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Abstract

The geometry of the real four-qubit Pauli group, being embodied in the structure of the sym-
plectic polar space W (7, 2), is analyzed in terms of ovoids of a hyperbolic quadric of PG(7, 2),
the seven-dimensional projective space of order two. The quadric is selected in such a way
that it contains all 135 symmetric elements of the group. Under such circumstances, the third
element on the line defined by any two points of an ovoid is skew-symmetric, as is the nucleus
of the conic defined by any three points of an ovoid. Each ovoid thus yields 36/84 elements of
the former/latter type, accounting for all 120 skew-symmetric elements of the group. There are
a number of notable types of ovoid-associated subgeometries of the group, of which we mention
the following: a subset of 12 skew-symmetric elements lying on four mutually skew lines that
span the whole ambient space, a subset of 15 symmetric elements that corresponds to two ovoids
sharing three points, a subset of 19 symmetric elements generated by two ovoids on a common
point, a subset of 27 symmetric elements that can be partitioned into three ovoids in two unique
ways, a subset of 27 skew-symmetric elements that exhibits a 15 + 2 × 6 split reminding that
exhibited by an elliptic quadric of PG(5, 2), and a subset of seven skew-symmetric elements
formed by the nuclei of seven conics having two points in common, which is an analogue of a
Conwell heptad of PG(5, 2).

The strategy we employed is completely novel and unique in its nature, as are the re-
sults obtained. Such a detailed dissection of the geometry of the group in question may, for
example, be crucial in getting further insights into the still-puzzling black-hole-qubit correspon-
dence/analogy.

Keywords: Real Four-Qubit Pauli Group – Symplectic Polar Space W (7, 2) – Ovoids of a
Hyperbolic Quadric of PG(7, 2) – Conwell Heptad

1 Introduction

It is already a firmly-established fact that the structure of the generalized Pauli
group acting on the Hilbert space of N -qubits, N ≥ 2, is embodied in the ge-
ometry of the symplectic polar space of rank N and order two, W (2N − 1, 2)
[1]-[5]. The elements of the group (discarding the identity) answer to the points
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of W (2N − 1, 2), their partitions into maximally commuting subsets correspond
to spreads of the space, a maximally commuting subset has its representative in
a maximal totally isotropic subspace of W (2N − 1, 2) and, finally, commuting
translates into collinear (or, perpendicular). In the case of the real N -qubit Pauli
group, the structure of the corresponding symplectic polar space can be refined
in terms of the orthogonal polar space Q+(2N − 1, 2) — that is, a hyperbolic
quadric of the ambient projective space PG(2N − 1, 2) — which is the locus of
symmetric elements of the group [4].

Due to great importance of this group in quantum information theory, the
N = 2 case was analyzed in very detail [2, 3]. Here, the layout of nine symmetric
elements of the group lying on the quadric Q+(3, 2) was found to be isomorphic
to a copy of the so-called Mermin magic square — an array furnishing one of
the simplest proofs of the famous Kochen-Specker theorem [6]. The geometry
of the next, N = 3 case turned out to be of great relevance for the so-called
black-hole-qubit correspondence [7]. Here, the quadric Q+(5, 2) can be found as
an extension of the Levi graph of the Fano plane and occurs also as a geometric
hyperplane of the split Cayley hexagon of order two [7, 8]. Moreover, its 35
points are in a well-known bijection with 35 lines of PG(3, 2); this property not
only provides a remarkable link between the two- and three-qubit Pauli groups,
but also offers a nice finite-geometrical background for another elegant proof of
the Kochen-Specker theorem [9].

In this paper, we aim at dissecting the geometry of the (real) four-qubit Pauli
group to the extent that can be compared with the previous two cases. The
quadric Q+(7, 2) exhibits a high degree of symmetry, being unusual in that it
admits a graph automorphism of order three, known as triality, that swaps its
points and two systems of generators, and preserves the set of totally singular
lines (see, e. g., [10, 11]). The structure of this quadric can be visualized quite
well through one of its ovoids, that is, a set of nine points which has exactly
one point in common with every generator (maximal totally singular subspace).
Q+(7, 2) was treated this way in exhaustive detail by Edge [12], which will be
the standard reference for us and where the interested reader can look for more
details.1

A number of distinguished geometrical sub-configurations of the ambient space
PG(7, 2) associated with a particular ovoid of Q+(7, 2) will be diagrammatically
recast in terms of subsets of elements of the real four-qubit Pauli group, where
a particular attention will be paid to those featuring both symmetric and skew-
symmetric elements. Some of these subsets have already shown up in quantum
physics, like the generalized quadrangle GQ(2, 4); this remarkable finite geometry,
which admits parametrization by elements of both three-qubit and two-qutrit
Pauli groups, underlies the geometry of the E6-symmetric entropy formula of a
certain class of stringy black holes [13] and, as we shall see, arises in our current
setting from two ovoids sharing a triple of points. But a majority of them are
new, like an analogue of a Conwell heptad of PG(5, 2), formed by the nuclei of
seven conics on two common points of an ovoid. Treating all sets/configurations
in a unified, ovoid-based manner also makes this paper a good repository of

1It is worth mentioning here that the notation employed by Edge is nowadays rather obsolete; thus, for
example, in his language ‘ovoid’ reads ‘ennead’ and for quadrics he uses the terms ‘ruled/non-ruled’ instead of
‘hyperbolic/elliptic,’ respectively.
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noteworthy geometrical subsets of the real four-qubit Pauli group for any scholar
dealing with generalized Pauli groups, whether of their own or in view of possible
applications.

