
HAL Id: hal-00669896
https://hal.science/hal-00669896v2

Preprint submitted on 23 Jul 2012 (v2), last revised 24 Jul 2013 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A simple model of trees for unicellular maps
Guillaume Chapuy, Valentin Féray, Eric Fusy

To cite this version:
Guillaume Chapuy, Valentin Féray, Eric Fusy. A simple model of trees for unicellular maps. 2012.
�hal-00669896v2�

https://hal.science/hal-00669896v2
https://hal.archives-ouvertes.fr


A SIMPLE MODEL OF TREES FOR UNICELLULAR MAPS

GUILLAUME CHAPUY, VALENTIN FÉRAY AND ÉRIC FUSY

Abstract. We consider unicellular maps, or polygon gluings, of fixed genus. In FPSAC ’09
the first author gave a recursive bijection transforming unicellular maps into trees, explaining

the presence of Catalan numbers in counting formulas for these objects. In this paper, we give
another bijection that explicitly describes the “recursive part” of the first bijection. As a result
we obtain a very simple description of unicellular maps as pairs made by a plane tree and a
permutation-like structure. All the previously known formulas follow as an immediate corollary
or easy exercise, thus giving a bijective proof for each of them, in a unified way. For some of
these formulas, this is the first bijective proof, e.g. the Harer-Zagier recurrence formula, or the
Lehman-Walsh/Goupil-Schaeffer formulas. Thanks to previous work of the second author this
also leads us to a new expression for Stanley character polynomials, which evaluate irreducible
characters of the symmetric group.

Résumé. Nous considérons des cartes orientées à une face de genre fixé. À SFCA’09 le premier
auteur a introduit une bijection récursive envoyant une carte unicellulaire vers un arbre, ce qui
permet d’obtenir des formules énumératives pour les cartes à une face (et en particulier la présence
des nombres de Catalan). Dans l’article ici présent, et en nous appuyant sur la bijection ci-dessus,
nous obtenons une incarnation très simple des cartes à une face comme des paires formées d’un
arbre plan et d’une permutation d’un certain type. Toutes les formules précédemment connues
découlent aisément de cette nouvelle incarnation, donnant des preuves bijectives dans un cadre
unifié. Pour certaines de ces formules, telles que la récurrence de Harer-Zagier ou les formules de
Lehman-Walsh/Goupil-Schaeffer, nous obtenons la première preuve bijective connue. Par ailleurs,
en combinant notre approche avec des travaux du second auteur, nous obtenons une nouvelle
expression pour les polynômes de Stanley qui donnent certaines évaluations des caractères du
groupe symétrique.

1. Introduction

A unicellular map is a connected graph embedded in a surface in such a way that the complement
of the graph is a topological disk. These objects have appeared frequently in combinatorics in
the last forty years, in relation with the general theory of map enumeration, but also with the
representation theory of the symmetric group, the study of permutation factorizations, or the study
of moduli spaces of curves. All these connections have turned the enumeration of unicellular maps
into an important research field (for the many connections with other areas, see [9] and references
therein; for an overview of the results see the introductions of the papers [3, 1]). The main results
in the domain can be roughly separated in two families.

The first family deals with colored maps (maps endowed with an application from its vertex set
to a set of q colors). This implies “summation” enumeration formulas (see [8, 14, 11] or paragraph
3.4 below). These formulas are often elegant, and different combinatorial proofs for them have
been given in the past few years [10, 6, 14, 11, 1]. The issue is that some important topological
information, such as the genus of the surface, is not apparent in these constructions.

Formulas of the second family keep track explicitly of the genus of the surface. This includes
inductive relations (like the Harer-Zagier recurrence formula [8]) or explict (but quite involved)
closed forms (Lehman-Walsh [15] and Goupil-Schaeffer [7] formulas). ¿From a combinatorial point
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2 G. CHAPUY, V. FÉRAY AND É. FUSY

of view, these formulas are harder to understand. A step in this direction was done by the first author
in [3] (this construction is explained in subsection 2.2), which led to new inductions relations and
to new formulas. However the link with other formulas in the second family remained mysterious,
and [3] left open the problem of finding combinatorial proofs of these formulas.

The goal of this paper is to present a new bijection between unicellular maps and surprisingly
simple objects which we call C-decorated trees (these are merely plane trees equipped with a certain
kind of permutation on their vertices). This bijection is based on the previous work of the first
author [3]: we explicitly describe the “recursive part” appearing in this work. As a consequence,
not only can we reprove all the aforementioned formulas in a bijective way, thus giving the first
bijective proof for several of them, but we do that in unified way. Indeed, C-decorated trees are so
simple combinatorial objects that all formulas follow from our bijection as an immediate corollary
or easy exercise.

