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S U M M A R Y
This paper presents an inversion method using the interseismic velocity field to determine
effective rigidity of the lithosphere. The method is based on the minimization of a cost
function defined as the quadratic measure of the difference between measured and modelled
velocity fields on a discrete set of points. The continuous mapping of the rigidity is fulfilled
with a limited set of parameters and the forward solution is achieved using a plane stress finite
element code. The computation of the cost function gradient in the parameters’ space allows
one to iteratively find the best parameters set through a suitable optimization algorithm.

We first design a benchmark including an abrupt rigidity variation that cannot be described
by a continuous function. For such a case, we show that increasing the number of parameters
is a way to accurately describe sharp variations of the rigidity map. Then, we use a dense
GPS velocity field over the southwestern United States to estimate the corresponding rigidity
variations for different spatial resolutions of the parameters’ grid. We analyse the conceptual
and practical difficulties associated with our methodology. Finally, rigidity maps obtained by
our inversion method in southwestern United States and particularly across the San Andreas
Fault System are reviewed and compared to current plate rigidity estimates and geophysical
data over this area.

Key words: Inverse theory; Seismic cycle; Dynamics of lithosphere and mantle; Rheology:
crust and lithosphere.

1 I N T RO D U C T I O N

The interseismic velocity field in actively deforming domains is
traditionally modelled by a buried dislocation aiming to represent
the long-term fault motion at depth (Savage & Burford 1973). Be-
cause it has been shown that most of these geodetic slip rates are
fairly consistent with rates deduced from geological measurements
(Reilinger et al. 2006), this approach is becoming paramount. How-
ever, this way to model interseismic strain is not unique and we adopt
in this paper a different viewpoint. Indeed, we propose a mechani-
cal relationship between the plate rigidity and the interseismic strain
distribution that can be measured by various geodetic methods (con-
tinuous or campaign mode global positioning system (GPS), InSAR
and leveling). This subject has been previously addressed for a 1-D
horizontal simple shear situation (Chery 2008). Our purpose here
is to show that the spatial distribution of the plate rigidity can be
estimated in 2-D by inverting a dense velocity field data set with a
suitable optimization method.

1.1 Flexural lithosphere rigidity

Large geological strain of the lithosphere mostly reflects irreversible
stress–strain relations involving viscosity, plasticity and friction.

However, numerous topographic and gravimetric features of the
oceanic and continental lithosphere have been interpreted like the
flexure of a plate of effective elastic thickness (often called Te)
subjected to vertical and horizontal loads (Watts 2001). In oceanic
domains, topographic profiles around oceanic volcanoes and bulges
associated with plate curvature in subduction zones can be ex-
plained using simple flexural plate models (Fig. 1a). Loads can
be distributed over the plate (case of a sedimentary basin) or point
like (case of a volcano) and bending moment can be also added
at plate ends (Weissel & Karner 1998). This formalism is quite
appropriate to study the elastic behaviour of the lithosphere because
plastic and frictional strains are generally small.

However, geological strain is often much higher than elastic strain
due to plate flexure. For example, topography undulations in the cen-
tral Indian Basin are associated with pervasive faulting that can be
explained as an elasto-plastic buckling of the lithosphere submit-
ted to horizontal forces (Gerbault 2000). Deciphering elastic strain
in continental areas is still more challenging. Indeed, present-day
topography results from the whole geological and geomorphologic
history of the area that can largely affect the plate rigidity esti-
mate. For this reason, the rigidity parameters obtained by adjusting
an elastic model to best simulate topographic and gravimetric data
must be termed as ‘effective’ as they are likely to incorporate the
signature of non-elastic strain.
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784 J. Chéry et al.

Figure 1. (a) Vertical motion uz induced by a vertical load applied on one side of an elastic plate with a variable rigidity. (b) Horizontal motion uy induced by
a horizontal load applied on the same plate. The asthenosphere resists passively to plate motion in both cases.

Two methods have been used so far to compute effective rigidity
of a bended lithospheric plate. When the loads can be geographically
defined (such as for a volcano or a mountain belt), a 1-D or 2-D
plate model can be used to invert its elastic properties. However,
different studies over the same geographical areas may display large
discrepancies of the inverted rigidities (Hetenyi et al. 2006). When
loads appear to be distributed inside the lithosphere, it becomes
more appropriate to use the correlation between topographic and
gravimetric fields to find the plate rigidity explaining at best the
observed signals (e.g. McNutt 1990; Audet & Bürgmann 2011).

1.2 Plate rigidity at different timescales

Lithospheric loads occurring at short timescales like earth tides
reveal a purely elastic behaviour of the crust and the mantle. In
contrast, permanent vertical loads like mountains or volcanoes lead
to a complete relaxation of the underlying asthenosphere. Between
these extrema, transient strain is observed, therefore revealing the
time-dependent behaviour of the crust and the mantle (Thatcher &
Pollitz 2008). In such a case, a relevant rheological model seems
to be an elastic plate (the lithosphere) lying over a viscoelastic
asthenosphere (Nur & Mavko 1974).

Transient viscoelastic behaviour occurs over timescales of
1–100 yr as attested by post-seismic motion (Ergintav et al. 2007)
and motion rebound associated with large lakes artificially fill-
ing/infilling (Kaufmann & Amelung 1995). Inverted linear viscosi-
ties range from 1019–1021 Pa s for the lower crust to 1018–1019 Pa
s for the upper mantle. At longer timescales (10–100 kyr), varia-
tion of loads induced by glaciers and large lakes induce a transient
motion that can be measured geodetically (Milne et al. 2001) or
by analysing abandoned shorelines (Bills et al. 1994). These latter
authors found viscosities as low as 4 × 1017 Pa s at 40 km depth in
the eastern Great Basin (western United States) and a viscosity of
2 × 1020 Pa s for the uppermost mantle. Concerning the loading
timescale effect on the rheological response of the lithosphere, the
studies above reveal that long-term loading results in a lower esti-
mate of elastic plate thickness than observations of strain relaxation
over much shorter times (Thatcher & Pollitz 2008). Although the
measurements of these transient motions are useful to perform a
joint inversion of plate rigidity and its underlying viscosity, the
places where post-seismic or postglacial strain occurs are few and
far between. Therefore, these observations do not allow for an ex-
tensive rigidity mapping on the continents.

1.3 Interseismic strain and shear plate rigidity

Contrary to post-seismic or postglacial loading that can be idealized
like the response to a step function leading to a stress relaxation with

decaying velocities, interseismic strain appears like a kinematic
loading associated with plate motion. If a measured geodetic strain
is not affected by the coseismic or post-seismic motion of a previous
large earthquake, it may therefore be representative of the slow
loading phase of the lithosphere during the seismic cycle (Fig. 1b).
Up to now, interseismic geodetic strain provided by GPS and InSAR
methods have been mostly used to constrain kinematic models using
thick rigid lithospheric blocks connected by slipping faults at depth,
usually called block models (Meade & Hager 2005). Therefore, it
is possible to invert a velocity field to obtain both blocks motion
(translation and rotation on the sphere) and fault motion (slip rate
and locking depth). In such a case, the velocity field across a strike-
slip fault follows an arctangent variation associated with the solution
of a screw dislocation in an elastic half-space (Chinnery 1963).

