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A SIMPLE MODEL OF TREES FOR UNICELLULAR MAPS

GUILLAUME CHAPUY, VALENTIN FÉRAY AND ÉRIC FUSY

Abstract. We consider unicellular maps, or polygon gluings, of fixed genus.
A few years ago the first author gave a recursive bijection transforming unicel-
lular maps into trees, explaining the presence of Catalan numbers in counting
formulas for these objects. In this paper, we give another bijection that explic-
itly describes the “recursive part” of the first bijection. As a result we obtain
a very simple description of unicellular maps as pairs made by a plane tree
and a permutation-like structure. All the previously known formulas follow as
an immediate corollary or easy exercise, thus giving a bijective proof for each
of them, in a unified way. For some of these formulas, this is the first bijective
proof, e.g. the Harer-Zagier recurrence formula, or the Lehman-Walsh/Goupil-
Schaeffer formulas. Thanks to previous work of the second author, this also
leads us to a new expression for Stanley character polynomials, which evaluate
irreducible characters of the symmetric group.

1. Introduction

A unicellular map is a connected graph embedded in a surface in such a way that
the complement of the graph is a topological disk. These objects have appeared
frequently in combinatorics in the last forty years, in relation with the general theory
of map enumeration, but also with the representation theory of the symmetric
group, the study of permutation factorizations, the computation of matrix integrals
or the study of moduli spaces of curves. All these connections have turned the
enumeration of unicellular maps into an important research field (for the many
connections with other areas, see [18] and references therein; for an overview of
the results see the introductions of the papers [9, 2]). The counting formulas for
unicellular maps that appear in the literature can be roughly separated into two
types.

The first type deals with colored maps (maps endowed with a mapping from its
vertex set to a set of q colors). This implies “summation” enumeration formulas
(see [16, 25, 20] or paragraph 3.4 below). These formulas are often elegant, and
different combinatorial proofs for them have been given in the past few years [19,
14, 25, 20, 2]. The issue is that some important topological information, such as
the genus of the surface, is not apparent in these constructions.

Formulas of the second type keep track explicitly of the genus of the surface;
they are either inductive relations, like the Harer-Zagier recurrence formula [16], or
are explicit (but quite involved) closed forms, like the Lehman-Walsh [28] and the
Goupil-Schaeffer [15] formulas. From a combinatorial point of view, these formulas
are harder to understand. A step in this direction was done by the first author in
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[9] (this construction is explained in subsection 2.2), which led to new induction
relations and to new formulas. However the link with other formulas of the second
type remained mysterious, and [9] left open the problem of finding combinatorial
proofs of these formulas.

The goal of this paper is to present a new bijection between unicellular maps and
surprisingly simple objects which we call C-decorated trees (these are merely plane
trees equipped with a certain kind of permutation on their vertices). This bijection,
presented in Section 2, is based on the previous work of the first author [9]: we
explicitly describe the “recursive part” appearing in this work. As a consequence,
not only can we reprove all the aforementioned formulas in a bijective way, thus
giving the first bijective proof for several of them, but we do that in a unified way.
Indeed, C-decorated trees are so simple combinatorial objects that all formulas
follow from our bijection as an immediate corollary or easy exercise, as we will see
in Section 3.

Another interesting application of this bijection, studied in Section 4, is a new
explicit way of computing the so-called Stanley character polynomials. The latter
are nothing but the evaluation of irreducible characters of the symmetric groups,
properly normalized and parametrized. Indeed, in a previous work [11], the second
author expressed these polynomials as a generating function of (properly weighted)
unicellular maps. Although we do not obtain a “closed form” expression (there is no
reason to believe that such a form exists!), we express Stanley character polynomials
as the result of a term-substitution in free cumulants, which are another meaningful
quantity in representation theory of symmetric groups.

In Section 5 we discuss the possibility of applying our tools to m-constellations.
This notion is a generalization of the notion bipartite maps introduced in connection
with the study of factorizations in the symmetric group. A remarkable formula by
Poulalhon and Schaeffer [22] (proved with the help of algebraic tools) suggests the
possibility of a combinatorial proof using technique similar to ours. Although our
bijection does not apply to these objects, we present two partial results in this
direction, in the case of 3-constellations. One of them is an enumeration formula
for a related family of objects that we call quasi-3-constellations, that turns out to
be surprisingly similar to the Poulalhon-Schaeffer formula.

2. The main bijection

2.1. Unicellular maps and C-decorated trees. We first briefly review some
standard denomination for maps.

A map M of genus g ≥ 0 is a connected graph G embedded on a closed compact
oriented surface S of genus g, such that S\G is a collection of topological disks,
which are called the faces of M . Loops and multiple edges are allowed. The graph
G is called the underlying graph of M and S its underlying surface. Two maps that
differ only by an oriented homeomorphism between the underlying surfaces are
considered the same. A corner of M is the angular sector between two consecutive
edges around a vertex. A rooted map is a map with a marked corner, called the
root ; the vertex incident to the root is called the root-vertex. From now on, all
maps are assumed to be rooted (note that the underlying graph of a rooted map
is naturally vertex-rooted). A unicellular map is a map with a unique face. The
classical Euler relation |V |− |E|+ |F | = 2− 2g ensures that a unicellular map with
n edges has n+ 1− 2g vertices. A plane tree is a unicellular map of genus 0.



A SIMPLE MODEL OF TREES FOR UNICELLULAR MAPS 3

1

2

69

5

3

810

7

4

c1

c2

c4

c3
c1 c2

c3

c4

(a) (b) (c) (d)

1

2

3

4

5

6

7 8

9

10

+

+

+
+

Figure 1. (a) A C-permutation σ. (b) A plane tree T . (c)
The C-decorated tree (T, σ). (d) The underlying graph of (T, σ).

A rotation system on a connected graphG consists in a cyclic ordering of the half-
edges of G around each vertex. Given a map M , its underlying graph G is naturally
equipped with a rotation system given by the clockwise ordering of half-edges on
the surface in a vicinity of each vertex. It is well-known that this correspondence is
1-to-1, i.e. a map can be considered as a connected graph equipped with a rotation
system (thus, as a purely combinatorial object). We will take this viewpoint from
now on.

We now introduce a new object called C-decorated tree.
A cycle-signed permutation is a permutation where each cycle carries a sign,

either + or −. A C-permutation is a cycle-signed permutation where all cycles
have odd length, see Figure 1(a). For each C-permutation σ on n elements, the
rank of σ is defined as r(σ) = n − ℓ(σ), where ℓ(σ) is the number of cycles of σ.
Note that r(σ) is even since all cycles have odd length. The genus of σ is defined as
r(σ)/2. A C-decorated tree on n edges is a pair γ = (T, σ) where T is a plane tree
with n edges and σ is a C-permutation of n+1 elements. The genus of γ is defined
to be the genus of σ. Note that the n+1 vertices of T can be canonically numbered
from 1 to n+ 1 (e.g., following a left-to-right depth-first traversal), hence σ can be
seen as a permutation of the vertices of T , see Figure 1(c). The underlying graph of
γ is the (vertex-rooted) graph G obtained from T by merging into a single vertex
the vertices in each cycle of σ (so that the vertices of G correspond to the cycles of
σ), see Figure 1(d).

Definition 1. For n, g nonnegative integers, denote by Eg(n) the set of unicellular
maps of genus g with n edges; and denote by Tg(n) the set of C-decorated trees of
genus g with n edges.

For two finite sets A and B, we denote by A+ B their disjoint union and by kA
the set made of k disjoint copies of A. Besides, we write A ≃ B if there is a bijection
between A and B. Our main result will be to show that 2n+1Eg(n) ≃ Tg(n), with
a bijection which preserves the underlying graphs of the objects.

2.2. Recursive decomposition of unicellular maps. In this section, we briefly
recall a combinatorial method developed in [9] to decompose unicellular maps.

Proposition 1 (Chapuy [9]). For k ≥ 1, denote by E(2k+1)
g (n) the set of maps

from Eg(n) in which a set of 2k + 1 vertices is distinguished. Then for g > 0 and
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n ≥ 0,

2g Eg(n) ≃ E(3)
g−1(n) + E(5)

g−2(n) + E(7)
g−3(n) + · · ·+ E(2g+1)

0 (n).(1)

In addition, if M and (M ′, S′) are in correspondence, then the underlying graph of
M is obtained from the underlying graph of M ′ by merging the vertices in S′ into
a single vertex.

We now sketch briefly the construction of [9]. Although this is not really needed
for the sequel, we believe that it gives a good insight into the objects we are dealing
with (readers in a hurry may take Proposition 1 for granted and jump directly to
subsection 2.3). We refer to [9] for proofs and details.

We first explain where the factor 2g comes from in (1). Let M be a rooted
unicellular map of genus g with n edges. Then M has 2n corners, and we label
them from 1 to 2n incrementally, starting from the root, and going clockwise around
the (unique) face of M (Figure 2). Let v be a vertex of M , let k be its degree, and
let (a1, a2, . . . , ak) be the sequence of the labels of corners incident to it, read in
counterclockwise direction around v starting from the minimal label a1 = min ai.
If for some j ∈ J1, k − 1K, we have aj+1 < aj , we say that the corner of v labelled
by aj+1 is a trisection of M . Figure 2(a) shows a map of genus two having four
trisections. More generally we have:

Lemma 2 ([9]). A unicellular map of genus g contains exactly 2g trisections. In
other words, the set of unicellular maps of genus g with n edges and a marked
trisection is isomorphic to 2g Eg(n).