2 Symplectic Polar Spaces, Quadrics, Ovoids and Conwell

Heptads

In this section we shall collect some basic, well-known facts about the geometrical
concepts that will be employed in the sequel.

A (finite-dimensional) classical polar space (see, for example, [14, 15]) describes
the geometry of a d-dimensional vector space over the Galois field GF(q), V (d, q),
carrying a non-degenerate reflexive sesquilinear form σ. The polar space is called
symplectic, and usually denoted as W (d− 1, q), if this form is bilinear and alter-
nating, i.e., if σ(x, x) = 0 for all x ∈ V (d, q); such a space exists only if d = 2N ,
where N ≥ 2 is called its rank. A subspace of V (d, q) is called totally isotropic
if σ vanishes identically on it. W (2N − 1, q) can then be regarded as the space
of totally isotropic subspaces of the ambient space PG(2N − 1, q), the ordinary
(2N − 1)-dimensional projective space over GF (q), with respect to a symplectic
form (also known as a null polarity), with its maximal totally isotropic subspaces,
also called generators, having dimension N − 1. For q = 2 this polar space con-
tains |PG(2N − 1, 2)| = 22N − 1 = 4N − 1 points and (2 + 1)(22 + 1) · · · (2N + 1)
generators.

Next, up to transformations of coordinates, there is one or two distinct kinds
of non-singular quadrics in PG(d, q) according as d is even or odd, namely [14]:

• Q(2N, q), the parabolic quadric formed by all points of PG(2N, q) satisfying
the standard equation x1x2 + · · ·+ x2N−1x2N + x2

2N+1 = 0;

• Q−(2N − 1, q), the elliptic quadric formed by all points of PG(2N − 1, q)
satisfying the standard equation f(x1, x2)+x3x4+· · ·+x2N−1x2N = 0, where
f is irreducible over GF(q); and

• Q+(2N − 1, q), the hyperbolic quadric formed by all points of PG(2N − 1, q)
satisfying the standard equation x1x2 + x3x4 + · · ·+ x2N−1x2N = 0;

where N ≥ 1. A parabolic quadric is specific in that all its tangent hyperplanes
have a common point — called the nucleus (or kernel). As in the case of polar
spaces, any subspace of maximal dimension that lies fully on a quadric is called
its generator; the corresponding dimension is equal to N − 1 for parabolic and
hyperbolic quadrics and N−2 for elliptic ones. The set of generators of Q+(2N−
1, q), N ≥ 2, is divided into two equally-sized disjoint families; two generators
belong to the same family iff the co-dimension of their intersection has the same
parity as N − 1. The number of points and/or generators lying on quadrics is as
follows [14]:

• |Q(2N, q)|p = (q2N − 1)/(q − 1),

• |Q−(2N − 1, q)|p = (qN−1 − 1)(qN + 1)/(q − 1),

• |Q+(2N − 1, q)|p = (qN−1 + 1)(qN − 1)/(q − 1),

3



and/or

• |Q(2N, q)|g = (q + 1)(q2 + 1) · · · (qN + 1),

• |Q−(2N − 1, q)|g = (q2 + 1)(q3 + 1) · · · (qN + 1),

• |Q+(2N − 1, q)|g = 2(q + 1)(q2 + 1) · · · (qN−1 + 1),

respectively. Thus, for example, Q+(7, 2) features (23 + 1)(24 − 1) = 135 points
and 2 × 135 = 270 generators. An ovoid of a non-singular quadric is a set of
points that has exactly one point common with each of its generators. An ovoid
of Q−(2s− 1, q), Q(2s, q) or Q+(2s+1, q) has qs +1 points; an ovoid of Q+(7, 2)
comprises 23 + 1 = 9 points.

Given the hyperbolic quadric Q+(2N − 1, q) of PG(2N − 1, q), N ≥ 2, a set
X of points such that each line joining two distinct points of X has no point
in common with Q+(2N − 1, q) is called an exterior set of the quadric. It is
known that |X| ≤ (qN − 1)/(q− 1); if |X| = (qN − 1)/(q− 1), then X is called a
maximal exterior set. Maximal exterior sets are rather scarce and have already
been completely classified [16]. It was found that Q+(5, 2) (the Klein quadric)
has, up to isomorphism, a unique one — also known, after its discoverer, as a
Conwell hetpad [17]. The set of 28 points lying off Q+(5, 2) comprises eight such
heptads, any two having exactly one point in common.

3 Generalized Pauli Groups and Symplectic Polar Spaces

The generalized real N -qubit Pauli groups (see, e. g., [18]), PN , are generated by
N -fold tensor products of the matrices

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −1
1 0

)
and Z =

(
1 0
0 −1

)
.

