
determinant of a matrix, Tr is the trace of a matrix, w is a
weighting factor (Gaussian kernel over the region S centered
on (x, y)) and k is a sensitivity parameter. The value of k is
generally chosen in the [0.04-0.15] interval. A value of 0.04
was determined empirically suitable for our application. The
response is positive in a corner region. Therefore, the feature
point with the higher response in a small neighborhood (e.g.
3x3 pixels) of the contour point is selected as a landmark
point. The small neighborhood search was designed to prevent
positioning a landmark on a different structure/organ that may
depict a different motion from the targeted organ. If no feature
point is present, the initial ROI contour point is then selected.

B. Step 2: motion estimation algorithm

An optical flow based algorithm is more efficient when
it is initialized after compensating for large displacements.
Therefore, to initialize it, a global motion estimation is first
performed with a simple translational model. The translation
parameters (horizontal and vertical) are estimated using a sign-
gradient-descent with fixed step inspired by the Netravali-
Robbins method [22]. The estimation is restricted to the ROI
defined in section II-A.

Constraint point displacements are then individually esti-
mated (two translation parameters) using the global estimated
displacement as the initial estimate. This estimation is re-
stricted to a small patch centered on each constraint point
intersected with the initial ROI to allow a local refinement of
the global displacement. We experimentally found that a patch
size of 10×10 pixels was satisfactory using a given voxel size
of 2-3 mm obtained with the employed MR-acquisitions.

To remove occasional non-physiological estimates, the fol-
lowing outliers rejection was added. The displacement vector

(dx, dy) of a constraint point was assumed to follow a bi-
variate Gaussian distribution with independence of dx and dy
coordinates. A constraint point was automatically rejected if at
least one of its displacement components violated the marginal
3-sigma rule.

The idea of the presented approach is to constrain the H&S
formulation by locally estimated displacements of feature
points. Hence, we propose the following extension of the Horn
& Schunck formulation with an additional regularization term:

Ec(u, v) =

∫∫ (
[Ixu+ Iyv + It]

2
+ α2

[
‖∇u‖22 + ‖∇v‖22

]
+λ2

N∑
i=1

(
ρ(di, R)

[
(u− ui)2 + (v − vi)2

]))
dxdy,

(5)

where (ui, vi) are the horizontal and vertical components of
the displacement estimated for the ith constraint point. λ2

is the regularization parameter that allows balancing between
the initial behavior of the H&S algorithm and the constraint
influence. ρ is a distance function, defined as

ρ(d,R) = exp (−d2/R2) (6)

where d represents the Euclidean distance between the pixel
of coordinates (x, y) and the ith constraint point, R is a
bandwidth parameter. To minimize Ec(u, v), we used the
calculus of variation and obtained the following system:

{
I2xu+ IxIyv = α2∇2u− IxIt + λ2

∑N
i=1 (ρ(di, R)ui)

IxIyu+ I2yv = α2∇2v − IyIt + λ2
∑N

i=1 (ρ(di, R)vi)
.

(7)
Then, we used the approximation of the Laplacian, as sug-
gested by Horn and Schunck, where ∇2u = u − u, with u
the mean value of u in the neighborhood (3x3 pixels) of the
estimated point [12]. Therefore, the system can be rewritten
as: {

a11u+ a12v = b1

a21u+ a22v = b2
, (8)

with 

a11 = I2x + α2 + λ2
N∑
i=1

ρ(di, R)

a12 = a21 = IxIy

a22 = I2y + α2 + λ2
N∑
i=1

ρ(di, R)

b1 = α2u− IxIt + λ2
N∑
i=1

ρ(di, R)ui

b2 = α2v − IyIt + λ2
N∑
i=1

ρ(di, R)vi

. (9)

Finally, based on the Jacobi method, the system can be solved
with the following iterative scheme:

un+1 =
bn1a22 − a12bn2
a11a22 − a12a21

, vn+1 =
a11b

n
2 − a21bn1

a11a22 − a12a21
. (10)
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C. Implementation

Registration to a reference frame has been preferred to a
concatenation of frame to frame estimations since the latter
generally leads to the accumulation of errors, especially when
a high framerate is applied such as in abdominal imaging (10-
15 Hz). In cardiac applications, since the imaging framerate
is generally limited to the cardiac frequency, the respiratory
motion between two successive images generally depicts a
large amplitude, devaluing the benefit of a frame to frame
motion estimation. For both the H&S and the CME imple-
mentation, the multi-resolution approach from [23] was used,
which refines the motion estimation algorithm from the 3rd

level of sub-resolution to the full resolution. We off-loaded the
most time consuming task, i.e. the iterative numerical scheme
of the optical flow, to a dedicated GPU.

In-vivo calibration of the employed algorithms is complex
since it depends on the criterion to be optimized. The cal-
ibration of the H&S method (α2 value) has to deal with
contradictory effects. A small regularization of the motion field
is required to enable the estimation of complex motion and to
have a globally reliable estimated motion. On the other hand,
a high constraint on the motion field smoothness would reduce
the registration artifact induced by intrusive structures but at
the same time will limit the ability of the algorithm to estimate
complex motion. This may thus deteriorate the registration
in the entire organ. Therefore, we calibrated the employed
algorithms in a way to maintain optimal performance in the
general case of full FOV imaging (without the presence of
intrusive structures). As recently shown [24], a reliable in-
vivo calibration of the H&S algorithm was obtained for a
range of α2 values between 0.1-0.5. A plateau was generally
observed for these ranges of values and its lower bound
was suggested as a good way to cope with variations of the
breathing pattern (such as an amplitude variation or drift of
the respiration pattern). Therefore, a α2 value of 0.1 was
employed for the H&S algorithm. We empirically found a
near-optimal solution for the CME calibration by employing
the following parameters: α2=0.1, λ2=0.1, N=20 and R2=5.
Note that a similar optimal configuration was obtained for the
synthetic dataset experiment (see Result section) except for
the α2 values that were higher due the lowest complexity of
the synthesized motion.

The overall algorithm was implemented in C++ and evalu-
ated on a dual processor (INTEL 3.1 GHz Penryn, two cores).
The GPU implementation was based on the Compute Unified
Device Architecture (CUDA) framework [25] using a NVIDIA
GTX280 card.

D. Experimental setup

The proposed algorithm was evaluated on both synthetic
and in vivo datasets:

1) Synthetic dataset experiment:
Data creation: A sequence of T(= 30) images was cre-
ated. To simulate respiratory motion typically encoun-
tered on mobile organs, a periodic (period=6 frames)
geometric transformation composed by a 2D translation
(Tx,Ty) and scaling (Sx,Sy) was synthesized (Tx =

{0, 0.5, 1, 1.5, 1, 0.5}, Ty = {0, 2.5, 5, 7.5, 5, 2.5} pixels,
Sx = Sy = {1, 1.03, 1.06, 1.09, 1.06, 1.03}). A signal-to-noise
ratio (SNRdB) of 1.3 was chosen to simulate a realistic acqui-
sition (typically between 0.7 and 1.3). A structure appearing
transiently in the lower part of the image was added in half of
the images to simulate the effect potentially encountered with
reduced FOV imaging.

Quality assessment of the motion estimation: Since the
real motion (Dgt = (uGT , vGT )) and the estimated motion
(D = (u, v)) are available for each pixel in such synthetic
dataset experiment, the measures commonly reported in the
optical flow community such as the endpoint error (EE) and
the angular error (AE) of the flow [9], [26] were computed,
with:

EE =
√

(u− uGT )2 + (v − vGT )2, (11)

AE = cos−1
1 + u× uGT + v × vGT√

1 + u2 + v2
√
1 + u2GT + v2GT

. (12)

In addition, to provide additional information about the
smoothness of the estimated motion field, the harmonic energy
of the estimated flow [27] was computed.

2) In vivo experiments:
In vivo experiments were conducted on the heart and the
kidney of a total of 12 healthy volunteers. The MRI scans were
performed under free breathing conditions using a 1.5 Tesla
scanner (Philips Achieva/Intera, Best, The Netherlands). The
volunteers were positioned head first in the supine position.
The MR sequences employed saturation slabs to obtain struc-
tures appearing transiently in the FOV as typically encountered
when zoom imaging is used (these conditions are further
referred to as “zoom imaging conditions”).

In-vivo study on the heart under zoom imaging con-
ditions: Dynamic MRI was performed on the hearts of six
healthy volunteers. The acquisition sequence was ECG-gated
(to observe the heart in the same cardiac phase) using a five
element phased array cardiac coil. Five contiguous adjacent
slices were acquired per cycle (200 cycles per scan), in short
axis view, at end diastolic phase. A slice tracking technique
[28] was used to compensate for respiratory motion in the
third dimension. Blood signal reduction was obtained using
saturation slabs positioned on each side of the imaging stack.
The single shot EPI sequence employed the following param-
eters: FOV=260 × 260 mm2, voxel size=2.7 × 2.7 × 7 mm3,
echo time=20 ms, repetition time=40 ms, SENSE acceleration
factor=1.6 [29]. A saturation slab was positioned underneath
the extreme position of the heart (corresponding to the posi-
tion at maximum respiratory displacement) to simulate zoom
imaging conditions.

In-vivo study on the kidney under zoom imaging condi-
tions: 200 frames (single slice) in coronal orientation were
acquired using a four element phased array body coil. A
dual shot EPI sequence employed the following parameters:
FOV=200 × 400 mm2, voxel size=2.3 × 2.3 × 6 mm3, echo
time=26 ms, repetition time=52 ms, flip angle=35◦. Zoom
imaging conditions were achieved using a saturation slab
positioned on the top of the extreme position of the kidney.

Quality assessment of the motion estimation: In such
conditions, the typical amplitude of both heart and kidney
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motion is about 8 pixels in the imaging plane between two
extreme images in the respiratory cycle. Since the true motion
is unknown the quality assessment of the registration was ana-
lyzed by computing the DICE similarity coefficient (DSC) [30]
between the position of the organ (ROIt) in each registered
frame (t) and its position in the reference frame (ROIref ), as
follows:

DSC(t) =
2(ROIref ∩ROIt)
ROIref +ROIt

, (13)

Each ROI was obtained by manual segmentation. A DSC value
of 1 indicates an ideal registration (perfect ROI matching). The
harmonic energy has also been computed and reported for all
tested cases to assess the energy of the deformation fields.

III. RESULTS

A. Synthetic dataset experiment

Fig. 2: Registration example obtained on the synthetic dataset
experiment. The reference image (a) and the image to be
registered (b) are displayed together with the registered images
obtained with the CME (c) and the H&S approach using a
value of α2 of 0.5 (d), 2 (e) and 6.5 (f). The time evolution
of the average endpoint error (EE) inside the target (between
both dashed red ellipses) is reported in (g).

An example of synthetic images is shown in Fig. 2 where
the reference image (Fig. 2a, containing the transient structure)
and an image corresponding to the maximum synthesized
motion (Fig. 2b, 4th image of the cycle) are displayed. The
contours (interior and exterior) of the target obtained from the
reference image are reported in dashed red curves. The H&S

approach was employed to register the image in Fig. 2b using
different α2 values. When using a small value (α2 = 0.5), the
registration is strongly influenced by the underlying structure
leading to a severe registration artifact (yellow arrows in Fig.
2d). By using an optimally calibrated value (α2 = 2.5, see
Fig. 3a), the registration artifact was reduced but still present
(yellow arrows in 2e). A higher value of α2(= 10) is reported
in Fig. 2f where the registration artifact introduced by the
transient structure appeared substantially reduced due to a
higher weight on the smoothness of the motion field. However,
in this case a different registration artifact was observed due
to the inability of the method to handle complex motion
(here the scaling effect) as shown by the yellow arrows.
The CME approach provided a reliable registration where the
registered target perfectly matched the reference target contour.
These results were confirmed in the plot of the averaged EE
values over time (computed inside the target, between the
two red dashed curves) in Fig. 2g. While the H&S approach
periodically failed to recover the correct motion, the CME
offered more robust performances over time.