Now, let τ be a trisection of M of label ℓ(τ), and let v the vertex it belongs
to. We denote by c the corner of v with minimum label and by c′ the corner with
minimum label among those which appear between c and τ clockwise around v and
whose label is greater than ℓ(τ). By definition of a trisection, c′ is well defined. We
then construct a new map M ′, by slicing the vertex v into three new vertices using
the three corners c, c′, τ as in Figure 2(b). We say that the map M ′ is obtained from
M by slicing the trisection τ . As shown in [9], the new map M ′ is a unicellular
map of genus g − 1. We can thus relabel the 2n corners of M ′ from 1 to 2n,
according to the procedure we already used for M . Among these corners, three of
them, say c1, c2, c3 are naturally inherited from the slicing of v, as on Figure 2(b).
Let v1, v2, v3 be the vertices they belong to, respectively. Then the following is
true [9]: In the map M ′, the corner ci has the smallest label around the vertex vi,
for i ∈ {1, 2}. For i = 3, either the same is true, or c3 is a trisection of the map
M ′.

We now finally describe the bijection promised in Proposition 1. It is defined
recursively on the genus, as follows. Given a map M ∈ Eg(n) with a marked
trisection τ , letM ′ be obtained fromM by slicing τ , and let ci, vi be defined as above
for i ∈ {1, 2, 3}. If c3 has the minimum label at v3, set Ψ(M, τ) := (M ′, {v1, v2, v3}),
which is an element of E(3)

g−1(n). Otherwise, let (M ′′, S) = Ψ(M ′, c3), and set

Ψ(M, τ) := (M ′′, S∪{v1, v2}). Note that this recursive algorithm necessarily stops,
since the genus of the map decreases and since there are no trisections in unicellular
maps of genus 0 (plane trees). Thus this procedure yields recursively a mapping
that associates to a mapM with a marked trisection τ another mapM ′′ of a smaller
genus, with a set S′′ of marked vertices (namely the set of vertices which have been
involved in a slicing at some point of the procedure). The set S′′ of marked vertices
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Figure 2. (a) A unicellular map of genus 2 equipped with its
corner labelling. Labels corresponding to trisections are boxed.
(b) Given a trisection τ , two other corners of interest c and c′

are canonically defined (see text). “Slicing the trisection” then
gives rise to three new vertices v1, v2, v3, with distinguished corners
c1, c2, c3. (c) The recursive procedure of [9]: if c3 is the minimum
corner of v3, then stop; else, as shown in [9], c3 is a trisection of
the new map M ′: in this case, iterate the slicing operation on
(M ′, c3).

necessarily has odd cardinality, as easily seen by induction. Moreover, it is clear
that the underlying graph ofM coincides with the underlying graph ofM ′′ in which
the vertices of S′′ have been identified together into a single vertex. One can show
that Ψ is a bijection [9], with an explicit inverse mapping.

2.3. Recursive decomposition of C-decorated trees. We now propose a re-
cursive method to decompose C-decorated trees, which can be seen as parallel to
the decomposition of unicellular maps given in the previous section. Denote by
C(n) (resp. Cg(n)) the set of C-permutations on n elements (resp. on n elements
and of genus g). A signed sequence of integers is a pair (ǫ, S) where S is an integer
sequence and ǫ is a sign, either + or −.

Lemma 3. Let X be a finite non-empty set of positive integers. Then there is a
bijection between signed sequences of distinct integers from X —all elements of X
being present in the sequence— and C-permutations on the set X. In addition the
C-permutation has one cycle if and only if the signed sequence has odd length and
starts with its minimal element.

Proof. Let γ be a signed sequence, e.g. γ =+(4731562). If γ has odd length and
starts with its minimal element, return γ seen as a unicyclic C-permutation (where
the unique cycle is written sequentially). Otherwise cut γ as γ = γ1γ2, where γ2
starts with the minimal element in γ (in our example, γ1 =+(473) and γ2 = (1562)).
If γ2 has odd length, then “produce” the signed cycle +γ2. If γ2 has even length,
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move the second element of γ2 to the end of γ1, and “produce” the signed cycle −γ2.
Then (in both cases), restart the same process on γ = γ1, producing one (signed)
cycle of odd length at each step, until γ is odd and starts with its minimal element,
in which case one produces γ as the last signed cycle. (In our example, the signed
cycles successively produced are −(162), −(3), and +(475).) The process clearly
yields a collection of signed cycles of odd lengths, i.e., yields a C-permutation. The
mapping is straightforward to invert, so it gives a bijection. �

An element of a C-permutation is called non-minimal if it is not the minimum
in its cycle. Non-minimal elements play the same role for C-permutations (and
C-decorated trees) as trisections for unicellular maps. Indeed, a C-permutation of
genus g has 2g non-minimal elements (compare with Lemma 2), and moreover we
have the following analogue of Proposition 1:

Proposition 4. For k ≥ 1, denote by T (2k+1)
g (n) the set of C-decorated trees from

Tg(n) in which a set of 2k + 1 cycles is distinguished. Then for g > 0 and n ≥ 0,

2g Tg(n) ≃ T (3)
g−1 + T (5)

g−2 + T (7)
g−3 + · · ·+ T (2g+1)

0 .

In addition, if γ and (γ′, S′) are in correspondence, then the underlying graph of γ
is obtained from the underlying graph of γ′ by merging the vertices corresponding
to cycles from S′ into a single vertex.

Proof. For k ≥ 1 let C(2k+1)
g (n) be the set of C-permutations from Cg(n) where

a subset of 2k + 1 cycles are marked. Let C◦
g(n) be the set of C-permutations

from Cg(n) where a non-minimal element is marked. Note that C◦
g (n) ≃ 2g Cg(n)

since a C-permutation in Cg(n) has 2g non-minimal elements. Besides, one has

C◦
g(n) ≃

∑g
k=1 C

(2k+1)
g−k (n).

Indeed take an element in C◦
g (n), write the signed cycle containing the marked

element i as a signed sequence beginning by i and apply Lemma 3 to this signed
sequence: this produces a collection of (2k + 1) ≥ 3 signed cycles of odd length,
which we take as the marked cycles.

Finally 2gCg(n) ≃
∑g

k=1 C
(2k+1)
g−k (n). Since Tg(n) = E0(n)×Cg(n+1), we conclude

that 2g Tg(n) ≃ ∑g

k=1 T
(2k+1)
g−k (n). The statement on the underlying graph just

follows from the fact that the procedure in Lemma 3 merges the marked cycles into
a unique cycle. �

2.4. The main result.

Theorem 5. For each non-negative integers n and g we have

2n+1Eg(n) ≃ Tg(n).
In addition the cycles of a C-decorated tree naturally correspond to the vertices of
the associated unicellular map, in such a way that the respective underlying graphs
are the same.

Proof. The proof is a simple induction on g, whereas n is fixed. The case g = 0
is obvious. Let g > 0. The induction hypothesis ensures that for each g′ < g,

2n+1E(2k+1)
g′ (n) ≃ T (2k+1)

g′ (n), where the underlying graphs (taking marked vertices

vertices into account) of corresponding objects are the same. Hence, by Propo-
sitions 1 and 4, we have 2g 2n+1Eg(n) ≃ 2g Tg(n), where the underlying graphs
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of corresponding objects are the same. Finally, one can extract from this 2g-to-
2g correspondence a 1-to-1 correspondence (think of extracting a perfect match-
ing from a 2g-regular bipartite graph, which is possible according to Hall’s mar-
riage theorem). And obviously the extracted 1-to-1 correspondence, which realizes
2n+1Eg(n) ≃ Tg(n), also preserves the underlying graphs. �

2.5. A fractional, or stochastic, formulation. Even if this does not hinder
enumerative applications to be detailed in the next section, we do not know of an
effective (polynomial-time) way to implement the bijection of Theorem 5; indeed
the last step of the proof is to extract a perfect matching from a 2g-regular bipartite
graph whose size is exponential in n.

What can be done effectively is a fractional formulation of the bijection. For a
finite set X , let C〈X〉 be the set of linear combinations of the form

∑
x∈X ux · x,

where the x ∈ X are seen as independent formal vectors, and the coefficients ux are
in C. Let R+

1 〈X〉 ⊂ C〈X〉 be the subset of linear combinations where the coefficients
are nonnegative and add up to 1. Denote by 1X the vector

∑
x∈X x. For two finite

sets X and Y , a fractional mapping from X to Y is a linear mapping ϕ from C〈X〉
to C〈Y 〉 such that the image of each x ∈ X is in R

+
1 〈Y 〉; the set of elements of Y

whose coefficients in ϕ(x) are strictly positive is called the image-support of x. Note
that ϕ(x) identifies to a probability distribution on Y ; a “call to ϕ(x)” is meant as
picking up y ∈ Y under this distribution. A fractional mapping is bijective if 1X is
mapped to 1Y , and is deterministic if each x ∈ X is mapped to some y ∈ Y . Note
that, if there is a fractional bijection from X to Y , then |X | = |Y | (indeed in that
case the matrix of ϕ is bistochastic).

One can now formulate by induction on the genus an effective (the cost of a
call is O(gn)) fractional bijection from 2n+1Eg[n] to Tg(n), and similarly from Tg[n]
to 2n+1Eg(n). The crucial property is that, for k ≥ 1 and E, F finite sets, if
there is a fractional bijection Φ from kE to kF then one can effectively derive

from it a fractional bijection Φ̃ from E to F : for x ∈ E, just define Φ̃(x) as
1
k
(ι(Φ(x1)) + · · · + ι(Φ(xk))), where x1, . . . , xk are the representatives of x in kE,

and where ι is the projection from kF to F . In other words a call to Φ̃(x) consists in
picking up a representative xi of x in kE uniformly at random and then calling Φ(x).
Hence by induction on g, Propositions 1 and 4 (where the stated combinatorial
isomorphisms are effective) ensure that there is an effective fractional bijection
from 2n+1Eg(n) to Tg[n] and similarly from Tg[n] to 2n+1Eg[n], such that if γ′ is in
the image-support of γ then the underlying graphs of γ and γ′ are the same.

