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ON THE LOCAL TIME OF RANDOM PROCESSES IN RANDOM SCENERY

FABIENNE CASTELL, NADINE GUILLOTIN-PLANTARD, FRANÇOISE PÈNE, AND BRUNO SCHAPIRA

Abstract. Random walks in random scenery are processes defined by Zn :=
∑n

k=1 ξX1+...+Xk
,

where basically (Xk, k ≥ 1) and (ξy, y ∈ Z) are two independent sequences of i.i.d. random
variables. We assume here that X1 is Z-valued, centered and with finite moments of all orders.
We also assume that ξ0 is Z-valued, centered and square integrable. In this case H. Kesten
and F. Spitzer proved that (n−3/4Z[nt], t ≥ 0) converges in distribution as n → ∞ toward some
self-similar process (∆t, t ≥ 0) called Brownian motion in random scenery. In a previous paper,
we established that P(Zn = 0) behaves asymptotically like a constant times n−3/4, as n → ∞.
We extend here this local limit theorem: we give a precise asymptotic result for the probability
for Z to return to zero simultaneously at several times. As a byproduct of our computations,
we show that ∆ admits a bi-continuous version of its local time process which is locally Hölder
continuous of order 1/4 − δ and 1/6 − δ, respectively in the time and space variables, for any
δ > 0. In particular, this gives a new proof of the fact, previously obtained by Khoshnevisan,
that the level sets of ∆ have Hausdorff dimension a.s. equal to 1/4. We also get the convergence
of every moment of the normalized local time of Z toward its continuous counterpart.

1. Introduction

1.1. Description of the model and of some earlier results. We consider two independent
sequences (Xk, k ≥ 1) and (ξy, y ∈ Z) of independent identically distributed Z-valued random
variables. We assume in this paper that X1 is centered, with finite moments of all orders, and
that its support generates Z. We consider the random walk (Sn, n ≥ 0) defined by

S0 := 0 and Sn :=

n∑

i=1

Xi for all n ≥ 1.

We suppose that ξ0 is centered, with finite second moment σ2 := E[ξ20 ]. The sequence ξ is called
the random scenery.

The random walk in random scenery Z is then defined for all n ≥ 1 by

Zn :=

n−1∑

k=0

ξSk
.

For motivation in studying this process and in particular for a description of its connections with
many other models, we refer to [5, 10, 14] and references therein. Denoting by Nn(y) the local
time of the random walk S :

Nn(y) = #{k = 0, . . . , n− 1 : Sk = y} ,
it is straightforward, and important, to see that Zn can be rewritten as Zn =

∑
y ξyNn(y).
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Kesten and Spitzer [10] and Borodin [2] proved the following functional limit theorem :
(
n−3/4Znt, t ≥ 0

)
(L)
=⇒
n→∞

(σ∆t, t ≥ 0) , (1)

where

• Zs := Zn + (s− n)(Zn+1 − Zn), for all n ≤ s ≤ n+ 1,
• ∆ is defined by

∆t :=

∫ +∞

−∞
Lt(x) dβx ,

with (βx)x∈R a standard Brownian motion and (Lt(x), t ≥ 0, x ∈ R) a jointly continuous
in t and x version of the local time process of some other standard Brownian motion
(Bt)t≥0 independent of β.

The process ∆ is known to be a continuous (3/4)-self-similar process with stationary increments,
and is called Brownian motion in random scenery. It can be seen as a mixture of stable processes,
but it is not a stable process.

Let now ϕξ denote the characteristic function of ξ0 and let d be such that {u : |ϕξ(u)| = 1} =
(2π/d)Z. In [5] we established the following local limit theorem :

P

(
Zn =

⌊
n

3
4x
⌋)

=

{
dσ−1 p1,1(x/σ)n

− 3
4 + o(n−

3
4 ) if P

(
nξ0 −

⌊
n

3
4x
⌋
∈ dZ

)
= 1

0 otherwise,
(2)

with

p1,1(x) :=
1√
2π

E

[
||L1||−1

2 e−||L1||22x2/2
]
,

and ||L1||2 :=
(∫

R
L2
1(y) dy

)1/2
the L2-norm of L1. In the particular case when x = 0, we get

P (Zn = 0) =

{
dσ−1 p1,1(0)n

− 3
4 + o(n−

3
4 ) if n ∈ d0Z

0 otherwise,
(3)

with d0 := min{m ≥ 1 : ϕξ(2π/d)
m = 1}. 1

Actually the results mentioned above were proved in the more general case when the distributions
of the ξy’s and Xk’s are only supposed to be in the basin of attraction of stable laws (see [4], [5]
and [10] for details).

1.2. Statement of the results.

1.2.1. Local time of Brownian motion in random scenery. Let T1, . . . , Tk, be k positive reals. Set

DT1,...,Tk
:= det(MT1,...,Tk

) with MT1,...,Tk
=
(
〈LTi , LTj 〉

)
1≤i,j≤k

,

where 〈·, ·〉 denotes the usual scalar product on L2(R), and

CT1,...,Tk
:= E

[
D−1/2

T1,...,Tk

]
.

Our first result is the following

1Recall that, for every n ≥ 0, we have

P(nξ0 ∈ dZ) > 0 ⇐⇒ P(nξ0 ∈ dZ) = 1 ⇐⇒ n ∈ d0Z.
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Theorem 1. For any k ≥ 1, there exist constants c > 0 and C > 0, such that

c

k∏

i=1

(Ti − Ti−1)
−3/4 ≤ CT1,...,Tk

≤ C

k∏

i=1

(Ti − Ti−1)
−3/4,

for every 0 < T1 < · · · < Tk, with the convention that T0 = 0.

The most difficult (and interesting) part here is the upper bound. The lower bound is obtained
directly by using the scaling property of the local time of Brownian motion and the well-known
Gram-Hadamard inequality. Concerning the upper bound, we will give more details about its
proof in a moment, but let us stress already that even for k = 2 the result is not immediate
(whereas when k = 1 it follows relatively easily from the Cauchy-Schwarz inequality and some
basic properties of the Brownian motion, see for instance [5]).

A first corollary of this result is the following:

Corollary 2. For all k ≥ 1 and all 0 < T1 < · · · < Tk, the random variable (∆T1 , . . . ,∆Tk
)

admits a continuous density function, denoted by pk,T1,...,Tk
, which is given by

pk,T1,...,Tk
(x) := (2π)−

k
2 E

[
D−1/2

T1,...,Tk
exp

(
−1

2
〈M−1

T1,...,Tk
x, x〉

)]
for all x ∈ R

k.

Theorem 1 also shows that, for every t ≥ 0, k ≥ 1 and x ∈ R,

Mk,t(x) :=

∫

[0,t]k
pk,T1,...,Tk

(x, . . . , x) dT1 . . . dTk, (4)

is finite. Define now the level sets of ∆ as the sets of the form

∆−1(x) := {t ≥ 0 : ∆t = x},
for x ∈ R. We can then state our main application of Theorem 1, which can be deduced by
standard techniques:

Theorem 3. There exists a nonnegative process (Lt(x), x ∈ R, t ≥ 0), such that

(i) a.s. the map (t, x) 7→ Lt(x) is continuous and nondecreasing in t. Moreover for any
δ > 0, it is locally Hölder continuous of order 1/4 − δ, in the first variable, and of order
1/6 − δ, in the second variable,

(ii) a.s. for any measurable ϕ : R → R+, and any t ≥ 0,
∫ t

0
ϕ(∆s) ds =

∫

R

ϕ(x)Lt(x) dx,

(iii) for any T > 0, we have the scaling property:

(Lt T (x), t ≥ 0, x ∈ R)
(d)
= (T 1/4 Lt(xT

−3/4), t ≥ 0, x ∈ R).

(iv) for any x ∈ R, k ≥ 1, and t > 0, the k-th moment of Lt(x) is finite and

E

[
Lt(x)

k
]
= Mk,t(x), (5)

(v) a.s. for any x ∈ R, the support of the measure dtLt(x) is contained in ∆−1(x).

The random variable Lt(x) is called the local time of ∆ in x at time t.

We believe that the exponents 1/4 and 1/6 in Part (i) are sharp. One reason is that our proof
gives the right critical exponents in the case of the Brownian motion. Another heuristic reason
comes from a result proved by Dombry & Guillotin [8], saying that the sum of n i.i.d copies of
the process ∆ converges under appropriate normalization, towards a fractional Brownian motion
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with index 3/4. But the Hölder continuity critical exponents of the local time of the latter
process are exactly equal to 1/4 in the time variable, and 1/6 in the space variable.

Let us point out that an original feature of this theorem is that it gives strong regularity
properties of the local time of a process which is neither Markovian nor Gaussian, whereas
usually similar results are obtained when at least one of these conditions is satisfied (see for
instance [9, 16]).

We should notice now that previously only the existence of a process satisfying (ii), (5) for
k ≤ 2 and (v) was known, see [19]. The original motivation of [19] was in fact to study the
Hausdorff dimension of the level sets of ∆. Khoshnevisan and Lewis conjectured in [12] that
their Hausdorff dimension was a.s. equal to 1/4, for every x ∈ R. In [19] Xiao proved the result
for almost every x, and left open the question to know whether this was true for every x. This
has been later proved by Khoshnevisan in [11]. With Theorem 3 we can now give an alternative
proof, which follows the same lines as standard ones in the case of the Brownian motion :

Corollary 4 (Khoshnevisan [11]). For every x ∈ R, the Hausdorff dimension of ∆−1(x) is a.s.
equal to 1/4.

Actually Xiao and Khoshnevisan proved their result in the more general setting where the
Brownian motion B is replaced by a stable process of index α ∈ (1, 2]. But at the moment it
does not seem straightforward for us to adapt our proof to this case.

Now let us give some rough ideas of the proof of Theorem 1. The first thing we use is that
MT1,...,Tk

is a Gram matrix, and so there is nice formula for its smallest eigenvalue (8), which

shows that to get a lower bound, it suffices to prove that the term LT1/T
3/4
1 is far in L2-norm

from the vector space generated by the terms (LTj − LTj−1)/(Tj − Tj−1)
3/4, for j ≥ 2. Now by

scaling we can always assume that T1 = 1. Next by using the Hölder regularity of the process L,
we can replace the L2-norm by the L∞-norm, which is much easier to control. Then we use the
Ray-Knight theorem, which says that, if instead of considering the term L1 we consider Lτ , with
τ some appropriate random time, then we get a Markov process. It is then possible to prove that
with high probability, this process is far in L∞-norm from any finite dimensional affine space,
from which the desired result follows.

1.2.2. Random walk in random scenery. Our first result is a multidimensional extension of our
previous local limit theorem. We state it only for return probabilities to 0, to simplify notation,
but it works exactly the same is we replace 0 by [n3/4x], for some fixed x 6= 0.

Theorem 5. Let k ≥ 1 be some integer and let 0 < T1 < · · · < Tk, be k fixed positive reals.
Then for any n ≥ 1,

• If [nTi] ∈ d0Z, for all i ≤ k, then

P
(
Z[nT1] = · · · = Z[nTk] = 0

)
=
(
dσ−1

)k
pk,T1,...,Tk

(0, . . . , 0) n−3k/4 + o(n−3k/4).

• Otherwise P
(
Z[nT1] = · · · = Z[nTk] = 0

)
= 0.