Mechanically speaking, the block model is made of infinitely
rigid blocks connected by the locked part of the fault above the
locking depth. We propose to modify the block model approach in
two ways:

(1) We assume that the lithosphere rigidity can continuously vary
across fault zones and rigid blocks. In this way, we define a con-
tinuous version of the block model with a laterally variable rigidity
(as for flexural modelling) where the integrated shear rigidity of
the lithosphere combines both the thickness and the intrinsic elastic
parameters of the plate. We consider here a simple case for which
interseismic shear only occurs on vertical planes. This leads to a
strain setting for which the velocity field does not change with
depth. Therefore, integrated rigidity is simply the product of the
vertical average of the intrinsic shear rigidity in the plate with the
plate thickness.

(2) The motion at the surface of a given portion of the lithosphere
is driven by lateral forces applied to the boundary of the considered
domain. This assumption is quite different to the one made by the
block model that prescribes internal boundary conditions. This way
of modelling the interseismic velocity field is close to the approach
used in geomechanical modelling: the observed geological strain
is modelled using a mechanical model with assumed rheology and
boundary conditions (Chéry et al. 2001).

We still make some additional assumptions:

(1) No strong interaction occurs between the plate and the un-
derlying mantle, as it occurs, for example, in subduction zones.
Moreover, we assume that the viscous coupling with the astheno-
sphere is small during the interseismic phase. This can be justified
as follows: mantle viscosities deduced from post-seismic motion
and postglacial rebounds are on the order of 1018–1019 Pa s as (see
Subsection 1.2). If we assume a passive mantle–plate interaction in
the zone of interest, strain rate at the base of the lithosphere has the
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Plate rigidity inversion 785

order of magnitude of the interseismic lithospheric strain, that is,
10−17−10−14 s−1. The resulting interacting stress is therefore on the
order of 101–105 Pa, much smaller than the deviatoric stress acting
in the lithosphere. According to this reasoning, we conjecture that
the mechanical setting of a plate during interseismic loading is close
to what occurs during the flexural rebound of the same plate submit-
ted to a geological load. However, as these two mechanisms are not
related to the same geophysical processes, we call H the thickness
associated to the shear rigidity of the lithosphere to differentiate it
from the flexural thickness (Te).

(2) We assume that the surface motion is equal to the motion
at depth. We acknowledge that this simplification may be not true
everywhere since local strain rotation may, for example, be asso-
ciated with fault tips. However, we conjecture that this kind of
strain pattern is not dominant and that it is therefore reasonable to
model the plate deformation using a pure shear approach (i.e. main
strain axes are horizontal and vertical). In our case, we model litho-
spheric strain using a 2-D plane stress approximation for which the
relevant material parameter is the integrated shear rigidity, called
D hereafter. Although this approach allows for the prediction of
the vertical motion associated with horizontal strain, we did not
compare it with geodetic vertical motion since tectonic motion in
California is essentially horizontal.

Even with these simplifying assumptions, the inversion of the
effective rigidity of the continental lithosphere based on the knowl-
edge of the interseismic velocity field at the surface is not straight-
forward. Indeed, there is no direct relation between the geodetic
strain observed at one location and the rigidity of this location.
Rather, the geodetic strain at this location depends in an unknown
manner on the whole rigidity distribution within a certain neigh-
bourhood and on the imposed velocity field along the boundaries
of the study domain. Moreover, the uniqueness of the solution is
not warranted since two different rigidity distributions could lead
(at least in principle) to the same velocity field. A last difficulty is
linked to the relation between the number and spatial distribution
of geodetic measurements and the optimal number of parameters
needed to estimate the rigidity. In Section 2, we propose a way to
deal with these difficulties using a global optimization approach.

The paper is organized as follows: we first present the methodol-
ogy of inverse modelling with the chosen optimization method. A
synthetic case is built to test the impact of rigidity parametrization
on the solution quality. Then an application to southern California
is done using the dense GPS velocity field of this region. Finally, the
significance of the rigidity map of southern California is discussed
in light of the geophysical data.

2 M E T H O D O L O G Y O F I N V E R S E
M O D E L L I N G

2.1 Introduction

Because the physical properties of the Earth interior cannot be
directly deduced from direct observation, inverse problems based on
Earth’s surface data are at the heart of many geophysical problems
(Tarantola 1987). In the case of the inversion of geodetic data during
interseismic strain, the parametrization of the problem is largely
influenced by the nature of the forward model.

If the forward model is purely kinematical, it means that the
predicted velocity field does not derive from a physical conservation
equation. Therefore, the inverse problem is equivalent to data fitting.
This approach is well illustrated by the construction of the strain

map using geodetic data (Tape et al. 2009), with the joint use of
other data constraints like fault slip orientations and earthquake
focal mechanisms (Kreemer et al. 2003). The choice of the forward
model is largely dependent on the type of approximation function
for the velocity field. Polynomial, splines or other continuous and
derivable functions like wavelets can be used, thus allowing an easy
computation of the strain map. The optimal solution is generally
found using a least-squares minimization.

Another use of interseismic strain is the estimation of long-term
fault slip rate and locking depth of crustal faults. In the case of an
infinitely long single strike-slip fault, only these two parameters are
searched (Savage & Burford 1973). However, most of intraconti-
nental domains like the western United States are characterized by
changing fault azimuth and dip angle. Also the expected fault slip
rate along faults is expected to vary. A generalization of the Savage
and Burford approach is therefore a model made of a collection of
blocks separated by faults (locked during the interseismic period).
The inverse problem is dedicated here to find the fault slip rate
distribution at depth (beneath the locking depth) that fits at best the
observed velocity. Motion of the blocks is simultaneously inverted
(Meade & Hager 2005). As this approach seems to be well suited to
invert fault slip rates around vast undeformed domains (Reilinger
et al. 2006), the uniqueness of the inverse problem is not guaranteed
when a collection of small blocks is used as it happens in California:
a large trade-off between fault slip rate and locking depth prevents
an unequivocal slip rate determination (D’Alessio et al. 2005).

We discuss in the following subsections the optimization scheme
of the inverse problem, the forward model associated with the me-
chanical problem, the parametrization of the rigidity distribution,
the choice of the cost function and the resulting numerical algo-
rithm.

2.2 Global optimization and solution of boundary value
problems

We aim to determine plate rigidity parameters that permit to best
adjust a known surface velocity field inside a domain � bounded by
a frontier d� (Fig. 2). The principle of this method is based on the
minimization of a cost function J, which represents a measure of
the discrepancy between the velocity field v predicted by a forward
model and a target velocity v∗ associated with a discrete geodetic
data set. The minimization of this cost function, which convexity
is unknown, leads to a spatial distribution of rigidity, which should
explain at best the velocity field within �.

Since the cost function is not necessarily convex, it likely has
multiple local minima. Consequently, a global optimization strat-
egy has to be implemented. Several strategies may be chosen. Some
algorithms carry out a direct search (derivation-free) in a multidi-
mensional parameter space. The most widely used are simulated
annealing algorithms (e.g. Kirkpatrick et al. 1983), genetic algo-
rithms (e.g. Holland 1975), or more recently the neighbourhood
algorithm (e.g. Sambridge 1999). They make it possible for the
cost function to deteriorate under certain conditions to avoid any
local optimum. However, such approaches generally become time-
consuming when the dimension of the parameter space increases
(typically more than 20). An alternative approach consists in us-
ing gradient-based methods within a global search strategy. This is
accomplished by using, sequentially or in parallel, various differ-
ent start points for a standard gradient descending algorithm (e.g.
Ugray et al. 2007).

