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ON SOME CONVEX COCOMPACT GROUPS IN REAL

HYPERBOLIC SPACE

MARC DESGROSEILLIERS AND FRÉDÉRIC HAGLUND

Abstract. We generalize to a wider class of hyperbolic groups a construction by
Misha Kapovich yielding convex cocompact representations into real hyperbolic space.
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1. Introduction.

In this paper we study discrete cocompact isometry groups of CAT (−1) polygonal
complexes, and try to represent them faithfully as convex cocompact groups of Hp (for
some large integer p). The case of a (large) polygon of finite groups was first handled by
Misha Kapovich in [19]. In fact the argument of Kapovich generalizes to a much wider
class of groups. We now present more precisely our results.

1.1. Background on Coxeter groups and polygonal complexes.
Recall a group Γ < Isom(Hp) is convex-cocompact provided Γ acts properly on Hp and

is cocompact on the convex hull of its limit set. Equivalently, any orbital map Γ → Hp,
sending γ to γx, is a quasi-isometric embedding. More generally for any geodesic metric
space Y we say that a representation ρ : Γ → Isom(Y ) is convex-cocompact whenever
there exists a closed convex subspace Z ⊂ Y which is invariant under Γ and the Γ-action
on Z is proper and cocompact. (Recall that a subspace Z ⊂ Y is convex if any geodesic
segment with endpoints inside Z is entirely contained inside Z.) When the metric space
Y is hyperbolic in the sense of Gromov and Γ is convex cocompact in Y , it follows that
Γ is word-hyperbolic (see [12] or [11] for references on hyperbolic groups). In particular
when a group is convex cocompact in Hp then it is a word-hyperbolic group. The converse
problem is then :

What kind of word-hyperbolic groups are convex cocompact in Hp ?

The above question is extremely general and we will focus on a very particular class of
groups. Any convex cocompact group of Hp inherits the Haagerup property of Isom(Hp)
(see [9]), so we must investigate the class of word-hyperbolic groups with this property.

Recall first that Coxeter groups correspond to presentations of the form

W = 〈s1, . . . , sr | (si)
2 = 1, (sisj)

mij = 1〉

Precisely the data are : a graph G on the set {1, . . . , r}, and for each edge {i, j} of G
a natural number mij ≥ 2. When {i, j} is not an edge and i 6= j there is no relation
involving si, sj - by convention we set mij = ∞. When i = j we set mij = 1. The pair
(W,S = {s1, . . . , sr}) is called a Coxeter system.

Every Coxeter group has the Haagerup property (see [4]). Many Coxeter groups are
word-hyperbolic, but very few of these can be discrete cocompact in Hp, since their
visual boundary is almost never a sphere. To be more precise a Coxeter group (W,S)
is always a discrete cocompact group of automorphism of its Davis complex Σ(W,S)
(see [7] for the construction of Σ(W,S) as a combinatorial object). Moussong proved
that Σ(W,S) always admits a CAT (0) metric and proved that when W does not contain
“obvious” free abelian groups of rank ≥ 2, then Σ(W,S) has a CAT (−1) metric, and
thus W is word-hyperbolic. See [20] for the geometrization of Σ(W,S) ; we refer to [5] for
the general facts on CAT (0) and CAT (−1) metric spaces, which generalize Hadamard
manifolds. For example the word-hyperbolicity of W follows from the assumption :

∀i, j with i 6= j, mij ≥ 4.

A natural question is then :

Are word-hyperbolic Coxeter groups convex cocompact in some Hp ?

This question appears for example in Kapovich’s survey [18], where Kapovich notices
that some hyperbolic Coxeter groups cannot be realized as convex cocompact reflection
subgroups, a fact discovered by Felikson and Tumarkin (see [10]).
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In this paper we obtain :

Theorem 1.1. Let G denote any finite graph of girth ≥ 4. Let m ≥ 4 be any integer.
Let W (G,m) be the Coxeter group with one generating involution sv for each vertex v of
G, and one relation (svsw)m = 1 for each edge {v, w} of G.

Then W (G,m) is convex-cocompact in some Hp.

(We insist that the CAT (−1) Davis complex Σ
(
W (G,m)

)
is two-dimensional.)

Warning : the representation we get is not by reflections, in the sense that the generators
sv do not act by reflections on Hp. We do not know wether a (discrete, convex cocompact)
reflection-representation exists.

To obtain Theorem 1.1 we first consider a very particular class of two-dimensional
Coxeter groups :

Lemma 1.2. For m ≥ 4 let W (m, p) denote the Coxeter group with p generating invo-
lutions s1, . . . , sp, and relations (sisj)

m = 1 (for any pair i, j with i 6= j).
Then W (p, m) is convex-cocompact in Hp−1. Moreover the convex-cocompact repre-

sentation W (p, m) → Isom(Hp−1) extends to a faithful convex-cocompact representation
Aut

(
Σ(W (p, m))

)
→ Isom(Hp−1).

Our argument consists in simply checking that the Tits’ form of W (p, m) has signature
(p − 1, 1). Note that the Tits-Witt representation sends the generators to reflections.

We are in fact interested in groups that have a priori nothing to do with Coxeter
groups: discrete cocompact groups of two-dimensional objects.

For us a polygonal complex is a cell complex X of dimension two such that:

(1) the 1-skeleton X1 is a metric graph where each edge has length 1
(2) each 2-cell is a regular euclidean convex polygon (thus called a polygon of X)
(3) the attaching map of a polygon P is a local isometry ∂P → X1

(4) the link of a 0-cell is a combinatorial graph: it has no loops (this follows from
(2)) and no multiple edges

The complex is evengonal provided each polygon has an even number of edges. The
complex is k-gonal provided each polygon has k edges.