Moreover, for every k ≥ 1 and every θ ∈ (0, 1), there exists C = C(k, θ) > 0, such that

P [Zn1 = · · · = Zn1+···+nk
= 0] ≤ C (n1 . . . nk)

−3/4,

for all n ≥ 1 and all n1, . . . , nk ∈ [nθ, n].

As an application we can prove that the moments of the local time of Z converge toward their
continuous counterpart. More precisely, for z ∈ Z, define the local time of Z in z at time n by:

Nn(z) := #{m = 1, . . . , n : Zm = z}.
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Then Theorem 5 together with the Lebesgue dominated convergence theorem give

Corollary 6. For all k ≥ 1,

E

[
Nn(0)

k
]
∼
(

d

σd0

)k

Mk,1(0)n
k/4,

as n→ ∞, with Mk,1(0) as in (4).

A natural question now is to know if we could not deduce from this corollary the convergence
in distribution of the normalized local time Nn(0)/n

1/4 toward L1(0). To this end, we should
need to know that the law of L1(0) is determined by the sequence of its moments. Since this
random variable is nonnegative, a standard criterion ensuring this, called Carleman’s criterion,
is the condition: ∑

k

Mk,1(0)
− 1

2k = ∞.

In particular a bound for Mk,1(0) in k2k would be sufficient. However with our proof, we only

get a bound in kck, for some constant c > 0. We can even obtain some explicit value for c, but
unfortunately it is larger than 2, so this is not enough to get the convergence in distribution.
Note that this question is directly related to the question of the dependence in k of the constant
C in Theorem 1, which we believe is an interesting question for other problems as well, such as
the problem of large deviations for the process L (see for instance [7] in which the case of the
fractional Brownian motion is considered).

Another interesting feature of Theorem 5 is that it gives an effective measure of the asymptotic
correlations of the increments of Z. Indeed, if we assume to simplify that k = 2, σ = 1 and
d = 1, then (2) and Theorem 5 (actually its proof) show that

P(Zn+m − Zn = 0 | Zn = 0)

P(Zn+m − Zn = 0)
−→

E

[{
||L1||22||L̃t||22 − 〈L1, L̃t〉2

}−1/2
]

E

[{
||L1||2||L̃t||2

}−1
] , (6)

as n → ∞ and m/n → t, for some t > 0, where L and L̃ are the local time processes of two
independent standard Brownian motions. In particular the limiting value in (6) is larger than
one, which means that the process is asymptotically more likely to come back to 0 at time n+m,
if we already know that it is equal to 0 at time n.

The general scheme of the proof of Theorem 5 is quite close from the one used for the proof
of (3) in [5]. However, in addition to Theorem 1 which is needed here and which is certainly
the main new difficulty, some other serious technical problems appear in the multidimensional
setting. In particular at some point we use a result of Borodin [3] giving a strong approximation
of the local time of Brownian motion by the random walk local time. This also explains why we
need stronger hypothesis on the random walk here. Now concerning the scenery, it is not clear if
we can relax the hypothesis of finite second moment, since we strongly use that the characteristic
function of (∆T1 , ...,∆Tk

), takes the form

ψ(θ1, ..., θk) = E

[
e−

∑k
i,j=1 ai,jθiθj

]
,

with (ai,j)i,j some (random) positive symmetric matrix.

Finally let us mention that in the proof of Theorem 5, we use the following result, which might
be interesting on its own. It is a natural multidimensional extension of a result of Kesten and
Spitzer [10] on the convergence in distribution of the normalized self-intersection local time of
the random walk.
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Proposition 7. Let k ≥ 1 be given and let T1 < · · · < Tk, be k positive reals. Then
(
n−3/2〈Nn1+···+ni , Nn1+···+nj〉

)
1≤i,j≤k

(L)
=⇒

(
〈LTi , LTj 〉

)
1≤i,j≤k

,

as n→ ∞, and (n1 + · · · + ni)/n → Ti, for all i ≥ 1, and where for all p, q,

〈Np, Nq〉 :=
∑

y∈Z
Np(y)Nq(y).

The paper is organized as follows. In Section 2, we give a short proof of Corollary 2. In
Section 3 we prove Theorem 1. Then in Section 4, we explain how one can deduce Theorem 3
and Corollary 4 from it. Section 5 is devoted to the proof of Theorem 5 and Section 6 to the
proof of Corollary 6. Finally, in Section 7, we give a proof of Proposition 7.

We also mention some notational convention that we shall use: if X is some random variable
and A some set, then E[X, A] will mean E[X1A].

2. Proof of corollary 2

Let k ≥ 1 be given and let T1 < · · · < Tk, be some positive reals. The characteristic function
ψT1,...,Tk

of (∆T1 , . . . ,∆Tk
) (with the convention T0 = 0) is given by

ψT1,...,Tk
(θ) = E


exp


−1

2

∫

R

(
k∑

i=1

θiLTi(u)

)2

du






= E

[
exp

(
−1

2
〈MT1,...,Tk

θ, θ〉
)]

,

with θ := (θ1, . . . , θk). In particular this function is non-negative. Moreover, a change of variables
(this change is possible since DT1,...,Tk

is almost surely non null, thanks to Theorem 1) gives
∫

Rk

ψT1,...,Tk
(θ) dθ = CT1,...,Tk

∫

Rk

e−
1
2

∑k
i=1 u

2
i du1 . . . duk

= (2π)
k
2 CT1,...,Tk

<∞.

This implies, see the remark following Theorem 26.2 p.347 in [1], that (∆T1 , . . . ,∆Tk
) admits a

continuous density function pk,T1,...,Tk
, given by

pk,T1,...,Tk
(x) =

1

(2π)k

∫

Rk

e−i〈θ,x〉ψT1,...,Tk
(θ) dθ

= (2π)−
k
2 E

[
D− 1

2
T1,...,Tk

exp

(
−1

2
〈M−1

T1,...,Tk
x, x〉

)]
,

which was the desired result. �

3. Proof of Theorem 1

Let k ≥ 1 and 0 < T1 < ... < Tk, be given. Set ti := Ti − Ti−1, for i ≤ k, with the convention

that T0 = 0. For every i = 1, ..., k, let (L
(i)
t (x) := LTi−1+t(x)− LTi−1(x), t ∈ [0, ti], x ∈ R) be the

local time process of B(i) := (BTi−1+t, t ∈ [0, ti]). Set

D̃t1,...,tk := det(M̃t1,...,tk) with M̃t1,...,tk :=
(
〈L(i)

ti
, L

(j)
tj

〉
)
1≤i,j≤k

,

and
C̃t1,...,tk := E

[
D̃−1/2

t1,...,tk

]
.
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Since D̃t1,...,tk = DT1,...,Tk
, Theorem 1 is equivalent to proving the existence of constants c > 0

and C > 0, such that

c (t1 . . . tk)
−3/4 ≤ C̃t1,...,tk ≤ C (t1 . . . tk)

−3/4, (7)

for all positive t1, . . . , tk.

Let us first notice that D̃t1,...,tk is a Gram determinant and is thus nonnegative. So C̃t1,...,tk is
well defined as an extended real number.

Now we start with the lower bound in (7). We use the well known Gram-Hadamard inequality:

D̃t1,...,tk ≤
k∏

i=1

||L(i)
ti
||22.

By using next the scaling property of Brownian motion, we see that (t
−3/4
i ||L(i)

ti
||2, i ≥ 1) is a

sequence of i.i.d. random variables distributed as ||L1||2. Therefore,

E

[
D̃−1/2

t1,...,tk

]
≥ c (t1 . . . tk)

−3/4,

with c := (E[||L1||−1
2 ])k > 0.

We prove now the upper bound in (7), which is the most difficult part. For this purpose, we
introduce the new Gram matrix

M t1,...,tk :=

(〈
t
− 3

4
i L

(i)
ti
, t

− 3
4

j L
(j)
tj

〉)

i,j

.

Note that all its eigenvalues are nonnegative and denote by λt1,...,tk the smallest one. We get
then

DT1,...,Tk
= D̃t1,...,tk =

(
k∏

i=1

t
3/2
i

)
det(M t1,...,tk) ≥

(
k∏

i=1

t
3/2
i

)
λ
k
t1,...,tk

.

Thus we can write

C̃t1,...,tk = E

[
D̃−1/2

t1,...,tk

]

≤ (t1 . . . tk)
−3/4

E

[
λ
−k/2
t1,...,tk

]

= (t1 . . . tk)
−3/4

∫ ∞

0
P

[
λ
−k/2
t1,...,tk

≥ t
]
dt

≤ (t1 . . . tk)
−3/4

{
1 +

2

k

∫ 1

0
P[λt1,...,tk ≤ ε]

dε

ε1+k/2

}
.

Therefore Theorem 1 follows from the following proposition:

Proposition 8. For any k ≥ 1 and K > 0, there exists a constant C > 0, such that

P(λt1,...,tk ≤ ε) ≤ C εK ,

for all ε ∈ (0, 1) and all t1, . . . , tk > 0.

3.1. Proof of Proposition 8. Note first that

λt1,...,tk = inf
u2
1+···+u2

k=1

∥∥∥∥u1t
− 3

4
1 L

(1)
t1 + · · ·+ ukt

− 3
4

k L
(k)
tk

∥∥∥∥
2

2

. (8)
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Note next that if u21+ · · ·+u2k = 1, then umax := maxi |ui| ≥ 1/
√
k. Thus dividing all ui by umax

leads to

λt1,...,tk ≥ 1

k
min

i=1,...,k
inf

(vj)j 6=i, |vj |≤1

∥∥∥∥∥∥
t
− 3

4
i L

(i)
ti

+
∑

j 6=i

vjt
− 3

4
j L

(j)
tj

∥∥∥∥∥∥

2

2

.

Hence, it suffices to bound all terms

P


 inf
(vj)j 6=i, |vj |≤1

∥∥∥∥∥∥
t
− 3

4
i L

(i)
ti

+
∑

j 6=i

vjt
− 3

4
j L

(j)
tj

∥∥∥∥∥∥

2

2

≤ kε


 , (9)

for i ≤ k. By scaling invariance, and changing tj by tj/ti in (9), one can always assume that
ti = 1. It will also be no loss of generality to assume that i = 1, the case i > 1 being entirely
similar. We are thus led to prove that for any k ≥ 1 and K > 0, there exists a constant C > 0,
such that for all ε ∈ (0, 1), and all tj > 0,

P


 inf
(vj )j>1, |vj |≤1

∥∥∥∥∥∥
L
(1)
1 +

∑

j≥2

vjt
−3/4
j L

(j)
tj

∥∥∥∥∥∥

2

2

≤ ε


 ≤ C εK . (10)

We want now to bound from below the L2-norm by (some power of) the L∞-norm using the
Hölder regularity of the Brownian local time. To this end, notice that by scaling the constants

C
(j)
H := sup

x 6=y

∣∣∣L(j)
tj

(x)− L
(j)
tj

(y)
∣∣∣

t
3/8
j |x− y|1/4

,

for j ≥ 1, are i.i.d. random variables. Moreover, the constant of Hölder continuity of order 1/4

of the j-th term of the sum in (10) is larger than or equal to C
(j)
H t

−3/8
j . Since this can be large,

we distinguish between indices j such that tj is small from the other ones. More precisely, we
define J = {j : tj ≤ ε4}, and

EJ := ∪j∈J supp(L
(j)
tj

),

where supp(f) denotes the support of a function f . Set also

E ′
J := {x ∈ R : d(x, EJ ) < ε} .