Explicitly,

PN = {±A1 ⊗A2 ⊗ · · · ⊗ AN : Ai ∈ {I,X, Y, Z}, i = 1, 2, · · · , N}.

These groups are well known in physics and play an important role in the theory of
quantum error-correcting codes (see, e. g., [19]), with X and Z being, respectively,
a bit flip and phase error of a single qubit. Here, we are more interested in their
factor groups PN ≡ PN/Z(PN), where the center Z(PN ) consists of ±I(1) ⊗

I(2) ⊗ · · · ⊗ I(N). For a particular value of N , the 4N − 1 elements of PN\{I(1) ⊗
I(2) ⊗ · · · ⊗ I(N)} can be bijectively identified with the same number of points
of W (2N − 1, 2) in such a way that two commuting elements of the group will
lie on the same totally isotropic line of this polar space [1]-[5]; moreover, those
elements of the group whose square is +I(1) ⊗ I(2) ⊗ · · · ⊗ I(N) (i. e., symmetric
elements) are then found to lie on a certain Q+(2N − 1, 2) of the ambient space
PG(2N − 1, 2) [4].

As already mentioned in the introduction, the symplectic geometry of the two-
qubit Pauli group, W (3, 2), is also isomorphic to the smallest non-trivial gener-
alized quadrangle, GQ(2, 2), and the corresponding hyperbolic quadric, Q+(3, 2),
the locus of nine symmetric elements of the group, is the geometry behind the
Mermin(-Peres) magic square [2, 3]. Maximal sets of five pairwise non-commuting
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elements of the group have geometrical counterparts in ovoids of GQ(2, 2), or,
equivalently, elliptic quadrics Q−(3, 2) of the ambient space PG(3, 2) [4]. The
three-qubit Pauli group is notable by the fact that its 35 symmetric elements, be-
ing located on a Klein quadric Q+(5, 2) of PG(5, 2), can be identified via the Klein
correspondence with 35 lines of PG(3, 2), and, via a particular copy of W (3, 2)
in the latter space, with certain three-elements sets of the two-qubit Pauli group;
moreover, the 28 skew-symmetric elements of the group located outside the Klein
quadric form eight distinct copies of Conwell heptads. Maximal sets of pairwise
commuting operators are of cardinality seven and correspond to Fano planes in
the associated W (5, 2).

4 Dissecting the Four-Qubit Case via Ovoids of Q+(7, 2)

4.1 Preliminaries

We now come to the core section, the one devoted to revealing a plethora of fine
traits of the W (7, 2)-geometry of the factored four-qubit Pauli group.

We shall start with elementary observation that 255 distinct elements of this
group split into 135 symmetric (i. e., those squaring to +I⊗I⊗I⊗I) and 120 skew-
symmetric (i. e., those squaring to −I ⊗ I ⊗ I ⊗ I). Any maximal set of mutually
commuting elements features 15 elements, being geometrically isomorphic to a
generator of W (7, 2); altogether, there are (2 + 1)(22 + 1)(23 + 1)(24 + 1) = 2295
such sets (see Sec. 3). In what follows we shall be more concerned with the set of
135 symmetric operators and, hence, a particular copy of Q+(7, 2) which they all
are found to lie on.

Our first task is to set up a bijective mapping between the elements of the
group and the points of the associated polar/ambient projective space. This
bijection will be taken in the form:

Ai ↔ (xi, xi+4), i ∈ {1, 2, 3, 4}, (1)

with the understanding that

I ↔ (0, 0), X ↔ (0, 1), Y ↔ (1, 1), Z ↔ (1, 0); (2)

thus, for example, the point having coordinates (0, 1, 1, 0, 0, 1, 0, 1) corresponds
to the element I ⊗ Y ⊗ Z ⊗X . It then follows that the equation of the Q+(7, 2)
accommodating all symmetric elements must have the following standard form

x1x5 + x2x6 + x3x7 + x4x8 = 0. (3)

This can readily be inspected using the fact that the matrix Y is the only skew-
symmetric element in the set {I,X, Y, Z} (see Sec. 3) and, so, any symmetric
element of the group must contain an even number of Y s. In his seminal paper
[12], to be substantially drawn on as mentioned already in introduction, Edge
works with a different system of homogeneous coordinates, namely with the one
where the equation of Q+(7, 2) features all 28 distinct products of pairs:

∑

i<j

yiyj = 0. (4)
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We shall, therefore, be in need of the transformation relating the two coordinate
systems, viz.

x1 = y1 + y4 + y6 + y8,

x2 = y2 + y3 + y6 + y8,

x3 = y2 + y4 + y5 + y8,

x4 = y2 + y4 + y6 + y7,

x5 = y3 + y5 + y8,

x6 = y4 + y7 + y8,

x7 = y2 + y3 + y7,

x8 = y1 + y2 + y8. (5)

One of the reasons Edge had for such selection was that nine points of one of
the ovoids lying on Q+(7, 2) have a particularly simple and appealing coordinate
expression