For any polygonal complex we consider the following combinatorial quantities:

(1) n(X) denotes the minimum of the number of sides of a polygon of X

(2) µ(X) denotes the minimum of the girth of the links of vertices of X

It is easily seen that if n(X) ≥ 6 [7] or µ(X) ≥ 6 [7] then X admits a locally CAT (0)
[CAT (−1)] metric. It is not seldom that discrete cocompact groups of simply-connected
polygonal complexes with n(X) = 3 have property (T ) of Kazhdan, which is strongly
opposite to Haagerup property, and thus these kinds of groups cannot be convex co-
compact in Hp. We thus concentrate on the case when Γ is a discrete cocompact group
of automorphisms of a simply-connected evengonal complex X with n(X) ≥ 6. In this
case it is well-known that X has natural “hyperplanes” and thus Γ has the Haagerup
property.

The last notion we need was introduced in [16], to which we refer for details. In
the present paper we say a group Γ is cubically special provided there is a right-angled
Coxeter group (W,S) (a Coxeter group all of whose finite mij are equal to 2), and a
convex subcomplex X ⊂ Σ(W,S) such that Γ ⊂ W , and the CAT (0) cube complex X is
invariant and cocompact under Γ. It happens that being cubically special is related to



ON SOME CONVEX COCOMPACT GROUPS IN REAL HYPERBOLIC SPACE 4

strong subgroup separability properties, where we recall a subgroup is called separable if
it is an intersection of finite index subgroups. Combining Theorem 7.3 and Theorem 8.13
in [16] we obtain in the context of polygonal complexes :

Theorem 1.3. Let Γ be a discrete cocompact automorphism group of an evengonal
complex X with either n(X) ≥ 8, or n(X) ≥ 6 and µ(X) ≥ 4. Then the hyperbolic
group Γ is virtually cubically special if and only if every quasi-convex subgroup of Γ is
separable.

What we call here “cubically special” was simply named “special” (or C-special) in
[16]. The reason is that in the present paper we consider CAT (0) complexes built of
even polygons that are more general than squares, and we define special actions on these
kind of complexes. Having a special action on an even polygonal complex results in
a convex cocompact representation in some related Coxeter group. This group is a 2-
dimensional Coxeter group but it is no longer right-angled in general. We have been
able to represent this kind of 2-dimensional Coxeter groups into Isom(Hp), whereas we
couldn’t find interesting representations for 2-dimensional right-angled Coxeter groups.

It turns out that in the context of hyperbolic complexes and groups the two notions
of special actions are virtually equivalent, although one of them looks like it is a strict
generalization of the other.

1.2. Statements of the results.
Our main result relates uniform lattices of even-gonal complexes and two-dimensional

word-hyperbolic Coxeter groups :

Theorem 1.4.
Let Γ be a uniform lattice of a simply-connected even-gonal complex X with n(X) ≥ 6

and µ(X) ≥ 4. Assume Γ is virtually cubically special.
There is a Coxeter group (W,S), with n(X) ≤ 2mij for i 6= j, and a convex-cocompact

faithful representation ρ : Γ → Aut(Σ(W,S)) whose image is virtually contained in W .
All mij can be choosen to be finite, and we still get a convex-cocompact representation

provided n(X) ≥ 8.
If furthermore all polygons of X have the same number of sides, say 2m, then the

target Coxeter group W can be choosen to equal W (p, m) (for some large number p).

Combining the above theorem with Lemma 1.2 we obtain:

Theorem 1.5.
Let X be a simply-connected 2m-gonal complex with m ≥ 4 and µ(X) ≥ 4.
If Γ is a virtually special uniform lattice of X then there is a faithfull convex-cocompact

representation ρ : Γ → Isom(Hp).

We note that Theorem 1.1 is an immediate application of the above theorem, since
the Davis complex of W (G,m) satisfies the geometric assumptions, and word-hyperbolic
Coxeter groups are virtually special by [17].

We also (essentially) recover Kapovich’s theorem on even-gons of finite groups (see
Theorem 1.1 in [19]). Indeed the universal cover of a 2m-gon of finite groups is a simply-
connected 2m-gonal complex X with bipartite vertex links. It follows that µ(X) ≥ 4 and
also that Γ is virtually special, according to a deep result of Dani Wise (see [24, 25] and
the translation in the special language in [16]). So our Theorem 1.5 applies (provided m ≥
4). Moreover it can be checked that Kapovich’s representation Γ → Isom(Hp) actually
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factors as the composite of our Γ → Aut(Σ(W (p, m))) and our Aut(Σ(W (p, m))) →
Isom(Hp). (In fact our construction still yields Kapovich’s representation when m = 3,
but in this case the methods developed in this paper do not allow to reprove that the
representation is convex cocompact. We observe this convex cocompactness result was
established in Kapovich’s paper using an argument that is more elaborate than the one
used for the generic case m ≥ 4.)

We emphasize that both Theorems 1.4 and 1.5 provide a representation of the whole
group Γ, even when Γ has torsion: it is not a virtual representation.

We want also to insist that when a word-hyperbolic group is virtually special then by
definition it is related to some right-angled Coxeter group. But in general this Coxeter
group is neither hyperbolic nor is it two-dimensional, so Theorem 1.4 requires a bit more
of work.

Dani Wise has proved that when a CAT (0) polygonal complex X satisfies n(X) ≥ 6
and has bipartite vertex-links then any uniform lattice of X is virtually special (see
[24, 25, 16]). This applies in particular to two-dimensional Tits-buildings (with n(X) ≥
8). Note the girth of bipartite graphs is at least four. Thus using Theorem 1.5 we obtain:

Corollary 1.6.
Let X be a simply-connected 2m-gonal complex with m ≥ 4. Assume X is a Tits

building (that is : all vertex-links are isomorphic to a given generalized ν-gon, ν ≥ 2),
or more generally all vertex-links of X are bipartite graphs.

Then any uniform lattice of X has a faithfull convex-cocompact representation ρ : Γ →
Isom(Hp).

We note that for p = 2m ≥ 8 the above applies in particular when X = Ipq, the right-
angled hyperbolic building all of whose chambers are regular right-angled p-gons and all
of whose edges are contained in q polygons. In that case Marc Bourdon had already been
constructing a convex cocompact representation for a certain graph products of finite
groups Γpq acting geometrically on Ipq (see [3]). The new thing we get here is that the
pair (I(2m)q,Γ(2m)q) embeds equivariantly into (Σ(W (m, r)),W (m, r)) for some r (which
can be computed more or less explicitly in this case).