To simplify notation, set now for all x ∈ R, and v = (vj)j≥2,

Fv(x) := L
(1)
1 (x) +

∑

j /∈J, j≥2

vjt
−3/4
j L

(j)
tj

(x) and Gv(x) :=
∑

j∈J
vjt

−3/4
j L

(j)
tj

(x).

Notice that Gv = 0 on Ec
J and that

sup
x 6=y

|Fv(x)− Fv(y)|
|x− y|1/4

≤ ε−3/2
∑

j

C
(j)
H .

Thus if for some x /∈ E ′
J , |Fv(x)| ≥ ε, and if in the same time

∑
j C

(j)
H ≤ 1/(2ε1/4), then

‖Fv +Gv‖22 ≥
∫ x+ε11

x−ε11
Fv(y)

2 dy ≥
∫ x+ε11

x−ε11


ε− ε−3/2

∑

j

C
(j)
H ε11/4




2

+

dy ≥ 1

2
ε13 .

Moreover, it is known that the C
(j)
H have finite moments of any order. Therefore it suffices to

prove that for any k ≥ 1 and K > 0, there is a constant C > 0, such that for all ε ∈ (0, 1), and
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all t2, . . . , tk > 0,

P

(
inf

v∈Rk−1
sup
x/∈E ′

J

|Fv(x)| ≤ ε

)
≤ C εK . (11)

This will follow from the next two lemmas, that we shall prove in the next subsections:

Lemma 9. Let (Lt(x), t ≥ 0, x ∈ R) be a continuous in (t, x) version of the local time process of
a standard Brownian motion B. Then for any K > 0 and k ≥ 0, there exist N ≥ 1 and C > 0,
such that, for any ε ∈ (0, 1), one can find N points x1, . . . , xN ∈ R, satisfying |xi − xj| ≥ ε1/8

for all i 6= j, and

P

(
#{j ≤ N : L1(xj) > ε1/4} ≤ k

)
≤ C εK . (12)

Lemma 10. For any K > 0 and k ≥ 1, there exist a constant C > 0 and an integer M ≥ 1,
such that for all x ∈ R, ε ∈ (0, 1), and t2, . . . , tk > 0,

P

(
L
(1)
1 (x) > ε1/4, inf

v∈Rk−1
sup

|y−x|≤Mε
|Fv(y)| ≤ ε

)
≤ C εK .

Indeed, we can first always assume that EJ is included in the union of at most k intervals of
length ε, since for any j ∈ J and K ≥ 1, by scaling there exists C > 0, such that

P

[
sup
s≤tj

∣∣∣B(j)
s −B

(j)
0

∣∣∣ ≥ ε/2

]
≤ P

[
sup
s≤ε4

|Bs| ≥ ε/2

]
= P

[
sup
s≤1

|Bs| ≥ ε−1/2

]
≤ C εK . (13)

Thus, among any k+1 points at distance larger than ε1/8 from each other, at least one of them
must be at distance larger than Mε from E ′

J , at least if ε is small enough. Therefore Lemma 9
shows that for any K ≥ 1, there exists C > 0, such that

P

[
inf
v

sup
y/∈E ′

J

|Fv(y)| ≤ ε

]
≤ C εK +

N∑

m=1

P

[
L
(1)
1 (xm) > ε1/4, inf

v
sup

|y−xm|≤Mε
|Fv(y)| ≤ ε

]
,

where (x1, . . . , xN ) are given by Lemma 9. Then (11) follows from the above inequality and
Lemma 10. This concludes the proof of Proposition 10. �

3.2. Proof of Lemma 9. We first prove the result for k = 0. Assume without loss of generality
that K is an integer larger than 1 and set

X0 =
{
jε1/8 : −8K ≤ j ≤ 8K

}
.

Set also s0 := 0 and for every m ≥ 1,

sm := inf{s > 0 : |Bs| ≥ mε1/8}.
Note already that there exists C > 0, such that for all ε ∈ (0, 1),

P(s8K > 1) ≤ P

(
sup
s≤1

|Bs| ≤ 8Kε1/8
)

≤ C εK ,

by using for instance [17, Proposition 8.4 p.52]. Thus it suffices to prove that

P

(
Ls8K (x) ≤ ε1/4 ∀x ∈ X0

)
≤ εK , (14)

for all ε ∈ (0, 1). By using the Markov property, and noting that sm ≥ sm−1 + s1 ◦ θsm−1 (where
θ is the usual shift on the trajectories), we get a.s. for every m ≥ 1,

P

(
Lsm(Bsm−1)− Lsm−1(Bsm−1) ≤ ε1/4 | Fsm−1

)
≤ P(Ls1(0) ≤ ε1/4).
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By the scaling property of the Brownian motion, we know that Ls1(0) has the same law as

ε1/8L′
1(0), with L′

1(0) the local time of a standard Brownian motion taken at the first hitting
time of {±1}. Moreover, it is known that L′

1(0) is an exponential random variable with parameter
1 (see for instance [18] Exercise (4.12) chap VI, p. 265). Therefore, a.s. for every m ≥ 1,

P

(
Lsm(Bsm−1)− Lsm−1(Bsm−1) ≤ ε1/4 | Fsm−1

)
≤ P(L′

1(0) ≤ ε1/8) ≤ ε1/8.

Then we get by induction,

P

(
Ls8K (x) ≤ ε1/4 ∀x ∈ X0

)
≤ P

(
Lsm(Bsm−1)− Lsm−1(Bsm−1) ≤ ε1/4 ∀m ≤ 8K

)
≤ εK ,

proving (14). This concludes the proof of the lemma for k = 0.

Now we prove the result for general k ≥ 0. For m ∈ Z, consider the set

Xm := m(16K + 1)ε1/8 + X0.

Then the proof above shows similarly that for any 0 ≤ m ≤ k,

P

(
L1(x) ≤ ε1/4 ∀x ∈ Xm ∪ X−m

)
≤ C εK .

The lemma follows immediately. �

3.3. Proof of Lemma 10. Let K > 0 be fixed, and assume without loss of generality that
x ≥ 0. Fix also M ≥ 1 some integer to be chosen later.

For every affine subspace V of RM , we denote by Vε the set

Vε := {v ∈ R
M : d(v, V ) ≤ ε},

where d(v, V ) = min{|v − y|∞ : y ∈ V }. Then we can write

P

(
L
(1)
1 (x) > ε1/4, inf

v∈Rk−1
sup

|y−x|≤Mε
|Fv(y)| ≤ ε

)

≤ P

[
L
(1)
1 (x) > ε1/4, (L

(1)
1 (x+ ε), . . . , L

(1)
1 (x+Mε)) ∈ Vε

]
:= Pε,

where

V := V ect

((
L
(j)
tj

(x+ ℓε)
)
ℓ=1,...,M

, j ∈ I

)
,

with I := {j > 1 : j /∈ J}. Set now

τ := inf{s > 0 : L(1)
s (x) > ε1/4},

and for y ≥ 0, Y (y) := L
(1)
τ (x + y). It follows from the second Ray–Knight theorem (see [18],

Theorem (2.3) p.456) that Y is equal in law to a squared Bessel process of dimension 0 starting

from ε1/4. Moreover, with this notation, we can write

Pε = P [τ < 1 and (Y (ε), . . . , Y (Mε)) ∈ V∗
ε ] , (15)

with

V∗ := (Y (ℓε) − L
(1)
1 (x+ ℓε))ℓ=1,...,M + V,

which is an affine space of RM , of dimension at most k − 1 .

Observe now that even on the event {τ < 1}, the space V∗ is not independent of Y and τ , since
its law depends a priori on τ . However, if this was true (and we will see below how one can
reduce the proof to this situation), then Pε would be dominated by

sup
V

P [(Y (ε), . . . , Y (Mε)) ∈ Vε] ,



ON THE LOCAL TIME OF RANDOM PROCESSES IN RANDOM SCENERY 11

with the sup taken over all affine subspaces V ⊆ R
M of dimension at most k− 1. This last term

in turn is controlled by the following lemma, whose proof is postponed to the next subsections.

Lemma 11. Let Y be a squared Bessel process of dimension 0 starting from ε1/4. For any M ≥ 1
and k ≥ 1, there exists C > 0, such that for all ε ∈ (0, 1),

sup
V

P [(Y (ε), . . . , Y (Mε)) ∈ Vε] ≤ C ε(5M−4(k−1))/8, (16)

where the sup is over all affine subspaces V ⊆ R
M of dimension at most k − 1.

So at this point we are just led to see how one can solve the problem of the dependence between
V∗ and τ . To this end, we introduce the time τ ′ spent by B(1) above x before time τ , which by
the occupation times formula (see [18], Theorem (2.3) p.456) is equal to:

τ ′ :=
∫ τ

0
1{B(1)

s ≥x} ds =
∫ ∞

0
Y (y) dy.

Moreover, τ ′ is also equal in law to the first hitting time of ε1/4/2 by a Brownian motion (see
the proof of Theorem (2.7) p.243 in [18]). In particular

P(τ ′ ≤ ε3/4) = O(εK). (17)

Next instead of using Lemma 11, we will need the following refinement:

Lemma 12. Let M ≥ 1 be some integer. Let Y be a squared Bessel process of dimension 0
starting from ε1/4. Set

Aε :=

{
|Y (Mε) − ε1/4| ≤ ε1/2 and

∫ Mε

0
Y (y) dy < ε

}
.

Then P(Ac
ε) = O(εK). Moreover, for any M ≥ 1 and k ≥ 1, there exists C > 0, such that for

any affine space V of dimension at most k − 1, almost surely for all ε ∈ (0, 1),

1{
∫ ∞

0
Y (y) dy≥ε3/4} P

[
(Y (ε), . . . , Y (Mε)) ∈ Vε, Aε

∣∣∣
∫ ∞

0
Y (y) dy

]
≤ C ε(5M−4(k−1))/8.

We postpone the proof of this lemma to the next subsections, and we conclude now the proof of
Lemma 10. First it follows from the excursion theory of the Brownian motion that, conditionally
to τ ′, Y is independent of τ . On the other hand, conditionally to τ , V∗ is independent of τ ′ and
Y . Let M be an integer such that M ≥ (4(k − 1) + 8K)/5. According to (15), (17) and to the
first part of Lemma 12, we get

Pε ≤ P

(
τ < 1, τ ′ ≥ ε3/4, (Y (ε), . . . , Y (Mε)) ∈ V∗

ε , Aε

)
+O(εK)

≤ E

[
1{τ<1,τ ′≥ε3/4}E[f(Y,V∗)|τ, τ ′]

]
+O(εK),

with

f(y, V ) := 1{(y(ε),...,y(Mε))∈Vε}∩{|y(Mε)−ε1/4|≤ε1/2 and
∫Mε
0 y(s) ds<ε}.