(1, 0, 0, 0, 0, 0, 0, 0),

(0, 1, 0, 0, 0, 0, 0, 0),

(0, 0, 1, 0, 0, 0, 0, 0),

(0, 0, 0, 1, 0, 0, 0, 0),

(0, 0, 0, 0, 1, 0, 0, 0),

(0, 0, 0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 0, 0, 1, 0),

(0, 0, 0, 0, 0, 0, 0, 1),

(1, 1, 1, 1, 1, 1, 1, 1), (6)

which in our coordinates acquires a more complex form

(1, 0, 0, 0, 0, 0, 0, 1)↔ Z ⊗ I ⊗ I ⊗X,

(0, 1, 1, 1, 0, 0, 1, 1)↔ I ⊗ Z ⊗ Y ⊗ Y,

(0, 1, 0, 0, 1, 0, 1, 0)↔ X ⊗ Z ⊗X ⊗ I,

(1, 0, 1, 1, 0, 1, 0, 0)↔ Z ⊗X ⊗ Z ⊗ Z,

(0, 0, 1, 0, 1, 0, 0, 0)↔ X ⊗ I ⊗ Z ⊗ I,

(1, 1, 0, 1, 0, 0, 0, 0)↔ Z ⊗ Z ⊗ I ⊗ Z,

(0, 0, 0, 1, 0, 1, 1, 0)↔ I ⊗X ⊗X ⊗ Z,

(1, 1, 1, 0, 1, 1, 0, 1)↔ Y ⊗ Y ⊗ Z ⊗X,

(0, 0, 0, 0, 1, 1, 1, 1)↔ X ⊗X ⊗X ⊗X. (7)

Q+(7, 2) contains 960 ovoids in total, forming a single orbit under its automor-
phism group [12]. Hence, without loss of generality, any of them can be taken to
work with and we shall opt for the above given one.

By its very definition (see Sec. 2), an ovoid O of the Q+(7, 2) is a set of nine
points that has exactly one point in common with every PG(3, 2) lying fully on
the Q+(7, 2). Moreover, any s-point subset of O, 2 ≤ s ≤ 7, defines a unique
PG(s − 1, 2) of the ambient space PG(7, 2); otherwise stated, no k points of
O, 3 ≤ k ≤ 8, lie in the same PG(k − 2, 2). It is these subspaces and their
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Figure 1: Left: A diagrammatical illustration of the ovoid O∗. Its nine points are represented
by circles and labelled by the nine corresponding elements of the associated Pauli group. To
save space, in this and all subsequent figures A1A2A3A4 is shorthand for A1 ⊗ A2 ⊗ A3 ⊗ A4.
Right: The set of 36 skew-symmetric elements of the group that corresponds to the set of third
points of the lines defined by pairs of points of our ovoid. The lines are illustrated by dashes
and the elements in question by small shaded hexagons. This pictorial distinction between
symmetric (circles) and skew-symmetric (hexagons) elements will also be used in the sequel.

intersections with the Q+(7, 2) that will be, after being reinterpreted by eqs.
(1) and (2) in terms of the subsets of the associated four-qubit Pauli group, of
most interest to us. To find these structures, we shall employ an elementary fact
that the coordinates of the third point on the line defined by two distinct points
of PG(7, 2) can be found as the sum of the coordinates of the two points; for
example, the third point on the line defined by the points (0, 1, 1, 1, 0, 1, 0, 0) and
(1, 1, 0, 0, 0, 1, 1, 0) is (note that 1 + 1 = 0 in GF(2))

(0, 1, 1, 1, 0, 1, 0, 0) + (1, 1, 0, 0, 0, 1, 1, 0) = (1, 0, 1, 1, 0, 0, 1, 0).

Under our bijection, this sum is seen to transform into ordinary (matrix) product
of the corresponding group elements,

(I ⊗ Y ⊗ Z ⊗ Z)(Z ⊗ Y ⊗X ⊗ I) = Z ⊗ I ⊗ Y ⊗ Z.

This remarkable ‘sum-goes-into-product’ rule, together with bijection (1) and (2),
will enable us a quick and straightforward transition/move between the finite-
geometrical and group-theoretical settings. Our analysis will be accompanied
by a number of illustrations/pictures, which should help the reader grasp the
essentials of the concepts dealt with and guide his visualization of them.

4.2 Subconfigurations of the Group Related to Intersections of
Projective Subspaces with the Q+(7, 2)

Our point of departure is an ovoid O of the Q+(7, 2), in particular examples the
one defined by eq. (7), denoted by O∗ and also sketched in Figure 1, left. We
shall first look at the lines (i. e., PG(1, 1)s) defined by pairs of its points. As the
third point of such a line lies off the Q+(7, 2) [12], the corresponding element of
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Figure 2: Left: A partition of our ovoid into three conics (vertices of dashed triangles) and
the corresponding axis (dotted). As the coordinates of the nucleus of a conic are the sum
of those of its three points, the group element associated with the nucleus is the product
of the three elements of the conic. Right: The tetrad of mutually skew, off-quadric lines
(dotted) characterizing a particular partition of O∗; also shown in full are the three Fano
planes associated with the partition.

the group is skew-symmetric. There are obviously
(
9
2

)
= 36 such secant lines and

because any two of them are disjoint/skew for otherwise four points of the ovoid
would be in the same plane, a contradiction, so there are as well 36 different
skew-symmetric elements — as depicted in Figure 1, right.