We also study further the relationship between being virtually special and having a
convex cocompact representation in Hp.

First of all the representations in both Theorems 1.4 and 1.5 have a geometric com-
panion.

In Theorem 1.4 there is a combinatorial map X → Σ(W,S) (sending polygons to poly-
gons) which is equivariant under our Γ → Aut(Σ(W,S)). This map is an isometric em-
bedding for the combinatorial distances on the 1-skeleta, but not an isometric embedding
for the usual CAT (0) metrics. In Lemma 1.2 the representation W (p, m) → Isom(Hp−1)
also has a geometric companion: there is an equivariant map Σ(W (p, m)) → Hp−1 such
that the image of each polygon of Σ(W (p, m)) is an isometric copy of some regular
2m-gon of H2.

Thus in Theorem 1.5 the representation Γ < Aut(X) → Isom(Hp) is polygonal in the
sense that there is an equivariant locally injective map X → Hp sending each polygon
of X to a regular planar polygon of Hp.
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The crucial assumption in Theorem 1.5 is that Γ is virtually special : this very strong
property enables the construction of a convex cocompact polygonal representation. How-
ever in the context of polygonal representations the virtual specialness hypothesis is not
too strong as shows the following kind of reciprocal statement to Theorem 1.5 :

Theorem 1.7. Let Γ be a uniform lattice of a simply-connected even-gonal complex X

with n(X) ≥ 8, or n(X) ≥ 6 and µ(X) ≥ 4.
If Γ has a polygonal representation Γ → Isom(Hp), then Γ is virtually special.

1.3. Concluding remarks and questions.
The results in this paper show that the Coxeter groups W (p, m) contain as quasi-

convex subgroups a lot of groups acting geometrically on negatively curved polygonal
complexes. Similarly the polygonal complexes Σ(W (p, m)) contain (equivariantly) a lot
of homogeneous 2m-gonal complexes. This is a remarkable universality property of the
so-called Gromov polyhedra Σ(W (p, m)) (see [13]).

Question : is there a uniform lattice Γ of a simply-connected 2m-gonal complex
X with m ≥ 4 and µ(X) ≥ 4, such that Γ is not convex-cocompact in Hp ? or not
convex-cocompact in Σ(W (p, m)) ?

Such a hyperbolic group would not be virtually special.

We mention that for any complex X as above there exists a polygonal map X →
Σ(W (p, m)) (for some large p), such that the induced map X1 → Σ1(W (p, m)) is an iso-
metric embedding of graphs. (Similarly every hyperbolic uniformly locally finite CAT (0)
cube complex embeds isometrically into the Davis complex of a right-angled Coxeter
group.) The problem is to map X inside Σ(W (p, m)) in such a way that the Γ-action on
X extends to Σ(W (p, m)).

Conjecture 1 : if a Coxeter group (W,S) has 4 ≤ mst < +∞ for every s 6= t, then
W is convex-cocompact in Hp.

Using Theorem 1.4 this would imply:

Conjecture 2 : any virtually special uniform lattice of a simply-connected even-gonal
complex X, with n(X) ≥ 8 and µ(X) ≥ 4 is convex-cocompact in Hp.

In fact Conjecture 1 and the quotient theorem could be used to deduce

Conjecture 3 : if a Coxeter group (W,S) has 4 ≤ mst ≤ +∞ for every s 6= t, then
W is convex-cocompact in Hp.

We would like to get rid of the assumption µ(X) ≥ 4 in Conjecture 2 above. However
it is not always possible to map polygonally a CAT (−1) 2m-gonal complex X with
µ(X) = 3 to a Davis complex Σ(W (m, p)). Indeed X may have non-trivial holonomy in
the following sense (see [13]). There is a 2m-gon P in X and a sequence P1, P2, . . . , P2m

of polygons such that

(1) P1 ∩ P, . . . , P2m ∩ P are the consecutive edges of ∂P

(2) P1 ∩ P2 is an edge, P2 ∩ P3 is an edge, . . . , P2m−1 ∩ P2m is an edge (these edges
are adjacent to P )

(3) P2m ∩ P1 is a vertex (of P )

Question :
if Γ is a virtually special uniform lattice of a holonomy free 2m-gonal complex X with
m ≥ 4, then the pair (X, Γ) embeds equivariantly in some (Σ(W (p, m)),W (p, m)) ?
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1.4. Organization of the paper.
In Section 2 our goal is to describe and study the hyperplanes and ramified hyperplanes

in even-gonal complexes. We conclude this section by giving some more definitions on
Coxeter groups.

In Section 3 we give local small-cancellation type conditions on a polygonal map
f : X → Y that force f : X1 → Y 1 to be a global isometric embedding (Proposition 3.2).

In Section 4 we present more or less classical facts about real hyperbolic reflection
groups. In particular we give necessary and sufficient conditions on a Poincaré polyhe-
dron under which the associated reflection group is convex cocompact (Theorem 4.7).
We then recall the definition of the Witt-Tits quadratic form. Applying Theorem 4.7 we
then explain when the Witt-Tits representation is convex-cocompact in real hyperbolic
space (under the assumption that the Witt-Tits quadratic form has hyperbolic signature,
see Propostion 4.15). As an application we deduce Lemma 1.2 (see Corollary 4.22)

In Section 5 we define special actions on polygonal complexes. We show that if a
uniform lattice Γ of an even-gonal complex X with µ(X) ≥ 4 acts specially then there is
a naturally associated 2-dimensional Coxeter system (W,S) and an isometric embedding
of the pair (X, Γ) inside (Σ(W,S),W ). We check that if Γ is virtually cubically special
then it also has a finite index subgroup which acts specially on the polygonal complex
X (see Corollary 5.4), and in fact we can even get arbitrarily good lower bounds for the
embedding radius of ramified hyperplanes. Combining this result with Lemma 1.2 and
Proposition 3.2 we conclude this section with a proof of Theorem 1.4.