In this study, we use a global optimizer of this latter type,
which combines a standard gradient-based method within a second
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Figure 2. Spatial view of the optimization problem corresponding to three
layers. The data layer is made of velocity measurements included in the
domain � (black arrows). The parameter layer defines rigidity values over
a grid (green dots). The finite element layer corresponds to a mesh having
variable rigidity D(x,y) from one element to another with boundary condi-
tions defined on d�. This formalism allows for the prediction of velocities
at exact data points location.

minimization problem whose objective is to provide an initial start
that belongs to the attraction basin of the global minimum of the cost
function (Mohammadi & Saiac 2003). The minimization is driven
by a global optimization algorithm. We briefly explain how we in-
troduce global search features into a classical, typically gradient
based, local minimization algorithm. Details on the mathematical
background and applications of this approach to academic and in-
dustrial problems can be found in Mohammadi & Saiac (2003),
Ivorra (2006), Ivorra & Mohammadi (2006) and Mohammadi &
Pironneau (2009).

Classical gradient-based minimization algorithms can be seen as
discrete forms of initial value problem for a first-order dynamical
system. For instance, p being a vector of parameters to adjust starting
from its initial value p0, an iterative minimizing process is defined
by (p0 given)

pn+1 = pn − ρM−1(pn)
dJ (pn)

dp
, (1)

where ρ is a scalar (either fixed or optimized at each step of the
iterative process) and M(p) may be the Identity matrix in the case of
the steepest descent method or the Hessian matrix of J (respectively,
an approximate of the Hessian matrix) in the case of the Newton
(respectively, quasi-Newton) method. Eq. (1) is a discrete form of
the following first-order differential problem:

M(p)p′ = −dJ

dp
, p(t = 0) = p0, (2)

where p′ represents the first derivative of p. Let suppose the global
minimum is unique. Such algorithms converge towards the global
minimum if the initial condition belongs to its attraction basin. Oth-
erwise, the minimizing sequence of parameter pi leads to a local
minimum. In that sense, the problem of global minimization with
a gradient-based algorithm becomes the prescription of an initial
condition for the mentioned initial value problem in the suitable
attraction basin. This objective leads to consider this global op-
timization as a boundary value problem. Let us suppose that the
value of infimum Jm of the functional is known, but not where it is
reached. Then, we can define the initial condition as an additional

unknown p(0) = v that should minimize the misfit h(u) between
the local minimum and the expected global minimum. Hence, our
global optimization problem can be written as follows:

M(p)p′ = −dJ

dp
, p(t = 0) = v, v = arg min

u
(h(u)). (3)

Now we have two nested minimization problems. If one uses a
steepest descent method for the outer minimization problem, this
leads to two coupled dynamical systems.

M(p)p′ = −dJ

dp
, p(t = 0) = v, (4)

v′ = −dh

dv
, v(t = 0) = v0 (5)

which we solve using the algorithm described in Mohammadi &
Saiac (2003).

2.3 Forward modelling and basic assumptions in our case

We consider a 2-D deformable plate in the framework of linear
and isotropic elasticity. Velocity boundary conditions (also called
Dirichlet conditions) are applied all along its boundary d� as shown
in Fig. 2. Because the plate traction at the surface corresponds to a
free normal traction, a plane stress assumption is used. We do not
consider the vertical plate motion associated with its internal strain.
The plate has a thickness H and the stress tensor σ can be written
like

σi j = E

[
μ

1 − μ2
εkkδi j + 1

1 + μ
εi j

]
, (6)

where ε is the strain tensor and where i, j and k = 1, 2. We assume in
the following that the Poisson’s ratio μ is constant and equal to 0.25,
which is close to its seismological value. The only free mechanical
parameter is then the Young’s modulus E(x,y). Because the model
is driven by a velocity condition, only the relative variation of the
Young’s modulus matters for strain computation, that is to say that a
distribution C × E(x,y) provides the same velocity field v whatever
the value of the constant C. For this reason, we use in the following
an adimensional rigidity distribution D(x,y) defined by E(x,y)/Emin

where Emin is the minimum value of E found on the domain �.
Consequently, a non-unit scale is used throughout the paper. The link
between the relative rigidity D and its geophysical interpretation in
terms of effective lithospheric thickness is treated in the discussion
section.

This direct problem is solved with the finite element (FE)
method (Zienkiewicz et al. 2005), using the academic code CAMEF
(courtesy of Riad Hassani). The rigidity value of each element of the
FE mesh is set depending on the model parameters estimated from
an independent set of points, called thereafter ‘control points’.

2.4 Parametrization of the rigidity distribution

Mapping a continuous function based on control points can be done
by a variety of interpolation or approximation methods. Since we
do not have a priori information on the shape and the wavelengths
contained in the rigidity distribution, we choose to define the con-
tinuous rigidity distribution D as the interpolation of some scalar
values pi (our model parameters) located at np control points Pi,
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Plate rigidity inversion 787

using a characteristic length scale d0 (eq. 7).

D (x, y, d0) =

np∑
i=1

pi · exp(−d2
i /d2

0 )

np∑
i=1

exp(−d2
i /d2

0 )
(7)

with

di =
√

(x − xi )
2 + (y − yi )

2, (8)

where (x, y) are the coordinates of the current point and (xi, yi)
the coordinates of the ith control point. Knowing the barycentric
coordinates of each element, the above formulae allow for the com-
putation of element rigidity on the whole FE mesh. In this work, we
choose to set a square parameter grid, the length scale d0 being equal
to the distance between two adjacent control points. In this way, a
coarse grid of parameters on the domain � decreases the control
point numbers np in the optimization process. A denser parame-
ter grid allows for a better description of the rigidity distribution
as d0 decreases. One may note that no relation is given between
the parameter grid length scale and the mesh resolution. However,
the element size should be smaller than d0 to capture the rigidity
variation defined by eqs (7) and (8).

2.5 Choice of the cost function

In a continuous framework, a cost function J is a measure of the
distance between two continuous fields v and v∗. In the case where
v is a solution provided by the forward analysis and v∗ is a target
solution, J can be defined as a residual estimate with the following
L2 integral:

J = 1

|�|
∫
�

(v − v∗)2d�. (9)

In practical applications in geodynamics, v∗ is given by a discrete
collection of velocity vectors in places where geodetic measure-
ments are acquired. This leads to redefine J as a discrete sum of
velocity discrepancies weighted by a user-defined spatial data den-
sity.

J =
n∑

i=1

(vi − vi∗)2 · w2
i /

n∑
i=1

w2
i . (10)

Density weighting coefficients wi are given to balance the spatial
heterogeneities of the GPS measurements. We set the weight on each
velocity vector proportional to the minimum distance between this
observation and the closest observation on the domain. We increase
this way the influence of the areas where GPS benchmarks are few
and far between.

If we include the covariance matrix of the data C in the cost
function, J can be rewritten in a discrete formulation as

J = (ν − ν∗)T W T C−1W (ν − ν∗). (11)

This equation is equivalent to eq. (10) if C is taken as an identity
matrix. Using this notation, W is now a diagonal matrix made of
the weighting coefficients for all GPS measurements.