Next we pass to subspaces defined by triples of points of O, i. e. to Fano planes
(PG(2, 2)s). Any such triple represents a conic (i. e., a parabolic quadric Q(2, 2))
and is the only intersection of Q+(7, 2) with the associated Fano plane [12]. The
nucleus of the conic is thus an off-quadric point and answers to a skew-symmetric
element. Any ovoid generates

(
9
3

)
= 84 distinct conics; since no two of them share

their nuclei, this is also the number of different nuclei. From the properties of O
it further follows that this set of 84 skew-symmetric elements is disjoint from the
36-element one defined above and so the union of the two sets accounts for all
120 skew-symmetric elements of P4. A remarkable fact is that if O is partitioned
into three sets of three points, the nuclei of the corresponding conics lie on a
line — clearly a line skew to Q+(7, 2) [12]. Such a line is called an axis of O
and for a particular partition of our selected ovoid O∗ it is shown in Figure 2,
left. Obviously, every ovoid yields

(
9
3

)(
6
3

)
/3! = 280 partitions and, so, the same

number of axes. As any Fano plane contains just one line skew to the quadric
(namely the polar of its nucleus), any such partition defines a unique tetrad of
lines that are pairwise disjoint and lying all off the quadric [12]; namely, the three
lines originating from the Fano planes and the axis — see Figure 2, right. The
four lines of a tetrad are notable in that they span the whole PG(7, 2). Sets of
12 skew-symmetric elements that correspond to such tetrads of lines, totalling
to 1120 [12], are thus another kind of distinguished subsets of P4. Each triad
of points of an ovoid O is shared by one more ovoid, O′. The 12 points of the
symmetric difference of the two can be grouped into six pairs, each having points
from both ovoids, in such a way that the six lines they define all pass through a
common point — the nucleus of the conic defined by the three shared points; an
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Figure 3: A conic (doubled circles) of O∗ (thick circles), is located in another ovoid (thin
circles). The six lines through the nucleus of the conic (dashes) pair the distinct points of the
two ovoids. Also shown is the ambient Fano plane of the conic.

illustration of this is remarkable ‘double-six’ property is given in Figure 3.
This property has a very interesting implication, namely that any partition

of an ovoid into three triples of points leads to a unique set of three mutually
disjoint ovoids, each of which shares with the original ovoid one triple. And, even
more interestingly, the set of 27 points comprising these three ovoids can be split
into three mutually disjoint ovoids in another way, where one of the ovoids is
that we started with. So, one arrives at a remarkable set of six ovoids falling
into complementary triads, where each member of one triad shares three points
with each member of the other, and all of them are on the same axis. Edge [12],
on page 19, gives an explicit example of such configuration. This configuration,
after being transformed by (5) into our system of coordinates and then mapped
into the group-setting by (1) and (2), looks as illustrated in Figure 4. Here,
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Figure 4: An example of the set of 27 symmetric operators of the group that can be partitioned
into three ovoids in two distinct ways. The six ovoids, including O∗ (solid nonagon), have a
common axis (shown in the center).
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Figure 5: The commuting/non-commuting property of the 27 elements of the previous figure
with respect to a symmetric (left) and a skew-symmetric (right) element of the group. In both
cases, shaded are those elements that commute with the element shown in the center.

ovoids of one triad are represented by vertices of three concentric nonagons (solid,
dashed and dotted) and those of the other triad by vertices located in three non-
overlapping areas delineated again by solid, dashed and dotted segments. From
the group-theoretical point of view it is worth noting that any symmetric element
commutes with five elements of any of the six ovoids (see Figure 5, left), whereas a
skew-symmetric element commutes with three elements in four ovoids and seven
elements in two ovoids (see Figure 5, right).

Our next move is to subspaces PG(3, 2)s, henceforth called solids, which are
defined by quadruples of points of O. Any such solid shares with the Q+(7, 2) one
more point that, clearly, does not belong to O, the five points lying on a Q−(3, 2)
of the solid in question. As there are

(
9
4

)
= 126 solids associated with a given

O, these additional points, which are all distinct, account for all the remaining
126 points of the Q+(7, 2) [12]. If one selects a point of O and partition the
remaining eight points into two quadruples, the two additional/supplementary
points of the two solids defined by the quadruples are found to lie on a line that
passes through the selected point [12]; given