In Section 6 we introduce wall-defined representation (which generalize polygonal rep-
resentations). We show that if a group Γ has a representation in Isom(Hp) with an
equivariant locally injective wall-defined map X → Hp, then Γ is virtually special (see
Theorem 6.1). This proves Theorem 1.7.

2. Geometry of even-gonal complexes.

(In this section all polygonal complexes are locally compact.)

2.1. Non-positive curvature conditions.

Definition 2.1 (piecewise euclidean metric). Let X be a polygonal complex.
By definition the 2-cells of X have a euclidean metric (and each edge of a polygon of

X has unit length). We may thus consider on X the induced length metric, which we
call the piecewise euclidean metric on X.

Let X, Y be polygonal complexes. A map f : X → Y is combinatorial provided it
sends isometrically an edge [a polygon] of X onto an edge [a polygon] of Y .

Definition 2.2 (non-positive and negative curvature conditions). We say a polygo-
nal complex is non-positively curved provided its piecewise euclidean metric is locally
CAT (0).

We say a polygonal complex is negatively curved provided it is non-positively curved,
and moreover the piecewise euclidean metric has no embedded euclidean open disk
through vertices.

Let X be a polygonal complex. For each vertex v of X and each k-gon P through v we
assign the length α(v, P ) = π(1− 2

k
) to the edge of link(v,X) corresponding to P . This

turns link(v,X) to a metric graph and we denote by µeucl(v,X) its systole. Specifically
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µeucl(v,X) is the infimum of all sums α(v, P1) + · · · + α(v, Pℓ), where P1, . . . , Pℓ is a
locally injective cycle of polygons around v. We set µeucl(X) = infv∈X0 µeucl(v,X).

We quote the following well-known result relating curvature and systole:

Lemma 2.3 (see Lemma 5.6 in [5]). Let X be a polygonal complex. Then X is non-
positively curved [negatively curved] if and only if µeucl(X) ≥ 2π [> 2π].

If X is non-positively curved and simply connected it is a CAT (0) space (see [5]) and
thus we say X is a CAT (0) polygonal complex..

Definition 2.4 (local largeness). We say X is large at vertices if the minimum of the
girths of vertex-links is at least four : µ(X) ≥ 4.

We say X is large-gonal if the smallest number of sides of a polygon is at least six :
n(X) ≥ 6.

We say X is locally large if it is large at vertices and moreover the smallest number
of sides of a polygon is at least four : µ(X) ≥ 4 and n(X) ≥ 4.

Using Lemma 2.3 we have the following relations between local largeness conditions
and curvature conditions :

Lemma 2.5. Let X be a polygonal complex.

(1) Assume X is large-gonal. Then X is non-positively curved .
(2) Assume X is large at vertices. Then X is non-positively curved if and only if

X is locally large. If furthermore X is even-gonal, then X is negatively curved if
and only if X is large-gonal.

Since we do not really use the CAT (0) metric in this article the following can be
considered to be a definition:

Lemma 2.6 (combinatorial characterization of local isometries). Let X, Y be polygonal
complexes with n(Y ) ≥ 4. A combinatorial map f : X → Y is a local isometry if and
only if f is locally injective and moreover f(link(v,X)) is a full subgraph of link(f(v), Y ).

See ? for a detailed argument. So the advantage when working with triangle-free
polygonal complexes is that usual CAT (0) notions have a combinatorial characterization.

A subcomplex Y ⊂ X is locally convex if the inclusion map Y → X is a local isometry.
It is a standard fact that a local isometry with CAT (0) target is in fact a global isometry
from its CAT (0) source onto its image. So when X is a CAT (0) polygonal complex any
locally convex subcomplex Y ⊂ X is in fact a convex subspace, and thus we say Y is a
convex subcomplex.

2.2. Square subdivision.
In this paper we will employ the expression square complex instead of the heavier

4-gonal complex.
Let P denote any euclidean convex polygon with n cyclically ordered vertices v1, . . . , vn

(and the usual convention that vn+1 = v1). Add an additional vertex v0 in the interior
of P , subdivide each edge [vivi+1] of ∂P by adding a vertex wi in its interior, and then
add the edges [v0w1], . . . , [v0wn]. The resulting square complex is the square subdivision
of P and is denoted by P�. So P� consists in n unit squares.

Let X denote any polygonal complex. We may perform the square subdivision of each
polygon of X individually, and then glue the subdivided polygons along the (subdivided)
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edges coming from the 1-skeleton of X, thus producing a square complex which we call
the square subdivision of X and which we denote by X�.

We observe that the square subdivision X� is non-positively curved if and only if X

is locally large (n(X) ≥ 4 and µ(X) ≥ 4). We leave the verification of the following easy
result to the reader :

Lemma 2.7. Let f : X → Y be a combinatorial map of polygonal complexes. Then
there is a naturally induced combinatorial map f� : X� → Y�. If moreover n(Y ) ≥ 4
then f� is a local isometry if and only if f is a local isometry.

2.3. Straight and ramified hyperplanes of even-gonal complexes.
Hyperplanes in even-gonal complexes have been used since a long time, see for example

[13]. To define his representations Kapovich introduced what we call below ramified
hyperplanes (see [19]).

Definition 2.8 (hyperplanes of an even-gon). Let P be an polygon with 2m edges, and
let e1, e2, . . . , e2m be a cyclic enumeration of the edges of P . As usual we consider the
indices modulo 2m so that e2m+1 = e1.

Let e be an edge of P : the radial segment of P at e is the straight euclidean segment
joining the center of P to the midpoint of e.

We say ei and ei+m are parallel in P . So P has m parallelism classes of edges. A
straight hyperplane of P (or simply a hyperplane of P ) is the union of radial segments
at ei and ei+m. Thus P has m hyperplanes;

Any two edges ei, ei+2ℓ whose indices differ by an even number are said to be even-
parallel in P . Since P is an even-gon e1 and e2 are not even-parallel, and P has exactly
two even-parallelism classes of edges. A ramified hyperplane of P is the union of radial
segments at ei, ei+2, . . . , ei+2k, . . . . Thus P has two ramified hyperplanes.