Now, since on one hand Y and V∗ are independent conditionally to (τ, τ ′), and on the other hand
Y and τ are independent conditionally to τ ′, we have

E[f(Y,V∗)|τ, τ ′] =

∫
E[f(Y, V )|τ, τ ′] dPV∗|(τ,τ ′)(V )

=

∫
E[f(Y, V )|τ ′] dPV∗|(τ,τ ′)(V ).
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Since moreover, V∗ and τ ′ are independent conditionally to τ , we get

E[f(Y,V∗)|τ, τ ′] =
∫

E[f(Y, V )|τ ′] dPV∗|τ (V ). (18)

Hence, according to our choice of M ,

Pε ≤ E

[
1{τ<1,τ ′≥ε3/4}

∫
E[f(Y, V )|τ ′] dPV∗|τ (V )

]
+O(εK)

≤ E

[
1{τ<1,τ ′≥ε3/4}

∫
1b(V,ε,τ ′) dPV∗|τ (V )

]
+O(εK),

with

b(V, ε, t′) :=
{
1{τ ′≥ε3/4}E[f(Y, V )|τ ′ = t′] > C ε(5M−4(k−1))/8

}
.

The second part of Lemma 12 insures that, for every affine subspace V of dimension at most
k − 1 of RM , we have

1b(V,ε,t′) = 0 for Pτ ′-almost every t′ > 0.

However, since b(V, ε, τ ′) depends a priori on V , we cannot conclude directly. But it is well known
that τ ′ admits a positive density function on (0,+∞) (see (24) below for an explicit expression).
Therefore, for every V ,

1b(V,ε,t′) = 0 for Lebesgue almost every t′ > 0. (19)

Now it follows from the excursion theory that τ ′ and τ − τ ′ are independent and identically
distributed. Therefore (τ, τ ′) admits a continuous density function h on (0,+∞)2 and we have

Pε ≤ O(εK) +

∫ 1

0

(∫ t

0

(∫
1b(V,ε,t′) dPV∗|τ=t(V )

)
h(t, t′) dt′

)
dt

≤ O(εK) +

∫ 1

0

(∫ (∫ t

0
1b(V,ε,t′)h(t, t

′) dt′
)
dPV∗|τ=t(V )

)
dt (20)

≤ O(εK),

the last term of (20) being equal to zero according to (19). This concludes the proof of Lemma
10. �

It remains now to prove Lemma 12. Its proof uses Lemma 11, so let us start with the proof of
the latter.

3.4. Proof of Lemma 11. We first prove the following result:

Lemma 13. For every K > 0 and M ≥ 1, there exists C > 0, such that for all ε ∈ (0, 1),

P

[
∃ℓ ∈ {1, . . . ,M} : |Y (ℓε) − ε1/4| > ε1/2

]
≤ C εK .

Proof. Recall that Y is solution of the stochastic differential equation

Y (y) = ε1/4 + 2

∫ y

0

√
Y (u) dβu for all y ≥ 0,

where β is a Brownian motion (see [18] Ch. XI). In particular, Y is stochastically dominated by
the square of a one-dimensional Brownian motion starting from ε1/8. Then it follows that, for
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some constant C > 0, whose value may change from line to line, but depending only on K and
M ,

P

[
∃ℓ ∈ {1, . . . ,M} : |Y (lε)− ε1/4| > ε1/2

]

≤ P

[
sup
s≤Mε

|Y (s)− ε1/4| > ε1/2

]

≤ C ε−4K
E

[(∫ Mε

0
Y (u) du

)4K
]

by the Burkholder-Davis-Gundy inequality,

≤ C ε−1

∫ Mε

0
E
[
Y (u)4K

]
du ≤ C ε−1

∫ Mε

0
E

[
(ε1/8 +Bu)

8K
]
du ≤ C εK ,

with B some standard Brownian motion. This concludes the proof of the lemma. �

We continue now the proof of Lemma 11. Set

B∞(ε1/4, ε1/2) :=
{
(y1, . . . , yM ) ∈ R

M :
∣∣∣yℓ − ε1/4

∣∣∣ ≤ ε1/2 ∀ℓ ∈ {1, . . . ,M}
}
.

Lemma 13 shows that for any V of dimension at most k − 1,

P [(Y (ε), . . . , Y (Mε)) ∈ Vε] ≤ P

[
(Y (ε), . . . , Y (Mε)) ∈ B∞(ε1/4, ε1/2) ∩ Vε

]
+ C εK . (21)

Next observe that B∞(ε1/4, ε1/2)∩Vε, can be covered by O(ε−(k−1)/2) balls of radius ε. It follows
that

P

[
(Y (ε), . . . , Y (Mε)) ∈ B∞(ε1/4, ε1/2) ∩ Vε

]

≤ C ε−(k−1)/2 sup
x∈B∞(ε1/4,ε1/2)

P [(Y (ε), . . . , Y (Mε)) ∈ B∞(x, ε)] . (22)

Now for y > 0, denote by Yy a squared Bessel process with dimension 0 starting from y. An
explicit expression of its semigroup is given just after Corollary (1.4) p.441 in [18]. In particular

when y > ε1/4/2, the law of Yy(ε) is the sum of a Dirac mass at 0 with some negligible weight
and of a measure with density

z 7→ qε(y, z) := (2ε)−1

√
y

z
exp

(
−y + z

2ε

)
I1

(√
yz

ε

)
,

where I1 is the modified Bessel function of index 1. Moreover it is known (see (5.10.22) or
(5.11.10) in [13]), that I1(z) = O(ez/

√
z), as z → ∞. Thus

sup
|y−ε1/4|≤ε1/2

sup
|z−ε1/4|≤ε1/2

qε(y, z) = O(ε−3/8).

It follows that

sup
|x−ε1/4|≤ε1/2

sup
|y−ε1/4|≤ε1/2

P [|Yy(ε)− x| ≤ ε] = O(ε5/8).

Then by using the Markov property and Lemma 13, we get by induction

sup
x∈B∞(ε1/4,ε1/2)

P [(Y (ε), . . . , Y (Mε)) ∈ B∞(x, ε)] ≤ C ε5M/8. (23)

Since all the constants in our estimates are uniform in V , Lemma 11 follows from (21), (22) and
(23). �
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3.5. Proof of Lemma 12. Let K > 0 be given. Lemma 13 shows in particular that

P

[
|Y (Mε)− ε1/4| > ε1/2

]
= O(εK).

Next, recall that Y is stochastically dominated by the square of a one-dimensional Brownian
motion starting from ε1/8. It follows that

P

(∫ Mε

0
Y (y) dy ≥ ε

)
= O(εK),

and this already proves the first part of the lemma.

It remains to prove the second part. We deduce it from Lemma 11. To simplify notation, from

now on we will denote the integral of Y on [0,∞) by
∫∞
0 Y . Likewise

∫Mε
0 Y and

∫∞
Mε Y will have

analogous meanings. For any affine subspace V ⊆ R
M of dimension at most k − 1, set

A′
ε(V ) := {(Y (ε), . . . , Y (Mε)) ∈ Vε} ∩Aε.

Then for any nonnegative bounded measurable function φ supported on [ε3/4,∞), we can write

E

[
φ

(∫ ∞

0
Y

)
P

[
A′

ε(V )
∣∣∣
∫ ∞

0
Y

]]
= E

[
φ

(∫ ∞

0
Y

)
, A′

ε(V )

]

= E

[
φ

(∫ Mε

0
Y +

∫ ∞

Mε
Y

)
, A′

ε(V )

]
.

Now we recall that if Yy denotes a squared Bessel process of dimension 0 starting from some
y > 0, then

∫∞
0 Yy is equal in law to the first hitting time of y/2 by some Brownian motion, and

thus has density given by

fy(t) :=
y

2
(2πt3)−1/2 exp(−(y/2)2/2t) for all t > 0 and y > 0, (24)

see for instance [18] p.107. In particular

sup
t≥ε3/4

sup
t′≤ε

sup
|y−ε1/4|≤ε1/2

fy(t− t′)
fε1/4(t)

<∞.

Then by using the Markov property and Lemma 11, we get

E

[
φ

(∫ ∞

0
Y

)
P

[
A′

ε(V )
∣∣∣
∫ ∞

0
Y

]]
= E

[∫ ∞

ε3/4
φ(t) fY (Mε)

(
t−

∫ Mε

0
Y

)
dt, A′

ε(V )

]

≤ C P
[
A′

ε(V )
]
E

[
φ

(∫ ∞

0
Y

)]

≤ C ε(5M−4(k−1))/8
E

[
φ

(∫ ∞

0
Y

)]
.

Since this holds for any φ, this proves the second part of Lemma 12, as wanted. �

4. Proof of Theorem 3 and Corollary 4

We start with the proof of Theorem 3. We follow the general strategy which is used in the
case of the Brownian motion, as for instance in Le Gall’s course [15, Chapter 2].

Consider the regularizing function

pε(y) :=
1√
2πε

exp

(
−y

2

2ε

)
ε > 0 y ∈ R,
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and recall that by Fourier inversion

pε(y) =
1

2π

∫

R

exp(iyξ − 1

2
ε|ξ|2) dξ.

Define then for all ε ∈ (0, 1], t > 0, and x ∈ R,

L(ε, t, x) :=
∫ t

0
pε(∆s − x) ds.

As explained in [15], it suffices to control the three terms:

E

[(
L(ε, t, x) − L(ε, t, x′)

)2p]
, E

[(
L(ε, t, x) −L(ε′, t, x)

)2p]
, E

[(
L(ε, t, x)− L(ε, t′, x)

)2p]
.

For the first term, some elementary computation shows that

E

[(
L(ε, t, x)− L(ε, t, x′)

)2p]

≤ cp

∫

R2p

dξ1 . . . dξ2p

2p∏

j=1

∣∣∣e−ixξj − e−ix′ξj
∣∣∣
∫

Ξp

ds1 . . . ds2p

∣∣∣E
[
ei

∑
ξj∆sj

]∣∣∣ , (25)

with cp some positive constant (whose value may change in the following lines) and Ξp := {s1 ≤
· · · ≤ s2p ≤ t}. We use next that for any γ ∈ (0, 1], and any y, y′ ∈ R,

∣∣∣eiy − eiy
′
∣∣∣ ≤ c |y − y′|γ ,

for some constant c > 0. Moreover, if ηj = ξj + · · ·+ ξ2p, and tj = sj − sj−1, for all j ≥ 1 (with
the convention s0 = 0), then

E

[
ei

∑
ξj∆sj

]
= E

[
e
− 1

2

∑
i,j ηiηj〈L

(i)
ti

,L
(j)
tj

〉
]
= E

[
e−

1
2
〈M̃t1,...,t2pη,η〉

]
,

with η = (η1, . . . , η2p). Therefore a change of variables in (25) gives

E

[(
L(ε, t, x) − L(ε, t, x′)

)2p]

≤ cp |x− x′|2γp
∫

R2p

dη

2p∏

j=1

|ηj+1 − ηj|γ
(∫

[0,t]2p
dt1 . . . dt2p E

[
e−

1
2
〈M̃t1,...,t2pη,η〉

])
,

with the convention η2p+1 = 0. Now we make another change of variables: (η1, . . . , η2p) →
(η1/t

3/4
1 , . . . , η2p/t

3/4
2p ). Then we fix some T > 0, and by using also that for all j, and t ≤ T ,

|t−3/4
j+1 ηj+1 − t

−3/4
j ηj| ≤ c max(t

−3/4
j+1 , t

−3/4
j ) |η| ≤ c t

−3/4
j+1 t

−3/4
j T 3/4 |η|,

for some constant c > 0, we get for all t ≤ T ,

E

[(
L(ε, t, x)− L(ε, t, x′)

)2p]

≤ cp,T |x− x′|2γp
∫

[0,t]2p
dt1 . . . dt2p




2p∏

j=1

t
−3/4(1+2γ)
j



∫

R2p

dηE
[
e−

1
2
〈M t1,...,t2pη,η〉

]
|η|2γp ,

for some constant cp,T > 0. Now Proposition 8 shows that all moments of 1/λt1,...,t2p are bounded
by positive constants, uniformly in (t1, . . . , t2p). Therefore by using that for all η,

〈M t1,...,t2pη, η〉 ≥ λt1,...,t2p |η|2,
and the change of variables η → η/(λt1,...,t2p)

1/2, we get for all γ < 1/6,

E

[(
L(ε, t, x)− L(ε, t, x′)

)2p] ≤ cp,T |x− x′|2γp,
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for all t ≤ T .