2.6 Numerical algorithm

To summarize this section, the inverse problem applied to geodetic
data is based on a global minimization algorithm. From a known
plate geometry, boundary conditions and a given initial rigidity

distribution, a plane stress FE model is used to calculate the cost
function J associated with a rigidity distribution which is controlled
by a parameter grid. The cost function is minimized to find the model
that best predicts the measured velocities. The loop ends when the
cost function is found to have decreased enough (this is based on
a user choice) or when the variations of the parameters are found
negligible. Of course, in both cases there is no guarantee that the
solution is a global minimum. The flow of calculation is shown in
Fig. 3. In the following sections, we will present the square root of
the cost function (Jmin)1/2 expressed in mm yr−1 to provide a simple
comparison with the velocity data.

3 S Y N T H E T I C C A S E : A H A R D
I N C LU S I O N I N A S O F T M AT E R I A L

Before addressing the problem of inversion of the lithosphere rigid-
ity using real geodetic data, we test the capability of the optimization
algorithm to retrieve a given rigidity distribution D∗ from its asso-
ciated velocity field v∗. More specifically, we focus on the influence
of the spatial resolution of our models.

We attempt to invert a discontinuous rigidity distribution D∗
made up of two domains having constant rigidities (Fig. 4). The
rigidity of the polygonal inclusion is 10 times higher than that of
the surrounding medium. The model is submitted to simple shear
on its lateral sides at a rate of 20 mm yr−1. The lower and upper
sides are let free. The target velocity field v∗ is computed with
the FE code CAMEF. The 196 nodes of the FE grid are used to
define the target velocity field v∗. The inverse processing aims to
retrieve the rigidity parameters on a regular grid of control points.
In this case, it is important to note that all sides of the forward
model are constrained to have the velocity corresponding to the
desired solution v∗. Only the inner nodes of the mesh are treated
as unknown. At each iteration, the rigidity value within each mesh
element is computed according to eqs (7) and (8).

Due to the discontinuity of the target solution, the parametric
rigidity field cannot be described adequately unless an infinitely
fine grid is used. Therefore, we focus here on the relation between
the fineness of the grid (i.e. the number of model parameters) and
the accuracy of the inverted rigidity solution.

The coarse grid (3 × 3) does not really allow for the detection
of the rigid body location (Figs 5a and 6). In particular, the rigidity

Forward Model 

v model velocity
v

parameters
update

Target velocity
(ie, GPS data)

Cost function J 
and its gradient
       dJ/dp

Boundary
conditions

Rigidity distribution (D)

STOP
when J < Juser 

 

Parameterization (p)

Figure 3. Sketch of optimization algorithm applied to plate rigidity inver-
sion. This is the local version of the used search method. The context of
global optimization is described in Section 1.
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788 J. Chéry et al.

Figure 4. Benchmark geometry, relative rigidity distribution (D), boundary
conditions and target velocity field v∗. The inner body is 10 times more
rigid than the surrounding material, but the obtained velocity field is scale-
invariant with respect to the rigidity distribution. Horizontal spatial units are
in metres. The colour scale has been chosen to highlight the spatial variation
of the relative rigidity in this objective distribution as well as in the inverted
solutions shown in Fig. 5.

contrast is largely underestimated. The medium grid (8 × 8) cor-
rectly estimates the location and the diameter of the rigid inclusion
(Fig. 5b). The rigidity ratio is underestimated by a factor of 2. The

Table 1. Benchmark cases description.

Case Number of parameters (Jmin)1/2 (mm yr–1)

1a 3×3 0.82
1b 8×8 0.26
1c 15×15 0.12

fine grid resolution (15 × 15) permits the capture of the contour
of the hard material (Fig. 5c). The residual velocity v − v∗ asso-
ciated with the three experiments reveal interesting features. First,
the coarse grid has already a relatively small maximum residual
(1.4 mm yr−1) with respect to the velocity applied on the lateral
sides (20 mm yr−1). This is likely due to the fact that the differ-
ence between the target solution v∗ and the solution associated with
a constant rigidity is already modest. Indeed, all these solutions
are constrained by the same boundary conditions that limit the ob-
served differences. However, it remains that the residual velocity
dramatically decreases when the grid resolution increases (Table 1),
(Jmin)1/2 for the fine grid being as low as 0.12 mm yr−1 (Fig. 7c).

Interestingly, the location of zones of high residue is correlated
with the areas where the rigidity is not well retrieved. Therefore,
the spatial distribution of v − v∗ (that can always be mapped even if
D∗ is unknown) provides information about the spatial distribution
of the error made on the rigidity map.

In conclusion of this benchmarking, the benefit of having a fine
grid in the zone of discontinuities is clearly visible as the inverted
solution is greatly improved with respect to the true rigidity dis-
tribution. However, refining the parameter grid may appear to be
useless and costly in regions where the rigidity remains constant.
A multiscale approach for the grid definition would probably be a
good strategy to get an optimal model parametrization.

Figure 5. Results from (a) relative rigidity estimate D using a coarse grid (3 × 3), (b) same with a medium grid (8 × 8) and (c) same using a fine grid (15 ×
15). Parameter locations are given by the circles. The colour scale is the same as in Fig. 4 where the objective rigidity distribution is shown.
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Figure 6. Relative rigidity inverted for the three parameter grids (Fig. 5), along a profile corresponding to Y = 50 m.

C© 2011 The Authors, GJI, 187, 783–796

Geophysical Journal International C© 2011 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/187/2/783/572557 by Bibliothèque U

niversitaire de m
édecine - N

îm
es user on 11 June 2021



Plate rigidity inversion 789

Figure 7. Residual velocities associated with (a) low resolution, (b) medium resolution and (c) high-resolution inversion grid.

4 R I G I D I T Y I N V E R S I O N I N S O U T H E R N
C A L I F O R N I A

The southern part of the San Andreas Fault System (SAFS) appears
appropriate to study the relationship between the mechanical rigidity
and the interseismic velocity field. Indeed, this zone is sampled by
a large amount of high-quality GPS measurements published in a
common reference frame (Shen et al. 2003). Moreover, the tectonics
of the SAFS mostly involves horizontal motion that may be well
described with a plane stress formulation.

The velocity data set used in our study is mostly based on the
SCEC Crustal Motion Map version 3.0 (Shen et al. 2003), referred
hereafter as CMM3 model as it was published by (Kreemer &
Hammond 2007). The transient motion induced by the
Landers–Hector Mine event is supposed to have been removed
(Kreemer, personal communication) and we assume that these ve-
locity data only represent interseismic motion associated with the
regular loading between the Pacific and the North American plates.
The 1σ uncertainties associated with these data are quite homoge-
neous and display an average of 1 mm yr−1. For this reason, we do
not include these uncertainties in the cost function computation and
we set the matrix C to identity (eq. 11). The measurements are dis-
tributed heterogeneously (Fig. 8). Indeed, the density measurement
is generally high close to active faults where high strain gradient are
expected, but GPS sites are few and far between in weakly deformed
areas like the Sierra Nevada or the Mojave Desert.

4.1 Mechanical problem and boundary conditions

As for the synthetic case, we use the forward model described in
Subsection 2.3 based on the hypotheses given in Subsection 1.3
to model the strain associated with interseismic loading. Our chief
assumption is that the observed velocity field is associated with the
strain of a variable rigidity plate. A second assumption is that the
choice of the velocity reference frame should not change the opti-
mal parameter estimation. Indeed, if one believes that the rigidity
inverted from the velocity field is an intrinsic plate property, the cho-
sen reference frame should not affect the minimization process and
its final result. The reader will find in Appendix the corresponding
demonstration for the reference frame independence and its domain
of validity.