In order to better characterize the potential gain and limita-
tions of the compared methods, their performance in terms
of averaged error endpoint, harmonic energy and averaged
angular error were precisely investigated as a function of
the employed parameters (Fig. 3). As previously observed in
Fig. 2d, low α2 values (Fig. 3a, 3e and 3i) provided poor
performance since the methods became very sensitive to the
presence of the intrusive structure. On the contrary, high values
limited the ability of the algorithm to estimate complex motion
and also deteriorated the motion estimates as confirmed by
the convergence of the harmonic energy toward a very small
value. The averaged EE values obtained with an optimal α2

calibration were 0.42 for the H&S approach (α2 = 2.5) and
0.21 for the CME method (α2=6.5) showing a reduction of
the averaged EE by a factor of 2. The λ2 value influence was
then investigated ((Fig. 3b, 3f and 3j). As expected, small λ2

values tend to the H&S performance and high values tend
to the extrapolation of the constraint point motions (and their
associated uncertainty) leading in both cases to a deterioration
of the registration. A good calibration of λ2 (=0.1, blue curve)
provided a significant improvement of the motion estimation
(Fig. 3b, 3j). The influence of the constraint point number
(N ) was then evaluated (Fig. 3c, 3g and 3k). Although an
optimal value was reached around 20 points (Fig. 3c, 3k,
blue curve), the sensitivity of the CME to this parameter was
limited. Finally the influence of the bandwidth (R2) provided
an optimal calibration for a value of 5 (Fig. 3d, 3h, 3i, blue
curve).

B. In vivo experiments

Similar results were obtained in in vivo experiments in both
the heart and the kidney of healthy volunteers. Registration
examples are shown for both organs in Fig. 4. By comparing
the reference images (Fig. 4a, 4i) with images acquired at
different positions in the respiratory cycle (Fig. 4b, 4j), one
can observe some structures appearing transiently (see yellow
arrows) due to the signal cancellation obtained from the
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Fig. 3: Influence of the free parameter tuning on the H&S and the CME methods in the synthetic datasets. The averaged error
endpoint (EE), the harmonic energy (HE) and the average angular error (AE) are reported in the first, second and third lines
of the figure respectively. Note that the averaged EE and AE computation were restricted to the target area (defined between
the two red dashed ellipses in Fig. 2a). The influence of the motion field weighting (α2) on both the H&S and the CME
approaches are displayed in the first column. Then, other CME parameters were analyzed: the constraint point term weighting
(λ2, second column), the number of constraint points (N , third column) and the ray influence of the constraint point (R2, forth
column).

saturation bands. In the cardiac images, the area with low
signal intensity in the lower part corresponds to a saturation
band, the latter may allow for the reduction of the FOV without
additional fold-over artifacts. The signal of the liver (below the
heart) almost disappeared due to the displacement induced by
the respiration. In the abdominal images, two perturbations
were observed in the top part of the kidney: the liver, above
the kidney, partially disappeared in Fig. 4j and the intensity
of the upper part of the kidney depicted a high variation.
In both examples, while the registration obtained with the
H&S approach (Fig. 4c, 4k) was severely deteriorated in the
regions near the transient structures (see red arrows), a reliable
registration was obtained in the totality of the organs using the
CME (Fig. 4d, 4l).

These findings were typical for the entire sequences as
confirmed by the time evolutions of the DICE similarity
coefficient and the harmonic energy, respectively shown in
Fig. 4e, 4m and Fig. 4f, 4n. Due to the respiratory cycle,
the transient structures appeared periodically in the time
series and the H&S approach periodically failed to recover
a reliable motion estimate leading to low DICE similarity

coefficient and elevated harmonic energy values. The CME
clearly outperformed the H&S approach by providing a better
overall registration and more stable performance.

Over the 12 volunteers, the averaged DICE similarity coef-
ficient (central point inside the box) obtained with the H&S
method has been significantly improved (p<0.05) using the
proposed CME as shown in Fig. 4g and 4o. The minimal DICE
similarity coefficient values were typically very low for certain
frames using the H&S method, whereas the proposed CME
allowed maintaining a better performance for all the frames
(around 0.92 and 0.96 for the heart dataset and the kidney
dataset, respectively). As expected, higher harmonic energy
values were obtained with the H&S method since the method
periodically failed and employed a relative lower weight of
the smoothness constraint term (the same α2 value (=0.1) was
employed for both algorithms).

Constraint point filtering allowed the rejection of constraint
points with non-physiological estimated displacement. Aver-
aged over all volunteers, less than 0.37 % and 2.67 % of the
constraint points were rejected for the heart and the kidney
dataset registration, respectively (with a maximum of two
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Fig. 4: Registration result obtained in vivo in the heart and the kidney of free breathing volunteers. Registration examples in
the heart (volunteer #5) and in the kidney (volunteer #6) are given where the reference images (a,i), the images to be registered
(b,j) and the registered image obtained with the H&S (c,k) and the CME (d,l) methods are displayed. The time evolution of
both the DICE similarity coefficient (DSC) and the harmonic energy (HE) are shown for each registration example in (e,m)
and (f,n), respectively. Finally, the DSC (g,o) and HE (h,p) are reported for each volunteer over time as Box and Whisker plot
where the minimum (lower point), maximum (upper point), average (point inside the box) and standard deviation (box height)
values are shown. While the H&S method was disturbed by the presence of transient structures, the CME provided robust and
reliable registration performance for all the frames.

constraint points per frame.

C. Real time benchmarking

Benchmarking was realized for each processing step for
an image sequence of spatial resolution 128 × 128. The
GPU based implementation allowed a significant reduction of
the whole computation time. The total computation time of
the proposed approach was evaluated to 22 ms (against 87.5
ms using a CPU only implementation) and was composed
by: global motion estimation (5 ms), motion estimation of
constraint points (10 ms), optical flow iterative scheme (7

ms) and image registration (0.01 ms). An acceleration factor
of 10 was achieved for the computation time of the iterative
numerical scheme of the optical flow algorithm (equation 10).

IV. DISCUSSION

A. Performance of the proposed method

On the synthetic dataset, the proposed CME outperformed
the H&S approach that failed to estimate the real motion in
presence of structures appearing transiently. The endpoint error
of flow obtained with the optimal H&S calibration has been
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reduced by a factor of 2 using the proposed CME as shown
in Fig. 3a.

Furthermore, the volunteer studies confirmed the in vivo
feasibility of the CME in both the heart and the kidney. A
reliable registration was obtained in the totality of the organ
in all frames. Using the H&S method, similar performance was
also achieved in frames with similar structures in the reference
image. However, a severe degradation of its performance was
observed in the presence of additional intrusive structures.
Although this artifact could have been reduced by increasing
the regularization of the motion field, this would have, at the
same time, decreased its ability to estimate complex motion
(as can be observed in Fig. 2f and 3a using a high value of
α2). As recently shown [24], such effect is generally observed
with the H&S method by using α2 values above the interval
[0.1-0.5] with the employed in-vivo images.

B. Real time feasibility of the method

MR-guidance of interventional procedures relies on the
instantaneous availability of the processed images. Therefore,
this limits the available computation time. In addition, Denis
de Senneville et al. demonstrated in [31] that large latencies
have to be compensated with the help of accurate motion
prediction. However, the performance of the prediction al-
gorithm increases greatly with short latencies. Recently, in
the particular case of HIFU ablation on mobile organs, it
was demonstrated that a latency smaller than 100 ms was
required for the adjustment of the beam position in order
to ensure an energy deposition similar to a static experiment
[32]. Here, the GPU implementation offered an acceleration
factor of 10 for the computation of the constrained optical
flow which is in accordance with the published work [11],
[33]. A significantly higher acceleration factor would be
expected using higher resolution as shown in [33] since it
would benefit from a larger amount of data to process (higher
occupations of each processor) and a lower relative overhead.
Overall, the demonstrated CPU/GPU implementation allows
the acceleration of the required processing time by a factor
of four and thus ensures the real time conditions with a short
latency. Further reduction of the latency may be obtained by
investigating the use of more complex optimization schemes
aiming to improve the convergence speed of the algorithm.

C. Calibration of the CME

Contrary to the previous works using constraint points, a
comprehensive formulation of the minimization problem was
proposed. In the proposed approach, the confidence into the
predetermined displacement of the selected constraint points
can be freely adjusted with the regularization parameter λ2.
The quality of the obtained optical flow depends on the quality
of the initial constraint point vectors, the number of constraints
(N ) and the bandwidth (R) of the ρ function parameters:
• For the motion estimation of the constraint points, only

a translational model was considered as it was the most
robust for small patch sizes surrounding constraint points.
The optimal patch size in 128×128 MRI sequences was
found to be 10×10 for our images.

• In order to control optical flow, the constraint points
have to be placed near eventual occlusion (or problematic
area). The manual choice of constraint points is not
realistic during an interventional procedure, and we can
only encourage the staff physician to approximately trace
the contour of the ROI. Hence, the subsampling has to
be sufficient in order to get a good coverage of the
problematic area. On the other hand, a too large number
of constraint points will slow down the computational
process and may degrade the registration performance
by leading to a quasi interpolation of the constraint dis-
placements and their associated uncertainties. Therefore,
for the demonstrated application, N=20 was found to be
near-optimal.

• The bandwidth R of the ρ function regulates the influence
of remote points. The large bandwidth yields a quasi
interpolation of constraint point displacements over the
whole image. An optimal experimental value was R=

√
5.

• Outlier rejection for constraint point vectors was found
particularly useful for small patch sizes where the esti-
mation is more sensitive to out-of-plane motion, noise,
etc.

D. Limitations, clinical perspectives and future works

Due to technical limitations of fast MR acquisition se-
quences, extensive 3D volume imaging on mobile organs
is hard to achieve. The proposed technique has thus been
evaluated in the 2D case. An extension of the method towards
3D motion correction may also be considered in future works
and may improve the motion correction in the third dimension
by reducing out-of-plane motion artifacts. However, although
the proposed algorithm can be easily extended to 3D, the
main challenge would likely remain in the design of a reliable
3D MR-sequence. In such acquisitions, the scan time increase
would render the sequence more sensitive to intra-scan motion
and may alter the fat and the blood signal cancellation. Echo
volumar imaging [34] may help to decrease the scan time of
such 3D acquisition; however, its associated low resolution and
its robustness against the latter artifacts should be carefully
investigated.

A robust formulation of equation 5 using robust estimators
such as the Humber function or Lagrangian [35], especially in
the first two terms of equation 5 should be investigated in order
to account for both brightness variation and smoothness viola-
tion (motion discontinuities). Also, the integration of a median
filter at each iteration step of the iterative minimization scheme
has to be carefully investigated since significant improvements
have been achieved in this direction [36]. Nevertheless, the real
time compatibility of such approach has to be evaluated. In
addition, the integration of additional regularization terms such
as in [17] should be investigated. Although these approaches
may improve the motion estimation quality, the balance be-
tween robustness, simplicity (with regard to the number of free
parameters) and performance has to be carefully investigated
in the perspective of clinical use. The presented framework
also opens great perspectives for integration of other motion
information such as navigator or ultrasonic echoes.