Another interesting application of this bijection is a new explicit way of computing the so-called
Stanley character polynomials, which are nothing but the evaluation of irreducible characters of the
symmetric groups, properly normalized and parametrized. Indeed, in a previous work [4], the second
author expressed these polynomials as a generating function of (properly weighted) unicellular maps.
Although we do not obtain a “closed form” expression (there is no reason to believe that such a
form exists!), we express Stanley character polynomials as the result of a term-substitution in free
cumulants, which are another meaningful quantity in representation theory of symmetric groups.

2. The main bijection

2.1. Unicellular maps and C-decorated trees. A map M of genus g ≥ 0 is a connected graph
G embedded on a closed compact oriented surface S of genus g, such that S\G is a collection of
topological disks, which are called the faces of M . Loops and multiple edges are allowed. The
graph G is called the underlying graph of M and S its underlying surface. Two maps that differ
only by an oriented homeomorphism between the underlying surfaces are considered the same. A
corner of M is the angular sector between two consecutive edges around a vertex. A rooted map is a
map with a marked corner, called the root ; the vertex incident to the root is called the root-vertex.
¿From now on, all maps are assumed to be rooted (note that the underlying graph of a rooted map
is naturally vertex-rooted). A unicellular map is a map with a unique face. The classical Euler
relation |V |− |E|+ |F | = 2− 2g ensures that a unicellular map with n edges has n+1− 2g vertices.
A plane tree is a unicellular map of genus 0.

A rotation system on a connected graph G consists in a cyclic ordering of the half-edges of G
around each vertex. Given a map M , its underlying graph G is naturally equipped with a rotation
system given by the clockwise ordering of half-edges on the surface in a vicinity of each vertex.
It is well-known that this correspondence is 1-to-1, i.e. a map can be considered as a connected
graph equipped with a rotation system (thus, as a purely combinatorial object). We will take this
viewpoint from now on.

A cycle-signed permutation is a permutation where each cycle carries a sign, either + or −. A
C-permutation is a cycle-signed permutation where all cycles have odd length, see Figure 1(a). For
each C-permutation σ on n elements, the rank of σ is defined as r(σ) = n− ℓ(σ), where ℓ(σ) is the
number of cycles of σ. Note that r(σ) is even since all cycles have odd length. The genus of σ is
defined as r(σ)/2. A C-decorated tree on n edges is a pair γ = (T, σ) where T is a plane tree with
n edges and σ is a C-permutation of n + 1 elements. The genus of γ is defined to be the genus of
σ. Note that the n+ 1 vertices of T can be canonically numbered from 1 to n+ 1 (e.g., following
a left-to-right depth-first traversal), hence σ can be seen as a permutation of the vertices of T , see
Figure 1(c). The underlying graph of γ is the (vertex-rooted) graph G obtained from T by merging
into a single vertex the vertices in each cycle of σ (so that the vertices of G correspond to the cycles
of σ), see Figure 1(d).
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Figure 1.

(a) A C-permutation
σ.

(b) A plane tree T .
(c) The C-decorated

tree (T, σ).
(d) The underlying

graph of (T, σ).

Definition 1. For n, g nonnegative integers, denote by Eg(n) the set of unicellular maps of genus
g with n edges; and denote by Tg(n) the set of C-decorated trees of genus g with n edges.

For A a finite set, kA denotes the set made of k disjoint copies of A. For two finite sets A and
B, we write A ≃ B if there is a bijection between A and B. Our main result will be to show that
2n+1Eg(n) ≃ Tg(n), with a bijection which preserves the underlying graphs of the objects.

2.2. Recursive decomposition of unicellular maps. In this section, we briefly recall a combi-
natorial method developed in [3] to decompose unicellular maps.

Proposition 1 (Chapuy [3]). For k ≥ 1, denote by E
(2k+1)
g (n) the set of maps from Eg(n) in which

a set of 2k + 1 vertices is distinguished. Then for g > 0 and n ≥ 0,

2g Eg(n) ≃ E
(3)
g−1(n) + E

(5)
g−2(n) + E

(7)
g−3(n) + · · ·+ E

(2g+1)
0 (n).(1)

In addition, if M and (M ′, S′) are in correspondence, then the underlying graph of M is obtained
from the underlying graph of M ′ by merging the vertices in S′ into a single vertex.

We now sketch briefly the construction of [3]. Although this is not really needed for the sequel,
we believe that it gives a good insight into the objects we are dealing with (readers in a hurry may
take Proposition 1 for granted and jump directly to subsection 2.3). We refer to [3] for proofs and
details.