To solve the mechanical problem using a plane stress FE approx-
imation, we project the geographically defined GPS velocity field
on a Cartesian frame. We use a Lambert conformal conic projection
with a map projection centre set to 242◦ longitude and 34◦ latitude
and the two standard parallels set to 32◦ and 36◦ latitude. We limit
our study domain to a rectangular area, which includes the east-
ernmost part of the Pacific Plate along the Californian coast to the

west, the Basin and Range and the Mojave Desert to the east and
the central San Andreas Fault (SAF) segment and the south Sierra
Nevada to the north. It is worthwhile to note that to the north of this
selected area, the SAF loading cannot be assimilated to an inter-
seismic loading since the fault is creeping up to the San Francisco
Bay. To the south, the model ends near the Mexican border as the
CMM3 data set is restricted to USA. The selected area contains 620
velocity vectors from the total data set.

Because GPS data do not directly sample the bounds of the rect-
angular area that we define (Fig. 8), we need to define the boundary
conditions along this contour. To do so, we consider GPS data
located within a band having a user-defined width (Fig. 8). We ap-
proximate separately each velocity component on the profile using
a local linear regression of the velocity field in the strip. We set the
bandwidth to 20 km in zones densely sampled with GPS measure-
ments. However, the bandwidth is as large as 100 km in areas where
sites are few and far between.

Figure 8. Spatial distribution of the geodetic measurements on the SAFS
used for the inversion. The velocity field is shown (grey and red arrows) in the
North American reference frame. The selected area in the rectangle (dashed
lines) corresponds to our domain of analysis. The velocity distribution along
the boundary conditions is shown with blue arrows. These boundary con-
ditions are computed using a subset of the velocity field marked with red
arrows (see text). Active faults are drawn in green (Jennings 1992). Letters
L, H and N indicate the location of the 1993 Landers, the 1994 Northridge
and the 1999 Hector Mine earthquakes, respectively. SC refers to Santa
Catalina Island.
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790 J. Chéry et al.

Table 2. Summary of southern California rigidity inversions.

Number of (Jmin)1/2

Case parameters (mm yr–1) Remarks

2a – 4.87 Constant rigidity (no optimization)
2b 6∗7 2.60 Coarse grid
2c 12∗15 2.13 Fine grid

4.2 Inversion results

Using previously described geometry, interpolated boundary con-
ditions and GPS data, we perform three experiments summarized in
Table 2. Cases 2b and 2c are stopped after 100 iterations allowing
the cost function to reach a minimum.

4.2.1 Constant rigidity experiment

It is worthwhile to recall (see Subsection 2.3) that only the rigidity
variation matters for the strain prediction. This would not be the case
if stress would be used as a control data. Therefore, the predicted
velocity field remains unchanged for any constant rigidity. We run
an experiment using the boundary conditions previously described
with a constant rigidity (case 2a) to evaluate the cost function with-
out rigidity optimization. In such a case, the forward model leads to
a velocity field v that is markedly different from the data velocity
field v∗ with differences exceeding 6 mm yr−1 in some places. The
residual velocity field v − v∗ is close to zero near the domain border
for which the model velocity field is fully enforced by the boundary
conditions that are derived from the data. The square root of the cost
function is 4.87 mm yr−1 for this experiment that is significantly
higher than the 1σ uncertainty of ∼1 mm yr−1 associated with the
data.

The largest residual velocities (>6 mm yr−1) are located (1)
between the coast and the SAF in southern California with an S–E
orientation, (2) in central California between the SAF and the Sierra
Nevada and (3) in the Mojave Desert with an N–NW orientation.
This discrepancy is due to the strong distortion of the velocity field
across the SAF zone (Fig. 8) that cannot be reproduced by a constant
rigidity model.

4.2.2 A coarse resolution experiment

The first optimization experiment (case 3b) is run with a 6∗7 pa-
rameters rectangular grid orientated along the rectangular domain’s
borders. We limit the variation of the rigidity to a 1:20 ratio as we
did for the synthetic benchmarks. Estimated rigidity values cover
the whole parameter range [1:20] (Fig. 9a). Lowest values [1–5] are
associated with the SAF zone but also with the Mojave Desert. In-
termediate values occur in the eastern California shear zone ECSZ.
High rigidities [10–20] appear in the Great Basin-Sierra Nevada, the
Mojave Block and along the Pacific Plate. The optimization pro-
cess leads the square root of the cost function to decrease down to
2.60 mm yr−1 that is markedly less than the constant rigidity result,
but still higher than the data uncertainty. Most of the residual veloc-
ities are below 5 mm yr−1, the highest residues being concentrated
in highly deformed areas around the SAF and in the Mojave Desert
(Fig. 9b).

4.2.3 High-resolution experiment

The case 2c corresponds to a refined grid of parameters (12 × 15)
still aligned with the borders orientations. The rigidity pattern pro-
vided by this experiment (Fig. 10a) is broadly consistent with the
one obtained with the coarse inversion. However, the transition be-
tween low and high-rigidity areas is here sharper, suggesting that the
coarse grid does not contain the high spatial frequencies required
to correctly predict the observed velocity field. All zones associ-
ated with high strain and active tectonics (SAF zone, Mojave Block
and eastern California shear zone) are associated with a low rigid-
ity [1–5]. The Sierra Nevada, the Basin and Range and the Pacific
Plate display high [10–20] rigidity. Surprisingly, a low-rigidity area
emerges near the Santa Catalina Island in a zone where the plate
could be considered as rigid. This pattern, that is not visible in the
coarse inversion, may pose the problem of the relationship between
the data set (spatial density and precision), the choice of the param-
eter grid and the quality of the inversion. This high-resolution grid
leads the square root of the cost function to reach 2.13 mm yr−1

(Table 2) that corresponds to 18 per cent of improvement with
respect to case 2b. Residual velocities are not homogeneously

Figure 9. (a) Relative rigidity for a coarse parameter grid of case 2b and (b) associated residual velocity field between GPS and modelled velocity.
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Plate rigidity inversion 791

Figure 10. (a) Distribution of relative rigidity for a fine parameter grid (case 3c) and (b) associated residual velocity field between GPS and predicted velocity.

distributed: they are relatively high (>2 mm yr−1) in some strained
zones along the SAF (Fig. 10b) and in the southwestern Sierra
Nevada. They remain modest in most of the other areas such as the
eastern hinge of the Sierra Nevada and the eastern California shear
zone, the Basin and Range and in southernmost California.

4.2.4 Experiments comparison along profiles

Due to the major impact of the SAF zone on the interseismic strain
in California, the relationship between the velocity field and the
rigidity is well visible on a cross-section perpendicular to the fault.
We show here how different inversions match the fault-parallel
velocity field on two profiles (Figs 8 and 11). The north profile
intersects the SAF just north of the Big Bend and also crosses the
southern Sierra Nevada and the southern California Shear Zone.
The south profile crosses the SAF north of the Salton Sea and ends
in the south Basin and Range.

For a constant rigidity (case 2a), the lithospheric plate is homo-
geneous and the lateral variations of computed velocity field are
mostly driven by the boundary conditions. The modelled velocity
field along the two profiles is quite smooth and does not follow the
high velocity gradients visible in the data. Therefore, most of the
data are not fitted by the model within the errors bar.

The experiment with a coarse grid (case 2b) improves the agree-
ment between the model and the data for the two profiles. However,
the model is closer to the data for the south profile for which most of
the data points agree with the model within the error bars (Fig. 11a).
This better fit is probably associated with a smoother velocity gra-
dient in this area with respect to the northern profile. Both profiles
indicate a minimum of rigidity in the zone where the velocity gra-
dient is maximum.