Page 8 of 39

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

9

The method shows a promising potential for clinical in-
tegration for two reasons. First, from its simplicity it only
requires a small intervention by the staff physician (only for
the mask drawing that only requires a few seconds (∼5s)) and
few free parameters to be tuned a priori. Then, the employed
values of these parameters were always identical for both
heart and kidney studies demonstrating the non-necessity of
a re-calibration of the parameters for each sequence and the
robustness against the choice of the parameters.

Finally, although the feasibility of the method has been
shown on healthy volunteers, its feasibility on other organs
such as the liver or on patients with, for example, irregular
cardiac motion remains to be investigated. In addition, the
method has been tested in conditions of a non invasive
procedure, its feasibility in the presence of invasive devices,
such as catheters, will have to be evaluated in future studies.

V. CONCLUSION

In this paper a new regularization constraint of the energy
functional of the H&S method was presented. This approach
represents a flexible solution to integrate constraint point
displacements into the optical flow estimation. This extension
has been demonstrated to render optical flow methods well
suited to accurately estimate the motion for interventional MRI
on mobile organs in presence of intrusive structures in reduced
FOV. Significant improvements were achieved compared to the
Horn & Schunck approach. Finally, the use of parallel process-
ing on affordable commodity graphics hardware demonstrates
the feasibility of the algorithm in real time with very short
latency required for interventional procedures.
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Response to the reviewers 
 

 
The authors would like to thank the reviewers for their insightful and thorough 
remarks in helping to improve the clarity and the value of the manuscript. The 
manuscript has been extensively reworked according to the reviewers’ comments. In 
particular, new synthetic experiments were performed to precisely assess the 
performance of the algorithms in function of their free parameters. To better assess 
the results, several quality criteria have been added such as the angular error and 
the harmonic energy. Finally, the manuscript was extensively reworked to maintain a 
reasonable length, given the additional results and comments added from the 
reviewers’ comments. 
 
 

Reviewer #1 
 
The paper presents and evaluates a constrained optical flow registration 

algorithm. Results are convincing and tackles an often encountered problem: 

An application which operates under real-time constraints can only acquire 

two-dimensional images. Optical flow based registration of such images 

normally suffers "beyond recovery" from motion of objects in and out of the 

imaging plane, but the proposed technique seem to overcome this using 

"enforcement" of landmarks matching inherent in the optical flow cost function 

design. I can easily see their results relevant to a number of imaging 

applications.  

The manuscript is well written and I have only a few clarifications that I would 

like to see incorporated in the manuscript before publication.  

 

1.1 is there any conceptual differences between using the term "motion 

correction" (as you do) and tracking. You seem to resample your 'moving 

images' into the 'fixed image' to enable pixel index comparisons over the 

temporal dimension. Couldn't we just store the vector fields and track 

"particles" over time (tracking)?  

The authors believe that both approaches are very similar. In tracking, each 

pixel/particle would be projected on the current image according to the current 

estimated motion field and an interpolation should be performed to retrieve the 

correct intensity at this sub-pixel precision location. The registration would just store 

these result as an additional step. The reviewer is right that the registration may not 

be necessary for such temporal analysis. However, the registered image may be 

used in real time for visual assessment of the algorithm in order to potentially detect 

unexpected behavior and eventually stop the intervention. 
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1.2 The sentence leading to ref. [9] p.1 c.2 is not grammatically meaningful to 

me 

The initial sentence  

“The fundamental method proposed by Horn and Schunck (referred to as H&S in the 
scope of this paper) introduced additional physical constraints by assuming that the 
motion field is smooth in the neighborhood of estimation point [9]” 
 

has been rewritten as follows (see Page 1): 

“The method proposed by Horn and Schunck (referred to as H&S in this paper) 

introduces additional physical constraints enforcing the smoothness of the motion 

field [12].” 

 
1.3 When you introduce the concept of reduced FOV imaging at the end of 

page 1 and into page 2, it was (at the time of first reading it) not clear to me 

whether you were indeed focused on solving this specific problem in your 

paper or you were going through other related work. Maybe you should make 

clear "up front" (early in the introduction) the imaging conditions you are 

operating under and then review the related literature. With the current 

chronology  the introduction seemed at bit long, but can probably be 

contributed to the fact that it wasn't clear exactly what the paper focus would 

be until the concluding paragraph in the introduction.  

The authors agree that the introduction had to be clarified. The main strength of the 

algorithm is to provide robust motion estimation in presence of transient structures; 

although this can be the case in presence of out-of-plane motion, it may also 

represent a more general application when using reduced field of view imaging on 

moving structures.  However, due to the over length of the paper and the requested 

additional results from the reviewers, the authors have decided to focus the 

presented paper on reduced field of view imaging applications. Therefore, the 

introduction has been rewritten in part and reordered to clarify the main focus of this 

work. In particular the paragraph related to reduced field of view imaging has been 

moved just after the paragraph presented the general context of the work. 

The initial paragraph introducing reduced FOV imaging: 

“Typically, interventional procedures are usually restricted to a part of the 
organ/tissue under study making reduced field of view (FOV) imaging desirable. This 
would allow improvement of the spatial and / or temporal resolution in order to 
decrease partial volume effects (undesirable for quantitative analysis) and to increase 
imaging framerate (required to observe rapid phenomena). Several strategies have 
been proposed to achieve a reduction of the field of view such as saturation slabs, 
which can be set around the imaging targeted area [10]. Alternatively, outer volume 
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suppression [11] can be used or more recently, the transmit sense technology [12] 
would also allow the acquisition of reduced FOV. For the particular application of 
cardiac function analysis and guidance of interventional procedures, Schaeffter et al. 
[13] also proposed a strategy for interactive reduced FOV imaging. 
Although a reduced field of view may improve spatial or temporal resolution, it 
introduces a new challenge for the target motion estimation. Indeed, structures close 
to the target that would appear similar in all images using full FOV imaging (since 
FOV is usually centered on the target), may appear transient in the case of reduced 
FOV due to the respiratory motion and the limited spatial coverage.” 
 
has been modified to (see Page 1) 

“Typically, interventional procedures are restricted to a part of the organ/tissue under 
study making reduced field of view (FOV) imaging desirable. This would allow 
improvement of the spatial and / or temporal resolution in order to decrease partial 
volume effects (undesirable for quantitative analysis) and to increase the imaging 
framerate (required to observe rapid phenomena). Several strategies have been 
proposed that use saturation slabs [4], outer volume suppression [5] or interactive 
reduced FOV imaging [6]. However, a reduced FOV may introduce new challenges 
for the target motion estimation since structures may appear transiently due to the 
respiratory motion and the limited spatial coverage.” 
 

A sentence has been added to the abstract of the paper as follows (see page 1): 

“Reduced field-of-view imaging represents a promising way to improve spatial and / 

or temporal resolution. However, it introduces new challenges for target motion 

estimation since structures near the target may appear transiently due to the 

respiratory motion and the limited spatial coverage.” 

 
1.4 The overview provided in Fig. 1. and the corresponding text serves the 

paper well. However please include a sentence stating that a more thorough 

description and references for the individual components will be given later. I 

started wondering about many "methodological considerations" at this point of 

reading that you answered in the following sections.  

Due to the material added to the manuscript and the limited length of the paper, the 

authors were thinking to substantially reduce this introduction part. However, since 

the reviewer found that this introduction serves well the paper, this introduction was 

rewritten to reduce the information to the minimum required to have a good flavor of 

the presented algorithm. As also suggested by the reviewer, a sentence has been 

added to mention that detailed descriptions of the algorithm were presented in the 

next sections. 

The initial paragraph: 

“The proposed CME algorithm is a two-step procedure (see Fig. 1). During a 
preparation step, constraint points are selected (step 1 in Fig. 1). For this, a mask 
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manually set around the target (heart or kidney in our case) in the reference image is 
drawn. The drawing of the mask represents the only interaction of the staff physician 
during the intervention, since the rest of the process is fully automatic. The edge of 
the mask is extracted and sampled. To refine the positioning of each sample point, a 
feature point detection is realized on the reference image. Then, the closest feature 
point for each sample point is selected. In a second step (lower block in Fig 1), the 
motion is estimated for each image as follows: A global translational motion 
estimation is performed and used to initialize a local estimation of the displacement of 
constraint points. Non-physiological constraint point displacements are automatically 
identified and corresponding constraint points are discarded. The displacements of 
the constraint points are then integrated into the constrained optical flow algorithm 
(using the global estimated motion as preconditioning) to obtain the final motion field. 
Due to technical limitations of fast MR acquisition sequences, extensive 3D volume 
imaging on mobile organs is hard to achieve. The proposed technique has thus been 
evaluated in 2D case in the scope of this paper.” 
 
has been changed to (See Page 2): 
 
 “The proposed CME algorithm is a two-step procedure (see Fig. 1). The first step 

consists of selecting the constraint points along the boundary of the organ in the 

reference image of the time series. In a second step the motion is estimated for each 

image as follows: a global translational motion estimation is performed and used to 

initialize a local estimation of the displacement of constraint points. Nonphysiological 

constraint point displacements are automatically identified and corresponding 

constraint points are discarded. The displacements of the constraint points are then 

integrated into the constrained optical flow algorithm (using the global estimated 

motion as preconditioning) to obtain the final motion field. A detailed description of 

each algorithm step is presented in the next sections.” 

 

1.5 Is edge extraction equivalent to "manual ROI specification" in the text? It is 

not clear to me if you do any edge detection based on the ROI or of the ROI is 

the edge extraction that you refer to.  

The authors agree that a clarification is needed on this point. The manual ROI 

drawing provide a binary mask equal to 1 inside the contour of the closed manual 

segmentation and 0 elsewhere. The edge extraction consists in extracting the 

boundary of this mask. Therefore Figure 1 appeared incorrect in this sense since the 

figure above “mask” on the left part of the figure does not represent the real mask but 

the boundaries of the mask. Therefore, Figure 1 has been modified to be coherent 

with the employed terms where the word ‘mask’ has been replaced by ‘ROI’ and the 

ROI boundary has been replaced by the ROI itself. (See page 2) 

1.6 you state that your iteration is based on Gauss-Seidel. Normally a GPU 

implementation would use  Jacobi iterations due to parallelization 

considerations  

Page 13 of 39

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

The reviewer is right. Actually both Gauss Seidel and Jacobi have been implemented 

for CPU and GPU implementation, respectively. However, since we only report the 

GPU implementation in the paper, this has been corrected accordingly. 

In the material & method part, the initial sentence: 

“Finally, based on the Gauss-Seidel method, the system can be solved with the 
following iterative scheme:” 
 
has been changed to (see page 3) 

“Finally, based on the Jacobi method, the system can be solved with the following 
iterative scheme:” 
 
 
1.7 for the cost function specification itself. You register all frames to a 

reference frame? Why do you prefer this strategy over a frame by frame 

concatenation of deformations? In the latter scenario every registration would 

probably be over more similar images and thus better matching the underlying 

assumption of overall image intensity conservation of infinitely small time 

steps.  

The reviewer is partially right. This is true that, when high temporal frequency 

acquisition is applied the difference between two successive images is much smaller 

compared to the difference with the reference image. In this case, the Horn & 

Schunck algorithm is expected to be much less disturbed by the presence of 

transient structures. However, this type of strategy accumulates error over time.  In 

our case, if a framerate (for the kidney, especially for high intensity focused 

ultrasound (HIFU) intervention) of 10-15 Hz is employed, this can lead to a large 

number of images through the entire intervention (30s-several minutes) which can 

generate a high accumulated error.  This is the reason why the choice of a 

registration to a reference image has been made [1,2]. 

[1] de Senneville BD, Mougenot C, Moonen CT., Real-time adaptive methods for 
treatment of mobile organs by MRI-controlled high-intensity focused ultrasound., 
Magn Reson Med. 2007 Feb;57(2):319-30. 