(
8
4

)
/2 = 35 such partitions, there

are 35 such lines through the point in question. Let us have a more detailed
look at one such partition of our particular O∗, as portrayed in Figure 6. The
point selected is represented by a double-circle and a partition, together with
the corresponding additional points, by shaded and non-shaded circles. The four
lines joining the additional point of one solid and the four points of the second
solid lie fully on the Q+(7, 2). The set of eight more points we get this way (see
Figure 6) and the point selected form an ovoid as well. As each partition of O∗

yields a different ovoid, from what we said earlier it follows that on a given point
of an ovoid there are 35 other ovoids having with it no other point in common
[12]. One can, of course, also reverse the preceding chain of reasoning. That is,
one starts with a pair of ovoids having a single point in common and find the
unique line through the common point and lying fully on the Q+(7, 2) whose two
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Figure 6: Two ovoids, one being O∗, sharing a point (X⊗X⊗X⊗X), and a particular 1+4+4
partition of both that shows how they are related to each other through two additional points
(X ⊗ X ⊗ I ⊗ I and I ⊗ I ⊗ X ⊗X) of the solids defined by the partition. Disregarding the
common point, the remaining 18 points (symmetric group elements) of the configuration can
also be viewed as two pairs of Q−(3, 2), each ‘concurring’ on one of the two additional points.

additional points lead to the required complementary partition of either of the
two ovoids. It is instructive to compare this case with that of two ovoids on a
common conic (Figure 3).

At this point, we shall make a slight digression from our main line to draw the
reader’s attention to the following intriguing facts. It is known [12] that there
are 64 ovoids passing through any point of Q+(7, 2). Choosing one of them as
a reference, there will be 63 sharing with it this particular point. We already
know that 35 of them are such that each has no other point in common with the
chosen ovoid. And since two non-disjoint ovoids can share either one or three
points [12], each of the remaining 28 ovoids must be of the second type; and
this is indeed the case as a point of an ovoid is the meet of

(
8
2

)
= 28 triangles.

This split reminds us of a similar split of 63 points of PG(5, 2) into 35/28 points
lying on/off a Klein quadric Q+(5, 2). As PG(5, 2) is the ambient space of the
symplectic polar space W (5, 2) that underlies the real three-qubit Pauli group,
mapping the above-described set of 63 ovoids into the set of points of PG(5, 2)
provides us with a very interesting relation between single elements of the three-
qubit group and specific nine-element sets of the four-qubit group — a relation
that also accounts for the fundamental 35 + 28 split.2

Let us return back from our detour and proceed to subspaces that are generated
by pentads of points of Q+(7, 2), i. e. to PG(4, 2)s. As any pentad contains(
5
4

)
= 5 quartets, the corresponding PG(4, 2) comprises the five associated solids,

each contributing by one additional point to the intersection of the PG(4, 2)
and Q+(7, 2). These double-five of points form five concurring lines, the point of
concurrence being nothing but the additional point of the solid, and hence a point

2Another important relation between the two groups is furnished by the bijection that sends 135 generators of
W (5, 2) into 135 points of the orthogonal polar space Q+(7, 2) of W (7, 2), that is a mapping where a maximum

set of mutually commuting elements of the three-qubit group corresponds to a single symmetric element of the
four-qubit group.
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Figure 7: A sketchy outline of the intersection of PG(4, 2) generated by a selected quintuple
of points of O∗ (the five points in the upper half of the inner circle) and the quadric Q+(7, 2);
highlighted by shading is one quartet of points within the pentad and the associated additional
point of the solid defined by this quartet.

of Q+(7, 2), defined by the quartet of points of O that complements the pentad
in question; a diagrammatical illustration of this feature, for O∗, is supplied in
Figure 7.

The attentive reader may have noticed that whereas for s = 2, 3 and 4 sub-
spaces PG(s − 1, 2) defined by s-point subsets of O cut the quadric Q+(7, 2) in
non-singular quadrics (of type Q+(1, 2), Q(2, 2) and Q−(3, 2), respectively), the
last discussed case, s = 5, falls short in this respect (for a set of concurrent lines
does not represent any quadric). This is, however, the sole exception, since in the
remaining two cases, s = 6 and s = 7, we again encounter quadrics, these being,
respectively, of Q−(5, 2)- and Q(6, 2)-types. We shall discuss in some detail only
the former case, making just a brief comment on the latter one.

To understand how a Q−(5, 2) emerges as the intersection of the Q+(7, 2)
and PG(5, 2) generated by a sextet of points of O, it suffices to recall a well-
known representation of Q−(5, 2) as a generalized quadrangle GQ(2, 4) where its
27 points are split into a set of 15 elements, forming a generalized quadrangle
GQ(2, 2), and a set called Schläfli double-six [20]. The split in the latter set is
such that each of the six points in either set form with five points of the other set
five lines lying fully onQ−(5, 2); the 30 lines one gets this way form 15 pairs, where
two lines in each pair are concurrent and the 15 points of concurrence are nothing
but the 15 points of the former set (GQ(2, 2)). Let us illustrate this in more detail
on O∗, as displayed in Figure 8. Here, the double six is highlighted by shading.
One half of it comprises the selected sextet of points of O∗, whereas its other
half is represented by the six points of concurrence of the five on-quadric lines in
each of

(
6
5

)
= 6 PG(4, 2)s defined by pentads of points within the sextet selected.