The high-resolution experiment (case 2c) provides a fair
model–data agreement for both profiles. Most of the velocity values
on the GPS points are explained within the error bars. Two notable
exceptions are (1) the northeast part of the southern profile where
the predicted velocities are ∼2 mm lower than the observed values
(see also Fig. 10b) and a group of points located 20–30 km north-
east to the SAF trace on the northern profile. The high-resolution

experiment more adequately adjusts the gradients shown by the data
than the coarse resolution case. The two minima of rigidity revealed
by the inversion match well the location of the SAF to the west and
the location of the ECSZ to the east (Figs 11e and f).

5 D I S C U S S I O N

The general optimization process and the forward plane stress model
described in Section 3 have been used to invert the rigidity field for
two kinds of mechanical problems. The first type of benchmark
includes a sharp rigidity discontinuity that cannot be described
by the continuous function associated with the parametrization. In
such a case, we show that the target rigidity D∗ associated with the
velocity field v∗ can be approached by minimizing the cost function.
A way to better describe the rigidity field D is to expand the number
of control points (i.e. the number of rigidity parameters to estimate),
therefore generating higher spatial frequencies of the rigidity map
near the imposed discontinuity. A second group of experiments
aims to invert the effective rigidity of southern California using the
horizontal GPS velocity field as the target v∗. In this case, the real
effective rigidity is unknown and the boundary conditions on the
model sides are not precisely known.

We analyse first the conceptual and practical difficulties asso-
ciated with our methodology. Then, we compare the result of our
inversion in southern California with the geophysical data that may
help to constrain the lithosphere rigidity in this area.

5.1 Critical analysis of the inversion method

5.1.1 Definition of the cost function

For a given distribution of rigidity, the most intuitive approach for
estimating the value of the functional cost consists in evaluating the
misfits right on the locations of the geodetic measurements. How-
ever, these data sets are often irregularly distributed in space. Some
areas are poorly sampled whereas others probably exhibit redundant
measurements. This spatial variability has to be taken into account
when assessing the reliability of our optimal models of rigidity
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792 J. Chéry et al.

Figure 11. Velocity (mm yr−1) and relative rigidity associated with north profile (right-hand column) and south profile (left-hand column). (a) and (b)
fault-parallel velocity model (black lines), data and errors in red; (c) and (d) fault-perpendicular velocity model; (e) and (f) normalized rigidity along the profile
for coarse and fine parameter grids. Dashed lines indicate the intersection of the profile with the fault systems (EL = Elsinore Fault; SJ = San Jacinto Fault;
SAF = San Andreas Fault, see Fig. 8 for profile location).

distribution. Consequently, it sounds reasonable to integrate these
geodetic measurements into a spatially continuous representation
(Kreemer et al. 2003; Tape et al. 2009). This latter objective can be
performed via the use of different basis functions (e.g. polynomial,
exponential, splines and wavelets). This way, it would be possible
to generate pseudo-data on a regular data grid especially in areas
that may be lacking real measurements.

5.1.2 Choice of the boundary conditions

Boundary conditions (i.e. the distribution of velocities along the
border of the study domain) impose heavy constraints on the min-
imization process. In this first approach, we define them simply by
interpolating the existing velocity field nearby. However, it often
happens that data may lack along the model boundary. This fact is
illustrated in southern California both to the east, where very few
measurements exist in the Mojave Desert, and to the west, where
we attempt to extend our domain of analysis offshore. Therefore,
the boundary conditions can result from a rough interpolation that
may impact the rigidity estimate. To overcome this limitation and
to relax this postulate on a priori boundary conditions, a coherent
optimization approach should deal with rigidity distribution and
boundary conditions all together.

5.1.3 Rigidity parametrization

Synthetic cases presented in this paper suggest that rigidity tends
to very large values in areas that exhibit little internal deformation.
Thus, its amplitude ranges from a given minimum to infinity if
some zones are not significantly deformed. This semi-open varia-

tion domain is not adapted to any numerical search. Consequently,
a wiser rigidity parametrization could use the compliance of the
material (the rigidity inverse) instead of the rigidity. The search
interval for the compliance would range from a very small value
(a quasi-rigid body) to a finite value (maximum compliance). This
use of compliance could insure a greater stability of the inversion
process.

Another improvement of the parametrization could be to define
a parameter grid adapted to the variable data density and to the
spatial variation of the rigidity (or the compliance). In the previ-
ous sections, we tested various spatially uniform grids of control
points by changing the sampling step. Although these tests led to
similar results, it seems obvious that the spatial distribution of these
control points has to roughly match the map of the local gradient
of deformation. The higher is this latter, the denser should be the
distribution of control points and conversely. The presence of a few
points in a place where high spatial frequencies affect the veloc-
ity field may not be sufficient. Consequently, an enhancement of
our approach consists in estimating the best locations of our control
points, leading to an irregular parameter grid that optimally matches
the velocity field. This can be performed within a hierarchical mul-
tilevel analysis framework. The use of the residual velocity map to
define the optimal locations of the control points could be a way to
define a comprehensive algorithm.

5.1.4 Uniqueness and error of the solution

The synthetic case and the natural case that we study reveal that the
resulting rigidity map strongly depends on the grid choice. Also, in
the case of the SAFS, the error and the spatial distribution of the
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Plate rigidity inversion 793

data must have an impact on the uncertainty of the estimated rigidity
parameters. In this paper, we just compare the residual velocity
map with the data along two profiles and we show a progressive
convergence of the model velocity towards the data GPS velocities
within their uncertainties. However, it remains to understand the
relationship between the distribution of the velocity residues and the
accuracy of parameters estimation. This major concern is beyond
the scope of the paper and will be addressed in a future work.

Another important point is that the best solution D∗ may not
perfectly fit the target field v∗ even with an optimal parameter
grid design. Indeed, there is no guarantee that v∗ corresponds to a
plane stress solution even if the data are errorless. First, the 2-D
plane stress model could be too rough to describe some 3-D effect
occurring in the lithosphere. Also, other forces may apply to the
lithosphere in addition to the lateral constraints, such as the body
forces due to the topography, the basal drag from the mantle or any
kind of transient motion. For example, it is notable that two spots of
high velocity residual on Fig. 10b are located in the areas of 1992
Landers and 1994 Northridge earthquakes. These two large events
certainly affect the local velocity field that probably exhibits some
transient effects that are not taken into account in our approach. In
this respect, our method could allow for the detection of a departure
of the velocity field from a plane stress solution. This interesting
property has been recently used to interpret an anomalous velocity
field in Morocco within a convergent area (Perouse et al. 2010).

5.2 Geophysical interpretation of plate rigidity variations
in southern California

5.2.1 Comparison with other rigidity estimations

The inversion of effective rigidity associated with southern Califor-
nia velocity field suggests that an accurate rigidity model can be
computed from a dense, high-precision GPS velocity field (CMM3
model). Stable features emerge from our experiments that can be
compared with other rigidity proxies.