[2] Roujol S, Ries M, Quesson B, Moonen C, Denis de Senneville B. Real-time MR-
thermometry and dosimetry for interventional guidance on abdominal organs. Magn 
Reson Med. 2010 Apr;63(4):1080-7. 

The problem is slightly different in the heart since the cardiac contraction limits the 

framerate to the cardiac cycle (unless one can correct the cardiac contraction in real 

time). In this case, the time difference between two successive images is of a cardiac 

cycle (~1s), which mean that their difference can be very important in term of 

respiratory motion, and in this case a frame by frame may not help in term of intensity 

similarity (but will still accumulate errors). 
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A sentence has been added to the material and method part as follows (See page 4): 

“Registration to a reference frame has been preferred to a concatenation of frame to 

frame estimations since the latter generally leads to the accumulation of errors, 

especially when a high framerate is applied such as in abdominal imaging (10-15 

Hz). In cardiac applications, since the imaging framerate is generally limited to the 

cardiac frequency, the respiratory motion between two successive images generally 

depicts a large amplitude, devaluing the benefit of a frame to frame motion 

estimation.” 

 
1.8 Fig 3g is missing the colors indicating which graph is which (unfortunate 

since it is the first use) 

Figure 3 has been removed and new figures have been generated.  
 
 

Reviewer #2 
 
This manuscript proposed a novel approach to robust real time image 

registration of mobile organs in interventional MRI. This question is of 

particular interest in non-invasive surgical intervention such as MR-guided 

thermal ablations to properly quantify the local temperature and monitor the 

intervention. 

The proposed methods actually extends the quadratically regularized optical 

flow method derived by Hornst & Schunk by adding an hybrid regularization 

term. This term relies on the prior computation of constraint points that then 

enter in a distance function to penalize large displacement errors. The 

proposed method is supervised in the sense that the hyper-parameters 

involved in the regularized criterion are selected by hand by the operator. The 

authors propose a very convincing validation on synthetic datasets and 

perform a critical evaluation on a large database of in vivo experiments 

(kidney, heart). Also, they demonstrate that their approach outperforms the 

state of the art in different circumstances. Last but not least, the authors 

propose a GPU-based real-time implementation that makes this work valuable 

not only on the methodological side but also on the practical one. While some 

technical points (see below) could be improved, I recommend this manuscript 

for publication in the IEEE Trans. Of biomedical engineering after minor 

revisions. The points to be addressed in the following are organized in 

descending importance level: 

 

2.1 Your minimization algorithm corresponds to the Gauss-Seidel coordinate 

descent method. This approach is known to be suboptimal (in terms of 
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convergence speed) in many cases even for convex criteria. Why have you 

resorted to such a crude minimization scheme? Given the CUDA library and 

the real time constraint, would it be possible to implement conjugate gradient 

methods or majorize minimize strategies? See for instance E. Chouzenoux et 

al, A majorize-minimize strategy for subspace optimization applied to image 

restoration,  IEEE Trans. Image Processing, vol. 20, no. 6, 1517-1528, juil. 2011, 

or C. Labat et J. Idier, Convergence of conjugate gradient methods with a 

closed-form stepsize formula, J. Optim. Theory Appl., vol. 136, no. 1, 43-60, jan. 

2008. 

The authors agree that more optimal convergence scheme could be employed. 

However, the employed approach has been observed to converge between 50 to 100 

iterations. Therefore, in combination with a GPU implementation, this approach 

required 7 ms which is perfectly suitable for our application and the imposed real time 

constraint. But the reviewer is right that a further investigation on the optimization 

scheme may be of interest to further reduce the computation time and would benefit 

to reduce the latency. Some works have been published to enable such optimization 

approach on GPU such as in  

[Ali Cevahir, Akira Nukada and Satoshi Matsuoka,Fast Conjugate Gradients with 

Multiple GPUs Lecture Notes in Computer Science, 2009, Volume 5544/2009, 893-

903,] 

However, the authors did not investigate the real benefit on such approach with the 

proposed algorithm and would rather abstain from any speculation about the 

potential gain in speed using any specific method. Nonetheless, as suggested by the 

reviewer, a sentence has been added to the discussion part to point up the potential 

benefit of investigating more complex optimization approach, as follows: (See Page 

8) 

“Further reduction of the latency may be obtained by investigating the use of more 

complex optimization schemes aiming to improve the convergence speed of the 

algorithm.” 

 
2.2 All your dynamic datasets have been acquired using an 2D EPI sequence 

(single or dual shot). In the first case, you resort to parallel imaging, namely 

SENSE acceleration and reconstruction. Could you improve this acquisition 

setup by making use of the fast 3D EVI sequence, which is more robust to 

motion artifacts? See C. Rabrait, et al: “High temporal resolution functional 

MRI using parallel echo volume imaging”. Journal of Magnetic Resonance 

Imaging, 2008; 27(4):744-53. and please comment. in your opinion, is this 

acquisition scheme compatible with real time motion correction? 

The reviewer is right that improving the spatial coverage with a 3D acquisition is 

indeed of great interest since it may open the possibility to perform 3D motion 
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correction and may thus contribute to prevent errors arising with out-of-plane motion. 

Indeed, 2D heart imaging combined with slice tracking often suffers from such artifact 

(out of plane motion) since the navigator is positioned on the diaphragm and a 

relation of 0.6 between the diaphragm and the heart motion is generally assumed. 

However, this value is patient/volunteer dependant and may show important 

variations [1]. Therefore a pure 3D acquisition may help to get rid of this problem. 

[1] Wang Y, Riederer SJ, Ehman RL., Respiratory motion of the heart: kinematics 

and the implications for the spatial resolution in coronary imaging. Magn Reson Med. 

1995 May;33(5):713-9. 

3D acquisitions prolong the scan time by providing much longer TR which renders 

the sequences much sensible to intra-scan motion and may alter the fat/blood signal 

cancellation. Although EVI represents a promising technique to reduce the TR and 

improve robustness against intra-scan motion (compared to other 3D sequences), it 

is also associated with new challenges that are now discussed: 

• First, EVI is generally associated with a lower spatial resolution. The low 

resolution will increase partial volume effects which is likely to introduce a 

significant bias on quantitative analysis. Indeed, this would represent a high 

limitation for the direct application of EVI in thermometry application, especially 

in the heart (and in atrium) where the thickness of the wall is around 2-3 mm.  

• Second, a preparation step (fat or blood suppression) is generally required 

prior the acquisition in the presented applications. Therefore, the potential 

regrowth of the fat signal or the efficiency of the blood signal suppression 

should be investigated in such conditions since they may also hamper the 

quality/value of the data. 

• Finally, for the specific case of PRF based MR-thermometry, the k-space 

center should be sampled at TE=T2* for an optimal sensitivity to the 

temperature induced phase shift. Therefore, the k-space sampling employed 

by the EVI sequence (around 200 ms in the paper cited by the reviewer) 

should be done in a way to first acquire the k-space center (spiral 

acquisition?). 

Therefore, the authors believe that EVI may represent an interesting technique 

toward a 3D extension of the acquisition. However, we also believe that a direct 

application of such method would not be straightforward since it would provide new 

questions/challenges to address (how to decrease the spatial resolution, what is the 

impact of a longer readout time respect to fat or blood suppression? and what would 

be the optimal k-space sampling?). However, as suggested by the reviewer a 

paragraph has been added to the discussion part to draw the potential 

interest/limitation of 3D acquisition and EVI as followed: (See page 8) 
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“Due to technical limitations of fast MR acquisition sequences, extensive 3D volume 

imaging on mobile organs is hard to achieve. The proposed technique has thus been 

evaluated in the 2D case. An extension of the method towards 3D motion correction 

may also be considered in future works and may improve the motion correction in the 

third dimension by reducing out-of-plane motion artifacts. However, although the 

proposed algorithm can be easily extended to 3D, the main challenge would likely 

remain in the design of a reliable 3D MR-sequence. In such acquisitions, the scan 

time increase would render the sequence more sensitive to intra-scan motion and 

may alter the fat and the blood signal cancellation. Echo volumar imaging [34] may 

help to decrease the scan time of such 3D acquisition; however, its associated low 

resolution and its robustness against the latter artifacts should be carefully 

investigated.” 

 
2.3 Your feature point detection is based on the Harris-Stephens detector ie 

Eqs (3)-(4) in which a sensitivity parameter k enters. Please comment on how 

did you select a fair value for k? In the same vein, in Subsection II.C, you set 

the different hyper-parameters to given values that remain the same for all 

methods. How did you choose them? Since I really appreciate your sensitivity 

analysis with respect to N and R in Fig. 8, I would be very interested in 

measuring the effect of varying alpha and lambda. Could you perform this 

additional study?  

Choice of the sensitivity parameter k: 

The value of the sensitivity parameter k employed in equation 3 and 4 has been 

taken from literature value range (0.04 to 0.15). A value of 0.04 was empirically found 

suitable in our case. Although an individual calibration of this value may provide 

better results in terms of feature point characterization, the employed value always 

provided coherent feature point (right on the border of the organ). Therefore, the 

potential gain achievable by a fine tuning of this parameter appeared more of 

theoretical than of practical interest. Therefore, a precise tuning of this parameter did 

not appear as the key point of the proposed algorithm.  

A sentence has been added to the material and method section to better describe the 

choice of the k value as follows (See page 3) 

“The value of k is generally chosen in the [0.04-0.15] interval. A value of 0.04 was 

determined empirically suitable for our application.” 

 

Influences of the motion estimation parameters  

Since the reviewer #3 also pointed out the interest of a more complete evaluation of 

the algorithm sensitivities with respect to its parameters, we decided to emphasize 

this aspect in the revised version of the manuscript. Although such comprehensive 

study can be performed (as we did in the first version of the paper) on the in-vivo 
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datasets, the results are limited by the precision of the computation of the DICE 

coefficient (which is based on a manual drawing of the registered target). Therefore, 

it becomes more complicated to depict/distinguish small variations. Consequently, 

the authors decided to perform a complete new comprehensive study on a new 

dataset experiment where the real motion was know and thus where the true error 

could be computed. The sensitivity of the proposed algorithm was studied against the 

following parameters (α2, λ2, R2, N). Endpoint error (EE, GSE in the initial version of 

the paper), harmonic energy and angular error are reported in Figure 2.  