We first explain where the factor 2g comes from in (1). Let M be a rooted unicellular map of
genus g with n edges. ThenM has 2n corners, and we label them from 1 to 2n incrementally, starting
from the root, and going clockwise around the (unique) face of M (Figure 2). Let v be a vertex of
M , let k be its degree, and let (a1, a2, . . . , ak) be the sequence of the labels of corners incident to
it, read in counterclockwise direction around v starting from the minimal label a1 = min ai. If for
some j ∈ J1, k − 1K, we have aj+1 < aj , we say that the corner of v labelled by aj+1 is a trisection
of M . Figure 2(a) shows a map of genus two having four trisections. More generally we have:

Lemma 2 ([3]). A unicellular map of genus g contains exactly 2g trisections. In other words, the
set of unicellular maps of genus g with n edges and a marked trisection is isomorphic to 2g Eg(n).

Now, let τ be a trisection of M of label l(τ), and let v the vertex its belongs to. We denote
c the corner of v with minimum label and c′ the corner with minimum label among those which
appear between c and τ clockwise around v and whose label is greater than l(τ). By definition
of a trisection, c′ is well defined. We then construct a new map M ′, by slicing the vertex v into
three new vertices using the three corners c, c′, τ as on Figure 2(b). We say that the map M ′ is
obtained from M by slicing the trisection τ . As shown in [3], the new map M ′ is a unicellular map
of genus g − 1. We can thus relabel the 2n corners of M ′ from 1 to 2n, according to the procedure
we already used for M . Among these corners, three of them, say c1, c2, c3 are naturally inherited
from the slicing of v, as on Figure 2(b). Let v1, v2, v3 be the vertices they belong to, respectively.
Then the following is true [3]: In the map M ′, the corner ci has the smallest label around the vertex
vi, for i ∈ {1, 2}. For i = 3, either the same is true, or c3 is a trisection of the map M ′.
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Figure 2. (a) A unicellular map of genus 2 equipped with
its corner labelling. Labels corresponding to trisections are
boxed. (b) Given a trisection τ , two other corners of inter-
est c and c′ are canonically defined (see text). “Slicing the
trisection” then gives rise to three new vertices v1, v2, v3,
with distinguished corners c1, c2, c3. (c) The recursive pro-
cedure of [3]: if c3 is the minimum corner of v3, then stop;
else, as shown in [3], c3 is a trisection of the new map M ′:
in this case, iterate the slicing operation on (M ′, c3).

We now finally describe the bijection promised in Proposition 1. It is defined recursively on the
genus, as follows. Given a map M ∈ Eg(n) with a marked trisection τ , let M ′ be obtained from M
by the slicing of τ , and let ci, vi be defined as above for i ∈ {1, 2, 3}. If c3 has the minimum label in

v3, set Ψ(M, τ) := (M ′, {v1, v2, v3}), which is an element of E
(3)
g−1(n). Else, let (M

′′, S) = Ψ(M ′, c3),

and set Ψ(M, τ) := (M ′′, S ∪ {v1, v2}). Note that this recursive algorithm necessarily stops, since
the genus of the map decreases and since there are no trisections in unicellular maps of genus 0
(plane trees). Thus this procedure yields recursively a mapping that associates to a map M with a
marked trisection τ another map M ′′ of a smaller genus, with a set S′′ of marked vertices (namely
the set of vertices which have been involved in a slicing at some point of the procedure). The set S′′

of marked vertices necessarily has odd cardinality, as easily seen by induction. Moreover, it is clear
that the underlying graph of M coincides with the underlying graph of M ′′ in which the vertices
of S′′ have been identified together into a single vertex. One can show that Ψ is a bijection by
constructing explicitly the inverse mapping [3].

2.3. Recursive decomposition of C-decorated trees. We now propose a recursive method to
decompose C-decorated trees, which can be seen as parallel to the decomposition of unicellular
maps given in the previous section. Denote by C(n) (resp. Cg(n)) the set of C-permutations on n
elements (resp. on n elements and of genus g). A signed sequence of integers is a pair (ǫ, S) where
S is an integer sequence and ǫ is a sign, either + or −.

Lemma 3. Let X be a finite non-empty set of positive integers. Then there is a bijection between
signed sequences of distinct integers from X —all elements of X being present in the sequence—
and C-permutations on the set X. In addition the C-permutation has one cycle if and only if the
signed sequence has odd length and starts with its minimal element.

Proof. Let γ be a signed sequence, e.g. γ =+(4731562). If γ has odd length and starts with its
minimal element, return γ seen as a unicyclic C-permutation (where the unique cycle is written
sequentially). Otherwise cut γ as γ = γ1γ2, where γ2 starts with the minimal element in γ (in our
example, γ1 =+(473) and γ2 = (1562)). If γ2 has odd length, then “produce” the signed cycle +γ2.
If γ2 has even length, move the second element of γ2 to the end of γ1, and “produce” the signed
cycle −γ2. Then (in both cases), restart the same process on γ = γ1, producing one (signed) cycle
at each step, until γ is odd and starts with its minimal element, in which case one produces γ as
the last signed cycle. (In our example, the signed cycles successively produced are −(162), −(3),
and +(475).) The process clearly yields a collection of signed cycles of odd lengths, i.e., yields a
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C-permutation. The mapping is easy to invert (we omit details in this extended abstract), so it
gives a bijection. �

An element of a C-permutation is called non-minimal if it is not the minimum in its cycle. Non-
minimal elements play the same role for C-permutations (and C-decorated trees) as trisections for
unicellular maps. Indeed, a C-permutation of genus g has 2g non-minimal elements (compare with
Lemma 2), and moreover we have the following analogue of Proposition 1:

Proposition 4. For k ≥ 1, denote by T
(2k+1)
g (n) the set of C-decorated trees from Tg(n) in which

a set of 2k + 1 cycles is distinguished. Then for g > 0 and n ≥ 0,

2g Tg(n) ≃ T
(3)
g−1 + T

(5)
g−2 + T

(7)
g−3 + · · · .

In addition, if γ and (γ′, S′) are in correspondence, then the underlying graph of γ is obtained from
the underlying graph of γ′ by merging the vertices corresponding to cycles from S′ into a single
vertex.

Proof. For k ≥ 1 let C
(2k+1)
g (n) be the set of C-permutations from Cg(n) where a subset of 2k +

1 cycles are marked. Let C◦
g (n) be the set of C-permutations from Cg(n) where a non-minimal

element is marked. Note that C◦
g(n) ≃ 2g Cg(n) since a C-permutation in Cg(n) has 2g non-minimal

elements. Moreover C◦
g (n) ≃

∑

k≥1 C
(2k+1)
g−k (n) (apply Lemma 3 to the cycle —represented as a signed

sequence— containing the marked non-minimal element; this produces a collection of (2k + 1) ≥ 3

signed cycles of odd length, which we take as the marked cycles). Hence 2gCg(n) ≃
∑

k≥1 C
(2k+1)
g−k (n).

Since Tg(n) = E0(n)× Cg(n+ 1), we conclude that 2g Tg(n) ≃
∑

k≥1 T
(2k+1)
g−k (n). The statement on

the underlying graph just follows from the fact that the procedure in Lemma 3 merges the marked
cycles into a unique cycle. �

2.4. The main result.

Theorem 5. For each non-negative integers n and g we have

2n+1Eg(n) ≃ Tg(n).

In addition the cycles of a C-decorated tree naturally correspond to the vertices of the associated
unicellular map, in such a way that the respective underlying graphs are the same.

Proof. The proof is a simple induction on g, whereas n is fixed. The case g = 0 is obvious. Let g > 0.

The induction hypothesis ensures that for each g′ < g, 2n+1E
(2k+1)
g′ (n) ≃ T

(2k+1)
g′ (n), where the

underlying graphs (taking marked vertices vertices into account) of corresponding objects are the
same. Hence, by Propositions 1 and 4, we have 2g2n+1Eg(n) ≃ 2gTg(n), where the underlying graphs
of corresponding objects are the same. Finally, one can extract from this 2g-to-2g correspondence
a 1-to-1 correspondence, which still preserves underlying graphs: think of extracting a perfect
matching from a 2g-regular bipartite graph, which is possible according to Hall’s marriage theorem.
Hence 2n+1Eg(n) ≃ Tg(n). �

2.5. A fractional, or stochastic, formulation. Even if this does not hinder enumerative appli-
cations to be detailed in the next section, we do not know of an effective (polynomial-time) way
to implement the bijection of Theorem 5; indeed the last step of the proof is to extract a perfect
matching from a 2g-regular bipartite graph whose size is exponential in n.

What can be done effectively is a fractional formulation of the bijection. For a finite set X ,
let C〈X〉 be the set of linear combinations of the form

∑

x∈X ux · x, where the x ∈ X are seen as

independent formal vectors, and the coefficients ux are in C. Let R
+
1 〈X〉 ⊂ C〈X〉 be the subset

of linear combinations where the coefficients are nonnegative and add up to 1. Denote by 1X the
vector

∑

x∈X x. For two finite sets X and Y , a fractional mapping from X to Y is a linear mapping

ϕ from C〈X〉 to C〈Y 〉 such that the image of each x ∈ X is in R
+
1 〈Y 〉; the subset of elements
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of Y with strictly positive coefficients in ϕ(x) is called the image-support of x. Note that ϕ(x)
identifies to a probability distribution on Y ; a “call to ϕ(x)” is meant as picking up y ∈ Y under
this distribution. A fractional mapping is bijective if 1X is mapped to 1Y , and is deterministic if
each x ∈ X is mapped to some y ∈ Y . Note that, if there is a fractional bijection from X to Y ,
then |X | = |Y | (indeed in that case the matrix of ϕ is bistochastic).