A similar computation yields to an analogous estimate for the second term, except that this time
we need to choose γ < 1/12: for all p ≥ 1, T > 0, and γ < 1/12, there exists some constant
c′p,T > 0, such that for all x ∈ R, all ε, ε′ > 0, and all t ≤ T ,

E

[(
L(ε, t, x) −L(ε′, t, x)

)2p] ≤ c′p,T
∣∣ε− ε′

∣∣2pγ .

Now the estimate of the last term is easier. After some calculation and by using Theorem 1, we
get for t < t′,

E

[(
L(ε, t, x)− L(ε, t′, x)

)2p] ≤ cp

∫

t≤s1≤···≤s2p≤t′

ds1 . . . ds2p∏
(sj − sj−1)3/4

,

which shows that

E

[(
L(ε, t, x) − L(ε, t′, x)

)2p] ≤ cp |t′ − t|p/2.

Then Part (i) and (ii) in Theorem 3 follow from Kolmogorov’s criterion (see [15] for details). For
(iii), first observe that (ii) implies that a.s. for any t > 0 and x ∈ R,

Lt(x) = lim
ε→0

1

2ε

∫ t

0
1{∆s∈[x−ε,x+ε]} ds.

Then (iii) immediately follows from this equation and the property of self similarity of ∆. For
(iv), we can observe that by using the above computations and the dominated convergence
theorem, we get

E[Lt(x)
k] = lim

ε→0
E[L(ε, t, x)k].

Part (iv) follows. Part (v) is immediate, and was already observed in [19].

Concerning Corollary 4, the upper bound was already proved in [19] and [11] and was consid-
ered there as the easiest part. So we only care about the lower bound here. For this we can
use Frostman’s Lemma together with Theorem 3, which directly proves the result (see [15] for
instance).

5. Proof of Theorem 5

In most of this section, t1, . . . , tk, are fixed positive reals. Moreover, by convention a function
f(n1, . . . , nk) is said to be a ok(g(n)), for some function g, if it converges to 0 after multiplication
by 1/g(n), when n → ∞ and ni/n → ti for all i ≥ 1. Analogous convention is used for the
notation Ok(g(n)).

Recall that (Sm,m ≥ 0) denotes the random walk. For every i = 1, ..., k, let (N
(i)
m (x), 1 ≤ m ≤

ni, x ∈ Z), be the local time process of
(
S
(i)
m := Sn1+...+ni−1+m, 0 ≤ m ≤ ni − 1

)
. In other words,

N (i)
m (x) := #{k = 0, ...,m − 1 : Sn1+...+ni−1+k = x}

= Nn1+...+ni−1+m(x)−Nn1+...+ni−1(x),

for all i ≤ k. Set also

Dn1,...,nk
:= det

(
〈N (i)

ni
, N (j)

nj
〉
)
1≤i,j≤k

,

where here 〈·, ·〉 denotes the usual scalar product on ℓ2(Z).
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5.1. Inverse Fourier transform and a periodicity issue. The first step in local limit the-
orems is often the use of Fourier inverse transform. This is essentially the content of the next
lemma. Before stating it, let us introduce some new notation. Recall that ϕξ denotes the
characteristic function of ξ0. Let now ϕn1,...,nk

be the characteristic function of (Zn1+···+ni −
Zn1+···+ni−1)i=1,...,k. Since (ξy)y∈Z is a sequence of i.i.d. random variables, which is independent

of S, we have for all (θ1, . . . , θk) ∈ R
k,

ϕn1,...,nk
(θ1, . . . , θk) := E


∏

y∈Z
ϕξ




k∑

j=1

θj(Nn1+...+nj(y)−Nn1+...+nj−1(y))






= E


∏

y∈Z
ϕξ




k∑

j=1

θjN
(j)
nj

(y)




 . (26)

We can now state the announced lemma.

Lemma 14. If ni ∈ d0Z for all i ≤ k, then

P (Zn1 = · · · = Zn1+···+nk
= 0) =

(
d

2π

)k ∫

[−π
d
,π
d
]k
ϕn1,...,nk

(θ1, . . . , θk) dθ1 . . . dθk.

Otherwise P(Zn1 = · · · = Zn1+···+nk
= 0) = 0.

Proof. Since Z is Z-valued, we immediately get

P(Zn1 = · · · = Zn1+···+nk
= 0) = P(Zn1 = · · · = Zn1+···+nk

− Zn1+···+nk−1
= 0)

=
1

(2π)k

∫

[−π,π]k
ϕn1,...,nk

(θ1, . . . , θk) dθ1 . . . dθk.

Notice now that e2iπξ0/d = ϕξ(2π/d) almost surely and that ϕξ(2π/d)
d = 1. Hence, for any

integer m ≥ 0 and any u ∈ R,

ϕξ (2mπ/d+ u) = ϕξ (2π/d)
m ϕξ(u).

We deduce that, for every (l1, . . . , lk) ∈ Z
k, we have

ϕn1,...,nk

(
θ1 +

2l1π

d
, . . . , θk +

2lkπ

d

)
= E


∏

y∈Z
ϕξ




k∑

j=1

(
θj +

2ljπ

d

)
N (j)

nj
(y)






= E


∏

y∈Z
ϕξ(2π/d)

∑k
j=1 ljN

(j)
nj

(y)
ϕξ




k∑

j=1

θjN
(j)
nj

(y)






= ϕξ(2π/d)
∑k

j=1 ljnj ϕn1,...,nk
(θ1, . . . , θk),

since
∑

y N
(j)
nj (y) = nj. But, if nj ∈ d0Z for all j ≤ k, then ϕξ(2π/d)

∑k
j=1 nj lj = 1, for all

(l1, . . . , lk) ∈ Z
k, and the result follows with a change of variables. If not, let j be such that

nj /∈ d0Z. Then ϕξ(2π/d)
nj is a nontrivial d-th root of unity and we can write

P(Zn1 = . . . = Zn1+···+nk
= 0) =

1

(2π)k




d−1∑

lj=0

ϕξ(2π/d)
nj lj




×
∫

[−π,π]k−1

[∫

−[π
d
,π
d
]
ϕn1,...,nk

(θ1, . . . , θk) dθj

]
dθ1 . . . dθj−1dθj+1 . . . dθk

= 0.
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This concludes the proof of the lemma. �

5.2. A typical behaviour for random walks. We want to argue that typically the simple
random walk visits roughly

√
n sites before time n; spends time of order at most

√
n on each of

them, and that its local time process is Hölder continuous of order 1/2, with a Hölder constant in

O(n1/4). This is true with high probability if we allow some correction of order nγ , with γ > 0.
This is the content of the next lemma, which can be proved as Lemma 6 in [5] and is standard.
Set for all i ≤ k,

N∗
i := sup

y
N (i)

ni
(y) and Ri := #{y : N (i)

ni
(y) > 0}.

Lemma 15. For every n ≥ 1 and γ > 0, set Ωn1,...,nk
:= Ω

(1)
n1,...,nk ∩ Ω

(2)
n1,...,nk, where

Ω(1)
n1,...,nk

:=

{
Ri ≤ n

1
2
+γ

i ∀i ≤ k

}
,

and

Ω(2)
n1,...,nk

:=

{
sup
y 6=z

|N (i)
ni (y)−N

(i)
ni (z)|

|y − z|1/2 ≤ n
1
4
+γ

i ∀i ≤ k

}
.

Then, for every p, P(Ωc
n1,...,nk

) = o(mini n
−p
i ).

Note that on Ωn1,...,nk
, for every i, we have

N∗
i ≤ n

1
2
+γ

i and V (i)
ni

:=
∑

y

(N (i)
ni

(y))2 ≤ n
3
2
+3γ

i .

5.3. Scheme of the proof. We follow roughly the same lines as for the proof of Theorem 1
in [5]. However the situation is more complicated here, since we consider multiple times in a
non-markovian context. Moreover, we want upper bounds which are uniform in n1, . . . , nk, and
this also requires some additional care.

First we have to see that the main contribution in the estimate comes from the integral near the
origin. Recall in particular the notation from (26).

Proposition 16. Let η ∈ (0, 1/8) be given. Then, for every t1, . . . , tk ∈ (0, 1), we have

∫

U(η)
ϕn1,...,nk

(θ1, . . . , θk) dθ1 . . . dθk =

(√
2π

σ

)k

Ct1,...,tk n−3k/4 + ok(n
−3k/4),

where U(η) := {|θi| ≤ n
− 1

2
−η

i ∀i ≤ k}. Moreover, for every θ ∈ (0, 1),

sup
n≥1

sup
nθ≤n1,...,nk≤n

(
k∏

i=1

n
3
4
i

) ∣∣∣∣∣

∫

U(η)
ϕn1,...,nk

(θ1, . . . , θk) dθ1 . . . dθk

∣∣∣∣∣ <∞.

The next two propositions show that the rest of the integral is negligible.

Proposition 17. Let η ∈ (0, 1/8) be given. Then, for every t1, . . . , tk ∈ (0, 1), we have
∫

V (η)
|ϕn1,...,nk

(θ1, . . . , θk)| dθ1 . . . dθk = ok(n
−3k/4)

where V (η) := {|θi| ≤ n
− 1

2
+η

i ∀i ≤ k} ∩ {∃j : |θj| ≥ n
− 1

2
−η

j }. Moreover, for every θ ∈ (0, 1),

sup
n≥1

sup
nθ≤n1,...,nk≤n

(
k∏

i=1

n
3
4
i

) ∫

V (η)
|ϕn1,...,nk

(θ1, . . . , θk)| dθ1 . . . dθk <∞.
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Proposition 18. Let η ∈ (0, 1/2) and θ ∈ (0, 1) be given. Then there exists c > 0 such that

sup
n≥1

sup
nθ≤n1,...,nk≤n

∫

{∃i : |θi|>n
− 1

2+η

i }
|ϕn1,...,nk

(θ1, . . . , θk)| dθ1 . . . dθk = o(e−nc
).

This last proposition can be proved by using exactly the same argument as in the proof of

Proposition 10 in [5]. The only difference is that, if say |θi| > n
−1/2+η
i , then after having defined

peaks for S(i), we need to work also conditionally to all N
(j)
nj , for j 6= i. But this does not change

anything to the proof. Since it would be fastidious to reproduce the argument, we will not prove
this proposition here and we refer the reader to [5] for details.

Note that Theorem 5 readily follows from these propositions and Lemma 14.