The initial description of the synthetic experiment in the material & method section: 

“Synthetic dataset experiment: A sequence of T(= 30) images was created. To 
simulate respiratory motion typically encountered on mobile organs, a “ground truth” 
periodic translational displacement field Dgt(t) (maximum amplitude=7.5 pixels, step 
size=1.5 pixels) was synthesized. The signal-to noise ratio (SNR) of 20 was chosen 
to simulate a realistic acquisition (typically between 5 and 20). To simulate the 
presence of a structure appearing transient, a rectangular structure was added in half 
of the images (corresponding to the images with the three largest displacement 
amplitudes of each cycle).” 
 
has been changed to (See page 4): 

“Synthetic dataset experiment:  

Data creation: A sequence of T(= 30) images was created. To simulate respiratory 

motion typically encountered on mobile organs, a periodic (period=6 frames) 

geometric transformation composed by a 2D translation (Tx,Ty) and scaling (Sx,Sy) 

was synthesized (Tx = {0, 0.5, 1, 1.5, 1, 0.5}, Ty = {0, 2.5, 5, 7.5, 5, 2.5} pixels, Sx = Sy 

= {1, 1.03, 1.06, 1.09, 1.06, 1.03}). A signal-to-noise ratio (SNRdB) of 1.3 was chosen 

to simulate a realistic acquisition (typically between 0.7 and 1.3). A structure 

appearing transiently in the lower part of the image was added in half of the images 

to simulate the effect potentially encountered with reduced FOV imaging. Quality 

assessment of the motion estimation: Since the real motion (Dgt = (uGT, vGT )) and the 

estimated motion (D = (u, v)) are available for each pixel in such synthetic dataset 

experiment, the measures commonly reported in the optical flow community such as 

the endpoint error (EE) and the angular error (AE) of the flow [9], [26] were 

computed, with: 

EE = ( ) ( )22

GTGT vvuu −+−                                                                                             (11) 
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In addition, to provide additional information about the smoothness of the estimated 

motion field, the harmonic energy of the estimated flow [27] was computed.” 
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In the Results section, the initial figure 2 has been replaced by two new figures 
(Figure 2,3). The initial synthetic result description: 
 
 “The comparison between our method and the H&S algorithm was first realized on a 
synthetic dataset where the reference image and an image corresponding to a 
different position of the motion cycle are displayed respectively in Fig. 2a and b. The 
appearing rectangle, located at the bottom of Fig. 2b, is expected to hamper the 
motion estimation at the bottom of the object (in the red ROI displayed in Fig. 2a). 
Therefore, the gold standard error was computed for each dynamic, over this ROI 
and the results are plotted in Fig. 2c. The H&S algorithm showed very poor 
performance on this area where the appearing rectangular structure biased the 
accuracy of the algorithm (three repetitive high values). On the other hand, the 
proposed CME approach remained stable over the time and provided a more 
accurate motion field.” 
 

has been changed to (See page 5) 

“An example of synthetic images is shown in Fig. 2 where the reference image (Fig. 

2a, containing the transient structure) and an image corresponding to the maximum 

synthesized motion (Fig. 2b, 4th image of the cycle) are displayed. The contours 

(interior and exterior) of the target obtained from the reference image are reported in 

dashed red curves. The H&S approach was employed to register the image in Fig. 2b 

using different α2 values. When using a small value (α2 = 0:5), the registration is 

strongly influenced by the underlying structure leading to a severe registration artifact 

(yellow arrows in Fig. 2d). By using an optimally calibrated value (α2 = 2:5, see Fig. 

3a), the registration artifact was reduced but still present (yellow arrows in 2e). A 

higher value of α2(= 10) is reported in Fig. 2f where the registration artifact introduced 

by the transient structure appeared substantially reduced due to a higher weight on 

the smoothness of the motion field. However, in this case a different registration 

artifact was observed due to the inability of the method to handle complex motion 

(here the scaling effect) as shown by the yellow arrows. The CME approach provided 

a reliable registration where the registered target perfectly matched the reference 

target contour. These results were confirmed in the plot of the averaged EE values 

over time (computed inside the target, between the two red dashed curves) in Fig. 

2g. While the H&S approach periodically failed to recover the correct motion, the 

CME offered more robust performances over time.  

In order to better characterize the potential gain and limitations of the compared 

methods, their performance in terms of averaged error endpoint, harmonic energy 

and averaged angular error were precisely investigated as a function of the employed 

parameters (Fig. 3). As previously observed in Fig. 2d, low α2 values (Fig. 3a, 3e and 

3i) provided poor performance since the methods became very sensitive to the 

presence of the intrusive structure. On the contrary, high values limited the ability of 

the algorithm to estimate complex motion and also deteriorated the motion estimates 

as confirmed by the convergence of the harmonic energy toward a very small value. 

The averaged EE values obtained with an optimal α2 calibration were 0.42 for the 
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H&S approach (α2 = 2:5) and 0.21 for the CME method (α2=6.5) showing a reduction 

of the averaged EE by a factor of 2. The λ2 value influence was then investigated 

((Fig. 3b, 3f and 3j). As expected, small λ2 values tend to the H&S performance and 

high values tend to the extrapolation of the constraint point motions (and their 

associated uncertainty) leading in both cases to a deterioration of the registration. A 

good calibration of λ2(=0.1, blue curve) provided a significant improvement of the 

motion estimation (Fig. 3b, 3j). The influence of the constraint point number (N) was 

then evaluated (Fig. 3c, 3g and 3k). Although an optimal value was reached around 

20 points (Fig. 3c, 3k, blue curve), the sensitivity of the CME to this parameter was 

limited. Finally the influence of the bandwidth (R2) provided an optimal calibration for 

a value of 5 (Fig. 3d, 3h, 3i, blue curve).” 

 
Finally, while these results were not shown in the initial submission of the paper, a 

discussion had been already integrated to the manuscript. Therefore, this part was 

conserved in the revised version of the paper. 

 

Choice of the motion estimation parameters  

The employed parameters for the in-vivo study were initially calibrated based on the 

registration performance obtained on similar data acquired without reduced field of 

view imaging. The authors agree that some clarification is needed on this point and 

should be added to the manuscript. 

The parameters calibration of a motion estimation algorithm is difficult in-vivo since 

the real motion is unknown. Especially, by considering the initial synthetic case, as 

correctly pointed out by the reviewer #3, a higher α2 value will increase the 

smoothness of the motion and will reduce the registration artifact introduced by the 

intrusive structures. However, such configuration will also decrease the ability of the 

algorithm to estimate complex motion. We recently showed in 

 S. Roujol, M. Ries, C. Moonen, and S. Denis, “Automatic nonrigid calibration of 

image registration for real time mr-guided hifu ablations of mobile organs.” IEEE 

transactions on medical imaging, vol. 30, no. 10, p. 1737, 2011. 

that an optimal range of α2 values for the correction of the respiratory motion on 

abdominal imaging was around [0.1-0.5] and a plateau was generally reached within 

this range of values. We also pointed out in the discussion that using the lower range 

of such plateau may help to improve the robustness of the algorithm against motion 

not encountered during the calibration step (with a potential higher amplitude, due to 

a deeper breath for example).  

Therefore, the choice of an optimal α2 value is the presented reduced FOV imaging 

case appears more tedious. The optimal α2 value (0.1-05) obtained from full FOV 

imaging will provide an optimal registration in all our target except in the area closed 
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to the intrusive structure. On the other hand, a higher value of α2 will decrease this 

artifact but will deteriorate the registration in areas subject to complex deformations 

(which for the case of the heart may represent the whole myocardium due to its 

complex deformation). Therefore, the optimal calibration depends on the criterion to 

be optimized.  Therefore, we believe that in term of clinical perspective it is more 

valuable to provide an algorithm working correctly in the majority of the organ (using 

a smaller α2 value calibrated on full FOV images, but potentially leading to strong 

local registration artifact) than a higher value which might decrease the overall DICE 

value while affecting/degrading the majority of the registration (due to its inability to 

cope with complex motion).  

A paragraph has been added to the material and method part to justify this point as 

follows (See page 4) 

“In-vivo calibration of the employed algorithms is complex since it depends on the 

criterion to be optimized. The calibration of the H&S method (α2 value) has to deal 

with contradictory effects. A small regularization of the motion field is required to 

enable the estimation of complex motion and to have a globally reliable estimated 

motion. On the other hand, a high constraint on the motion field smoothness would 

reduce the registration artifact induced by intrusive structures but at the same time 

will limit the ability of the algorithm to estimate complex motion. This may thus 

deteriorate the registration in the entire organ. Therefore, we calibrated the employed 

algorithms in a way to maintain optimal performance in the general case of full FOV 

imaging (without the presence of intrusive structures). As recently shown [24], a 

reliable in vivo calibration of the H&S algorithm was obtained for a range of α2 values 

between 0.1-0.5. A plateau was generally observed for these ranges of values and its 

lower bound was suggested as a good way to cope with variations of the breathing 

pattern (such as an amplitude variation or drift of the respiration pattern). Therefore, a 

α
2 value of 0.1 was employed for the H&S algorithm. We empirically found a near-

optimal solution for the CME calibration by employing the following parameters: 

α
2=0.1, λ2=0.1, N=20 and R2=5. Note that a similar optimal configuration was 

obtained for the synthetic dataset experiment (see Result section) except for the α2 

values that were higher due the lowest complexity of the synthesized motion.” 

 
2.4 Please comment also why have you retained a Gaussian rho function in Eq. 

6? What about the presence of outliers and the putative relevance of more 

robust metrics (Huber function instead of d^2)? 

The authors agree that the employed metric used in equation 6 is not robust against 

outliers. However, this Gaussian rho function is applied on landmark points that have 

been already tested for the presence of outlier (3 sigma rules applied on landmark) 

and eventually rejected if detected as outlier. However, the authors believe that such 

robust metric may be of interest for equation 5 (especially for the two first terms) 

instead of using L2 norm, as initially proposed in the robust formulation of optical flow 
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by Black and Anandan [1]. This may improve to account for motion discontinuities 

and for both brightness and smoothness violation.  Therefore, a sentence and the 

corresponding reference have been added to the discussion part of the manuscript 

about the potential gain provided by a more robust metric as follows (See page 8) 

“A robust formulation of equation 5 using robust estimators such as the Humber 

function or Lagrangian [35], especially in the first two terms of equation 5 should be 

investigated in order to account for both brightness variation and smoothness 

violation (motion discontinuities).” 

 
[1] Black, M. J. and Anandan, P., A framework for the robust estimation of optical 

flow, Fourth International Conf. on Computer Vision, ICCV-93, Berlin, Germany, 

May, 1993, pp. 231-236 

 

2.5 Please report SNR measure in dB in Subsubsection II.D.1, page 3, col1, last 

paragraph. 

SNR measures are now reported in dB as suggested by the reviewer.  

 

2.6 Figures are in general too small. Please use the figure* environment instead 

of figure in Figs. 3,5,6 and enlarge your images. Also, remove the Matlab x- and 

y-labels and crop the figure to magnify them. Put the axis legend in the core of 

the text (Figs 3-8). 

The authors agree that most of the figures were too small and made an effort to 

enlarge the new figures. However, since the new figures are rather dense, we 

decided to keep the x and y labels to improve their readability. 

 

Reviewer #3 
 

The paper presents a method for pairwise registration that enhances the Horn  

& Schunk method by considering an additional regularization term that takes 

into account pre-estimated point correspondences. 

 

The paper is well organized though the writing could be improved greatly. The 

writing could profit greatly from the reading of a native English speaking editor 

as there is an important number of grammatical and syntax errors. To point 

some of them, the following notation is going to be used: P2L10l = page 2, line 

10, left column. 
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3.1 Some general comments: 

All the following corrections have been implemented in the text. When required the 

answer/modification has been reported in the following. 

i) there is an important problem with the use of definitive and indefinite articles. 

ii)Equations should be treated as a single noun and they should be followed by 

a comma, especially when a description of its individual members follow 

(which is the case for most if not all equations in the paper). If an equation is at 

the end of a sentence, a period should follow the equation (equation 1). 

iii)The use of "dynamic(s)" is neither proper nor clear. 

Dynamic(s) has been corrected in frame(s). 

 

iv)After some equations (Eq. 1, 9, 10) a new paragraph starts whereas it 

shouldn't. 

P1L23l: "allows integration of displacement of physiological landmarks, which 

are obtained in a preparation step" -> In general this sentence is problematic. 

Articles are missing: allows the integration of... is more correct. "of 

displacement of physiological landmarks" does not seem right. preparation is 

a noun, preparatory should be used instead.  

 

P2L19L: "the image to register" -> image to be registered. 

P2L23l: "increase $\alpha^{2}$" -> increase the $\alpha^{2}$ 

P2L24l: "in classical" -> in the classical 

P2L50l: "to its initially" -> its initially 

P2L13r: "paper, where preliminary results": The sentence needs rephrasing. 

The use of "where" is wrong here. Maybe split it in two sentences. 