We will use the expression straight hyperplanes to insist on the difference with ram-
ified hyperplanes. When we use the word hyperplane alone, it always means straight
hyperplane. Note that when P is a square ramified hyperplanes are straight.

Definition 2.9 (hyperplanes of an even-gonal complex). Let X be an even-gonal com-
plex. The disjoint union of the hyperplanes of polygons of X naturally maps to X

: ⊔

h hyperplane of P,

P polygon of X

h → X

We then identify two points p, q ∈ ⊔h,P h if they have the same image in X and moreover
p = q is the midpoint of an edge of X. The resulting quotient graph H(X) is the space of
hyperplanes of X. Its connected components are the immersed hyperplanes of X. Since
radial segments have a length each immersed hyperplane is a metric graph.

Definition 2.10 (hyperplanes neighborhoods). Let X be an even-gonal complex. The
disjoint union of the polygons of X marked by their hyperplanes naturally maps to X :

⊔

P polygon of X,

h hyperplane of P

P × {h} → X



ON SOME CONVEX COCOMPACT GROUPS IN REAL HYPERBOLIC SPACE 10

and we identify two edges a in P × {h} and a′ in P ′ × {h′} if a, a′ map to the same
edge in X and moreover the midpoint of a = a′ is an extremity of both h and h′.
We denote by N(H(X)) the resulting quotient polygonal complex. There is a natural
map i : H(X) → N(H(X)), and it is compatible with both maps H(X) → X and
N(H(X)) → X.

Lemma 2.11. The family of orthogonal projections P × {h} → h induces a map r :
N(H(X)) → H(X) such that r ◦ i = id. In particular i is injective and it induces a 1-1
identification between the connected components of H(X) and the connected components
of N(H(X)).

For every immersed hyperplane H of X we will thus denote by N(H) the connected
component of N(H(X)) containing H, and we call N(H) the polygonal neighborhood of
H.

Lemma 2.12. (1) Both maps i : H(X) → N(H(X)) and H(X) → X are local
isometries.

(2) Assume the even-gonal complex X is large at vertices (µ(X) ≥ 4) : then N(H(X)) →
X is a local isometry.

sketch. The retraction map r : N(H(X)) → H(X) is clearly 1-Lipschitz, thus i : H(X) →
N(H(X)) is a local isometry. Since N(H(X)) → X is a local isometry in the neighbor-
hood of every point of H(X), it thus follows by composition that H(X) → X is a local
isometry as well.

Assume now µ(X) ≥ 4 and let v̄ be a vertex of N(H(X)), and denote by v its image
in X. Let P be a polygon of X containing v, and let h be a hyperplane of P such
that v̄ is the image of v × {h}. We let a, a′ denote the two edges of ∂P which are
perpendicular to h at their midpoint. Either v 6∈ a ∪ a′ : then in fact link(v̄, N(H(X)))
identifies with link(v, P ), and this edge is obviously a full subgraph of link(v,X). Or
v ∈ a∪ a′, say v ∈ a. Consider the polygons P1 = P, . . . , Pk of X which contain a. Then
link(v̄, N(H(X))) identifies with ∪ilink(v, Pi) ≃ Star(a, link(v,X)). Now any subgraph
of diameter two in a graph of girth ≥ 4 has to be full. �

Using the previous Lemma and the standard incompressibility of local isometries in
non-positive curvature we get

Corollary 2.13 (see [14]). Let X be a CAT (0) even-gonal complex. Then every im-
mersed hyperplane embeds in X. Its image is a convex subtree of X that disconnects X

into two connected components.
If moreover X is large at vertices then the union of polygons of X meeting a given

hyperplane is a convex subcomplex.

An other classical fact is that the hyperplanes of a CAT (0) polygonal complex explain
the combinatorial distance on the 1-skeleton :

Theorem 2.14. Let X be a CAT (0) even-gonal complex. The combinatorial distance
between two vertices of the 1-skeleton X1 equals the number of hyperplanes separating the
vertices. Moreover an edge-path (e1, . . . , eℓ) of X1 is a combinatorial geodesic between
its endpoints if and only if the sequence of hyperplanes it crosses at each edge ei has no
repetition.
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We refer to [14] for an argument. Sometimes using hyperplanes is easier, so the
combinatorial distance on X1 is more adapted than the CAT (0) distance on X. Note
however that if there is an upper bound for the number of vertices in a polygon and
on the number of edges containing a vertex in the CAT (0) polygonal complex X, then
the inclusion (X1, dcomb) → (X, deucl) is a quasi-surjective quasi-isometry. The upper
bounds clearly exist if X admits a cocompact group of automorphism.

We now define the (immersed) ramified hyperplanes of an even-gonal complex.

Definition 2.15 (ramified hyperplanes and their neighborhoods). Let X be a non-
positively curved even-gonal complex. The disjoint union of the ramified hyperplanes of
polygons of X naturally maps to X :

⊔

h a ramified hyperplane of P,

P polygon of X

h → X

and identify two points p, q ∈ ⊔h,P h if they have the same image in X and moreover
p = q is the midpoint of an edge of X. The resulting quotient graph Hr(X) is the
space of ramified hyperplanes of X. Its connected components are the immersed ramified
hyperplanes of X.

Consider also : ⊔

P polygon of X,

h a ramified hyperplane of P

P × {h} → X

and identify two edges a in P × {h} and a′ in P ′ × {h′} if a, a′ map to the same
edge in X and moreover the midpoint of a = a′ belong to both h and h′. We de-
note by N(Hr(X)) the resulting quotient polygonal complex. There is a natural map
i : Hr(X) → N(Hr(X)), and it is compatible with both maps Hr(X) → X and
N(Hr(X)) → X.

In order to study the immersed ramified hyperplanes of the non-positively curved
even-gonal complex X, it is convenient to work with the square subdivision X� of X.
Indeed we note that a ramified hyperplane h of an even-gon P is a subcomplex of P�.
This turns h to a metric graph whose edges have unit length. Note there is a retraction
P� → h which projects orthogonally each square C of P� onto its unit edge C ∩ h.