5.4. Proof of Proposition 16. We will use Borodin’s result [3] on approximations of Brownian
local time by random walks local time. He proved in particular (see Remark 1.3 in [3]) that under
some moment condition on the random walk, and on a suitable probability space, for all T > 0
and all γ > 0, there exist constants C > 0 and δ > 0, such that for all n ≥ 1,

P (Ec
n) ≤ C n−1−δ,

with

En :=

{
sup

(t,x)∈[0,T ]×R

|N[nt]([
√
nx])−√

nLt(x)| ≤ Cn
1
4 lnn,

∣∣∣∣B1 −
Sn√
n

∣∣∣∣ ≤ n−
1
4
+γ

}
,

where N and L are the local time processes, respectively of the random walk S and of the
Brownian motion B. But a careful look at his proof shows actually that if the random walk
increments have finite moments of any order, then the above holds for any δ > 0 (see Formulas
(3.8) and (3.9) and Lemma 3.2).

By using now this result, Lemma 15 and the Markov property of the random walk and of
Brownian motion, we deduce the following:

Lemma 19. Let γ ∈ (0, 1/4) and k ≥ 1 be given. Then for every n ≥ 1 and every 0 ≤ n1, ..., nk ≤
n, it is possible to construct the Brownian motion and the random walk on a suitable probability
space, such that for all p > 0,

P
(
F c
n,n1,...,nk

)
= O

(
(min

i
ni)

−p

)
,

where Fn,n1,...,nk
= F1(n, n1, . . . , nk) ∩ · · · ∩ F4(n, n1, . . . , nk), and (with ti = ni/n for i ≤ k),

F1(n, n1, . . . , nk) :=

{
sup
x∈R

∣∣∣N (i)
ni

(
√
nx)−√

nL
(i)
ti
(x)
∣∣∣ ≤ n

1
4
+γ

i ∀i ≤ k

}
,

F2(n, n1, . . . , nk) :=
{
sup{|x− S

(i)
0 | : N (i)

ni
(x) 6= 0} ≤ t

1/2
i n

1
2
+γ ∀i ≤ k

}
,

F3(n, n1, . . . , nk) :=
{
sup{|x−B

(i)
0 | : L(i)

ti
(x) 6= 0} ≤ t

1/2
i nγ ∀i ≤ k

}
,

F4(n, n1, . . . , nk) :=

{
sup
k
N (i)

ni
(k) ≤ t

1/2
i n

1
2
+γ and sup

x
L
(i)
ti
(x) ≤ t

1/2
i nγ ∀i ≤ k

}
.

The proof of this result is elementary and left to the reader. Define now for all ε > 0, the set

Ω̃n1,...,nk
(ε) :=

{(
k∏

i=1

n
− 3

2
i

)
Dn1,...,nk

≥ ε

}
. (27)

We then obtain the following:
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Lemma 20. Let θ ∈ (0, 1) and θ0 ∈ (0, θ/4) be given. Then for every L > 0, we have

sup
n≥1

sup
nθ≤n1,...,nk≤n

sup
ε≥n−θ0

ε−L
P

(
Ω̃c
n1,...,nk

(ε)
)
<∞,

and for every p > 0,

sup
n≥1

sup
nθ≤n1,...,nk≤n

E

[(
k∏

i=1

n
3p
2
i

)
D−p

n1,...,nk
, Ω̃n1,...,nk

(n−θ0)

]
<∞.

Proof. Let γ > 0 be such that θ0 < (θ/4)− 3γk and let L > 0 be fixed. Thanks to the previous
lemma we can assume that the Brownian motion B and the random walk S are constructed on
a space, where

P(F c
n,n1,...,nk

) = O(n−p),

for all p > 0. Now for all i, j, set

A
(n)
i,j := (ninj)

−3/4
∑

y

N (i)
ni

(y)N (j)
nj

(y) and Ai,j := (titj)
−3/4

∫

R

L
(i)
ti
(x)L

(j)
tj

(x) dx,

with ti = ni/n and tj = nj/n. First, we rewrite A
(n)
i,j as follows

A
(n)
i,j = (titj)

− 3
4

∫

R

N
(i)
ni (⌊

√
nx⌋)√
n

N
(j)
nj (⌊

√
nx⌋)√

n
dx.

Observe next that, on Fn,n1,...,nk
, for all i, j and ni, nj ≤ n, we have

A
(n)
i,i ≤ n3γ , Ai,i ≤ n3γ , (28)

and

t
− 3

2
i

∫

R

∣∣∣∣∣
N

(i)
ni (⌊

√
nx⌋)√
n

− L
(i)
ti
(x)

∣∣∣∣∣

2

dx ≤ t
− 3

2
i 2t

1
2
i n

γt
1
2
i n

− 1
2
+2γ ≤ 2t

− 1
2

i n−
1
2
+3γ .

Hence, with the use of the Cauchy-Schwartz inequality, we get

A
(n)
i,j ≤ n3γ , Ai,j ≤ n3γ and

∣∣∣A(n)
i,j −Ai,j

∣∣∣ ≤ 2
√
2t

− 1
4

i n−
1
4
+3γ ≤ 4n−

θ
4
+3γ . (29)

We use next that
(

k∏

i=1

n
− 3

2
i

)
Dn1,...,nk

= det
(
(A

(n)
i,j )i,j

)
and detM t1,...,tk = det ((Ai,j)i,j) .

Furthermore, for any matrix M :

det ((Mi,j)i,j) =
∑

σ∈Sk

(−1)sgn(σ)
k∏

i=1

Mi,σ(i),

where Sk is the group of permutations of {1, ..., k} and sgn(σ) is the signature of σ. Therefore,
using (29), on Fn,n1,...,nk

, when ni ≤ n, for all i ≤ k, we get for n large enough,
∣∣∣∣∣

(
k∏

i=1

n
− 3

2
i

)
Dn1,...,nk

− detM t1,...,tk

∣∣∣∣∣ ≤
∑

σ∈Sk

k∑

i=1

n3γ(k−1)
∣∣∣A(n)

i,σ(i) −Ai,σ(i)

∣∣∣

≤ 4 (k + 1)!n3γkn−
θ
4 ≤ n−θ0 ,

according to our assumption on γ.
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Thus, for n large enough, and every ε ≥ n−θ0 , we get by using Proposition 8

sup
nθ≤n1,...,nk≤n

P

(
Ω̃c
n1,...,nk

(ε)
)

≤ sup
nθ≤n1,...,nk≤n

P(F c
n,n1,...,nk

) + P
(
detM t1,...,tk ≤ 2ε

)

≤ O(n−θ0L) + P

(
λt1,...,tk ≤ (2ε)

1
k

)

= O
(
εL
)
,

with λt1,...,tk as in Proposition 8. So we just proved that for any L > 0, the constant

CL := sup
n≥1

sup
ε≥n−θ0

ε−L sup
nθ≤n1,...,nk≤n

P

(
Ω̃c
n1,...,nk

(ε)
)
,

is finite, which gives the first part of the lemma. Then we get for any p > 0,

sup
nθ≤n1,...,nk≤n

E

[(
k∏

i=1

n
3p
2
i

)
D−p

n1,...,nk
, Ω̃n1,...,nk

(n−θ0)

]

= sup
nθ≤n1,...,nk≤n

∫ ∞

0
P

(
n−θ0 ≤

(
k∏

i=1

n
− 3

2
i

)
Dn1,...,nk

≤ t−1/p

)
dt

= sup
nθ≤n1,...,nk≤n

p

∫ +∞

n−θ0

P

(
n−θ0 ≤

(
k∏

i=1

n
− 3

2
i

)
Dn1,...,nk

≤ ε

)
dε

εp+1

≤ p

∫ 1

n−θ0

Cp+1 dε+ p

∫ +∞

1

dε

εp+1
<∞,

where for the third line we have used the change of variables t = ε−p. This concludes the proof
of the lemma. �

The next step is the

Lemma 21. Let η ∈ (0, 1/4) and θ ∈ (0, 1) be given. Then

lim
n→∞

sup
nθ≤n1,...,nk≤n

(
∏

i

n
3/4
i

)

×
∫

U(η)

∣∣∣ϕn1,...,nk
(θ1, . . . , θk)− E

[
e−σ2Qn1,...,nk

(θ1,...,θk)/2
]∣∣∣ dθ1 . . . dθk = 0,

where

Qn1,...,nk
(θ1, . . . , θk) :=

∑

y

(
θ1N

(1)
n1

(y) + · · ·+ θkN
(k)
nk

(y)
)2
.

Proof. Recall that U(η) = {|θi| ≤ n
− 1

2
−η

i ∀i ≤ k}. Set

En1,...,nk
(θ1, . . . , θk) :=

(
∏

y

ϕξ(θ1N
(1)
n1

(y) + · · ·+ θkN
(k)
nk

(y))

)
− e−σ2Qn1,...,nk

(θ1,...,θk)/2.

We have to prove that

∫

U(η)
E [|En1,...,nk

(θ1, . . . , θk)|] dθ1 . . . dθk = o

(
k∏

i=1

n
−3/4
i

)
.
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Observe that

En1,...,nk
(θ1, . . . , θk) =

∑

y

(
∏

z>y

exp

(
−σ

2

2
(θ1N

(1)
n1

(z) + · · ·+ θkN
(k)
nk

(z))2
))

×
(
ϕξ(θ1N

(1)
n1

(y) + · · · + θkN
(k)
nk

(y))− e−
σ2

2
(θ1N

(1)
n1

(y)+···+θkN
(k)
nk

(y))2
)

×
(
∏

z<y

ϕξ

(
θ1N

(1)
n1

(z) + · · ·+ θkN
(k)
nk

(z)
))

.

Recall now that, since ξ is square integrable, we have 1− ϕξ(u) ∼ σ2|u|2/2, as u→ 0. It follows
that, ∣∣∣ϕξ(u)− e−σ2u2/2

∣∣∣ ≤ |u|2h(|u|) for all u ∈ R,

with h a continuous and monotone function on [0,+∞) vanishing in 0. In particular there exists
a constant ε0 > 0, such that

|ϕξ(u)| ≤ exp
(
−σ2|u|2/4

)
for all u ∈ [−ε0, ε0]. (30)

Fix now γ ∈ (0, η) and θ0 ∈ (0, θ/4). Next recall (27) and observe that on

Ω(γ, θ0) := Ωn1,...,nk
∩ Ω̃n1,...,nk

(n−θ0),

if |θi| ≤ n
− 1

2
−η

i for all i ≤ k, then (see the remark following Lemma 15) for all z ∈ Z,

|θ1N (1)
n1

(z) + · · ·+ θkN
(k)
nk

(z)| ≤ knγ−η,

which is smaller than ε0 for n large enough. Then we get,

|En1,...,nk
(θ1, . . . , θk)|1Ω(γ,θ0) ≤ h(knγ−η)e−σ2Qn1,...,nk

(θ1,...,θk)/4

×
∑

y

e
σ2

4
(θ1N

(1)
n1

(y)+···+θkN
(k)
nk

(y))2
(
θ1N

(1)
n1

(y) + · · ·+ θkN
(k)
nk

(y)
)2

= o(1)× e(σε0)
2
e−

σ2

4
Qn1,...,nk

(θ1,...,θk)Qn1,...,nk
(θ1, . . . , θk)

= o(1)× e−
σ2

8
Qn1,...,nk

(θ1,...,θk).

Therefore a change of variables gives
∫

U(η)
|En1,...,nk

(θ1, . . . , θk)| 1Ω(γ,θ0) dθ1 . . . dθk = o(1) ×D−1/2
n1,...,nk

∫

Rk

e−σ2|r|22/8 dr,

at least when Dn1,...,nk
> 0. The result now follows from Lemmas 15 and 20. �

Finally Proposition 16 is deduced from the following lemma.