One can now formulate by induction on the genus an effective (the cost of a call is O(gn))
fractional bijection from 2n+1Eg(n) to Tg(n), and similarly from Tg(n) to 2n+1Eg(n). The crucial
property is that, for k ≥ 1 and E, F finite sets, if there is a fractional bijection Φ from kE to
kF then one can effectively derive from it a fractional bijection from E to F : map each x ∈ E to
1
k
(ι(Φ(x1)) + · · · + ι(Φ(xk))), where x1, . . . , xk are the representatives of x in kE, and where ι is

the projection from kF to F . Hence by induction on g, Propositions 1 and 4 (where the stated
combinatorial isomorphisms are effective) ensure that there is an effective fractional bijection from
2n+1Eg(n) to Tg(n) and similarly from Tg(n) to 2n+1Eg(n), such that if γ′ is in the image-support
of γ then the underlying graphs of γ and γ′ are the same.

Note that, given an effective fractional bijection between two setsX and Y , and a uniform random
sampling algorithm on the set X , one obtains immediately a uniform random sampling algorithm
for the set Y . In the next section, we will use our bijection to prove several enumerative formulas for
unicellular maps, starting from elementary results on the enumeration of trees or permutations. In
all cases, we will also be granted with a uniform random sampling algorithm for the corresponding
unicellular maps, though we will not emphasize this point in the rest of the paper.

3. Counting formulas for unicellular maps

It is quite clear that C-decorated trees are much simpler combinatorial objects than unicellular
maps. In this section, we use them to give bijective proofs of several known formulas concerning
unicellular maps. We focus on the Lehman-Walsh and Goupil-Schaeffer formulas, and the Harer-
Zagier recurrence, of which bijective proofs were long-awaited. We also sketch a bijective proof of
the Harer-Zagier summation formula (prototype for a family of formulas for which bijective proofs
were already known). We insist on the fact that all these proofs are elementary consequences of our
main bijection (Theorem 5).

3.1. Two immediate corollaries. The set Tg(n) = E0(n) × Cg(n + 1) is the product of two sets
that are easy to count. Precisely, let ǫg(n) = |Eg(n)| and cg(n) = |Cg(n)|. Recall that ǫ0(n) =

Cat(n), where Cat(n) := (2n)!
n!(n+1)! is the nth Catalan number. Therefore Theorem 5 gives ǫg(n) =

2−n−1Cat(n)cg(n+ 1).
It is immediate to give for cg(n + 1) a closed form (by summing over all possible cycle types)

or an explicit generating series. This yields two classical results for the enumeration of unicellular
maps.

For γ = (γ1, . . . , γℓ) = 1m1 . . . kmk a partition of g, the number aγ(n+1) of permutations of n+ 1
elements with cycle-type equal to 1n+1−2g−ℓ3m1 . . . (2k + 1)mk is classically given by the quotient
aγ(n+ 1) = (n+ 1)!/((n+ 1− 2g − ℓ)!

∏

i mi!(2i+ 1)mi), and the number of C-permutations with
this cycle-type is just aγ(n + 1)2n+1−2g (since each cycle has 2 possible signs). Hence, we get the
equality cg(n+ 1) = 2n+1−2g

∑

γ⊢g aγ(n+ 1). We thus recover:

Proposition 6 (Walsh and Lehman [15]). The number ǫg(n) is given by

ǫg(n) =
(2n)!

n!(n+ 1− 2g)!22g

∑

γ⊢g

(n+ 1− 2g)ℓ
∏

i mi!(2i+ 1)mi
,

where (x)k =
∏k−1

j=0 (x− j), ℓ is the number of parts of γ, and mi is the number of parts of length i
in γ.
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(1) (2)

Figure 3. Rémy’s procedure
gives two ways to obtain a plane
tree with n edges and a marked
vertex v from a plane tree with
n−1 edges and a marked corner:
(1) in the first way v is a leaf, (2)
in the second way v is a non-leaf.

The exponential generating function C(x, y) :=
∑

n,g
1

(n+1)!cg(n+1)yn+1xn+1−2g of signed cycles

of odd length (y marks the number of elements, which are labelled, and x marks the number of
cycles) is

C(x, y) = exp
(

2x
∑

k≥1

y2k+1

2k + 1

)

− 1 = exp
(

x log
(1 + y

1− y

))

− 1 =
(1 + y

1− y

)x

− 1.

Since c0(1) = 2 and 1
(n+1)!cg(n+ 1) = 2n+1n!

(2n)! ǫg(n) =
2

(2n−1)!!ǫg(n) for n ≥ 1, we recover:

Proposition 7 (Harer-Zagier series formula [8, 9]). The generating function

E(x, y) := 1 + 2xy + 2
∑

g≥0,n>0

ǫg(n)

(2n− 1)!!
yn+1xn+1−2g is given by E(x, y) =

(1 + y

1− y

)x

.