Note that, given an effective fractional bijection between two sets X and Y , and
a uniform random sampling algorithm on the set X , one obtains immediately a
uniform random sampling algorithm for the set Y . In the next section, we will use
our bijection to prove several enumerative formulas for unicellular maps, starting
from elementary results on the enumeration of trees or permutations. In all cases,
we will also be granted with a uniform random sampling algorithm for the corre-
sponding unicellular maps, though we will not emphasize this point in the rest of
the paper.

3. Counting formulas for unicellular maps

It is quite clear that C-decorated trees are much simpler combinatorial objects
than unicellular maps. In this section, we use them to give bijective proofs of
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several known formulas concerning unicellular maps. We focus on the Lehman-
Walsh and Goupil-Schaeffer formulas, and the Harer-Zagier recurrence, of which
bijective proofs were long-awaited. We also sketch a bijective proof of the Harer-
Zagier summation formula (different bijective proofs are already known for such
summation formulas). We insist on the fact that all these proofs are elementary
consequences of our main bijection (Theorem 5).

3.1. Two immediate corollaries. The set Tg(n) = E0(n)×Cg(n+1) is the product
of two sets that are easy to count. Precisely, let ǫg(n) = |Eg(n)| and cg(n) = |Cg(n)|.
Recall that ǫ0(n) = Cat(n), where Cat(n) := (2n)!

n!(n+1)! is the nth Catalan number.

Therefore Theorem 5 gives ǫg(n) = 2−n−1Cat(n)cg(n+ 1).
One gets easily a closed form for cg(n + 1) (by summing over all possible cycle

types) and an explicit formula for the generating series, thereby recovering two
classical results for the enumeration of unicellular maps.

Every partition of n+1 in n+1− 2g odd parts writes as 1n+1−2g−ℓ3m1 . . . (2k+
1)mk for some partition γ = (γ1, . . . , γℓ) = 1m1 . . . kmk of g. But the number aγ(n+
1) of permutations of n+ 1 elements with cycle-type equal to 1n+1−2g−ℓ3m1 . . . (2k+
1)mk is classically given by

aγ(n+ 1) =
(n+ 1)!

(n+ 1− 2g − ℓ)!
∏

imi!(2i+ 1)mi
,

and the number of C-permutations with this cycle-type is just aγ(n + 1)2n+1−2g

(since each cycle has 2 possible signs). Hence, we get the equality

cg(n+ 1) = 2n+1−2g
∑

γ⊢g

aγ(n+ 1).

We thus recover:

Proposition 6 (Walsh and Lehman [28]). The number ǫg(n) is given by

ǫg(n) =
(2n)!

n!(n+ 1− 2g)!22g

∑

γ⊢g

(n+ 1− 2g)ℓ∏
i mi!(2i+ 1)mi

,

where (x)k =
∏k−1

j=0 (x− j), ℓ is the number of parts of γ, and mi is the number of
parts of length i in γ.

Define the exponential generating function

C(x, y) :=
∑

n,g

1
(n+1)!cg(n+ 1)yn+1xn+1−2g

of C-permutations where y marks the number of elements, which are labelled, and
x marks the number of cycles. Using the standard techniques of symbolic method
(see e.g. [12, Part A] for a general presentation of this method and the page 120
for the application to permutations seen as sets of cycles), this generating series is
given by

C(x, y) = exp
(
2x

∑

k≥1

y2k+1

2k + 1

)
− 1 = exp

(
x log

(1 + y

1− y

))
− 1 =

(1 + y

1− y

)x

− 1.

Since c0(1) = 2 and 1
(n+1)!cg(n + 1) = 2n+1n!

(2n)! ǫg(n) = 2
(2n−1)!! ǫg(n) for n ≥ 1, we

recover:
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(1) (2)

Figure 3. Rémy’s procedure gives two ways to obtain a plane
tree with n edges and a marked vertex v from a plane tree with
n−1 edges and a marked corner: (1) in the first way (replacing the
marked corner by a leg) v is a leaf, (2) in the second way (stretching
an edge to carry the subtree on the left of the marked corner) v is
a non-leaf.

Proposition 7 (Harer-Zagier series formula [16, 18]). The generating function

E(x, y) := 1 + 2xy + 2
∑

g≥0,n>0

ǫg(n)

(2n− 1)!!
yn+1xn+1−2g is given by

E(x, y) =
(1 + y

1− y

)x

.

3.2. Harer-Zagier recurrence formula. Elementary algebraic manipulations on
the expression of E(x, y) yield a very simple recurrence satisfied by ǫg(n), known as
the Harer-Zagier recurrence formula (stated in Proposition 10 hereafter). We now
show that the model of C-decorated trees makes it possible to derive this recur-
rence directly from a combinatorial isomorphism, that generalizes Rémy’s beautiful
bijection for plane trees [24].

It is convenient here to consider C-decorated trees as unlabelled structures : pre-
cisely we see a C-decorated tree as a plane tree where the vertices are partitioned
into parts of odd size, where each part carries a sign + or −, and such that the
vertices in each part are cyclically ordered (the C-permutation can be recovered
by numbering the vertices of the tree according to a left-to-right depth-first traver-
sal), think of Figure 1(c) where the labels have been taken out. We take here the
convention that a plane tree with n edges has 2n+ 1 corners, considering that the
sector of the root has two corners, one on each side of the root.

We denote by P(n) = E0(n) the set of plane trees with n edges, and by Pv(n)
(resp. Pc(n)) the set of plane trees with n edges where a vertex (resp. a corner) is
marked. Rémy’s procedure, shown in Figure 3, realizes the isomorphism Pv(n) ≃
2Pc(n− 1), or equivalently

(2) (n+ 1)P(n) ≃ 2(2n− 1)P(n− 1).

Let T v
g (n) be the set of C-decorated trees from Tg(n) where a vertex is marked.

Let A (resp. B) be the subset of objects in T v
g (n) where the signed cycle containing

the marked vertex has length 1 (resp. length greater than 1). Let γ ∈ T v
g (n),

with n ≥ 1. If γ ∈ A, record the sign of the 1-cycle containing v and then apply
the Rémy’s procedure to the plane tree with respect to v (so as to delete v). This
reduction, which does not change the genus, yields A ≃ 2 · 2(2n − 1)Tg(n − 1).
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If γ ∈ B, let c be the cycle containing the marked vertex v; c is of the form
(v, v1, v2, . . . , v2k) for some k ≥ 1. Move v1 and v2 out of c (the successor of v
becomes the former successor of v2). Then apply the Rémy’s procedure twice, firstly
with respect to v1 (on a plane tree with n edges), secondly with respect to v2 (on a
plane tree with n−1 edges). This reduction, which decreases the genus by 1, yields
B ≃ 2(2n− 1)2(2n− 3)T v

g−1(n− 2), hence B ≃ 4(n− 1)(2n− 1)(2n− 3)Tg−1(n− 2).
Since T v

g (n) = A+B and T v
g (n) ≃ (n+1)Tg(n), we finally obtain the isomorphism

(3) (n+ 1)Tg(n) ≃ 4(2n− 1)Tg(n− 1) + 4(n− 1)(2n− 1)(2n− 3)Tg−1(n− 2),

which holds for any n ≥ 1 and g ≥ 0 (with the convention Tg(n) = ∅ if g or n is
negative). Since 2n+1Eg(n) ≃ Tg(n), we recover:

Proposition 8 (Harer-Zagier recurrence formula [16, 18]). The coefficients ǫg(n)
satisfy the following recurrence relation valid for any g ≥ 0 and n ≥ 1 (with ǫ0(0) =
1 and ǫg(n) = 0 if g < 0 or n < 0):

(n+ 1)ǫg(n) = 2(2n− 1)ǫg(n− 1) + (n− 1)(2n− 1)(2n− 3)ǫg−1(n− 2).

To the best of our knowledge this is the first proof of the Harer-Zagier recur-
rence formula that directly follows from a combinatorial isomorphism. The isomor-
phism (3) also provides a natural extension to arbitrary genus of Rémy’s isomor-
phism (2).

3.3. Refined enumeration of bipartite unicellular maps. In this paragraph,
we explain how to recover a formula due to A. Goupil and G. Schaeffer [15, Theorem
2.1] from our bijection. Let us first give a few definitions. A graph is bipartite if
its vertices can be colored in black and white such that each edge connects a black
and a white vertex. If the graph has a root-vertex v, then v is required to be
black; thus, if the graph is also connected, then such a bicoloration of the vertices
is unique. From now on, a connected bipartite graph with a root-vertex is assumed
to be endowed with this canonical bicoloration.

The degree distribution of a map/graph is the sequence of the degrees of its
vertices taken in decreasing order (it is a partition of 2n, where n is the number of
edges). If we consider a bipartite map/graph, we can consider separately the white
vertex degree distribution and the black vertex degree distribution, which are two
partitions of n.

Let ℓ,m, n be positive integers such that n+1−ℓ−m is even. Fix two partitions
λ, µ of n of respective lengths ℓ and m. We call Bi(λ, µ) the number of bipartite
unicellular maps, with white (resp. black) vertex degree distribution λ (resp. µ).
The corresponding genus is g = (n+ 1− ℓ−m)/2.