P2L16r: "FOV imaging and with out-of-plane" -> FOV imaging with out-of-plane 

P2L20r: "estimation as a complementary regularization term" -> estimation by 

introducing an additional regularization 

P2L22r: "constraint point influence" : I find the use of nouns as adjectives 

tiring to follow as it is difficult to see which is the "real" noun. In my opinion 

"local control of the influence of the constraint points" is preferable. 

P2L44r:"The edge of the mask" I believe the use of contour instead of edge is 

better. 

P2L49r: "as follows: A" -> as follows: a 

P2L60r: "evaluated in 2D case" -> evaluated in the 2D case 

P3L20l: "tracked over the time" -> tracked over time 

P3L28l: "then regularly spaced sampled" -> sampled regularly in space 

P3L36l: "Typically a small neighborhood of regularly spaced sampled point is 

chosen to search for a closest feature point (e.g. 3 $\times$ 3 pixels 
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neighborhood)". In general, this phrase does not help me understand how this 

step is performed. Could you elaborate more? Moreover, "for a closest" -> for 

the closest and "pixels neighborhood" -> pixel neighborhood. 

This paragraph describing the landmark selection has been rewritten for clarification 

as requested by the reviewer in 3.3. The current sentence has been changed to (See 

page 3) 

“Therefore, the feature point with the higher response in a small neighborhood (e.g. 

3x3 pixels) of the contour point is selected as a landmark point.” 

 
P4L7r: "near the global optimum": I find the use of global optimum somehow 
misleading as no algorithm is able to attain the global optimum solution. The 
assumption most algorithms do is that of small displacements. Thus, the 
"initialized after compensating for large displacements" seems more right. 
 

The reviewer is right. The sentence has been changed to (See page 3) 

“An optical flow based algorithm is more efficient when it is initialized after 

compensating for large displacements”  

 

P3L13r: "is restricted to a ROI defined in" -> is restricted to the ROI defined 

P3L28r: "its displacement coordinated" -> displacement components 

P3L55r: "the variation calculus" -> calculus of variations 

P4L4l: "u in the neighborhood [9]" -> whose neighborhood?how is this 

neighborhood defined? 

\overline{u} is the mean value of u in the neighborhood (3x3 pixels) of the estimated 

point. This information has been added to the manuscript as follows (see page 3) 

“with u the mean value of u in the neighborhood (3x3 pixels) of the estimated point 

[12].” 

 

P4L33l: "a multi-" -> the multi- 

P4L34l: "which iterates the motion" -> which refines(?) the motion.  

 P4L46l: "was based on Compute Unified" -> was based on the Compute 

Unified 

P4L58l: "The signal-to-noise" -> A signal-to-noise 

P4L2r: "a structure appearing transient" -> transient structure or appearing 

transiently.  

P4L18r: "positioned in head first in supine " -> positioned head first in supine 

P4L42r: experiment except the"-> experiment except that the 

P4L53r: " In such conditions" -> no new paragraph 
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P4L60r: "difference of motion compensated images" -> difference between 

what and what? 

The authors were talking about the difference between the motion compensated 

images and a reference image. The sentence has been removed in the revised 

manuscript. 

 

P5L3r: "dynamic, over" dynamic-> frame? time instance? dynamic is either 

adjective or a noun meaning either interactive system or a force. This goes for 

all cases where "dynamic(s)" is used (i.e. P5L56r, P5L58r, P6L60l, P8L59l) 

Dynamics has been changed to frame in the manuscript. 

 

P5L53r: "were obtained from the" -> were obtained for the 

P6L49l: "performance in the heart of six" ->it is not the heart of the volunteers. 

Call it heart data set but "in the heart", in my opinion, means something really 

different from what you would like to say. 

P6L13r: "5c,5d,5e" -> 5c, 5d, 5e. 

P6L17r: "structure appearing transient" -> transient structure or appearing 

transiently. 

P6L52r: "obtained in the heart" -> see previous comment 

P6L57r: "Influences of the CME" -> Influence of the CME 

P7L47l: "with closed parameter" -> with close parameter 

P7L15r: the enumeration of the sub figures is wrong. There are two "d" and "e" 

should be "f" 

P7L56r: "method on synthetic" -> method on a synthetic 

P8L42l: "structure appearing transient" -> transient structure or appearing 

transiently. 

P8L9r: "prediction algorithm performance greatly increases" -> the 

performance of the prediction algorithm increases greatly 

P8L51r: "Outliers rejection"-> Outlier rejection 

P9L5l: "optical flow formulation" -> optical flow formulations 

P9L13l: "feasibility with the presence" -> feasibility in the presence 

P9L4l: "This point is particularly important since many optical flow formulation 

using many terms usually require much more free parameters, rendering the 

outcome of the algorithm dependent on the user calibration"->This is not true. I 

can understand an argument of the type "using landmark information, our 

method is more robust to the choice of the parameters" but most optical flow 

methods that use only the intensity information need only to choose a 

weighting factor to balance the data and regularization terms. Most optical flow 

methods have less parameters than the proposed one. 

The reviewer is right and the sentence has been removed.  
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P9L20l: "renders optical flow method" -> renders an optical flow ... or renders 

optical flow methods 

P9L23l: "point displacement" -> point displacements 

P9L25l: "of another motion" -> of other motion 

P9L25l: "navigator echoes or ultrasonic echoes" -> navigator or ultrasonic 

echoes 

P9L31l: "extensions of the method has to" -> extensions of the method have to 

 

Thank you very much for all of these corrections. The manuscript has been corrected 

accordingly. In addition the manuscript has been read and corrected by a native 

English speaking person as requested by the reviewer. 

 

3.2 Regarding the introduction, as the most important novelty of the proposed 

framework lies in the introduction of the regularization term that introduces 

landmark information, I would expect a more detailed presentation of related 

techniques that exploit both intensity and landmark information. Some of the 

most recent methods towards this direction that should be cited are: 

Aristeidis Sotiras, Yangming Ou, Ben Glocker, Christos Davatzikos and Nikos 

Paragios. "Simultaneous Geometric - Iconic Registration." MICCAI 2010 

A. Azar, C. Xu, Xavier Pennec, and Nicholas Ayache, “An Interactive Hybrid 

Non-Rigid Registration Framework for 3D Medical Images”, ISBI 2006 

P. Cachier, J. F. Mangin, X. Pennec, D. Rivière, D. Papadopoulos-Orfanos, J. 

Régis, and N. Ayache, "Multisubject non-rigid registration of brain MRI using 

intensity and geometric features", MICCAI 2001 

The introduction part of the manuscript has been rewritten in part for clarification as 

also requested by the reviewer #2. The proposed references have been added. The 

initial paragraph in the introduction part 

“To overcome the limitation imposed by the assumption of conservation of either 

dense feature descriptor values or intensities, Loncaric et al. [16] proposed to 

constrain the iterative scheme of the H&S algorithm by introducing constraint points. 

Such points were selected on the pre-segmented border of a moving organ and their 

displacements were estimated by a local block-matching with a pure translational 

model. Hence a sparse set of motion constraints was introduced to constrain the 

optical flow estimator. The algorithm [16] was designed to obtain a final motion field 

that exactly fits, for each constraint point, to its initially estimated displacement. This 

algorithm requires an a priori exact knowledge of each constraint point displacement 

or at least a very good estimation of the latter. However, with a deformable complex 

motion and inherent noise in MRI sequence, this information is generally only 

available as an estimate. An attempt to integrate feature points into the optical flow 

formulation was proposed by Becciu et al. [17] for cardiac contraction analysis using 
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tagged MRI. In their work, feature points were extracted from the tags. The good 

contrast level on tags allows for sufficiently precise detection of suitable constraint 

points. However, MR tagged images are generally unsuitable for interventional MRI, 

since images are tagged by regular lines where the signal has been removed. 

Recently, a variational approach, integrating segmented region motion, was 

proposed for large displacement estimation [18]. This method uses a linearized OFE 

deviation together with regularization terms which include the correspondence of 

region displacements in the image plane. Despite the interest of such an approach in 

general purpose video sequences, its application to MRI sequences is not 

straightforward due to the inherent difficulties of segmentation of frames into spatially 

coherent regions.”  

 
has been changed to (See page 2): 

“Therefore, the first step of this study was to hypothesize that a combination of 

intensity and landmark registration could be used to improve the robustness of the 

registration against transient structures. Such combinations have been proposed in 

the past such as in [13] where a large number of landmarks were employed for brain 

registration. This method was further extended to deal with a smaller number of 

points (manually defined) for interactive registration of medical images [14]. In these 

approaches, both intensity and landmark metrics were minimized sequentially inside 

an iterative minimization process. Several unified minimization frameworks were also 

proposed. In [15] the algorithm was designed to obtain a final motion field fitting each 

pre-estimated landmark motion. In the presented application, due to the low SNR, a 

non-negligible uncertainty of the landmark correspondence may be expected and 

would thus strongly affect such registration approach. Another solution proposed by 

Becciu et al. [16], attempts to use tags obtained from an MR-tagged sequence in 

their registration method for cardiac contraction assessment. Unfortunately, this MR-

sequence is generally unsuitable for interventional MRI, since images are tagged by 

regular lines where the signal has been removed. Recently, a variational approach, 

integrating segmented region motion, was proposed for large displacement 

estimation [17]. This method uses a linearized OFE deviation together with 

regularization terms which include the correspondence of region displacements in the 

image plane. Despite the interest of such an approach in general purpose video 

sequences, its application to MRI sequences is not straightforward due to the 

inherent difficulties of segmentation of frames into spatially coherent regions. 

Recently, a grid-based deformation model was proposed [18], but was also shown to 

be sensitive/limited by the landmark extraction process according to the authors.” 

 
[13] P. Cachier, J. F. Mangin, X. Pennec, D. Rivière, D. Papadopoulos-Orfanos, J. 

Régis, and N. Ayache, "Multisubject non-rigid registration of brain MRI using intensity 

and geometric features", MICCAI 2001 
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[14] A. Azar, C. Xu, Xavier Pennec, and Nicholas Ayache, “An Interactive Hybrid 

Non-Rigid Registration Framework for 3D Medical Images”, ISBI 2006 

[18] Aristeidis Sotiras, Yangming Ou, Ben Glocker, Christos Davatzikos and Nikos 

Paragios. "Simultaneous Geometric - Iconic Registration." MICCAI 2010 

 

3.3 Regarding the methods, i find the description of the 1st step of the 

algorithm (constraint point selection) not clear enough. The physician traces a 

ROI which is then refined by moving its contour points towards the closest 

feature points. In what sense is the closest used here? Closest when 

considering their spatial distance or based on intensity similarity criterion. 

Moreover, I found the description of the search for the closest feature point not 

easy to understand. Why do you choose a neighborhood of contour points to 

search for the closest feature point? Don't you try to find a feature point for 

every contour one? Shouldn't you consider multiple feature points for each 

contour one? What happens if two feature points are equally close to the 

contour one? How do you tackle the case that that the same feature point is 

assigned to more than one contour points? 

The authors agree that a clarification is needed. First, the term “closest” was 

improperly used. Indeed, the feature point having the higher response in the 

neighborhood of the subsampled contour point was selected (we only assign one 

feature point to each subsampled contour point, and not to each point from the initial 

continuous contour). In the case that no feature point is found, the initial contour point 

is selected. If multiple feature points are obtained, the one with the higher response 

is chosen (which is not necessary the closest one from the initial contour point).  

The search of a closest feature point was restrained to the neighborhood of the 

contour point to prevent the positioning of a feature point on another organ/tissue, 

that is likely to have a different motion from the heart. In such a case, the landmark 

would give incoherent displacement values and may be discarded by our outlier 

rejector. Therefore such points would be useless to guide the registration process.  