Variations in effective flexural thickness in the United States
have been estimated at large scale (Bechtel et al. 1990). Using
coherence properties of topographic and gravimetric properties in
the frequency domain, this study displays high flexural thickness
in central and north United States then decreasing towards small
values of 4–8 km in southwestern United States close to our zone
of study. However, the authors note that fault bounded blocks like
the Sierra Nevada may have a greater rigidity than the surrounding
areas. Another study at a smaller scale in western United States
(Lowry et al. 2000) seems to support this conjecture with display-
ing higher flexural thickness in the Sierra Nevada (∼15 km) than
in the Basin and Range (5 km). Direct plate gravity modelling of
individual tectonic provinces such as the Sierra Nevada has been
used to infer local rigidities (Kennelly & Chase 1989). These au-
thors conclude that the Sierra Nevada has a high rigidity due to
its large isostatic residual anomaly. In summary, in agreement with
our results, inversions of flexural thickness based on gravity and to-
pography provide some clues that some rigidity contrast may exist
between the Sierra Nevada–Great Valley unit and the surround-
ing area. However, it must be recalled that this kind of estimation
method assumes a constant rigidity over the window of estimation
even if the true rigidity varies significantly over short spatial scales
(Lowry et al. 2000). Therefore, the comparison between these es-
timates and the inversion provided here cannot be used to validate
our approach.

Another estimation of the effective elastic thickness based on
geodetic velocity field in southern California has been computed
using simple 1-D models (Chery 2008). Despite the rough approxi-
mations of the governing equation of elastic plate made in this work,
it emerges common features with the inversion presented here. A
major contrast is found between a low rigidity of the SAF zone
(Carrizo area and Salton Sea area) and a high rigidity of the Pacific
Plate, the Sierra Nevada and the Mojave Block. As for the 2-D in-
version, the rigidity contrast between low and high rigidity reaches
10 and more, illustrating that highly rigid zones such as the unit
Great Valley–Sierra Nevada are not presently strained (Dixon et al.
2000). However, we must recognize that this comparison mostly
indicates that the 1-D analysis is a posteriori validated by the 2-D
analysis.

5.2.2 Relative rigidity and geophysical setting of southern
California

Another way to infer the realness of our relative rigidity map D
is to infer the relative rigidity variations from related geophysi-
cal features. If we consider the mechanical lithosphere as a stress
guide for which the inner part is elastic, the integrated elastic shear
rigidity D is proportional to the elastic plate thickness H times its
intrinsic elastic properties (see eq. 6). The former term is therefore
mostly dependent on the seismological properties of the lithosphere
like Young’s modulus E. Seismological data indicate that E varies
laterally and with depth. If we consider a vertical profile in the litho-
sphere, D is therefore proportional to Ē Hwhere Ē is the average
Young’s modulus over the thickness H . Horizontal variations of the
shear modulus (which is proportional to Young’s modulus) have
been invoked to explain asymmetric patterns of geodetic velocity
fields (Le Pichon et al. 2005). However, it has been noted that lateral
shear modulus contrast does not exceed a ratio of 2–3, the smallest
shear modulus values generally corresponding to the fault zones.
At scales larger than 10 km, the relative Vp and Vs variations within
the crust at a given depth do not exceed 10 per cent except for shal-
low layers associated with sedimentary basins (Lin et al. 2007). It
is therefore unlikely that intrinsic elastic properties are responsible
for large lateral variations of effective rigidity. Rather, we think that
mostly the effective elastic thickness H varies over the continents.
For the specific case of a lithosphere submitted to a shear load, it has
been proposed that high heat flow areas correspond to smaller elas-
tic thickness than the one associated with low heat flow provinces
(Chery 2008). If this is true, an inverse correlation should emerge
between inverted rigidity and the heat flow data of this area (Sass
et al. 1994; Sass et al. 1997).

Therefore, we compare our map of rigidity distribution with the
heat flow of southern and central California (Fig. 12). Being aware
of the large variability of heat flow data due to perturbations of
lithospheric heat flow by hydrologic or volcanic heat transfer, some
trends seem to emerge however. In central California, low heat flow
values (<60 mW m−2) are found in the Sierra Nevada–Great Valley
and correlate well with high rigidities. High values (>80 mW m−2)
occur to the east in the eastern California shear zone and to the west
around the central SAF (∼70 mW m−2). They are places where
strain is localized and consequently, places where we predict low
effective rigidity. Nevertheless, such a correlation vanishes in the
south Basin and Range, which is characterized by a heat flow higher
than 80 mW m−2 but displays a high rigidity.

Overall, the correlation between heat flow and rigidity maps is
rather, but not entirely, good. This finding has been observed at
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794 J. Chéry et al.

Figure 12. Heat flow map produced from the Western United States
Geothermal Database (http://smu.edu/geothermal/heatflow/heatflow.htm)
(Blackwell & Richards 2004). Only data whose quality is high or medium
have been selected. White lines are the contour lines of our relative rigidity
model presented in Fig. 10(a).

world scale (Audet & Bürgmann 2011). Indeed, these authors found
a weak correlation coefficient (−0.32) between flexural thickness
estimates and heat flow. It is worthwhile to recall that different
factors prevent the prediction of lithosphere rigidity from heat flow
measurements. In addition to shallow heat flow perturbations, large
variations of radiogenic heat occur in the crust, therefore modifying
the temperature distribution at depth in the lower crust and in the
upper mantle (Sass et al. 1994). Also, rheological variations in the
crust and the mantle due to chemical variations are likely to change
the temperature of the seismic/aseismic transition (Williams 1996).

To get rid of these crustal effects, we compared our rigidity map
with the seismic velocity models at the base of the lithosphere
(in the upper mantle at depth ∼100 km) obtained by Rayleigh
wave tomography (Yang & Forsyth 2006), ambient noise and earth-
quake tomography (Yang et al. 2008) and surface wave tomography
(Pollitz & Snoke 2010). Throughout the crust, the Sierra-Nevada
exhibits high-velocity anomalies. At greater depths (∼100 km), a
positive anomaly stands in southern Great Valley, which has been
explained as a detachment of cold lithosphere by mantle delamina-
tion. On the contrary, a low-velocity anomaly appears in the eastern
Sierra-Nevada and along Walker Lane interpreted as upwelling of
the asthenosphere. The same pattern exists beneath Salton Trough
probably associated with the extension that affects this area. As
stated at the scale of the whole western United States, these models
are globally correlated with the heat flow map shown in Fig. 12.
Therefore, we reach the same conclusions, namely: (1) in the Sierra
Nevada–Great Valley, our estimation of high rigidity correlates with
high seismic velocities and low heat flow, (2) low-velocity anoma-
lies are found along the eastern California shear zone and the Salton
Trough in agreement with our estimation of low rigidity, whereas (3)
the southern Basin and Range does not exhibit either high-velocity
anomalies, or low heat flow, as one could have expected from our
high-rigidity estimate. This latter persistent discrepancy may be ex-
plained by the lack of dense geodetic measurements in this area
located close to the limits of our study domain. An inversion of
GPS velocities at a larger scale (whole western United States) will
perhaps lead to a slightly different relative rigidity distribution in
this area.

In addition to the heat flow versus rigidity correlation, most of
low-rigidity areas are associated with active faults (Fig. 12). Strik-
ingly, high-rigidity zones are not crossed by active faults. Although
the rigidity map that we present here is only based on the knowl-
edge of the interseismic geodetic strain with assumed locked faults,
a causal link may explain the correlation. Because actively faulted
zones display a high heat flow of ∼80 mW m−2, the depth of 350 ◦C
isotherm which is usually associated with the maximum seismic-
ity depth in the continental crust is estimated to 10–15 km (Sibson
1982). If the strength of the lithosphere is limited to the seismogenic
crust in these high heat flow area, the effective elastic thickness
should be close here to 10 km. Therefore, the stress accumulation
of these weak areas eventually leads the fault to failure in line with
long-term mechanical modelling of active faulting in California
(Bird & Kong 1994;Chéry et al. 2001). We must point out that
our explanation does not apply to eastern Mojave area where high
rigidity and the lack of faulting are associated with a high heat
flow.