The purpose of this paragraph is to compute Bi(λ, µ). It will be convenient to
change a little bit the formulation of the problem and to consider labelled maps
instead of the usual non-labelled maps: a labelled map is a map whose vertices
are labelled with integers 1, 2, · · · . If the map is bipartite, we require instead
that the white and black vertices are labelled separately (with respective labels
w1, w2, · · · and b1, b2, · · · ). The degree distribution(s) of a (bipartite) labelled map
with n edges can be seen as a composition of 2n (resp. two compositions of n).
For I = (i1, · · · , iℓ) and J = (j1, · · · , jm) two compositions of n, we denote by
BiL(I,J) the number of labelled bipartite unicellular maps with white (resp. black)
vertex degree distribution I (resp. J). The link between Bi(λ, µ) and BiL(I,J)
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is straightforward: BiL(I,J) = m1(λ)!m2(λ)! · · ·m1(µ)!m2(µ)! · · ·Bi(λ, µ), where
λ and µ are the sorted versions of I and J . We now recover the following formula:

Proposition 9 (Goupil and Schaeffer [15, Theorem 2.1]).

(4) BiL(I,J) = 2−2g · n ·
∑

g1+g2=g

(ℓ+ 2g1 − 1)!(m+ 2g2 − 1)!

∑

p1+···+pℓ=g1
q1+···+qm=g2

ℓ∏

r=1

1

2pr + 1

(
ir − 1

2pr

) m∏

r=1

1

2qr + 1

(
jr − 1

2qr

)
.

Proof. For g = 0 the formula is simply

(5) BiL(I,J) = n(ℓ− 1)!(m− 1)!,

which can easily be established by a bivariate version of the cyclic lemma, see
also [13, Theorem 2.2]. (Note, that in that case, the cardinality only depends on
the lengths of I and J .)

We now prove the formula for arbitrary g. Consider some lists p = (p1, · · · , pℓ)
and q = (q1, · · · , qm) of nonnegative integers with total sum g: let g1 =

∑
pi and

g2 =
∑

qi. We say that a composition H refines I along p if H is of the form

(h1
1, · · · , h2p1+1

1 , · · · , h1
ℓ , · · · , h2pℓ+1

ℓ ), with
∑2pr+1

t=1 ht
r = ir for all r between 1 and

ℓ. Clearly, there are
∏ℓ

r=1

(
ir−1
2pr

)
such compositions H . One defines similarly a

composition K refining J along q.
Consider now the set of labelled bipartite plane trees of vertex degree distribu-

tions H and K, where H (resp. K) refines I (resp. J) along p (resp. q). By (5),
there are n · (ℓ+2g1− 1)!(m+2g2− 1)! trees for each pair (H ,K), so in total, with
I, J , p and q fixed, the number of such trees is:

(6) n · (ℓ + 2g1 − 1)!(m+ 2g2 − 1)!

ℓ∏

r=1

(
ir − 1

2pr

) m∏

r=1

(
jr − 1

2qr

)
.

As the parts of H (resp. K) are naturally indexed by pairs of integers, we can
see these trees as labelled by the set {wt

r; 1 ≤ r ≤ ℓ, 1 ≤ t ≤ 2pr + 1} ⊔ {btr; 1 ≤
r ≤ m, 1 ≤ t ≤ 2qr + 1}. There is a canonical permutation of the vertices of the
trees with cycles of odd sizes and which preserves the bicoloration: just send wt

r to
wt+1

r (resp. btr to bt+1
r ), where t + 1 is meant modulo 2pr + 1 (resp. 2qr + 1). If

we additionally put a sign on each cycle, we get a C-decorated tree (with labelled
cycles) that corresponds to a labelled bipartite map with white (resp. black) vertex
degree distribution I (resp. J). Conversely, to recover a labelled bipartite plane
tree from such a C-decorated tree, one has to choose in each cycle which vertex
gets the label w1

r or b1r, and one has to forget the signs of the (n + 1 − g) cycles.

This represents a factor 2n+1−2g
(∏ℓ

r=1(2pr + 1)
∏m

r=1(2qr + 1)
)−1

.

Multiplying (6) by the above factor, and summing over all possible sequences
p and q of total sum g, we conclude that the number of C-decorated trees associ-
ated with labelled bipartite unicellular maps of white (resp. black) vertex degree
distribution I (resp. J), is equal to 2n+1 times the right-hand side of (4). By
Theorem 5, this number is also equal to 2n+1BiL(I,J). This ends the proof of
Proposition 9. �
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This is the first combinatorial proof of (4) (the proof by Goupil and Schaeffer in-
volves representation theory of the symmetric group). Moreover, the authors of [15]
found surprising that “the two partitions contribute independently to the genus”.
With our approach, this is very natural, since the cycles are carried independently
by white and black vertices.

3.4. Counting colored maps. In this paragraph, we deal with what was pre-
sented in the introduction as the first type of formulas. These formulas give an
expression for a certain sum of coefficients counting unicellular maps, the expres-
sions being usually simpler than those for the counting coefficients taken separately
(like the Goupil-Schaeffer’s formula). These sums can typically be seen as counting
formulas for colored unicellular maps (where the control is on the number of colors,
which gives indirect access to the genus).

3.4.1. A summation formula for unicellular maps. We begin with Harer-Zagier’s
summation formula [16, 18] (which can also be very easily derived from the expres-
sion of E(x, y)). In contrast to the formulas presented so far, this one has already
been given combinatorial proofs [19, 14, 2] using different bijective constructions,
but we want to insist on the fact that our construction gives bijective proofs for all
the formulas in a unified way.

Proposition 10 (Harer-Zagier summation formula [16, 18]). Let A(v;n) be the
number of unicellular maps with n edges and v vertices. Then for n ≥ 1

∑

v

A(v;n)xv = (2n− 1)!!
∑

r≥1

2r−1

(
n

r − 1

)(
x

r

)
.

Proof. It suffices to prove that the number Ar(n) of unicellular maps with n edges,
each vertex having a color in [1..r], and each color in [1..r] being used at least
once, is given by Ar(n) = (2n − 1)!! 2r−1

(
n

r−1

)
. Our main bijection sends these

objects onto C-decorated trees with n edges, where each (signed) cycle has a color
in [1..r], and such that each color in [1..r] is used by at least one cycle. Each of
the r colors yields a (non-empty) C-permutation, which can be represented as a
signed sequence, according to Lemma 3. Then one can concatenate these r signed
sequences into a unique sequence S of length n + 1, together with r signs and a
subset of r−1 elements among the n elements from position 2 to n+1 in S (in order
to recover from S the r signed sequences). For instance if r = 3 and if the signed
sequences corresponding respectively to colors 1, 2, 3 are +(3, 9, 4), −(5, 8, 6, 2), and
−(1, 7), then the concatenated sequence is (3, 9, 4, 5, 8, 6, 2, 1, 7), together with the
3 signs (+,−,−) and the two selected elements {5, 1}. Hence the number of such
C-decorated trees is (n+ 1)! 2r

(
n

r−1

)
, and by Theorem 5,

Ar(n) = 2−n−1Cat(n)(n+ 1)! 2r
(

n

r − 1

)
= (2n− 1)!! 2r−1

(
n

r − 1

)
. �

3.4.2. A summation formula for bipartite unicellular maps. By Theorem 5, a C-
decorated tree associated to a bipartite unicellular map is a bipartite plane tree
such that each signed cycle must contain only white (resp. black) vertices. Recall
that the n + 1 vertices carry distinct labels from 1 to n + 1 (the ordering follows
by convention a left-to-right depth-first traversal, see Figure 1(c)). Without loss of
information the i black vertices (resp. j white vertices) can be relabelled from 1
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to i (resp. from 1 to j) in the order-preserving way; we take here this convention
for labelling the vertices of such a C-decorated tree. We now recover the following
summation formula due to Jackson (different bijective proofs have been given in [25]
and in [2]):

Proposition 11 (Jackson’s summation formula [17]). Let B(v, w;n) be the number
of bipartite unicellular maps with n edges, v black vertices and w white vertices.
Then for n ≥ 1

∑

v,w

B(v, w;n)yvzw = n!
∑

r,s≥1

(
n− 1

r − 1, s− 1

)(
y

r

)(
z

s

)
.

Proof. It suffices to prove that, for r, s ≥ 1, the number Br,s(n) of bipartite unicel-
lular maps with n edges, each black (resp. white) vertex having a so-called b-color
in [1..r] (resp. a so-called w-color in [1..s]), such that each b-color in [1..r] (resp.

w-color in [1..s]) is used at least once, is given by Br,s(n) = n!
(

n−1
r−1,s−1

)
. For n, i, j

such that i+ j = n+ 1, consider a bipartite C-decorated tree with n edges, i black
vertices, j white vertices, where each black (resp. white) signed cycle has a b-color
in [1..r] (resp. a w-color in [1..s]), and each b-color in [1..r] (resp. w-color in [1..s]) is
used at least once. By the same argument as in Proposition 10, the C-permutation
and b-colors on black vertices can be encoded by a sequence Sb of length i of distinct
integers in [1..i], together with r signs and a subset of r − 1 elements among the
i− 1 elements at positions from 2 to i in Sb. And the C-permutation and w-colors
on white vertices can be encoded by a sequence Sw of length j of distinct integers in
[1..j], together with s signs and a subset of s−1 elements among the j−1 elements

at positions from 2 to j in Sw. Hence there are Nar(i, j;n)2r+si!
(
i−1
r−1

)
j!
(
j−1
s−1

)
such

C-decorated trees, where Nar(i, j;n) (called the Narayana number) is the number
of bipartite plane trees with n edges, i black vertices and j white vertices, given by
Nar(i, j;n) = 1

n

(
n
i

)(
n
j

)
. By Theorem 5,

Br,s(n) = 2−n−12r+s
∑

i+j=n+1

Nar(i, j;n)i!j!

(
i− 1

r − 1

)(
j − 1

s− 1

)

= n!(n− 1)!
2r+s−n−1

(r − 1)!(s− 1)!