Lemma 22. Let t1, . . . , tk ∈ (0, 1) and η ∈ (0, 1/8) be given. Then

∫

U(η)
E

[
e−σ2Qn1,...,nk

(θ1,...,θk)/2
]
dθ1 . . . dθk =

(√
2π

σ

)k

Ct1,...,tk n−3k/4 + ok(n
−3k/4).

Proof. First write
∫

U(η)
e−σ2Qn1,...,nk

(θ1,...,θk)/2 dθ1 . . . dθk = In1,...,nk
− Jn1,...,nk

,
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where In1,...,nk
is the integral over R

k and Jn1,...,nk
is the integral over {∃j : |θj | > n

− 1
2
−η

j }. A
change of variables gives

In1,...,nk
= σ−kD−1/2

n1,...,nk

∫

Rk

e−|r|22/2 dr.

According to Proposition 7, we know that

n−3k/4Dn1,...,nk

(L)
=⇒ D̃T1,...,Tk

,

as n→ ∞ and ni/n→ ti, for i = 1, ..., k. This, combined with Lemma 20, shows that

E[In1,...,nk
] =

(√
2π

σ

)k

Ct1,...,tk n−3k/4 + ok(n
−3k/4),

and it just remains to estimate E[Jn1,...,nk
].

First consider the matrix An1,...,nk
:= (〈N (i)

ni , N
(j)
nj 〉)i,j≤k, and denote by µn1,...,nk

its smallest
eigenvalue.

Let now θ ∈ (0, 1), 0 < θ0 <
θ
4 and γ > 0 be such that 2η+ θ0 +3γ(k− 1) < 1/4. We know that

on Ωn1,...,nk
,

tr(An1,...,nk
) =

k∑

i=1

∑

y

N (i)
ni

(y)2 ≤ kn3/2+3γ(1 + ok(1)).

We deduce that all eigenvalues of An1,...,nk
are smaller than the right hand side of the above

inequality. In particular on Ω̃n1,...,nk
(n−θ0), there exists a constant c > 0 (depending only on k

and the ti’s), such that

µn1,...,nk
≥ Dn1,...,nk

(k n
3
2
+3γ(1 + ok(1)))k−1

≥ c n
3
2
−θ0−3γ(k−1)(1− ok(1)).

Then we get

µn1,...,nk
n−1−2η ≥ n

1
2
−2η−θ0−3γ(k−1)(1− ok(1))

≥ n1/4(1− ok(1)),

since 2η + θ0 + 3γ(k − 1) < 1/4 by hypothesis. Note moreover, that

Qn1,...,nk
(θ1, . . . , θk) ≥ µn1,...,nk

|(θ1, . . . , θk)|22.
Therefore a change of variables gives

Jn1,...,nk
≤ µ−k/2

n1,...,nk

∫

{|r|2≥µ
1/2
n1,...,nk

n−1/2−η}
e−σ2 |r|22/2 dr,

and it then follows from the first part of Lemma 20 that E[Jn1,...,nk
] = ok(n

−3k/4). This concludes
the proof of the lemma. �

5.5. Proof of Proposition 17. Let θ0 ∈ (0, 1/4) be fixed. Consider the events

H(θ1, . . . , θk) := {|θ1N (1)
n1

(y) + · · ·+ θkN
(k)
nk

(y)| ≤ ε0 for all y ∈ Z},
where ε0 is as in (30), and

H̃(θ1, . . . , θk) := H(θ1, . . . , θk) ∩ Ω̃n1,...,nk
(n−θ0).
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Then by using (30) and the argument at the end of the proof of Lemma 22 we get

∫

V (η)
E

[
∏

y

|ϕξ(θ1N
(1)
n1

(y) + · · ·+ θkN
(k)
nk

(y))|, H̃(θ1, . . . , θk)

]
dθ1 . . . dθk = ok(n

−3k/4),

and, thanks to Lemma 20,

sup
n≥1

sup
nθ≤n1,...,nk≤n

(
k∏

i=1

n
3
4
i

)

×
∫

V (η)
E

[
∏

y

|ϕξ(θ1N
(1)
n1

(y) + · · · + θkN
(k)
nk

(y))|, H̃(θ1, . . . , θk)

]
dθ1 . . . dθk <∞.

On the other hand by using the Hölder continuity of the local time (see Lemma 15), we get

P

[
H(θ1, . . . , θk)

c, #{y ∈ Z : |θ1N (1)
n1

(y) + · · ·+ θkN
(k)
nk

(y)| ∈ [ε0/2, ε0]} ≤ n
1
4

]
= ok(n

−3k/4),

uniformly in (θ1, ..., θk) ∈ V (η) and

sup
(θ1,...,θk)∈V (η)

sup
n≥1

sup
nθ≤n1,...,nk≤n

(
k∏

i=1

n
3
4
i

)

×P

[
H(θ1, . . . , θk)

c, #{y ∈ Z : |θ1N (1)
n1

(y) + · · · + θkN
(k)
nk

(y)| ∈ [ε0/2, ε0]} ≤ n1/4
]
<∞.

Finally by using again (30), we obtain

P

[
H(θ1, . . . , θk)

c,

∣∣∣∣∣
∏

y

ϕξ(θ1N
(1)
n1

(y) + · · ·+ θkN
(k)
nk

(y))

∣∣∣∣∣ > e−(σε0/2)2n1/4/4

]
= ok(n

−3k/4),

and

sup
n≥1

sup
nθ≤n1,...,nk≤n

(
k∏

i=1

n
3
4
i

)

×P

[
H(θ1, . . . , θk)

c,

∣∣∣∣∣
∏

y

ϕξ(θ1N
(1)
n1

(y) + · · ·+ θkN
(k)
nk

(y))

∣∣∣∣∣ > e−(σε0/2)2n1/4/4

]
<∞.

The proposition now follows with Lemma 20. �

6. Proof of Corollary 6

We first observe that for k = 1, the result follows from (3), since we can write

E[Nn(0)] =

n∑

i=0

P(Zi = 0) =

⌊n/d0⌋∑

i=0

P(Zid0 = 0)

∼n→∞
d

σ

⌊n/d0⌋∑

i=0

p1,1(0)(id0)
− 3

4

∼n→∞
4d

σd0
p1,1(0)n

1/4 =
d

σd0
M1,1(0)n

1/4,

and

M1,1(0) =

∫ 1

0
p1,t(0) dt =

∫ 1

0
p1,1(0) t

− 3
4 dt = 4 p1,1(0).
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We prove now the result for some general k ≥ 1. Fix some θ ∈ (0, 1/4), and write

n−
k
4 E

[
Nn(0)

k
]
= n−

k
4

∑

n1,...,nk≤n

P (Zn1 = · · · = Znk
= 0)

= n−
k
4

∑

n1,...,nk≤⌊n/d0⌋
P (Zn1d0 = · · · = Znkd0 = 0)

= k!n
3k
4

∫

0≤u1≤···≤uk≤ 1
d0

P
(
Z⌊nu1⌋d0 = · · · = Z⌊nuk⌋d0 = 0

)
du1 . . . duk

= k!n
3k
4

∫

nθ−1≤u1≤···≤uk≤ 1
d0

P
(
Z⌊nu1⌋d0 = · · · = Z⌊nuk⌋d0 = 0

)
du1 . . . duk + o(1).

Indeed, for the last equality, we use Theorem 5 which implies that for any ℓ ≥ 1,

n
3k
4

∫

0≤u1≤···≤uℓ≤nθ−1≤uℓ+1≤···≤uk≤ 1
d0

P
(
Z⌊nu1⌋d0 = · · · = Z⌊nuk⌋d0 = 0

)
du1 . . . duk

≤ C n
3ℓ
4
+(θ−1)ℓ

∫

0≤uℓ+1≤···≤uk≤ 1
d0

(uℓ+1 . . . uk)
− 3

4 = o(1),

since θ < 1/4 and where C is the constant appearing in Theorem 5. Then, by using again
Theorem 5, we can apply the Lebesgue dominated convergence theorem, and we get

n−
k
4

∑

n1,...,nk

P (Zn1 = · · · = Znk
= 0)

= k!

(
d

σ

)k ∫

0≤u1≤u2≤···≤uk≤1/d0

pk,u1d0,u2d0,...,ukd0(0, . . . , 0) du + o(1)

=

(
d

σ

)k ∫

[0,1/d0]k
pk,u1d0,u2d0,...,ukd0(0, . . . , 0) du + o(1)

=

(
d

d0σ

)k ∫

[0,1]k
pk,u1,u2,...,uk

(0, . . . , 0) du + o(1)

=

(
d

d0σ

)k

Mk,1(0) + o(1).

This concludes the proof of the corollary. �

We notice that similar calculations show that for any r ≥ 1, any k1, . . . , kr ≥ 1, and any
0 < t1 < · · · < tr,

E

[
N[nt1](0)

k1 . . .N[ntr](0)
kr
]
∼
(

d

σd0

)k1+···+kr

n
k1+···+kr

4 E

[
Lt1(0)

k1 . . .Ltr(0)
kr
]
, (31)

as n→ ∞.

At this point, it is also not difficult to see that the sequence (N[nt](0)/n
1/4, t ≥ 0) is tight in the

Skorokhod space D(R). For this, notice that for any T > 0 and p ≥ 1, there exists a constant
C = C(T, p), such that for all t ∈ [0, T ], h > 0, and η > 0,

P

(
N[n(t+h)](0)−N[nt](0) ≥ η n1/4

)
≤ η−p n−p/4

E
[(
N[n(t+h)](0)−N[nt](0)

)p]

≤ C η−php/4.

Indeed the second inequality follows from the proof of Corollary 6. Since N[nt](0) is a nonde-
creasing process, the tightness follows for instance from Lemma (1.7) p.517 in [18].
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7. Proof of Proposition 7

It was proved by Kesten and Spitzer [10] that the normalized self-intersection local time of
the random walk converges in distribution to its continuous counterpart. A similar convergence
is proved for the mutual intersection local time in Chen’s book [6]. We prove Proposition 7 by
following carefully their proof.

For j = 1, ..., k, and a < b, let

T (j)
nj

(a, b) :=
1

nj

∑

a≤n− 1
2 y<b

N (j)
nj

(y),

denotes the time spent by S
(j)
⌊nj ·⌋/

√
n in [a, b) before time nj . The mutual intersection local time

of S
(j)
[nj·]/

√
n and S

(j′)
[nj′ ·]

/
√
n before time 1 is defined by:

T (j,j′)
nj ,nj′

:=

√
n

njnj′
〈N (j)

nj
, N (j′)

nj′
〉

=

√
n

njnj′

∑

x∈Z

nj∑

k=1

nj′∑

ℓ=1

1{S(j)
k =x}1{S(j′)

ℓ =x}.

For any ε > 0, consider the regularizing functions pε(x) := e−x2/2ε/
√
2πε, and set

T (j,j′)
ε,nj ,nj′

:=
1√

nnjnj′

∑

x∈Z

nj∑

k=1

nj′∑

ℓ=1

pε

(S(j)
k − x√
n

)
pε

(S(j′)
ℓ − x√

n

)
.