To summarize, the comparison between our inverted rigidity map
of the SAF zone and the geophysical knowledge of the area suggests
that a large variation of integrated rigidity has its root in horizontal
thermal state variations within the lithosphere as proposed for ex-
ample for northwestern America (Hyndman et al. 2009). In southern
California, the location of low-rigidity areas is consistent with ob-
served high heat flow, active faulting and the geodynamical setting
of the SAF zone (Teyssier & Tikoff 1998).

Our interpretation is at odds with the mechanical understanding
of interseismic strain published in the literature. Indeed, interseismic
strain in fault zones is often modelled using thick elastic blocks
separated by slipping faults beneath a locking depth (e.g. Savage
& Burford 1973; Meade & Hager 2005) or by viscoelastic cycle
deformation (Savage & Prescott 1978). Despite the fact that block
models can explain data equally well, we point out that using a fault
driven at depth by a dislocation is virtually equivalent to assuming
a null strength on the slipping fault. If one adopts this point of view,
it is then possible to interpret the locking depth of the block model
as the base of a laterally variable elastic plate, the locked fault being
a low-rigidity area (see Chery (2008) for a discussion). However,
additional interseismic strain sources like steady slip at depth and
viscoelasticity have been modelled together with effective rigidity
variations (Pollitz et al. 2010). These authors conclude that much
(but not all) the strain rate must be attributed to effective rigidity
variation, a result that ultimately supports the approach taken in this
paper.

6 C O N C LU S I O N

This work is a first attempt to determine the effective rigidity of
the continental lithosphere from 2-D interseismic velocity field.
Both synthetic and natural cases suggest that a global optimization
scheme aiming to minimize a cost function converges towards a
unique solution. However, our experiments also demonstrate that
the choice of the parameter space is central to minimize efficiently
the cost function and to capture the strain gradient associated with
velocity data. We acknowledge that some aspects of the method need
improvement to strengthen our methodology. We aim to address the
following aspects in a near future:

(1) The formal calculation of the resolution of the method, that
is the a posteriori error on the parameters as a function of the data
distribution and its a priori error;

(2) The development of a multiscale grid for the parameter space;
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(3) The optimization of the boundary conditions together with
the elastic rigidity. This way, the rigidity map would only depend
on the choice of the geographical limits of the studied domain and
the chosen parametrization;

(4) The formulation of the problem with a plane stress approach
defined on the sphere to avoid a data projection onto a Cartesian
frame. Ultimately, a full 3-D forward model would account for the
whole equilibrium of the mechanical problem including the shape
of the lithosphere and its associated elastic variations.

Beyond the inversion of effective elastic properties of the litho-
sphere, this new methodology could be also useful to estimate the
stress rate associated with the observed geodetic strain using a con-
sistent framework. Indeed, the optimal rigidity solution has direct
strain rate and stress rate counterparts throughout the model. There-
fore, the projection of the stress rate tensor over the active faults
should give a prediction of stress accumulation over the considered
interseismic period.

A C K N OW L E D G M E N T S

We thank Riad Hassani for providing his plane stress Finite Element
code CAMEF and for a thorough reading of an early version of the
manuscript. The paper was improved by the constructive comments
of two anonymous reviewers and the Associate Editor.

R E F E R E N C E S

Audet, P. & Bürgmann, R., 2011. Dominant role of tectonic inheritance in su-
percontinent cycles, Nat. Geosci., 4, 184–187, doi:10.1038/NGEO1080.

Bechtel, T.D., Forsyth, D.W., Sharpton, V.L. & Grieve, R.A.F., 1990. Vari-
ations in effective elastic thickness of the North American lithosphere,
Nature, 343, 636–638.

Bills, B.G., Currey, D.R. & Marshall, G.A., 1994. Viscosity estimates for the
crust and upper mantle from patterns of lacustrine shoreline deformation
in the Eastern Great Basin, J. geophys. Res., 99, 22 029–22 086.

Bird, P. & Kong, X., 1994. Computer simulations of California tectonics
confirm very low strength of major faults, Bull. geol. Soc. Am., 106,
159–174.

Blackwell, D.D. & Richards, M., 2004. Calibration of the AAPG geothermal
survey of North America BHT data base, AAPG Annual Meeting, Dallas,
TX, Poster session, paper 87616.

Chery, J., 2008. Geodetic strain across the San Andreas Fault reflects elastic
plate thickness variations (rather than fault slip rate), Earth planet. Sci.
Lett., 269, doi:10.1016/j.epsl.2008.01.046.
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A P P E N D I X : V E L O C I T Y R E F E R E N C E
F R A M E I N VA R I A N C E

To demonstrate this assumption in the context of the minimization
of the cost function, one needs to prove that the gradient of J does

not change if the velocity fields v and v∗ are replaced, respectively,
by rotated and translated fields vR and vR∗′. Let us start with a
simple calculus for the gradient of a functional based on least-
square differences of two velocity fields as given in eq. (11). In its
discrete formulation, and considering a covariance matrix equal to
the Identity matrix, the gradient of this functional for a rotated and
translated velocity field in a Cartesian coordinate system is given
by

∇ JR = Grad[(νR − νR∗)T W T W (νR − νR∗)]

= (∇νT
R W T W (νR − νR∗) + (νR − νR∗)T W T W∇νR)

= (∇νT RT W T W R(ν − ν∗) + (ν − ν∗)T RT W T W R∇ν)

= (∇νT W T W (ν − ν∗) + (ν − ν∗)T W T W∇ν)

= ∇ J
(A1)

with

vR = R(v + T ),

v∗
R = R(v∗ + T ),

RT R = I,

where R denotes a diagonal matrix of identical 2-D-rotation matri-
ces, T a translation vector and W the weighting diagonal matrix,
uniform for the east- and north-velocity component of one sin-
gle sample. This proves analytically that the gradient of functional
based on least-square differences of two velocity fields with respect
to the rigidity parameters is the same whatever rotated and translated
velocity fields being used.

If we include the covariance matrix of the data C in the cost
function, J can be rewritten in a discrete formulation as eq. (11).

J = (ν − ν∗)T W T C−1W (ν − ν∗). (A2)

In such a case, the above analysis holds if RT W T C−1W R =
W T C−1W . Indeed, the gradient in its matrix formulation is given
by

∇ JR = Grad[(νR − νR∗)T W T C−1W (νR − νR∗)]

= (∇νT
R W T C−1W (νR − νR∗) + (νR − νR∗)T W T C−1W∇νR)

= (∇νT RT W T C−1W R(ν − ν∗) + (ν − ν∗)T RT W T C−1W R∇ν)

�= (∇νT W T C−1W (ν − ν∗) + (ν − ν∗)T W T C−1W∇ν). (A3)

The equality of the last line of eq. (A3) would require that no cor-
relation exists both between the uncertainties of the east and north
component for each site, and between the uncertainties associated
with two different sites. Thus, the inverse matrix of covariance is
not diagonal. Consequently, the change of velocity reference frame
is likely to induce some changes in the gradient of our functional
to minimize. Hence, we have no guarantee to converge to the same
optimal model even though our tests suggest that this effect is likely
to be negligible.
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