∑

i+j=n+1
i≥r,j≥s

1

(i− r)!(j − s)!
.

But we have
∑

i+j=n+1

1

(i− r)!(j − s)!
=

∑

i+j=n+1−r−s

1

i!j!
=

2n+1−r−s

(n+ 1− r − s)!
.

Hence Br,s(n) = n!
(

n−1
r−1,s−1

)
. �

3.4.3. A refinement. A. Morales and E. Vassilieva [20] have established a very el-
egant summation formula for bipartite maps, counted with respect to their degree
distributions, which can be viewed as a refinement of Jackson’s summation formula
(indeed, it is an easy exercise to recover Jackson’s summation formula out of it):

Proposition 12 (Morales and Vassilieva [20, Theorem 1]). Let mλ and pρ be the
monomial and power sum basis of the ring of symmetric functions and x and y two
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infinite sets of variables. Then, for any n ≥ 1,
∑

λ,µ⊢n

Bi(λ, µ)pλ(x)pµ(y) =
∑

ρ,ν⊢n

n(n− ℓ(ρ))!(n− ℓ(ν))!

(n+ 1− ℓ(ρ)− ℓ(ν))!
mρ(x)mν(y).

The original proof given in [20] goes through a complicated bijection with newly
introduced objects called thorn trees by the authors. The bijective method in [2]
(which is well adapted to summation formulas) also makes it possible to get the
formula. And a short non-bijective proof has been given recently in [27] using
characters of the symmetric groups and Schur functions. We explain here how this
result can be recovered from our bijection. The proof is very similar to the one of
Goupil-Schaeffer’s formula.

Let us first recall that Proposition 12 can be reformulated in purely combinatorial
terms (without symmetric functions) using colored maps.

By definition here, a bipartite unicellular map is colored by associating to each
white (resp. black) vertex a color in [1 . . . ℓw] (resp. [1 . . . ℓb]), each color between
1 and ℓw (resp. ℓb) being chosen at least once (note: we always think of the color
r of a white vertex as different from the color r of a black vertex). To a colored
bipartite map with n edges one can associate its colored degree distribution, that
is, the pair (I,J) of compositions of n, where the kth part of I (resp. of J) is the
sum of the degrees of the white (resp. black) vertices with color k.

We denote by BiC(I,J) the number of colored bipartite unicellular maps of col-
ored degree distribution (I,J). Then Proposition 12 is equivalent to the following
statement [20, paragraph 2.4]:

Proposition 13. For any compositions I and J of the same integer n which satisfy
ℓ(I) + ℓ(J) ≤ n+ 1, one has

BiC(I,J) =
n(n− ℓ(I))!(n − ℓ(J))!

(n+ 1− ℓ(I) − ℓ(J))!
.

Proof. Let us consider two compositions H and K which refine respectively I and
J , and such that ℓ(H) + ℓ(K) = n+ 1. A part of H (resp. of K) is said to have
color r if it is contained in the rth part of I (resp. of J).

Consider a labelled bipartite tree T whose white vertex degrees (in the order
given by the labels) follow the composition H and whose black vertex degrees
follow the composition K. A black (resp. white) vertex is said to have color r if
the corresponding part of H (resp. of K) has color r. Since the tree is labelled, the
white (resp. black) vertices with the same color r are totally ordered as (w1

r , w
2
r , . . . )

(resp. (b1r, b
2
r, . . . )). Hence if we add the data of a sign per color (2ℓ(I)+ℓ(J) choices

for all signs), using Lemma 3, we can see the vertices with the same color as endowed
with a C-permutation.

Putting all these C-permutations together, we obtain a C-permutation of the ver-
tices of the tree T , which has the following property: the vertices in the same cycle
always have the same color. Applying our main bijection (Theorem 5), we obtain
a bipartite unicellular map. The vertices of this map have a canonical coloration,
as each vertex corresponds to a cycle of the C-permutation. By construction, this
colored map has colored degree distribution (I,J).

To sum up, by Theorem 5 and the construction above, each colored bipartite
unicellular map with colored degree distribution (I,J) can be obtained in 2n+1

different ways from
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• a labelled bipartite tree T of white (resp. black) vertex degree given by H

(resp. K) for some refinements H and K with ℓ(H) + ℓ(K) = n+ 1;
• the assignment of a sign to each color.

The number of possible signs is always 2ℓ(I)+ℓ(J), so this yields a constant factor.
For given compositions H and K, the number of corresponding trees is

n(ℓ(H)− 1)!(ℓ(K)− 1)!

Thus we have to count the number of refinements H (resp. K) of I (resp. J) with
a given value ℓ of ℓ(H) (resp. m of ℓ(K)). It is easily seen to be equal to

(
n− ℓ(I)

ℓ− ℓ(I)

)
(resp.

(
n− ℓ(J)

m− ℓ(J)

)
).

Finally, by Theorem 5, we get:

2n+1BiC(I,J) = 2ℓ(I)+ℓ(J)
∑

ℓ+m=n+1
ℓ≥ℓ(I), m≥ℓ(J)

n(ℓ− 1)!(m− 1)!

(
n− ℓ(I)

ℓ− ℓ(I)

)(
n− ℓ(J)

m− ℓ(J)

)
.

Denoting h = n+ 1− ℓ(I) − ℓ(J) and setting h1 = ℓ− ℓ(I), h2 = m− ℓ(J) in the
summation index, the right hand side of the previous equation writes as:

2ℓ(I)+ℓ(J)
∑

h1+h2=h

n(ℓ(I) + h1 − 1)!(ℓ(J) + h2 − 1)!

(
n− ℓ(I)

h1

)(
n− ℓ(J)

h2

)
.

But the relation ℓ(I)+ℓ(J)+h1+h2 = n+1 implies that (ℓ(J)+h2−1)!
(
n−ℓ(I)

h1

)
=

(n−ℓ(I))!
h1!

and (ℓ(I) + h1 − 1)!
(
n−ℓ(J)

h2

)
= (n−ℓ(J))!

h2!
. Plugging this in the expression

above, we get

2n+1BiC(I,J) = 2ℓ(I)+ℓ(J) · n · (n− ℓ(I))! · (n− ℓ(J))!
∑

h1+h2=h

1

h1!h2!

= 2ℓ(I)+ℓ(J) · n · (n− ℓ(I))! · (n− ℓ(J))!
2h

h!
.

The powers of 2 cancel each other and we get the desired result. �

3.5. Covered maps, shuffles, and an identity of [3]. Covered maps were intro-
duced in [3] as an extension of the notion of tree-rooted map (map equipped with
a spanning tree). A covered map of genus g is a rooted map M of genus g, non
necessarily unicellular, equipped with a distinguished connected subgraph S (with
the same vertex set as M) having the following property:

viewed as a map, S is a unicellular map, possibly of a different
genus than M .

Here, in order to view S “as a map”, we equip it with the map structure induced
by M : the clockwise ordering of half-edges of S around each vertex is defined as
the restriction of the clockwise ordering in M (see [3] for details). The genus g1 of
S is an element of J0, gK. For example, g1 = 0 if and only if S is a spanning tree of
M . In general, we say that the covered map (M,S) has type (g, g1).

Covered maps have an interesting duality property that generalizes the existence
of dual spanning trees in the planar case: namely, each covered map (M,S) of type
(g, g1) has a dual covered map (M∗, S′) of type (g, g2) with g1 + g2 = g. By
extending ideas of Mullin [21], it is not difficult to describe the covered map M as
a “shuffle” of the two unicellular maps S and S′, see [3]. It follows that the number
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Covg1,g2(n) of covered maps of type (g1 + g2, g1) with n edges can be expressed as
the following shuffle-sum [3, eq. (6)]:

Covg1,g2(n) =
∑

n1+n2=n

(
2n

2n1

)
ǫg1(n1)ǫg2(n2).(7)

In the case g1 = g2 = 0, this sum simplifies thanks to the Chu-Vandermonde
identity, and we have the remarkable result due to Mullin [21] (see [1] for a bijective
proof):

Cov0,0(n) = Cat(n)Cat(n+ 1).(8)

The main enumerative result of the paper [3] is a generalisation of (8) to any genus,
obtained via a difficult bijection:

Proposition 14 (Bernardi and Chapuy, [3]). For all n ≥ 1 and g ≥ 0, the number
Covg(n) =

∑
g1+g2=g

Covg1,g2(n) of covered maps of genus g with n edges is equal to:

Covg(n) = Cat(n)Bipg(n+ 1),

where Bipg(n+1) is the number of rooted bipartite unicellular maps of genus g with
n+ 1 edges. Equivalently, the following identity holds:

∑

g1+g2=g

∑

n1+n2=n

(
2n

2n1

)
ǫg1(n1)ǫg2(n2) = Cat(n)Bipg(n+ 1).(9)

Proof. We denote as before by cg(m) the number of C-permutations of genus g of
a set of m elements. By our main result, Theorem 5, the left-hand side of (9) can
be rewritten as:

2−n−2
∑

g1+g2=g

∑

n1+n2=n

(
2n

2n1

)
cg1(n1 + 1)cg2(n2 + 1)Cat(n1)Cat(n2).

We now observe that:
(
2n

2n1

)
Cat(n1)Cat(n2) = Cat(n)Nar(n1 + 1, n2 + 1;n+ 1)

where as before the Narayana number Nar(i, j;n) is the number of bipartite plane
trees with n edges, i black vertices and j white vertices (this last equality follows
directly from the explicit expressions of Catalan and Narayana numbers; an in-
terpretation in terms of planar tree-rooted maps is given by the bijection of [1]).
Therefore we have:

Covg(n) = 2−n−2Cat(n)
∑

g1+g2=g

∑

n1+n2=n

cg1(n1+1)cg2(n2+1)Nar(n1+1, n2+1;n+1).