3.2. Harer-Zagier recurrence formula. Elementary algebraic manipulations on the expression
of E(x, y) yield a very simple recurrence satisfied by ǫg(n), known as the Harer-Zagier recurrence
formula (stated in Proposition 10 hereafter). We now show that the model of C-decorated trees
makes it possible to derive this recurrence directly from a combinatorial isomorphism, that gener-
alizes Rémy’s beautiful bijection for plane trees [13].

It is convenient here to consider C-decorated trees as unlabelled structures : precisely we see a
C-decorated tree as a plane tree where the vertices are partitioned into parts of odd size, where
each part carries a sign + or −, and such that the vertices in each part are cyclically ordered (the
C-permutation can be recovered by numbering the vertices of the tree according to a left-to-right
depth-first traversal), think of Figure 1(c) where the labels have been taken out. We denote by
P(n) = E0(n) the set of plane trees with n edges, and by Pv(n) (resp. Pc(n)) the set of plane trees
with n edges where a vertex (resp. a corner) is marked. Rémy’s procedure, shown in Figure 3,
realizes the isomorphism Pv(n) ≃ 2Pc(n− 1), or equivalently

(2) (n+ 1)P(n) ≃ 2(2n− 1)P(n− 1).

Let T v
g (n) be the set of C-decorated trees from Tg(n) where a vertex is marked. Let A (resp. B)

be the subset of objects in T v
g (n) where the signed cycle containing the marked vertex has length

1 (resp. length greater than 1). Let γ ∈ T v
g (n), with n ≥ 1. If γ ∈ A, record the sign of the 1-cycle

containing v and then apply the Rémy’s procedure to the plane tree with respect to v (so as to
delete v). This reduction, which does not change the genus, yields A ≃ 2 · 2(2n− 1)Tg(n − 1). If
γ ∈ B, let c be the cycle containing the marked vertex v; c is of the form (v, v1, v2, . . . , v2k) for some
k ≥ 1. Move v1 and v2 out of c (the successor of v becomes the former successor of v2). Then apply
the Rémy’s procedure twice, firstly with respect to v1 (on a plane tree with n edges), secondly with
respect to v2 (on a plane tree with n − 1 edges). This reduction, which decreases the genus by 1,
yields B ≃ 2(2n− 1)2(2n− 3)T v

g−1(n − 2), hence B ≃ 4(n− 1)(2n − 1)(2n− 3)Tg−1(n − 2). Since
T v
g (n) = A+ B and T v

g (n) ≃ (n+ 1)Tg(n), we finally obtain the isomorphism

(3) (n+ 1)Tg(n) ≃ 4(2n− 1)Tg(n− 1) + 4(n− 1)(2n− 1)(2n− 3)Tg−1(n− 2),

which holds for any n ≥ 1 and g ≥ 0 (with the convention Tg(n) = ∅ if g or n is negative). Since
2n+1Eg(n) ≃ Tg(n), we recover:
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Proposition 8 (Harer-Zagier recurrence formula [8, 9]). The coefficients ǫg(n) satisfy the following
recurrence relation valid for any g ≥ 0 and n ≥ 1 (with ǫ0(0) = 1 and ǫg(n) = 0 if g < 0 or n < 0):

(n+ 1)ǫg(n) = 2(2n− 1)ǫg(n− 1) + (n− 1)(2n− 1)(2n− 3)ǫg−1(n− 2).

To the best of our knowledge this is the first proof of the Harer-Zagier recurrence formula that
directly follows from a combinatorial isomorphism. The isomorphism (3) also provides a natural
extension to arbitrary genus of Rémy’s isomorphism (2).

3.3. Refined enumeration of bipartite unicellular maps. In this paragraph, we explain how
to recover a formula due to Goupil and Schaeffer [7, Theorem 2.1] from our bijection. Let us first
give a few definitions. A graph is bipartite if its vertices can be colored in black and white such
that each edge connects a black and a white vertices. If the graph has a root-vertex v, then v is
required to be black; and if the graph is also connected, then such a bicoloring of the vertices is
unique. ¿From now on, a connected bipartite graph with a root-vertex is assumed to be endowed
with this canonical bicoloring.

The degree distribution of a map/graph is the sequence of the degrees of its vertices taken in
decreasing order (it is a partition of 2n, where n is the number of edges). If we consider a bipartite
map/graph, we can consider separately the white vertex degree distribution and the black vertex
degree distribution, which are two partitions of n.