(Otherwise rephrased, any such double-six arises as the symmetric difference of
two ovoids having three points in common (see Figure 3).) Moreover, six lines
defined by pairs of associated points in the double six all pass through a common
point, the nucleus of the conic defined by the triple of points of O∗ that is the
complement of the sextet.
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Figure 8: A schematic sketch illustrating intersection, Q−(5, 2), of theQ+(7, 2) and the subspace
PG(5, 2) spanned by a sextet of points (shaded) of O∗; shown are all 27 points and 30 out of
45 lines of Q−(5, 2). Note that each point outside the double-six occurs twice; in the language
of generalized quadrangles this corresponds to the fact that any two ovoids of GQ(2, 2) have a
point in common. The point Z⊗Y ⊗I⊗I is the nucleus of the conic defined by three unshaded
points of O∗.

Finally, a short note on the intersection of the Q+(7, 2) and a PG(6, 2) spanned
by a heptad of points of O. This intersection is isomorphic to a Q(6, 2) whose
nucleus is the third point of the line defined by the two points that are comple-
mentary to the heptad selected.

4.3 Other Notable Subconfigurations of the Group

In the last subsection we dealt with subsets/subconfigurations featuring mostly
symmetric elements of P4. This subsection will be focused on those ovoid-
associated aggregates within P4 in which the dominant role is played by skew-
symmetric elements.

We shall start with a configuration of 27 skew-symmetric elements that exhibits
a natural 15 + 2 × 6 partition, similar to the above-described one within the
point-set of Q−(5, 2). We have already mentioned an obvious fact that there are
28 triangles, and so 28 conics, on any point of O. The nuclei of these conics
are all distinct and the set we are interested in is obtained if one of the nuclei
is singled out. The conic whose nucleus was singled out becomes distinguished
within the set; hence, also its two points different from the common-to-all-the-
conics point are distinguished. As on either of them there are other six conics
in the set, the corresponding nuclei will form a double-six. We again take O∗

to illustrate this property, as furnished by Figure 9. Here, the 28 conics all
share the point X ⊗ X ⊗ X ⊗ X (double-circle), the nucleus of the selected
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Figure 9: A set of nuclei (hexagons) of the 28 conics of O∗ having a common point (double-
circle); when one nucleus (double-hexagon) is discarded, the set of remaining 27 elements is
subject to a natural 15 + 2× 6 partition (illustrated by different types of shading).

conic is Z ⊗ Y ⊗ I ⊗ I (double-hexagon) and its two additional points (shaded
crescents) are Z ⊗ I ⊗ I ⊗ X and X ⊗ Z ⊗ X ⊗ I; the nuclei of the other six
conics passing via the former/latter point are represented by hexagons shaded
in the lower/upper part. It is also easily checked that six lines defined by pairs
of associated points of the double six are concurrent, the point of concurrence,
Y ⊗Z ⊗X ⊗X , being the third point on the line defined by the common point
(X ⊗ X ⊗ X ⊗ X) and the singled-out nucleus (Z ⊗ Y ⊗ I ⊗ I). Despite their
similarity, this configuration is fundamentally different from Q−(5, 2). This is
because the third point on any of 30 lines constructed from the double-six in the
same way as described above for Q−(5, 2) corresponds to a symmetric element of
the group and the 15 points of concurrence of these lines thus cannot be identified
with the complement of the double-six, which features exclusively skew-symmetric

elements (see Figure 9). Nevertheless, as the interested reader can readily verify,
these 15 symmetric elements and the double-six of skew-symmetric ones do form
a configuration isomorphic to Q−(5, 2).

Nuclei of ovoid-associated conics will also play a prominent role in configura-
tions to be addressed next. Let us consider a set of nuclei of seven conics of O∗

having two points in common. If, without loss of generality, the two shared points
are taken to be Z⊗Z⊗I⊗Z and I⊗X⊗X⊗Z, we get a particular set of seven
nuclei (skew-symmetric elements) as shown in Figure 10, left. Straightforward
calculations yield that the remaining point on each of

(
7
2

)
= 21 lines, defined

by pairs of points of the heptad, corresponds to a skew-symmetric element as
well — see Figure 10, right. So, we arrive at a set of 28 points, lying off the
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Figure 10: An illustration of the seven nuclei (hexagons) of the conics on two particular points
of O∗ (left) and the set of 21 lines (dashed) defined by these nuclei (right).

Q+(7, 2), in which there exists, remarkably, a subset of seven points such that 21
lines defined by this seven-point subset are contained fully in the set. But this
is exactly (see Sec. 2) the defining property of a Conwell heptad of PG(5, 2) with
respect to a hyperbolic quadric Q+(5, 2) — a set of seven out of 28 points lying
off Q+(5, 2) such that the line defined by any two of them is skew to Q+(5, 2).
This analogy with Conwell heptads can further be strengthened by observing that
all 35 distinct nuclei of the conics defined by triples of points of our heptad, as
illustrated in Figure 11, stand for symmetric operators of the group — this being
the counterpart to 35 points situated on Q+(5, 2).
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Figure 11: An illustration of the set of nuclei of the conics spanned by triples of points of our
heptad, in a form of five different orbits under an automorphism of order seven. The left-hand-
side figure depicts just a single representative from each orbit, whilst the right-hand-side one
shows all 35 points.
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Figure 12: An example of three ‘Conwell heptads’ (illustrated by three distinct arcs) on a
common point (double-hexagon). In each heptad, the link between one nucleus and the third
point of its associated conic is made more explicit.