We will consider the induced combinatorial maps

Hr → X�,Hr → N�(Hr(X)), N�(Hr(X)) → X�

where N�(Hr(X)) denotes the square subdivision of N(Hr(X)).

Lemma 2.16. The family of retractions P�×{h} → h induces a map r : N�(Hr(X)) →
Hr(X) such that r ◦ i = id. In particular i is injective and it induces a 1-1 identification
between the connected components of Hr(X) and the connected components of N(Hr(X)).

For every immersed ramified hyperplane H of X we will denote by N(H) the connected
component of N(Hr(X)) containing H, and we call N(H) the polygonal neighborhood of
H. We also consider the square subdivision N�(H) ⊂ N�(Hr(X)).

Lemma 2.17. Let X be an even-gonal complex with µ(X) ≥ 4. For any immersed
ramified hyperplane H the combinatorial maps H → N�(H), N�(H) → X�,H → X�

are local isometries.
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Proof. The retraction r : N�(Hr(X)) → Hr(X) is 1-Lipschitz, thus in fact H → N�(H)
is a global isometric embedding.

For every vertex v̄ of N(Hr(X)) let v be its image inside X, and let P be a polygon of
X with a ramified hyperplane h such that v̄ is the image of a vertex of P ×{h}. Then v is
contained in precisely one edge a of P that intersects h. The natural map N(Hr(X)) →
X then induces an identification of link(v̄, N(Hr(X))) with Star(a, link(v,X)). This is
a full subgraph of link(v,X) since µ(X) ≥ 4. Thus N(Hr(X)) → X is a local isometry.

It follows by Lemma 2.7 that N�(H) → X� is a local isometry and by composition
so is H → X�. �

Corollary 2.18. Let X be a CAT (0) even-gonal complex with µ(X) ≥ 4.

(1) Each ramified hyperplane H embeds as a convex subcomplex of X�. Moreover
N�(H) is a convex subcomplex of X�, and N(H) is also a convex subcomplex of
X.

(2) Let a, b be two distinct edges at a vertex v. Then the [ramified] hyperplanes H,K

cutting a, b are distinct. More precisely if a, b are linked in link(v,X) then H ∩K

is the center of the polygon spanned by a and b, and if a, b are not linked in
link(v,X) then H ∩ K = ∅.

Proof. 1) By Lemma 2.17 the map H → X� is a local isometry, and by assumption its
target is CAT (0). It follows that H embeds as a convex subcomplex of X�.

Similarly we get that N�(H) is a convex subcomplex of X�, and we deduce by
Lemma 2.7 that N(H) is a convex subcomplex of X.

2) Assume first a, b span a polygon P . Let r, s be the radial segments of P at a, b. So
H is the [ramified] hyperplane that contains r and K is the [ramified] hyperplane that
contains r. By convexity of H ⊂ X� we see that H cannot contain s. It follows that
H ∩ P is the [ramified] hyperplane of P containing r. Similarly K ∩ P is the [ramified]
hyperplane of P containing s. So H ∩K ∩P is the center p of P . Since H ∩K is convex
and contains p as an isolated point it follows that H ∩ K = {p}.

Assume now that a, b are unlinked in link(v,X). Thus the union π of the two half-
edges of a, b containing v is a geodesic segment of X. The endpoints of π are in H,K

but π itself is not contained in a [ramified] hyperplane since it contains a vertex. By
convexity of [ramified] hyperplanes we deduce that H 6= K. �

We note that the hexagonal tesselation of the euclidean plane has only three ramified
hyperplanes, which are not at all simply-connected. So the assumption µ(X) ≥ 4 is
essential in the Lemma above.

2.4. Intersection and osculation of hyperplanes.

Proposition 2.19 (intersections). Let X be a CAT (0) even-gonal complex [with µ(X) ≥
4], and let H,H ′ be two [ramified] hyperplanes of X. Then

(1) either N(H) ∩ N(H ′) = ∅,
(2) or N(H) ∩ N(H ′) is a non empty subgraph of X1,
(3) or N(H) ∩ N(H ′) is the union of a single polygon P with a subgraph of X1,
(4) or H = H ′.

In case (2) we have H ∩H ′ = ∅. In case (3) we have H ∩H ′ = {p} where p is the center
of P . Moreover under the assumption µ(X) ≥ 4 we have N(H) ∩ N(H ′) = P .
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Proof. Assume N(H) ∩ N(H ′) 6= ∅. Both [ramified] hyperplanes H,H ′ are convex sub-
spaces of X [of X�]. Thus H ∩ H ′ is a convex subtree of H (the edges are the radial
segments). We note that N(H)∩N(H ′) contains a polygon if and only if H∩H ′ contains
the center of this polygon : in particular if H ∩H ′ = ∅ then N(H)∩N(H ′) is a subgraph
of X1.

If H ∩H ′ contains a point that is not the center of a polygon, then H ∩H ′ contains a
radial segment and thus H = H ′. So if H∩H ′ contains two distinct points then H = H ′.
It follows that if H ∩ H ′ 6= ∅ then either H = H ′ or there is a polygon P with center p

such that H ∩H ′ = {p}, in which case P is obviously the single polygon contained inside
N(H) ∩ N(H ′).

Assume µ(X) ≥ 4 and H ∩H ′ is the center p of a polygon P . We know P is contained
in the convex subcomplex N(H) ∩ N(H ′). We claim that P is a connected component
of N(H) ∩ N(H ′), which implies N(H) ∩ N(H ′) = P . So assume by contradiction that
a is an edge of N(H) ∩ N(H ′) such that a ∩ P is a vertex v. Since a ⊂ N(H) there is
a polygon Q of N(H) such that a ⊂ Q. Since P,Q are non-disjoint polygons of N(H)
it follows that P ∩ Q is an edge b (with b ∩ H 6= ∅). Similarly there is a polygon Q′ of
N(H ′) which contains a and such that P ∩ Q′ is an edge b′ with b′ ∩ H ′ 6= ∅. If b = b′

then H = H ′, contradicting H ∩ H ′ = {p}. So we have found a cycle of length 3 in
link(v,X) : this contradicts µ(X) ≥ 4.