Let ℓ,m, n be positive integers such that n + 1 − ℓ −m is even. Fix two partitions λ,µ of n of
respective lengths ℓ and m. We call Bi(λ, µ) the number of bipartite unicellular maps, with white
(resp. black) vertex degree distribution λ (resp. µ). The corresponding genus is g = (n+1−ℓ−m)/2.
It will be convenient to change a little bit the formulation of the problem and to consider labelled
maps instead of the usual non-labelled maps: we call a labelled map a map whose vertices are
labelled with integers 1, 2, · · · . If the map is bipartite, we require instead that the white and
black vertices are labelled separately (with respective labels w1, w2, · · · and b1, b2, · · · ). The degree
distribution(s) of a (bipartite) labelled map with n edges can be seen as a composition of 2n (resp.
two compositions of n). For I = (i1, · · · , iℓ) and J = (j1, · · · , jm) two compositions of n, we
denote by BiL(I,J) the number of labelled bipartite unicellular maps with white (resp. black)
vertex degree distribution I (resp. J). The link between Bi(λ, µ) and BiL(I,J) is straightforward:
BiL(I,J) = m1(λ)!m2(λ)! · · ·m1(µ)!m2(µ)! · · ·Bi(λ, µ), where λ and µ are the sorted versions of I
and J . We now recover the following formula:

Proposition 9 (Goupil and Schaeffer [7, Theorem 2.1]). :

(4) BiL(I,J) = 2−2g · n · (ℓ+ 2g1 − 1)!(m+ 2g2 − 1)!

·
∑

g1+g2=g

∑

p1+···+pℓ=g1
q1+···+qm=g2

ℓ
∏

r=1

1

2pr + 1

(

ir − 1

2pr

) m
∏

r=1

1

2qr + 1

(

jr − 1

2qr

)

.

Proof. For g = 0 the formula is simply

(5) BiL(I,J) = n(ℓ− 1)!(m− 1)!,

which can easily be established by a bivariate version of the cyclic lemma, see also [5, Theorem 2.2].
(Note, that in that case, the cardinality only depend on the lengths of I and J .)

We now prove the formula for arbitrary g. Consider some lists p = (p1, · · · , pℓ) and q =
(q1, · · · , qm) of nonnegative integers with total sum g: let g1 =

∑

pi and g2 =
∑

qi. We say

that a composition H refines I along p if H is of the form (h1
1, · · · , h

2p1+1
1 , · · · , h1

ℓ , · · · , h
2pℓ+1
ℓ ),

with
∑2pr+1

t=1 ht
r = ir for all r between 1 and ℓ. Clearly, there are

∏ℓ

r=1

(

ir−1
2pr

)

such compositions

H . One defines similarly a composition K refining J along q.
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Consider now the set of labelled bipartite plane trees of vertex degree distributions H and K,
whereH (resp. K) refines I (resp. J) along p (resp. q). By (5), there are n·(ℓ+2g1−1)!(m+2g2−1)!
trees for each pair (H ,K), so in total, with I, J , p and q fixed, the number of such trees is:

(6) n · (ℓ + 2g1 − 1)!(m+ 2g2 − 1)!

ℓ
∏

r=1

(

ir − 1

2pr

) m
∏

r=1

(

jr − 1

2qr

)

.

As the parts of H (resp. K) are naturally indexed by pairs of integers, we can see these trees
as labelled by the set {wt

r; 1 ≤ r ≤ ℓ, 1 ≤ t ≤ 2pr + 1} ⊔ {btr; 1 ≤ r ≤ m, 1 ≤ t ≤ 2qr + 1}. There
is a canonical permutation of the vertices of the trees with cycles of odd sizes and which preserves
the bicoloring: just send wt

r to wt+1
r (resp. btr to bt+1

r ), where t+ 1 is meant modulo 2pr + 1 (resp.
2qr+1). If we additionally put a sign on each cycle, we get a C-decorated tree (with labelled cycles)
that corresponds to a labelled bipartite map with white (resp. black) vertex degree distribution I

(resp. J). Conversely, to recover a labelled bipartite plane tree from such a C-decorated tree, one
has to choose in each cycle which vertex gets the label w1

r or b1r, and one has to forget the signs of

the (n+ 1− g) cycles. This represents a factor 2n+1−2g
(

∏ℓ

r=1(2pr + 1)
∏m

r=1(2qr + 1)
)−1

.

Multiplying (6) by the above factor, and summing over all possible sequences p and q of total sum
g, we conclude that the number of C-decorated trees associated with labelled bipartite unicellular
maps of white (resp. black) vertex degree distibution I (resp. J), is equal to 2n+1 times the right-
hand side of (4). By Theorem 5, this number is also equal to 2n+1BiL(I,J). This ends the proof
of Proposition 9. �

This is the first combinatorial proof of (4) (the proof by Goupil and Schaeffer involves represen-
tation theory of the symmetric group). Moreover, the authors of [7] found surprising that “the two
partitions contribute independently to the genus”. With our approach, this is very natural, since
the cycles are carried independently by white and black vertices.

3.4. Summation formulas for colored maps. We now recover Harer-Zagier’s summation for-
mula [8, 9] (which can also be very easily derived from the expression of E(x, y)). In contrast
to the formulas presented so far, this one has already been given combinatorial proofs [10, 6, 1]
using different bijective constructions, but we want to insist on the fact that our construction gives
bijective proofs for all the formulas in a unified way.