Now, the double-sum in this equation is equal to the number of bipartite C-
decorated trees (that is, bipartite trees equipped with a C-permutation of the
vertices that stabilizes each color class) with n + 1 edges and genus g: indeed
in the double-sum, the quantities g1 and n1 + 1 can be interpreted respectively as
the genus of the restriction of the C-permutation to black vertices of the tree, and
as the number of black vertices in the tree. By our main result, Theorem 5, this
double-sum is therefore equal to 2n+2Bipg(n+ 1), which proves (9). �
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The proof above and (7) also show the following fact. Let G1 be the genus of
the submap S in a covered map (M,S) of genus g with n edges chosen uniformly
at random, and let G◦ be the genus of the restriction to white vertices of the
C-permutation in a bipartite C-decorated tree of genus g with n + 1 edges cho-
sen uniformly at random. Then the random variables G1 and G◦ have the same
distribution.

It is possible to prove that, when g is fixed and n tends to infinity, the variable
G◦ is close to a binomial random variable B(g, 1/2): the idea behind this property
is that a random bipartite tree with n+1 edges has about n/2+O(

√
n) vertices of

each color with high probability, and that with high probability the C-permutation
of its vertices is made of g cycles of length 3, that independently “fall” into each of
the color classes with probability 1/2. Giving a proper proof of these elementary
statements would lead us too far from our main subject, so we leave to the reader
the details of a proof along these lines of the following fact, which was proved in
[3] with no combinatorial interpretation:

Proposition 15 ([3]). Let g ≥ g1 ≥ 0. When n tends to infinity, the probability
that a covered map of genus g with n edges chosen uniformly at random has type

(g, g1) tends to 2−g

(
g

g1

)
.

To conclude this section, we mention that, in [3], refined results were given
that take more parameters into account (e.g., the number of vertices and faces of
the covered map). These extensions can be proved exactly in the same way as
Proposition 14, but we do not state them explicitly here, for the sake of brevity.

4. Computing Stanley character polynomials

4.1. Formulation of the problem. We now consider the following enumerative
problem. For n a fixed integer, we would like to compute the generating series

Fn(p1, p2, · · · ; q1, q2, · · · ) =
∑

(M,ϕ)

wt(M,ϕ)

of pairs (M,ϕ) where M is a rooted bipartite unicellular map with n edges, and
ϕ is a mapping from the vertex set VM of M to positive integers, satisfying the
following order condition:

for each edge e of M , one has ϕ(be) ≥ ϕ(we), where be and we are
respectively the black and white extremities of e.

The weight of such a pair is wt(M,ϕ) :=
∏

v∈V ◦
M
pϕ(i)

∏
v∈ V •

M
qϕ(i), where V •

M and

V ◦
M are respectively the sets of black (resp. white) vertices of M .
Our motivation comes from representation theory of the symmetric group. This

topic is linked to map enumeration by the following formula conjectured in [26] and
proved in [11]. Let p = p1, · · · , pr and q = q1, · · · , qr be two finite lists of positive
integers of the same length. Then the evaluation of the generating series considered
above is equal to
(10)
Fn(p1, · · · , pr, 0, · · · ; q1, · · · , qr, 0, · · · ) = L(L− 1) · · · (L − n+ 1)χ̂λ((1 2 · · · n)),

where:

• λ is the partition with p1 parts equal to q1 + · · · + qr, p2 parts equal to
q2 + · · ·+ qr, and so on. . .
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• L =
∑

1≤i≤j≤r piqj is its number of boxes ;

• χ̂λ is the normalized character of the irreducible representation of SL asso-
ciated to λ;

• (1 2 · · · n) is an n-th cycle seen as a permutation of SL (if n > L, it is not
defined but, as the numerical factor is 0, it is not a problem).

Remark 1. In [26, 11], this formula is stated under a slightly different form. We
call Gn the same generating series as Fn except that the order condition is replaced
by the following maximum condition:

for each black vertex b, one has ϕ(b) = maxϕ(w), where the maxi-
mum is taken over all white neighbours w of b.

Then the main theorem of [11] states that

Gn(p
′
1, · · · , p′r, 0, · · · ; q′1, · · · , q′r, 0, · · · ) = L(L− 1) · · · (L− n+ 1)χ̂λ((1 2 · · · n)),

where everything is defined as above except that

λ is the partition with p′1 parts equal to q′1, p
′
2 parts equal to q′2, and

so on. . .

This result is clearly equivalent to (10) by setting:

∀i ≥ 1,

{
pi = p′i
qi = q′i − q′i+1

.

4.2. A new expression for Fn. Our main bijection allows us to express the
generating series Fn in terms of the corresponding generating series for plane trees:

Rn+1(p, q) =
∑

(T,ϕ)

wt(T, ϕ),

where the sum runs over all pairs (T, ϕ), T being a plane tree and ϕ a function
VT → N satisfying the order condition.

The strange notation Rn+1 comes from the following fact: A. Rattan has proved
[23] that this generating series is the n+1-th free cumulant Rn+1 of the transition
measure of the Young diagram λ (λ states here for the Young diagram defined
in terms on p and q in the previous paragraph). Free cumulants have become in
the last few years an important tool in (asymptotic) representation theory of the
symmetric groups, see for example the work of P. Biane [5].

Let us define an operator D by

D(xk) :=
∑

g≥0

cg(k)x
k−2g = k!

k∑

r=1

2r
(
k − 1

r − 1

)(
x

r

)
,

D being extended multiplicatively to monomials in distinct variables, and then
extended linearly to multivariate polynomials and series (in particular, series in the
variables p and q).

Theorem 16. For any n ≥ 1, one has 2n+1Fn = D(Rn+1).

Proof. A pair (M,ϕ) as above corresponds by the bijection of Theorem 5 to a
bipartite C-decorated tree T , together with a function ϕ : VT → N which fulfills
the order condition and such that all vertices in a given cycle have the same image
by ϕ. Equivalently, we choose the tree T , a function ϕ : VT → N and then, for each
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i ≥ 1 a C-permutation of the white (resp. black) vertices of color i. The result
follows directly. �

The free cumulant Rn+1 is the compositional inverse of an explicit series [23].
Hence Theorem 16 gives an efficient, easily implemented way of computing Stanley
character polynomials Fn.

5. Counting 3-constellations

5.1. Constellations and Poulalhon-Schaeffer formula. Constellations are a
family of colored maps, depending on an integer parameter m ≥ 2, that are in
bijection with factorizations of a permutation into m factors. We refer to [18,
Chapter 1] for a general discussion on constellations, and in particular to Section
1.6.2 of that book for the correspondence between the factorization viewpoint and
the map-theoretic perspective that we adopt here (see also [4, Section 2], or the
introduction of [6]). For m = 2, constellations are in bijection with bipartite maps,
which are well-known to be in bijection with factorizations of permutations into
2 factors [10].

Definition 2. An m-constellation is a map with circle and square vertices such
that:

(i) the circle vertices are colored with m colors 1, 2, . . . ,m;
(ii) all edges have one circle and one square extremity;
(iii) each square vertex is linked to exactly one circle vertex of each color;
(iv) moreover, the circle vertices around each square vertex appear counterclock-

wise in the cyclic order 1, 2, . . . ,m.

A constellation is rooted if we distinguish a corner of a circle vertex of color 1.
Unless mentioned explicitly, all constellations considered will be rooted.

The size of an m-constellation is its number of square vertices.

1

1

2
23

2

3

Figure 4. A rooted 3-constellation of size 4 (the root corner is
pointed with an arrow). This 3-constellation has genus 1 and is
unicellular.

Note that several papers, e.g. [6, 7, 8, 4], use a different but equivalent definition of
constellations in terms of maps, where square vertices are replaced by ”black faces“
of degree m. For the purpose of using the bijection of Section 2.2, the definition we
use here will be much more convenient.

Fix a m-constellation of size n. The sequence of the degrees of its circle vertices
of color i, taken in decreasing order, forms a partition λ(i) of size n. The list
λ(1), . . . , λ(m) is called the multi-type of the constellation.
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For unicellular m constellations, Euler’s formula links the genus and the multi-
type (here, ℓi is the length of λ(i)):

2g = n(m− 1) + 1−
m∑

i=1

ℓi.

Using algebraic tools, D. Poulalhon and G. Schaeffer have given a general formula
for the number of unicellular m-constellations of size n [22, Theorem 1] with a given
multi-type. Though explicit, their formula requires quite heavy notations to be
stated, therefore we present here only the case m = 3, which is the only case we
are able to attack with our combinatorial tools.

For a partition λ of length ℓ and a non-negative integer g, we denote

a(λ) =
∏

mi(λ)!;

Sg(λ) = (ℓ + 2g − 1)!
∑

p1+···+pℓ=g

ℓ∏

i=1

1

2pi + 1

(
λi − 1

2pi

)
.

Theorem 17 (Poulalhon and Schaeffer, 2002). Let λ(1), λ(2) and λ(3) be three
partitions of lengths ℓ1, ℓ2 and ℓ3 and of the same size n, such that

g = 1/2 · (2n+ 1− ℓ1 − ℓ2 − ℓ3)

is a non-negative integer. Then the number cλ of 3-constellations of multi-type
(λ(1), λ(2), λ(3)) is given by the formula

cλ =
n2

22ga(λ(1))a(λ(2))a(λ(3))

∑

g0+g1+g2+g3=g

[
(g0!)

2

(
n− ℓ1 − 2g1

g0

)

·
(
n− ℓ2 − 2g2

g0

)(
n− ℓ3 − 2g3

g0

)
Sg1(λ

(1))Sg2(λ
(2))Sg3(λ

(3))

]
.