Lastly, if a feature point is assigned to two contours points, one could have chosen to 

use such point only one time or twice. In the current implementation, we decided to 

use it twice, however, this case is not relevant in in-vivo cases since the distance 

between two contours points was always superior to the search neighbor window for 

feature points (given the employed number of points N=20). 

A paragraph has been added to clarify the description of the landmark selection in 

step 1 as follows (See page 3) 

“Therefore, the feature point with the higher response in a small neighborhood (e.g. 

3x3 pixels) of the contour point is selected as a landmark point. The small 

neighborhood search was designed to prevent positioning a landmark on a different 
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structure/organ that may depict a different motion from the targeted organ. If no 

feature point is present, the initial ROI contour point is then selected.” 

 

3.4 Regarding the constrained registration part it is rather interesting and 

novel. There is two things though that seem counter-intuitive. First, the 

influence of the number of constraint points. I agree that with few points, the 

accuracy of the motion estimation should be low. Nonetheless, I would expect 

a monotonic increase of the accuracy with an increasing number of constraint 

points (till probably a plateau). Could you interpret the decrease of the 

performance when passing from 20 to 40 points? One last thing regarding the 

parallel implementation of the algorithm. In the paper, it is stated that a 

reduction factor of 10 was achieved for the computation time of the iterative 

numerical scheme of the optical flow algorithm. Why the gain factor is so low? 

A more significant gain should be expected given the difference between the 

computational power of the CPU when compared to the GPU (1 or 2 cores vs 

240). 

Influence of the number of landmarks 

We observed that a large number of landmark point do not necessary improve the 

registration. Indeed a large number of landmark lead to an increase of the overall 

weight of the landmark influence on the final estimated motion. Therefore, if the 

landmark motion is perfectly correct, the authors agree that a monotonic 

improvement of the registration performance should be observed with the increase of 

the number of landmark. However, if a bias (which is expected to be locally 

correlated for close feature points) is present on the landmark displacement, the 

conclusion may be different. In this case, if only a small number of landmarks is 

employed, the CME can still correct for this approximation by using the two first terms 

of equation 5. If a large number of landmarks is used, then the landmark 

displacement uncertainties have a broader impact on the registration process, 

resulting in a decrease of the registration performance.  

Based on the remark 3.5 of the reviewer, a complete new synthetic dataset 

experiment was performed confirming this explanation. As can be observed in the 

Figure 3 a performance decrease towards a plateau was observed when using a high 

number of landmark points (see Figure 3c, 3g and 3k). 

In summarize a too large number of landmark decreases the ability of the algorithm 

to correct for uncertainties on the estimated landmark motion. This point has been 

added to the discussion part as follows (See page 8) 

“On the other hand, a too large number of constraint points will slow down the 

computational process and may degrade the registration performance by leading to a 

quasi interpolation of the constraint displacements and their associated uncertainties” 
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GPU acceleration and performance 

Considering the acceleration factor, this value depends on both employed CPU and 

GPU. First the employed CPU was a very powerful unit. Then, by looking at the GPU 

implementation, previously published works [1,2] reported a computation time for the 

Horn & Schunck algorithm around 5-20 ms for the same image size (128x128) 

depending on the employed GPU card. Using the current GPU card employed for this 

study, the Horn & Schunck algorithm was performed in 5 ms. Therefore a total 

computation time of 7 ms for the proposed optical flow algorithm appeared in line with 

the published works.  

Also the ratio of the core number may also be limited for such comparison since the 

frequency of each processor is not comparable (602Mz on GPU vs 3.1 Gz for CPU).  

Finally, the relatively small amount of data to be processed (image of 128x128 pixels) 

may also contribute to such performance. As shown in [1], an acceleration factor of 

7.6 was achieved on image resolution 128x128, while an acceleration factor of 26 

was obtained with images of resolution 512x512. 

[1] Baudouin Denis de Senneville, Karsten O. Noe, Mario Ries, Michael Pedersen, 

Chrit T. W. Moonen, Thomas Sangild Sørensen: An optimised multi-baseline 

approach for on-line MR-temperature monitoring on commodity graphics hardware. 

1513-1516 

[2] Roujol S, Ries M, Quesson B, Moonen C, Denis de Senneville B. Real-time MR-

thermometry and dosimetry for interventional guidance on abdominal organs. Magn 

Reson Med. 2010 Apr;63(4):1080-7. 

This has been added to the discussion part. The initial sentence: 

“Here, the demonstrated CPU/GPU implementation allows the acceleration of the 
required processing time by a factor of four and thus ensuring real time conditions 
with low latency.” 
 
has been changed as follows (See page 8) 
 
“Here, the GPU implementation offered an acceleration factor of 10 for the 

computation of the constrained optical flow which is in accordance with the published 

work [11], [33]. A significantly higher acceleration factor would be expected using 

higher resolution as shown in [33] since it would benefit from a larger amount of data 

to process (higher occupations of each processor) and a lower relative overhead. 

Overall, the demonstrated CPU/GPU implementation allows the acceleration of the 

required processing time by a factor of four and thus ensures the real time conditions 

with a short latency.” 
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3.5 I believe that the experimental validation section can be improved greatly. 

My first concern is regarding the choice of SIFT-flow as a method to compare 

to. I was troubled by this choice as the authors of [14] argue in the recent PAMI 

version of their paper (that i believe should be cited instead of the conference 

one) that optical flow cannot be replaced by SIFT flow. The main disadvantage 

of SIFT flow is that it cannot provide sub-pixel accuracy. Thus, a comparison 

with methods that can have such a performance is not meaningful especially 

when the code for other state-of-the-art optical flow methods (i.e. Secrets of 

optical flow estimation and their principles. CVPR 2010) is available on-line. 

Furthermore, it is not clear how the SIFT-flow was used. More details with 

respect to the use of the code should be given. How was the SIFT descriptor 

created? The parameters that were used should be detailed. 

 

The authors agree that a direct comparison of SIFT flow with optical flow is biased by 

the inability of the SIFT flow to provide a sub pixel accuracy. However, the authors 

decided to include the SIFT flow approach in this study to compare our method with 

non-rigid registration approaches using either a purely landmark based method (SIFT 

flow) or a purely intensity based method (Horn Schunck). The objective was to show 

that both purely landmark based and intensity based approaches were strongly 

affected by the presence of transient object. In such a case, as with the Horn & 

Schunck method, the SIFT flow is largely disturbed by the presence of an intrusive 

structure, and shows an error with a magnitude much larger than the pixel accuracy. 

Therefore, one can conclude that the main error obtained with the SIFT flow method 

in this case can be attributed to its inability to cope with such intrusive structure and 

not to its inability to provide sub-pixel accuracy. To be complete, the initial calibration 

of the SIFT flow has been initially performed following the strategy described in the 

answer to 3.6, where an extensive discussion about the influence of the motion 

estimation parameters and their calibration is given for the H&S and the CME 

methods. 

Overall the authors agree that the SIFT flow comparison is limited and may not 

contribute to the clarity of the paper by providing similar conclusions as obtained with 

the H&S approach. Also, since additional results were requested by the reviewer in 

3.6 and 3.7 (with an important quantity of new experiments/results were added to the 

revised manuscript), and to limit the length of paper (which is already rather long for 

the IEEE TITB format), the authors decided to remove the SIFT flow comparison from 

the paper.  

 
“Secrets of optical flow estimation and their principles”: 

The paper “Secrets of optical flow estimation and their principles” provides very 

interesting and impressive results by showing that the combination of H&S method 
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with modern optimization and implementation technique can provide very good 

results. In detail, they show that the use of a median filter on the flow after each 

iteration step improves significantly the registration since their algorithm ranked 1st on 

the Middleburry evaluation. Therefore, the median filter could be easily integrated to 

our algorithm and represent a promising way for further improvements of the CME 

performance. Since this integration can be performed in both the H&S and the CME 

methods, the benefits of such approach for each method represents a nice study by 

itself, which is, in our opinion, beyond the scope of this paper. Therefore, the authors 

would intent to pursue this promising idea in future work and a sentence has been 

added to the discussion part to comment such future extension as follows (see page 

8): 

“Also, the integration of a median filter at each iteration step of the iterative 

minimization scheme has to be carefully investigated since significant improvements 

have been achieved in this direction [36]. Nevertheless, the real time compatibility of 

such approach has to be evaluated.” 

 

3.6 Regarding the comparison that is performed in the paper I have one major 

comment. It is difficult to compare different methods as it is not evident if the 

difference in their performance is due to a better tuning of their parameters or 

is because of their different qualities. Thus, either each method should be 

tuned separately and the best results should be reported or the results should 

be given for various regularization parameters. Ideally, graphs of the DICE 

coefficient (or GSE) should be given plotted against the harmonic energy of the 

deformation field. That way, we can understand what is the cause of the more 

accurate performance. Now, for example one may argue that in the synthetic 

case (section III. A) the H&S method could perform better by regularizing more. 

At least, the values of the harmonic energy should be given for each case in 

order to let the reader have a better understanding of the added value of the 

adoption of point constraints. 

The authors fully agree with this point. The tuning of a registration algorithm clearly 

affects the algorithm output and the resulting performance. Also the authors would 

like to apologize for the lack of information about the algorithm calibration/tuning. To 

better understand the interest of adopting the CME registration and to answer the 

reviewer comment two major modifications have been brought to the manuscript: 

• A complete new synthetic dataset experiment has been performed in order to 

precisely analyze the algorithm performance in function of their (optimal and 

non optimal) calibrations. Endflow error, angular error (as requested in 3.7) 

and harmonic energy have been reported for a wide range of parameters. 

• The optimal in-vivo calibration of the algorithms has been clearly detailed and 

the harmonic energy plot added to the results. 
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We now describe in detail the modification / explanation / additional experiments that 

have been carried out in both synthetic and in-vivo experiments 

3.6.1 Synthetic Dataset experiment: 

We decided to perform a complete new synthetic dataset experiment to precisely 

evaluate and show the influence of the CME parameters (α2 ,λ2, N and R2) and 

compared the result  with the H&S method (with also a complete study of the α2 

value). The interest of doing such evaluation on synthetic dataset is twofold: 

• The real motion is known. Then absolute criteria such as the endpoint 

error (EE) of the flow (that was referred to as GSE in the previous 

version of the manuscript) and angular error can be computed. 

• Since the assessment of the registration performance can be 

automated (thus do not require manual drawing as for the DICE 

coefficient), a large number of tests can be performed allowing for a 

precise sampling of each parameter space. 

The endpoint error (EE) and angular error (AE) of the flow have been computed over 

the synthetic target (between the red dashed line in Figure 2a) area. The 

corresponding harmonic energy (HE) computed over the whole image have been 

also calculated for all tested cases. The results are reported in figure 2 and 3. 

The CME clearly overcomes the H&S algorithm as shown by the optimal EE, AE and 

HE values as shown in figure 3a, 3e and 3i. As pointed out by the reviewer, the 

increase of the α2 value reduces the registration artifact induced by the intrusive 

structure until reaching an optimal configuration. Then, higher α2 values start 

degrading the performance by enforcing a high smoothness constraint preventing the 

estimation of the synthesized complex motion. Note that the optimal α2 is expected to 

be much lower in in-vivo dataset since a more complex motion should be 

encountered in-vivo. In the λ2 analysis, it is interesting to note that while a small λ2 

values tends to provide an H&S like behavior, a high value tends to extrapolate the 

constraint motion over the target. One can observe in the latter case that the 

“constraint motion extrapolation registration” provide an EE which can be 

substantially improved by using an optimal λ2 value of 0.1. This is explained by the 

uncertainty/bias of the constraint motion that can be corrected using smaller λ2 

values, but which is extrapolated using higher λ2 values. Also, by increasing the 

number of points N (to 20), one can improve the registration performance. However, 

this is not longer the case for a higher values of N where the weight of the landmark 

become higher in the registration process tending again to extrapolate the constraint 

motion (and its associated uncertainty) over the target. Finally, the influence of the 

bandwidth (R2) provided an optimal calibration for a value of 5 ((3d, (3h, (3i, blue 

curve). 