Proposition 10 (Harer-Zagier summation formula [8, 9]). Let A(v;n) be the number of unicellular
maps with n edges and v vertices. Then for n ≥ 1

∑

v

A(v;n)xv = (2n− 1)!!
∑

r≥1

2r−1

(

n

r − 1

)(

x

r

)

.

Proof. It suffices to prove that the number Ar(n) of unicellular maps with n edges, each vertex
having a color in [1..r], and each color in [1..r] being used at least once, is given by Ar(n) =
(2n − 1)!! 2r−1

(

n
r−1

)

. Consider a C-decorated tree with n edges, where each (signed) cycle has a

color in [1..r], and such that each color in [1..r] is used by at least one cycle. Each of the r colors
yields a (non-empty) C-permutation, which can be represented as a signed sequence, according to
Lemma 3. Then one can concatenate these r signed sequences into a unique sequence S of length
n+ 1, together with r signs and a subset of r − 1 elements among the n elements from position 2
to n+ 1 in S (in order to recover from S the r signed sequences). For instance if r = 3 and if the
signed sequences corresponding respectively to colors 1, 2, 3 are +(3, 9, 4), −(5, 8, 6, 2), and −(1, 7),
then the concatenated sequence is (3, 9, 4, 5, 8, 6, 2, 1, 7), together with the 3 signs (+,−,−) and the
two selected elements {5, 1}. Hence the number of such C-decorated trees is (n + 1)! 2r

(

n
r−1

)

, and
by Theorem 5,

Ar(n) = 2−n−1Cat(n)(n+ 1)! 2r
(

n

r − 1

)

= (2n− 1)!! 2r−1

(

n

r − 1

)

. �
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The papers [14, 11] contain other summation formulas, that deal with colored bipartite maps,
taking the number of colors or the degree distributions into account. They can all be recovered
from our bijection. The proofs follow roughly the same guideline, but are omitted here for brevity.

4. Computing Stanley character polynomials

We now consider the following enumerative problem. For n a fixed integer, we would like to
compute the generating series Fn(p1, p2, · · · ; q1, q2, · · · ) =

∑

wt(M,ϕ) of pairs (M,ϕ) where M is
a rooted bipartite unicellular map with n edges, and ϕ is a mapping from the vertex set VM of
M to positive integers, satisfying the following order condition: for each edge e of M , one has
ϕ(be) ≥ ϕ(we), where be and we are respectively the black and white extremities of e. The weight of
such a pair is wt(M,ϕ) :=

∏

v∈V ◦

M
pϕ(i)

∏

v∈ V •

M
qϕ(i), where V •

M and V ◦
M are respectively the sets

of black (resp. white) vertices of M .
Our motivation comes from representation theory of the symmetric group. This topic is linked

to map enumeration by the following formula [4]. Let p = p1, · · · , pr and q = q1, · · · , qr be two finite
lists of positive integers of the same length. Then the evaluation Fn(p1, · · · , pr, 0, · · · ; q1, · · · , qr, 0, · · · )
of the generating series considered above is equal to L(L− 1) · · · (L−n+1)χ̂λ((1 2 · · · n)), where:

• λ is the partition with p1 parts equal to q1 + · · · + qr, p2 parts equal to q2 + · · ·+ qr, and
so on. . .

• L =
∑

1≤i≤j≤r piqj is its number of boxes ;

• χ̂λ is the normalized character of the irreducible representation of SL associated to λ;
• (1 2 · · · n) is an n-th cycle seen as a permutation of SL (if n > L, it is not defined but, as
the numerical factor is 0, it is not a problem).

Our main bijection allows us to express the generating series Fn in terms of the corresponding
generating series for plane trees. A. Rattan has proved [12] that this generating series is the n+1-th
free cumulant Rn+1 of the transition measure of λ (as λ depends on p and q, Rn+1 can be seen
as a series in p and q). Free cumulants have become in the last few years an important tool in
(asymptotic) representation theory of the symmetric groups, see for example the work of P. Biane
[2].

Let us define an operator D by D(xk) :=
∑

g≥0 cg(k)x
k−2g = k!

∑k

r=1 2
r
(

k−1
r−1

)(

x
r

)

, D being
extended multiplicatively to monomials in distinct variables, and then extended linearly to multi-
variate polynomials and series (in particular, series in the variables p and q).

Theorem 11. For any n ≥ 1, one has 2n+1Fn = D(Rn+1).

Proof. A pair (M,ϕ) as above corresponds by the bijection of Section 2 to a bipartite C-decorated
tree T , together with a function ϕ : VT → N which fulfills the order condition and such that all
vertices in a given cycle have the same image by ϕ. The result follows directly. �

The free cumulant Rn+1 is the compositional inverse of an explicit series [12]. Hence Theorem 11
gives an efficient, easily implemented way of computing Stanley character polynomials Fn.
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