The planar case (g = 0) of this theorem:

(11) cλ =
n2

a(λ(1))a(λ(2))a(λ(3))
(ℓ1 − 1)!(ℓ2 − 1)!(ℓ3 − 1)!,

has been proved earlier by I. Goulden and D. Jackson [13, Theorem 3.2] and can
be handled in a purely combinatorial way [4].

Finding a combinatorial proof of Theorem 17 for higher genus is an open problem
(and seems difficult, due to the complexity of the formula). We did not succeed in
solving this problem but we shall present two results in this direction.

5.2. Refined enumeration of quasi-constellations. Our bijection preserves the
underlying multi-graph of a unicellular map, but not the cyclic order around ver-
tices. Therefore the last condition in the definition of constellations is hard to
handle with our method.

This paragraph is devoted to the proof of a refined enumeration formula for new
objects that we call 3-quasi-constellations, which are defined by the same conditions
than constellation, except that condition (iv) is dropped.

The formula obtained is surprisingly close to the one for constellations, although
we are not able to explain this phenomenon.
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Proposition 18. Let λ(1), λ(2) and λ(3) be three partitions of lengths ℓ1, ℓ2 and ℓ3
and of the same size n, such that g = 1/2 · (2n+1− ℓ1 − ℓ2 − ℓ3) is a non-negative
integer. Then the number c̃λ of 3-quasi-constellations of multi-type (λ(1), λ(2), λ(3))
is given by the formula

c̃λ =
n2

22ga(λ(1))a(λ(2))a(λ(3))

∑

g0+g1+g2+g3=g

n

n− g0
2n−g0

[
(g0!)

2

(
n− l1 − 2g1

g0

)

·
(
n− l2 − 2g2

g0

)(
n− l3 − 2g3

g0

)
Sg1(λ

(1))Sg2(λ
(2))Sg3(λ

(3))

]
.

As in the proof of Proposition 9, we prefer to work with labelled 3-quasi-constella-
tions (circle vertices of each color are labelled separately, square vertices are not
labelled). The multi-type of such an object is a triple of compositions with obvious
definition. We denote by ĉ(I,J ,L) the number of labelled 3-quasi-constellations of
multi-type (I,J ,L), where I, J and L are three compositions of the same size n.
From now on, ℓ1, ℓ2 and ℓ3 will denote the respective lengths of the compositions
I, J and L.

In genus 0 and size n, there are clearly 2n times more 3-quasi-constellations
than 3-constellations (indeed in the planar case, cyclically reordering the neighbours
around a vertex keeps the property of being unicellular; this does not hold in higher
genus). Hence, using Equation (11), we obtain in that case

(12) ĉ(I,J ,L) = 2nn2(ℓ1 − 1)!(ℓ2 − 1)!(ℓ3 − 1)!.

If we apply our main bijection to a 3-(quasi-)constellation, the tree object is not
necessarily a planar 3-quasi-constellation. Indeed, one can get square vertices of
degree 1. Therefore, we need to introduce the concept of prickly planar 3-quasi-
constellations.

Definition 3. A prickly planar 3-quasi-constellation is a rooted tree with circle and
square vertices such that:

(i) the circle vertices are colored with 3 colors 1, 2, 3;
(ii) all edges have one circle and one square extremity;
(iii) each square vertex is either a leaf or linked to exactly one circle vertex of

each color;
(iv) the number of square leaves linked to vertices of color 1,2, 3 are the same

(this number g0 will be called the prickling number).

The size n of such objects is one third of the number of edges. For a labelled object,
its multi-type (I,J ,L) is defined as for (quasi-)constellations.

Planarity is equivalent to the relation:

ℓ1 + ℓ2 + ℓ3 = 2n− 2g0 + 1

Lemma 19. The number of labelled prickly planar 3-quasi-constellations of multi-
type (I,J ,L) and prickling number g0 is

n(n− g0)2
n

(
n− ℓ1
g0

)(
n− ℓ2
g0

)(
n− ℓ3
g0

)
(ℓ1 − 1)!(ℓ2 − 1)!(ℓ3 − 1)!



22 G. CHAPUY, V. FÉRAY AND É. FUSY

2

2 1

1

2

2

1 3

1

Figure 5. A prickly planar 3-quasi-constellation of size n = 6,
with l1 = 4, l2 = 4, l3 = 1. The prickling number is g0 = 2.

Proof. It is easier in the proof of this lemma to work with unrooted labelled quasi-
constellations. Note that a planar (vertex-)labelled tree has no symmetry, hence,
dealing with unrooted or rooted objects only change the enumerations by constant
explicit factors (this would not be true for higher genus objects!).

Consider an (unrooted) prickly planar 3-quasi-constellation of multi-type (I,J ,L)
and prickling number g0. We denote by ai (resp. bi and ci) the number of square
leaves attached to the circle vertex labelled i of color 1 (resp 2 and 3). If we erase
these leaves we get an unrooted planar 3-quasi-constellation of size n − g0 and
multi-type (I−a,J−b,L−c), where, by definition, I−a = (I1−a1, . . . , Iℓ1 −aℓ1)
and similar definitions hold for J − b and L− c.

The number of unrooted planar 3-quasi-constellation of multi-type (I − a,J −
b,L− c) is, by equation (12) (beware of the rooting, which yields a factor n− g0):

2n−g0(n− g0)(ℓ1 − 1)!(ℓ2 − 1)!(ℓ3 − 1)!.

If we want to recover the prickly planar 3-quasi-constellation, one has to remember
for each circle vertex of color 1 (resp. 2, 3) where to add the ai (resp. bi,ci) square
leaves. This gives

ℓ1∏

i=1

(
Ii − 1

ai

) ℓ2∏

i=1

(
Ii − 1

bi

) ℓ3∏

i=1

(
Ii − 1

ci

)

choices (working with unrooted objects is crucial here). Finally the number of
unrooted prickly planar 3-quasi-constellation of multi-type (I,J ,L) and prickling
number g0 is

2n−g0(n− g0)(ℓ1 − 1)!(ℓ2 − 1)!(ℓ3 − 1)!

·
∑

a1+···+aℓ1

ℓ1∏

i=1

(
Ii − 1

ai

)
·

∑

b1+···+bℓ2

ℓ2∏

i=1

(
Ji − 1

bi

)
·

∑

c1+···+cℓ3

ℓ3∏

i=1

(
Ki − 1

ci

)
.

The first (resp. second, third) sum corresponds to the number of ways of choosing
g0 elements among n − ℓ1 (resp. n − ℓ2, n − ℓ3). This yields the formula of the
lemma, because every unrooted object can be rooted in n different ways. �

The end of the proof of Proposition 18 is now very similar to the one of Goupil-
Schaeffer formula (Proposition 9). Therefore, we do not give all the details.
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Sketch of proof of Proposition 18. Our main bijection sends 3-quasi-constellations
of multi-type (I,J ,L) on C-decorated prickly planar 3-quasi-constellation of multi-
type (H ,K,M), where H , K and M are refinements of I, J and L.

For given refinements H , K and M of respective lengths ℓ1 +2g1, ℓ2 +2g2 and
ℓ3 + 2g3, the number of labelled prickly planar 3-quasi-constellation is given by
Lemma 19:

n(n− g0)2
n

(
n− ℓ1 − 2g1

g0

)(
n− ℓ2 − 2g2

g0

)(
n− ℓ3 − 2g3

g0

)

(ℓ1 + 2g1 − 1)!(ℓ2 + 2g2 − 1)!(ℓ3 + 2g3 − 1)!,

where g0 = 1/2 · (2n+ 1− ℓ1 − 2g1 − ℓ2 − 2g2 − ℓ3 − 2g3) should be a non-negative
integer and is the prickling number of the object.

We need the number of refinement H of I of length ℓ1 + 2g1, where each part
Ir of I corresponds to an odd number 2pr + 1 of parts of H . It is given by

∑

p1+···+pℓ1
=g1

ℓ1∏

r=1

(
Ir − 1

2pr + 1

)

and similar formulas hold for the number of refinements K and M of J and L.
When, we apply our bijection to a quasi-constellation, we get a C-decorated

tree. As in the proof of Proposition 9, to transform this tree into a labelled prickly
3-quasi-constellations, we need:

• to choose for each cycle of circle vertices one distinguish vertex (factor∏
r 2pr + 1 for vertices of color 1 and similar factors for other colors);

• to group the square leaves by triples and to choose an orientation for each
triple (factor (g0!)

2 · 2g0);
• to forget the signs (factor 1/2ℓ1+ℓ2+ℓ3+n).

Finally, we get, by Theorem 5, that 23n+1ĉ(I,J ,L) is

∑

g0+g1+g2+g3=g

2ℓ1+ℓ2+ℓ3+n

(g0!)2 · 2g0
∏

r 2pr + 1

·
∑

p1+···+pℓ1
=g1

q1+···+qℓ2
=g2

s1+···+sℓ3
=g3

ℓ1∏

r=1

(
Ir − 1

2pr + 1

)
·

ℓ2∏

r=1

(
Jr − 1

2qr + 1

)
·

ℓ3∏

r=1

(
Lr − 1

2sr + 1

)

·
[
n(n− g0)2

n

(
n− ℓ1 − 2g1

g0

)(
n− ℓ2 − 2g2

g0

)

(
n− ℓ3 − 2g3

g0

)
(ℓ1 + 2g1 − 1)!(ℓ2 + 2g2 − 1)!(ℓ3 + 2g3 − 1)!

]

Indeed, the term in the bracket is the number of labelled prickly planar 3-quasi
constellation of a given multi-type (H ,K,M), the factor in the second line the
number of possible multi-types and the first line the ratio between numbers of
labelled and C-decorated objects.