The manuscript has been modified in the flowing way: 
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• Material & method: 

The initial description of the synthetic dataset experiment: 

“Synthetic dataset experiment: A sequence of T(= 100) images was created. To 
simulate respiratory motion typically encountered on mobile organs, a “ground truth” 
periodic translational displacement field Dgt(t) (maximum amplitude=7.5 pixels, step 
size=1.5 pixels) was synthesized. The signal-tonoise ratio (SNR) of 20 was chosen to 
simulate a realistic acquisition (typically between 5 and 20). To simulate the presence 
of a structure appearing transient, a rectangular structure was added in half of the 
images (corresponding to the images with the three largest displacement amplitudes 
of each cycle).” 
 
has been changed to (see page 4) 

“Synthetic dataset experiment:  

Data creation: A sequence of T(= 30) images was created. To simulate respiratory 

motion typically encountered on mobile organs, a periodic (period=6 frames) 

geometric transformation composed by a 2D translation (Tx,Ty) and scaling (Sx,Sy) 

was synthesized (Tx = {0, 0.5, 1, 1.5, 1, 0.5}, Ty = {0, 2.5, 5, 7.5, 5, 2.5} pixels, Sx = Sy 

= {1, 1.03, 1.06, 1.09, 1.06, 1.03}). A signal-to-noise ratio (SNRdB) of 1.3 was chosen 

to simulate a realistic acquisition (typically between 0.7 and 1.3). A structure 

appearing transiently in the lower part of the image was added in half of the images 

to simulate the effect potentially encountered with reduced FOV imaging. Quality 

assessment of the motion estimation: Since the real motion (Dgt = (uGT, vGT )) and the 

estimated motion (D = (u, v)) are available for each pixel in such synthetic dataset 

experiment, the measures commonly reported in the optical flow community such as 

the endpoint error (EE) and the angular error (AE) of the flow [9], [26] were 

computed, with: 

EE = ( ) ( )22

GTGT vvuu −+−                                                                                             (11) 
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2222
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                                                                               (12) 

In addition, to provide additional information about the smoothness of the estimated 

motion field, the harmonic energy of the estimated flow [27] was computed.” 

 

• Results 

In the result section, the initial figure 2 has been replaced by two new figures (Figure 
2,3). The initial synthetic result description: 
 
 “The comparison between our method and the H&S algorithm was first realized on a 
synthetic dataset where the reference image and an image corresponding to a 
different position of the motion cycle are displayed respectively in Fig. 2a and b. The 
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appearing rectangle, located at the bottom of Fig. 2b, is expected to hamper the 
motion estimation at the bottom of the object (in the red ROI displayed in Fig. 2a). 
Therefore, the gold standard error was computed for each dynamic, over this ROI 
and the results are plotted in Fig. 2c. The H&S algorithm showed very poor 
performance on this area where the appearing rectangular structure biased the 
accuracy of the algorithm (three repetitive high values). On the other hand, the 
proposed CME approach remained stable over the time and provided a more 
accurate motion field.” 
 

has been changed to (See page 5) 

“An example of synthetic images is shown in Fig. 2 where the reference image (Fig. 

2a, containing the transient structure) and an image corresponding to the maximum 

synthesized motion (Fig. 2b, 4th image of the cycle) are displayed. The contours 

(interior and exterior) of the target obtained from the reference image are reported in 

dashed red curves. The H&S approach was employed to register the image in Fig. 2b 

using different α2 values. When using a small value (α2 = 0:5), the registration is 

strongly influenced by the underlying structure leading to a severe registration artifact 

(yellow arrows in Fig. 2d). By using an optimally calibrated value (α2 = 2:5, see Fig. 

3a), the registration artifact was reduced but still present (yellow arrows in 2e). A 

higher value of α2(= 10) is reported in Fig. 2f where the registration artifact introduced 

by the transient structure appeared substantially reduced due to a higher weight on 

the smoothness of the motion field. However, in this case a different registration 

artifact was observed due to the inability of the method to handle complex motion 

(here the scaling effect) as shown by the yellow arrows. The CME approach provided 

a reliable registration where the registered target perfectly matched the reference 

target contour. These results were confirmed in the plot of the averaged EE values 

over time (computed inside the target, between the two red dashed curves) in Fig. 

2g. While the H&S approach periodically failed to recover the correct motion, the 

CME offered more robust performances over time.  

In order to better characterize the potential gain and limitations of the compared 

methods, their performance in terms of averaged error endpoint, harmonic energy 

and averaged angular error were precisely investigated as a function of the employed 

parameters (Fig. 3). As previously observed in Fig. 2d, low α2 values (Fig. 3a, 3e and 

3i) provided poor performance since the methods became very sensitive to the 

presence of the intrusive structure. On the contrary, high values limited the ability of 

the algorithm to estimate complex motion and also deteriorated the motion estimates 

as confirmed by the convergence of the harmonic energy toward a very small value. 

The averaged EE values obtained with an optimal α2 calibration were 0.42 for the 

H&S approach (α2 = 2:5) and 0.21 for the CME method (α2=6.5) showing a reduction 

of the averaged EE by a factor of 2. The λ2 value influence was then investigated 

((Fig. 3b, 3f and 3j). As expected, small λ2 values tend to the H&S performance and 

high values tend to the extrapolation of the constraint point motions (and their 

associated uncertainty) leading in both cases to a deterioration of the registration. A 
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good calibration of λ2 (=0.1, blue curve) provided a significant improvement of the 

motion estimation (Fig. 3b, 3j). The influence of the constraint point number (N) was 

then evaluated (Fig. 3c, 3g and 3k). Although an optimal value was reached around 

20 points (Fig. 3c, 3k, blue curve), the sensitivity of the CME to this parameter was 

limited. Finally the influence of the bandwidth (R2) provided an optimal calibration for 

a value of 5 (Fig. 3d, 3h, 3i, blue curve).” 

• Discussion 

While these results were not shown in the initial submission of the paper, a 

discussion had been already integrated to the manuscript. Therefore, this part was 

conserved in the revised version of the paper. 

 

3.6.2 Algorithm calibration for vivo experiments: 

The authors would like to apologize again for the lack of information about the in-vivo 
calibration of the employed algorithms in the first submission of the manuscript.  
 
The employed parameters for the in-vivo study were initially calibrated based on the 

registration performance obtained on similar data obtained without reduced field of 

view imaging. The authors agree that some clarification are needed on this point and 

should be added to the manuscript. 

The parameters calibration of a motion estimation algorithm is difficult in-vivo since 

the real motion is unknown. Especially, by considering the initial synthetic case, as 

correctly pointed out by, a higher α2 value will increase the smoothness constraint 

smoothness of the motion and will reduce the registration artifact introduced by the 

intrusive structures. However, such configuration will also decrease the ability of the 

algorithm to estimate complex motion. We recently showed in 

 S. Roujol, M. Ries, C. Moonen, and S. Denis, “Automatic nonrigid calibration of 

image registration for real time mr-guided hifu ablations of mobile organs.” IEEE 

transactions on medical imaging, vol. 30, no. 10, p. 1737, 2011. 

that an optimal range of α2 values for the correction of the respiratory motion on 

abdominal imaging was around [0.1-0.5] and a plateau was generally reached within 

this range of values. We also pointed out in the discussion that using the lower range 

of such plateau may help to improve the robustness of the algorithm against motion 

not encountered during the calibration step (with a potential higher amplitude, due to 

a deeper breath for example).  

However, the choice of an optimal α2 value is the presented reduced FOV imaging 

case appears more tedious. The optimal α2 value (0.1-05) obtained from full FOV 

imaging will provide an optimal registration in the entire target except in the area 

closed to the intrusive structure. On the other hand, a higher value of α2 will decrease 
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this artifact but will deteriorate the registration in areas subject to complex 

deformations (which for the case of the heart may represent the whole myocardium 

due to its complex deformation). Therefore, the optimal calibration depends on the 

criterion to be optimized.  Therefore, we believe that in term of clinical perspective it 

is more valuable to provide an algorithm working correctly in the majority of the organ 

(using a smaller α2 value calibrated on full FOV images, but potentially leading to 

strong local registration artifact) than a higher value which might decrease the overall 

DICE value while affecting/degrading the majority of the registration (due to its 

inability to cope with complex motion).  

A paragraph has been added to the material and method part to justify this point as 

follows (See page 4) 

“In-vivo calibration of the employed algorithms is complex since it depends on the 

criterion to be optimized. The calibration of the H&S method (α2 value) has to deal 

with contradictory effects. A small regularization of the motion field is required to 

enable the estimation of complex motion and to have a globally reliable estimated 

motion. On the other hand, a high constraint on the motion field smoothness would 

reduce the registration artifact induced by intrusive structures but at the same time 

will limit the ability of the algorithm to estimate complex motion. This may thus 

deteriorate the registration in the entire organ. Therefore, we calibrated the employed 

algorithms in a way to maintain optimal performance in the general case of full FOV 

imaging (without the presence of intrusive structures). As recently shown [24], a 

reliable in vivo calibration of the H&S algorithm was obtained for a range of α2 values 

between 0.1-0.5. A plateau was generally observed for these ranges of values and its 

lower bound was suggested as a good way to cope with variations of the breathing 

pattern (such as an amplitude variation or drift of the respiration pattern). Therefore, a 

α
2 value of 0.1 was employed for the H&S algorithm. We empirically found a near-

optimal solution for the CME calibration by employing the following parameters: 

α
2=0.1, λ2=0.1, N=20 and R2=5. Note that a similar optimal configuration was 

obtained for the synthetic dataset experiment (see Result section) except for the α2 

values that were higher due the lowest complexity of the synthesized motion.” 

 
Also as suggested by the reviewer, the harmonic energy was computed for all in-vivo 
cases and is now reported in Figure 4. A sentence has been added to the manuscript 
in the material and method section as follows (see page 5) 
 
“The harmonic energy was also reported for all tested cases to assess the energy of 

the deformation fields.” 

 
In the result section the following sentences were added (See page 6) 
 

“These findings were typical for the entire sequences as confirmed by the time 

evolutions of the DICE similarity coefficient and the harmonic energy, respectively 
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shown in Fig. 4e, 4m and Fig. 4f, 4n. Due to the respiratory cycle, the transient 

structures appeared periodically in the time series and the H&S approach periodically 

failed to recover a reliable motion estimate leading to low DICE similarity coefficient 

and elevated harmonic energy values.” 

… 

“As expected, higher harmonic energy values were obtained with the H&S method 

since the method periodically failed and employed a relative lower weight of the 

smoothness constraint term (the same α2 value (=0.1) was employed for both 

algorithms).” 

 
Finally the abstract was modified to integrate and emphasize the results obtained 

with the presented CME as follows (see page 1) 

“Compared to the H&S approach, a significant improvement (p<0.05) of the DICE 

similarity criterion computed between the reference and the registered organ 

positions was achieved.” 

 

3.7 Lastly, regarding the synthetic experiment it would be interesting to show 

the angular error as typically done in the optical flow community. 

The angular error has been computed and reported the new synthetic dataset. Since 

this point has been extensively discussed in the response 3.6.1, the authors invite 

the reviewer to refer to this answer. 
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