Similarly, let

Λj(a, b) :=
1

Tj

∫ b

a
L
(j)
Tj

(x) dx,

denotes the time spent by B(j) in [a, b) before time Tj , and let

Λj,j′ :=
1

TjTj′

∫

R

L
(j)
Tj

(x)L
(j′)
Tj′

(x) dx,

denotes the mutual intersection local time of B
(j)
Tj · and B

(j′)
Tj′ ·. Finally set for every ε > 0,

Λε,j,j′ :=

∫

R

(∫

[0,1]2
pε(BsTj − x)pε(BtTj′

− x) ds dt

)
dx.

We will use the following lemmas:

Lemma 23. (Lemma 5.3.1 in Chen ) For all j 6= j′,

lim
ε→0

lim sup
n→∞

lim sup
nj/n→Tj , nj′/n→Tj′

E

[
|T (j,j′)

nj ,nj′
− T (j,j′)

ε,nj ,nj′
|2
]
= 0.

Lemma 24. (Theorem 2.2.3 in Chen) For all j 6= j′, The sequence (Λε,j,j′, ε > 0) converges in
L2 to Λj,j′, as ε goes to 0.

We can then already deduce the following:

Lemma 25. For any m1, . . . ,mk ≥ 1 and any −∞ < aj,ℓ < bj,ℓ < ∞ (j = 1, . . . , k and
ℓ = 1, . . . ,mj), ((

T (j)
nj

(aj,ℓ, bj,ℓ)
)
j=1,...,k, ℓ=1,...,mj

,
(
T (j,j′)
nj ,nj′

)
1≤j<j′≤k

)
,
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converges in distribution to
(
(Λj(aj,ℓ, bj,ℓ))j=1,...,k, ℓ=1,...,mj

,
(
Λj,j′

)
1≤j<j′≤k

)
,

as n→ +∞, and nj/n→ Tj for all j ≤ k.

Proof of Lemma 25. Let θj,ℓ (for j = 1, . . . , k and ℓ = 1, . . . ,mj) and θj,j′ (for 1 ≤ j < j′ ≤ k)
be some fixed real numbers. It suffices to prove that

E


exp


i

k∑

j=1

mj∑

ℓ=1

θj,ℓT
(j)
nj

(aj,ℓ, bj,ℓ) + i
∑

1≤j<j′≤k

θj,j′T
(j,j′)
nj ,nj′




 ,

converges to

E


exp


i

k∑

j=1

mj∑

ℓ=1

θj,ℓΛj(aj,ℓ, bj,ℓ) + i
∑

1≤j<j′≤k

θj,j′Λj,j′




 .

Lemmas 23 and 24 show that we can replace the T
(j,j′)
nj ,nj′

and Λj,j′, respectively by T
(j,j′)
ε,nj ,nj′

and
Λε,j,j′.

Observe now that the map

(x(j))j≤k 7→
k∑

j=1

mj∑

ℓ=1

θj,ℓ

∫ 1

0
1
[aj,ℓ≤x

(j)
s <bj,ℓ]

ds

+
∑

1≤j<j′≤k

θj,j′

∫

R

∫

[0,1]2
pε(x

(j)
s − x)pε(x

(j′)
t − x) ds dt dx,

is continuous on D([0, 1],Rk) for the Skorokhod topology. Observe moreover, that for all fixed
ε > 0,

T (j,j′)
ε,nj ,nj′

=

∫

R

∫

[0,1]2
pε



S
(j)
[njs]√
n

− x


 pε

(
S̃[nj′ t]√

n
− x

)
ds dt dx+ o(1).

Therefore the weak convergence of
(
S
(j)
[nj·]/

√
n, j ≤ k

)
toward (B

(j)
Tj ·, j ≤ k), implies that

k∑

j=1

mj∑

ℓ=1

θj,ℓT
(j)
nj

(aj,ℓ, bj,ℓ) +
∑

1≤j<j′≤k

θj,j′T
(j,j′)
ε,nj,nj′

,

converges in distribution to

k∑

j=1

mj∑

ℓ=1

θj,ℓΛj(aj,ℓ, bj,ℓ) +
∑

1≤j<j′≤k

θj,j′Λε,j,j′.

The result follows. �

We finish now the proof of Proposition 7. Let θj (for j = 1, . . . , k) and θj,j′ (for 1 ≤ j < j′ ≤ k)
be some fixed real numbers. We proceed like in [10] by decomposing the set of all possible indices
into small slices where sharp estimates can be made. Define, in the slice [τℓ

√
n, τ(ℓ+1)

√
n), an

average occupation time by

Tj(τ, ℓ, n) :=
nj
n
T (j)
nj

(τℓ, τ(ℓ+ 1)).
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Set also

U(τ,M, n) :=

k∑

j=1

θjn
− 3

2

∑

|x|≥Mτ
√
n

N (j)
nj

(x)2,

V (τ,M, n) :=

k∑

j=1

θj
τ

∑

−M≤ℓ<M

(Tj(τ, ℓ, n))
2 +

∑

1≤j<j′≤k

θj,j′
njnj′

n2
T (j,j′)
nj ,nj′

,

and

A(τ,M, n) :=

k∑

j=1

θjn
− 3

2

∑

x∈Z
N (j)

nj
(x)2 +

∑

1≤j<j′≤k

θj,j′
njnj′

n2
T (j,j′)
nj ,nj′

− U(τ,M, n)− V (τ,M, n)

=
k∑

j=1

θjn
− 3

2

∑

−M≤ℓ<M

∑

a(ℓ,n)≤x<a(ℓ+1,n)

(
N (j)

nj
(x)2 − n2 × (Tj(τ, ℓ, n))

2

(τ
√
n)2

)
+ o(1).

It follows from computations in [10] (see in particular Lemmas 1, 2 and 3) that A(τ,M, n)

converges in probability to zero as Mτ3/2 → 0. Moreover,

P(U(τ,M, n) 6= 0) ≤ P

(
∃j ≤ k : sup

m≤nj

|S(j)
m | > Mτ

√
n

)
,

and it is well known that the right hand term goes to 0, as Mτ → ∞, and nj/n → Tj , for all
j ≤ k.

Now, Lemma 25 shows that V (τ,M, n) converges in law to

k∑

j=1

θj
τ

∑

−M≤ℓ<M

(∫ (ℓ+1)τ

ℓτ
L
(j)
Tj

(x)dx
)2

+
∑

1≤j<j′≤k

θj,j′

∫

R

L
(j)
Tj

(x)L
(j′)
Tj′

(x) dx.

But the map x 7→ L
(j)
t (x) being a.s. continuous with compact support, this last sum converges,

as τ → 0 and Mτ → ∞, to

k∑

j=1

θj

∫

R

L
(j)
Tj

(x)2 dx+
∑

1≤j<j′≤k

θj,j′

∫

R

L
(j)
Tj

(x)L
(j′)
Tj′

(x) dx.

The proposition follows. �

References

[1] Billingsley, P. Probability and measure, third edition. Wiley Series in Probability and Mathematical Statistics.
A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, (1995), xiv+593 pp.

[2] Borodin, A. N. A limit theorem for sums of independent random variables defined on a recurrent random

walk. (Russian) Dokl. Akad. Nauk SSSR 246 (1979), no. 4, 786–787.
[3] Borodin, A. N. On the character of convergence to Brownian local time. II, Probab. Theory Relat. Fields 72

(1986), 251–277.
[4] Castell, F.; Guillotin-Plantard, N.; Pène, F. Limit theorems for one and two-dimensional random walks in

random scenery. to appear in Ann I.H.P. (B).
[5] Castell, F.; Guillotin-Plantard, N.; Pène, F.; Schapira, Br. A local limit theorem for random walks in random

scenery and on randomly oriented lattices. Ann. Probab. 39, (2011), 2079–2118.
[6] Chen, X. Random Walk Intersections: Large Deviations and Related Topics. Mathematical Surveys and

Monographs, AMS, Vol. 157, Providence, RI (2009).
[7] Chen, X.; Li, W. V.; Rosiński, J.; Shao, Q.-M. Large deviations for local times and intersection local times

of fractional Brownian motions and Riemann-Liouville processes. Ann. Probab. 39, (2011), 729–778.
[8] Dombry, C.; Guillotin-Plantard, N. Discrete approximation of a stable self-similar stationary increments

process. Bernoulli 15 (2009), no. 1, 195–222.
[9] Geman, D.; Horowitz, J. Occupation densities. Ann. Probab. 8, (1980), 1–67.



ON THE LOCAL TIME OF RANDOM PROCESSES IN RANDOM SCENERY 29

[10] Kesten, H.; Spitzer, F. A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw.
Gebiete 50 (1979), 5–25.

[11] Khoshnevisan, D. The codimension of the zeros of a stable process in random scenery. Séminaire de Proba-
bilités XXXVII, 236–245, Lecture Notes in Math. 1832, Springer, Berlin, (2003).

[12] Khoshnevisan, D.; Lewis, T.M. Iterated Brownian motion and its intrinsic skeletal structure. Seminar on
Stochastic Analysis, Random Fields and Applications (Ascona, 1996), 201–210, In: Progr. Probab. 45,
Birkhäuser, Basel, (1999).

[13] Lebedev, N. N. Special functions and their applications, Revised edition, translated from the Russian and
edited by Richard A. Silverman. Unabridged and corrected republication. Dover Publications, Inc., New
York, (1972), xii+308 pp,

[14] Le Doussal, P. Diffusion in layered random flows, polymers, electrons in random potentials, and spin depo-

larization in random fields. J. Statist. Phys. 69 (1992), no. 5-6, 917–954.
[15] Le Gall, J.-F. Mouvement brownien, processus de branchement et superprocessus, Master course, available on

http://www.math.u-psud.fr/ jflegall.
[16] Marcus, M. B.; Rosen, J. Markov processes, Gaussian processes, and local times. Cambridge Studies in

Advanced Mathematics 100, Cambridge University Press, Cambridge, (2006), x+620 pp.
[17] Port, S. C.; Stone, C. J. Brownian motion and classical potential theory, Probability and Mathematical

Statistics. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, (1978), xii+236 pp.
[18] Revuz, D.; Yor, M. Continuous martingales and Brownian motion, Third edition. Grundlehren der Mathe-

matischen Wissenschaften, 293. Springer-Verlag, Berlin, (1999). xiv+602 pp.
[19] Xiao, Y. The Hausdorff dimension of the level sets of stable processes in random scenery. Acta Sci. Math.

(Szeged) 65, (1999), 385–395.

LATP, UMR CNRS 6632. Centre de Mathématiques et Informatique. Université Aix-Marseille

I. 39, rue Joliot Curie. 13 453 Marseille Cedex 13. France.

E-mail address: Fabienne.Castell@cmi.univ-mrs.fr

Institut Camille Jordan, CNRS UMR 5208, Université de Lyon, Université Lyon 1, 43, Boule-

vard du 11 novembre 1918, 69622 Villeurbanne, France.

E-mail address: nadine.guillotin@univ-lyon1.fr

Université Européenne de Bretagne, Université de Brest, Laboratoire de Mathématiques, UMR

CNRS 6205, 29238 Brest cedex, France

E-mail address: francoise.pene@univ-brest.fr

Département de Mathématiques, CNRS UMR 8628, Bât. 425, Université Paris-Sud 11, F-91405

Orsay, cedex, France.

E-mail address: bruno.schapira@math.u-psud.fr