Using the fact that

ĉ(I,J ,L) = a(λ(1))a(λ(2))a(λ(3)) · c̃λ(1),λ(2),λ(3)
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if λ(1), λ(2) and λ(3) are the sorted version of I, J and K, this ends the proof of
Proposition 18. �

5.3. Enumeration of constellations taking only numbers of vertices into

account. In the previous paragraph, we have explained that Theorem 5 is not
suitable to count unicellular constellations, as it does not give any information on
the rotation system of the map.

Nevertheless, it is possible to get some enumerative results on constellations not
by using Theorem 5 directly, but by mimicking its proof: find a combinatorial
induction for constellations and then simpler objects with the same induction.

In this paragraph, we give a combinatorial proof of the enumeration of 3-constella-
tions with respect to their number of circle vertices of each color.

5.3.1. Combinatorial induction for 3-constellations. Let us first introduce some no-
tation: define C(ℓ1,ℓ2,ℓ3)(n) as the set of 3-constellations with ℓ1 (resp. ℓ2 and ℓ3)
circle vertices of color 1 (resp. 2 and 3). Its cardinality is denoted c(ℓ1,ℓ2,ℓ3)(n).

Let us apply Chapuy’s bijection (recalled in paragraph 2.2) to a 3-constellation
of genus g in C(ℓ1,ℓ2,ℓ3)(n). Two things may happen:

• either the sliced vertex is a circle vertex, in which case we get a 3-constella-
tion of genus g − h with 2h+ 1 marked circle vertices of the corresponding
color (for some h ≥ 1);

• or the sliced vertex is a square vertex. In this case, as square vertices have
degree 3, the resulting map has always genus g − 1 and has three square
leaves. Erasing these leaves, we get a 3-constellation of size n−1 and genus
g − 1.

In the first case, Chapuy’s inverse mapping works well and always produces a
constellation in C(ℓ1,ℓ2,ℓ3)(n).

In the second case, one has to choose where to add square leaves, that is to
choose a corner ci of a circle vertex of color i for i = 1, 2, 3 ((n−1)3 choices). Then,
when we apply Chapuy’s inverse mapping, it may happen that the newly created
square vertex does not fulfill condition (iv) of the definition of constellations.

Lemma 20. Chapuy’s inverse mapping leads to a constellation if and only if the
three chosen corners appear in the cyclic order (c1, c2, c3) when we turn clockwise
around the unique face of the map.

Proof. This is direct by construction: let f, f ′, f ′′ be three leaves in a unicellular
map and e, e′, e′′ the edges incident to them, respectively. Then (e, e′, e′′) appear
in counterclockwise order around the new vertex created by the gluing of the three
leaves if and only if f, f ′, f ′′ appear in this order clockwise around the face in the
original map. See Paragraph 2.2 (or [9, Paragraph 4.2] for a direct description of
the inverse mapping). �

Lemma 21. For each constellation of size n−1 and genus g−1, exactly n(n−1)2/2
triples of corners (c1, c2, c3) over (n− 1)3 satisfy the condition above.

Proof. Observe that a unicellular 3-constellation of size n−1 has n−1 corners inci-
dent to circle vertices in each color class (1, 2, and 3), and that clockwise around the
face the colors of these 3(n−1) corners appear in the order (1, 2, 3, 1, 2, 3, . . . , 1, 2, 3).
From there it is a simple exercise to check the statement of the Lemma. �
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Finally, we get the following induction:

(13) 2gcℓ1,ℓ2,ℓ3(n) =
n(n− 1)2

2
cℓ1,ℓ2,ℓ3(n− 1) +

∑

h≥1

(
ℓ1 + 2h

2h+ 1

)
cℓ1+2h,ℓ2,ℓ3(n)

+

(
ℓ2 + 2h

2h+ 1

)
cℓ1,ℓ2+2h,ℓ3(n) +

(
ℓ3 + 2h

2h+ 1

)
cℓ1,ℓ2,ℓ3+2h(n),

where g is defined by ℓ1 + ℓ2 + ℓ3 + 2g = 2n.
We can define some refinement of the number cℓ1,ℓ2,ℓ3(n) by the induction

2gcℓ1,ℓ2,ℓ3(n; g0) =
n(n− 1)2

2
cℓ1,ℓ2,ℓ3(n−1; g0−1)+

∑

h≥1

(
ℓ1 + 2h

2h+ 1

)
cℓ1+2h,ℓ2,ℓ3(n; g0)

+

(
ℓ2 + 2h

2h+ 1

)
cℓ1,ℓ2+2h,ℓ3(n; g0) +

(
ℓ3 + 2h

2h+ 1

)
cℓ1,ℓ2,ℓ3+2h(n; g0)

and initial conditions

cℓ1,ℓ2,ℓ3(0; g0) = δg0,0cℓ1,ℓ2,ℓ3(0).

Then an immediate induction proves that

cℓ1,ℓ2,ℓ3(n) =
∑

g0≥0

cℓ1,ℓ2,ℓ3(n; g0).

5.3.2. A planar object with (almost) the same induction. Denote by dℓ1,ℓ2,ℓ3(n; g0)
the number of planar 3-constellations of size n− g0 endowed with:

• a C-permutation of its circle vertices of each color with respectively ℓ1, ℓ2
and ℓ3 cycles;

• An unordered set of g0 triples of square leaves, such that the triples are
mutually disjoint and each triple is of the form f1, f2, f3, with fi connected
to a circle vertex of color i.

Lemma 22. These numbers satisfy the induction:

2gdℓ1,ℓ2,ℓ3(n; g0) = 2(n−1)3dℓ1,ℓ2,ℓ3(n−1; g0−1)+
∑

h≥1

(
ℓ1 + 2h

2h+ 1

)
dℓ1+2h,ℓ2,ℓ3(n; g0)

+

(
ℓ2 + 2h

2h+ 1

)
dℓ1,ℓ2+2h,ℓ3(n; g0) +

(
ℓ3 + 2h

2h+ 1

)
dℓ1,ℓ2,ℓ3+2h(n; g0).

Proof. First, we have

g0dℓ1,ℓ2,ℓ3(n; g0) = (n− 1)3dℓ1,ℓ2,ℓ3(n− 1; g0 − 1).

Indeed, the left-hand side count the same objects as above with a marked triple of
square leaves. If we erase this triple, we get objects counted by dℓ1,ℓ2,ℓ3(n−1; g0−1).
This can be inverted if we remember in which corners were attached the leaves
((n− 1)3 possibilities).

Second, the induction for C-permutations lead to

2(g − g0)dℓ1,ℓ2,ℓ3(n; g0) =
∑

h≥1

(
ℓ1 + 2h

2h+ 1

)
dℓ1+2h,ℓ2,ℓ3(n; g0)

+

(
ℓ2 + 2h

2h+ 1

)
dℓ1,ℓ2+2h,ℓ3(n; g0) +

(
ℓ3 + 2h

2h+ 1

)
dℓ1,ℓ2,ℓ3+2h(n; g0).
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Corollary 23. For each n, g0, ℓ1, ℓ2, ℓ3, we have:

cℓ1,ℓ2,ℓ3(n; g0) =
n

22g0(n− g0)
dℓ1,ℓ2,ℓ3(n; g0).

Proof. Both families of numbers satisfy the same initial conditions and the same
induction relations. �

By using the method of the paragraph on quasi-constellations, we can compute
dℓ1,ℓ2,ℓ3(n; g0). So this provides a combinatorial proof for counting 3-constellations
with respect to the number of vertices of each color.

If we could refine (13) so as to control the degree distribution, we could give a
purely combinatorial proof of the Poulalhon-Schaeffer formula in the case m = 3.

5.4. Conclusion on constellations. We are unfortunately not able to give a
combinatorial proof of the Poulalhon-Schaeffer formula (even in the case m = 3).
Nevertheless, the work presented here suggests that the different elements in this
formula have a combinatorial meaning. The case m > 3 seems even harder.

References

[1] O. Bernardi. Bijective counting of tree-rooted maps and shuffles of parenthesis systems. Elec-
tron. J. Combin., 14(1):Research Paper 9, 36 pp. (electronic), 2007.

[2] O. Bernardi. An analogue of the Harer-Zagier formula for unicellular maps on general surfaces.
Adv. Appl. Math., 48(1):164–180, 2012.

[3] O. Bernardi and G. Chapuy. A bijection for covered maps, or a shortcut between Harer-
Zagier’s and Jackson’s formulas. J. Combin. Theory Ser. A, 118(6):1718–1748, 2011.

[4] O. Bernardi and A. Morales. Bijections and symmetries for the factorizations of the long
cycle. arXiv preprint 1112.4970, 2011.

[5] P. Biane. Representations of symmetric groups and free probability. Adv. Math., 138(1):126–
181, 1998.

[6] M. Bousquet-Mélou and G. Schaeffer. Enumeration of planar constellations. Adv. in Appl.
Math., 24(4):337–368, 2000.

[7] J. Bouttier, P. Di Francesco, and E. Guitter. Planar maps as labeled mobiles. Electron. J.
Combin., 11(1):Research Paper 69, 27, 2004.

[8] G. Chapuy. Asymptotic enumeration of constellations and related families of maps on ori-
entable surfaces. Combin. Probab. Comput., 18(4):477–516, 2009.

[9] G. Chapuy. A new combinatorial identity for unicellular maps, via a direct bijective approach.
Advances in Applied Mathematics, 47(4):874 – 893, 2011.

[10] R. Cori and A. Mach̀ı. Maps, hypermaps and their automorphisms: a survey. I, II, III.
Exposition. Math., 10(5):403–427, 429–447, 449–467, 1992.
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