There exist several notable configurations of ‘Conwell heptads’ associated with
any given ovoid of Q+(7, 2). Perhaps the most pronounced of them, and most
symmetric as well, is the one featuring three heptads sharing a point. This
configuration is obtained if three pairs of common points of the conics form a
triangle. Again, we illustrate this aggregate on O∗ — Figure 12. Here, the
triangle is formed by the points/elements X ⊗X ⊗X ⊗X , Y ⊗ Y ⊗ Z ⊗X and
X⊗I⊗Z⊗I (double-circles). The elements of a given heptad are arranged to lie
on an arc, the arcs being distinguished from each other by different drawings. The
common point of the three heptads (Y ⊗Z⊗X⊗I) is, of course, the nucleus of the
conic defined by the points of the triangle. Let us further recall that our triangle
lies in one more ovoid of Q+(7, 2) (Figure 3). Hence, there is an additional set of
three heptads on the same point. We leave it with the motivated reader to find
the 18 remaining elements of this other set.

Another very attractive configuration entails four consecutive ‘Conwell hep-
tads’ in the sense that the pairs of common points form a quadrangle. In such
a configuration, a given heptad shares one point with either of the neighbour-
ing heptads and is disjoint from the remaining heptad. The four shared points
and the four vertices of the quadrangle can be paired in such a way that the
corresponding four lines are concurrent, their meet being the fifth point of the
solid spanned by the vertices of the quadrangle that is on Q+(7, 2). We visualize
this geometrical structure in Figure 13, left, employing again O∗. Here, the fifth
on-quadric point (shaded double-circle) of the solid defined by the vertices of the
quadrangle (double-circles) is the third point on the lines (not shown) joining the
following pairs of points: Y ⊗ Y ⊗ Z ⊗X and Z ⊗ Z ⊗ Y ⊗X , X ⊗ Z ⊗X ⊗ I
and I ⊗ Y ⊗ I ⊗ I, Z ⊗ I ⊗ I ⊗X and Y ⊗X ⊗X ⊗X , and X ⊗ I ⊗ Z ⊗ I and
I ⊗X ⊗ Y ⊗ I.

Our final configuration that deserves a bit of attention is endowed with seven
consecutive ‘Conwell heptads.’ Here, we only mention the subset comprising
seven points shared by the neighbouring heptads and the associated set of seven
points representing symmetric elements, defined as shown in Figure 13, right.
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Figure 13: Left: – An example of the configuration of four consecutive heptads on O∗. The
seven elements of a given heptad lie on a particular ellipse. Right: – A set of the seven common
points (hexagons) of the neighbouring members of seven consecutive ‘Conwell heptads’ defined
by the edges of marked heptagon, and the associated set of seven symmetric elements (circles)
of the group. The product of the seven skew-symmetric elements of the former set is equal
to Z ⊗ Y ⊗X ⊗ I (double-hexagon), this being also the product of the elements of O∗ in the
selected heptagon. The product of the seven symmetric elements yields the identity element
(double-circle).

5 Conclusion

We have carried out a comprehensive examination of the geometrical structure
of the real four-qubit Pauli group in terms of ovoids lying on the distinguished
hyperbolic quadric Q+(7, 2) that is the locus of all symmetric elements of the
group. We have found, and described in detail, a number of remarkable subcon-
figurations of the group that can be divided into two groups: those related to the
intersections of the Q+(7, 2) with projective subspaces spanned by various sub-
sets of points of an ovoid and those comprising various aggregates of the nuclei
of conics defined by an ovoid. About a dozen of distinguished types of config-
urations have been found, each being diagramatically illustrated on the same,
particularly-chosen ovoid. Amongst the most interesting one can rank: a subset
of 12 skew-symmetric elements lying on four mutually skew lines that span the
whole ambient space, a subset of 15 symmetric elements that corresponds to two
ovoids having a triple of points in common, a subset of 19 symmetric elements
generated by two ovoids on a common point, a subset of 27 symmetric elements
that can be partitioned into three ovoids in two unique ways, a subset of 27 skew-
symmetric elements that exhibits a 15 + 2 × 6 split reminding that found on a
Q−(5, 2), and a subset of seven skew-symmetric elements that is an analogue of
a Conwell heptad of PG(5, 2). The strategy we employed is completely novel and
unique in its nature, as are the results obtained.

As already stressed, generalized Pauli groups are well known to physicists
and play a very important role in quantum information theory. It is, therefore,
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desirable to deepen our understanding of their geometrical structure. The present
paper, in our opinion, represents a substantial contribution in this respect as per
the four-qubit case. One of the reasons why we focused on this particular case
is our belief that it(s symplectic geometry) may shed some light on the mystery
of the so-called black-hole-qubit analogy/correspondence (for a relatively recent
review, see [21]).
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[8] P. Vrana and P. Lévay, J. Phys. A: Math. Theor. 43 (2010) Art. No. 125303;
arXiv:0906.3655.
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