�

Corollary 2.20 (combinatorial convexity of hyperplane neighborhoods). Let H be a
hyperplane of a CAT (0) even-gonal complex. Assume either X is locally large, or X is
large-gonal. Then N(H)1 is a convex subgraph of X1.

The statement is true under the more general assumption that X has no vertex around
which there is a 3-cycle of polygons, including one square. We leave details to the reader.

Proof. Assume by contradiction there is a geodesic edge-path σ = (~e1, ~e2, . . . , ~en) starting
at some vertex v ∈ N(H), ending at v′ ∈ N(H), and with e1 6∈ N(H). We claim the
hyperplane H1 cutting e1 is disjoint from H. The contradiction follows since we then
also have H1 ∩ N(H) = ∅ and thus the path σ has to cut back H1, which is impossible
since σ is a geodesic.

It remains to prove the claim that H ∩ H1 = ∅.
Let v be the vertex of e1 that lays inside N(H). Let P be a polygon of N(H) and

let p denote the geodesic segment of P joining v orthogonally to the diameter H ∩ P .
Similarly let p1 denote half of the edge e1, joining v to the midpoint of e1. A quick

�

Definition 2.21 (intersecting, crossing, osculating). Let H,H ′ be two [ramified] hyper-
planes of a CAT (0) even-gonal complex [with µ(X) ≥ 4]. We say H,H ′ intersect if
H ∩H ′ 6= ∅. We say H,H ′ cross if they intersect and are distinct. We say H,H ′ osculate
if N(H) ∩ N(H ′) 6= ∅, but H,H ′ do not intersect.

By Proposition 2.19 H,H ′ cross if and only if H ∩ H ′ is the center of a polygon and
H,H ′ osculate if and only if N(H) ∩ N(H ′) is a non-empty subgraph of X1.

Lemma 2.22 (nearby hyperplanes). Let X be a CAT (0) even-gonal complex with µ(X) ≥
4, and let a, b be two distinct edges of X adjacent to some vertex v. Let H,K denote the
[ramified] hyperplanes dual to a, b. Then H 6= K and moreover
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(1) H and K intersect if and only if a, b are adjacent vertices of link(v,X)
(2) H and K osculate if and only if a, b are non-adjacent vertices of link(v,X)

Proof. Clearly N(H) ∩N(K) contains v. So H,K either intersect or they osculate, and
the Lemma follows from Corollary 2.18.2 �

Remark 2.23 (cubulation and relationship between the osculation properties). Let X be
a CAT (0) even-gonal complex. Using the family of hyperplanes of X there is a naturally
defined embedding of graphs X1 → C1, where C is a CAT (0) cube complex (see [22, 6]).
Moreover the hyperplanes of X are in 1-1 correspondance with the hyperplanes of C,
through the identification of parallelism classes of edges in both X and C. The cubes of
C correspond to certain configurations of pairwise intersecting hyperplanes.

It is easy to describe C when X is locally large. For each 2m-gon P of X the m

hyperplanes of X cutting P are pairwise intersecting, and in C we must add an m-cube
containing ∂P as a combinatorial equator. These are the only (maximal) cubes to add
to X1 in order to get C in that case.

Indeed since X is locally large the hyperplanes are convex subcomplexes of the CAT (0)
complex X� and when they intersect they meet with right angle. We deduce that if
H1,H2, . . . ,Hk is any family of pairwise intersecting hyperplanes of X, then there is a
polygon P such that all hyperplanes Hi of the family cut P .

2.5. Two-dimensional and two-spherical Coxeter groups.

Definition 2.24 (the Cayley graph, the Cayley 2-complex and the Davis complex). Let
(W,S) be a Coxeter system.

The Cayley graph of (W,S) is the graph G(W,S) defined as follows : The set of vertices
is W . There is an edge between w and wsi for any w ∈ W and any generator si ∈ S. Note
that edges are labeled in S (or in I). Observe this version of Cayley graphs is adapted to
a group generated by involutions since it has a single edge between two adjacent vertices
(unlike in the classical definition).

We now describe the Cayley 2-complex of (W,S). This is an even-gonal complex
Σ2(W,S) obtained as follows. The 1-skeleton of Σ2(W,S) is the Cayley graph G(W,S).
For any pair i, j with mij < ∞ and any 2mij-cycle c whose labels alternate between i

and j there is a polygon bounding c.
The Davis complex of (W,S) is a polyhedral complex Σ(W,S) whose 2-skeleton is

the Cayley complex Σ2(W,S), with additional higher-dimensional cells corresponding to
(cosets of) finite subgroups generated by subsets of S (of cardinality > 2). For more
details see [7].

Observe that the Cayley 2-complex is connected and simply-connected. Moussong
defined a piecewise euclidean metric on the Davis complex, and showed that it is indeed
CAT (0) ([20]). In particular the Davis complex is contractible.

Observe that the left multiplication induces an action of W by polygonal automor-
phisms onto Σ2(W,S). This action is simply-transitive on vertices.

Definition 2.25 (2-dimensional). We say a Coxeter system (W,S) is 2-dimensional
provided for any subset T ⊂ S with |T | ≥ 3 the Coxeter system (WT , T ) is infinite. This
is equivalent to requiring that the Cayley 2-complex equals the Davis complex. In this
case Σ2(W,S) is already a CAT (0) even-gonal complex.
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When (W,S) is 2-dimensional we will thus omit the superscript 2, write Σ(W,S)
instead of Σ2(W,S), and refer to this polygonal complex as to the Davis complex.

Definition 2.26 (2-spherical). A Coxeter system (W,S) where all mij ’s are finite is
called 2-spherical. This is equivalent to demand that the vertex links in Σ2(W,S) be
complete graphs.

Without using Moussong’s criterion a very simple systole computation in the links of
vertices gives:

Lemma 2.27. Let (W,S) be a Coxeter system s.t. mij ≥ 3 for all i, j. Then (W,S) is
2-dimensional (in other words Σ2(W,S) is CAT (0) and equal to Σ(W,S)).

Moreover (W,S) is word-hyperbolic iff Σ(W,S) is negatively curved, which happens
exactly when there is no subset {i, j, k} ⊂ S with mij = mjk = mki = 3.

We now recall the key-point about the combinatorial geometry in Coxeter systems
(for these classical results see [2]). Recall first that for each edge e of the Cayley graph
G(W,S) joining elements w and ws, the element t := wsw−1 is called a reflection of
(W,S). The set of fixed points of the reflection t is the set of midpoints of certain edges
(including e), it is called the hyperplane dual to e. We will denote it by He or Ht. Then
G(W,S) \ He has two connected components.

Theorem 2.28 (hyperplane characterization of combinatorial geodesics). Let (e1, e2, . . . , en)
be an edge-path in the Cayley graph of a Coxeter system (W,S). Let H1, . . . ,Hn be the
hyperplanes of G(W,S) dual to e1, . . . , en.

Then (e1, e2, . . . , en) is a combinatorial geodesic ⇐⇒ there is no repetition in the
sequence (H1, . . . ,Hn). The combinatorial distance between two vertices is the number
of hyperplanes which separate them.

We conclude this section by describing geometrically a natural finite extension of a
Coxeter group. So let (W,S) be a 2-dimensional Coxeter system, so that the Davis
complex Σ(W,S) is a nice CAT (0) even-gonal complex.

We denote by Autdiag(W,S) the finite group of permutations f : S → S such that
for each i, j we have mf(si)f(sj) = mij . There is a natural embedding Autdiag(W,S) →
Aut(W ), and the corresponding automorphisms of W are called diagram automorphisms.

We denote by Ŵ the semi-direct product of W with Autdiag(W,S) (this is an abuse of

notation since Ŵ depends on S). Note the diagram automorphisms preserve the set of
generating reflections, so the action of Autdiag(W,S) onto W extends to an action on
the Davis complex Σ(W,S).

Lemma 2.29 (identifying Ŵ ). The group Autdiag(W,S) normalizes W inside Aut(Σ(W,S)),
and the action by conjugation of f ∈ Autdiag(W,S) onto W < Aut(Σ(W,S)) coincides
with the natural action by diagram-automorphisms.

The normalizer of W in Aut(Σ(W,S)) equals the subgroup generated by W and Autdiag(W,S),

and it is isomorphic with Ŵ .

Proof. For f ∈ Autdiag(W,S) let f̂ denote the corresponding automorphism of Σ(W,S).
Let w ∈ W and let x ∈ Σ(W,S). Then

f̂(wx) = f(w)f̂(x)
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Indeed this relation is true for x ∈ Σ0(W,S) = W and moreover the automorphisms of
Σ(W,S) are entirely determined by their restriction to W .

We deduce the following conjugation formula :

For v ∈ W, (f̂ ◦ w ◦ f̂−1)(vx) = f̂(wf−1(v)f̂−1(x)) = f(w)vx

In other words we have f̂ ◦ w ◦ f̂−1 = f(w) (in Autdiag(W,S)).
The subgroup generated by W and Autdiag(W,S) inside Aut(Σ(W,S)) is then iso-

morphic with Ŵ since using the simple-transitivity of W on Σ0(W,S) we see that
W ∩ Autdiag(W,S) = {1}.

It remains to prove that any automorphism ϕ : Σ(W,S) → Σ(W,S) that normalizes
W is inside W.Autdiag(W,S). Let w0 ∈ W = Σ0(W,S) be the image under ϕ of the
origin 1 ∈ W = Σ0(W,S). We set ϕ0 = (w0)

−1 ◦ ϕ. So ϕ0 normalizes W and fixes the
origin 1. In particular ϕ0 induces a permutation f of the edges at 1. These edges are
labelled by generators s ∈ S, so f is in fact a permutation of S. Since ϕ0 is a polygonal
automorphism it preserves the number of sides of the polygons adjacent to the origin.
In other words f ∈ Autdiag(W,S).

Clearly ϕ0 = f̂ on the star of 1 in Σ(W,S). So the automorphism of W induced by
f and by ϕ0 coincides on the generating set S, and therefore for any vertex w ∈ W we
have

f̂(w) = ϕ0(w)

We conclude that ϕ0 = f̂ on the whole of Σ(W,S). �

3. Quasi-isometric embedding of CAT (0) large-gonal complexes.

Definition 3.1 (corners). A corner of order k in a polygonal complex X is a connected
subgraph of the boundary of a polygonal face of X that contains k + 1 edges. For k = 1
we simply say a corner, and for k = 2 we say a double corner.

Let f : X → Y be a polygonal map of polygonal complexes.
We say f : X → Y has no missing corner provided for any combinatorial path (a, b)

of X with a 6= b, if the edges f(a), f(b) form a corner of Y , then a, b form a corner of X.
We say f : X → Y has no missing double corner provided for any combinatorial path

(a, b, c) of X with a 6= b, b 6= c, if the edges f(a), f(b), f(c) form a double corner of Y ,
then a, b, c form a double corner of X.

We say f : X → Y has no missing half-cell provided for any edge-path π of X of
length k + 1, if f(π) is a corner of order k inside a 2(k + 1)-gon of Y , then π is a corner
of order k inside a 2(k + 1)-gon of X.

Observe a polygonal map f : X → Y is an isometric embedding for the CAT (0)
metrics if and only if it has no missing corner.

Proposition 3.2. Let X, Y denote two CAT (0) evengonal complexes. Let f : X → Y

be a polygonal map.
Assume f is locally injective and furthermore f has no missing half-cell.
Then f : X(1) → Y (1) is an isometric embedding (where the 1-skeleta are equipped

with the combinatorial distance).
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Proof. Assume by contradiction for some integer n ≥ 1 there is a geodesic edge path
(~e1, . . . , ~en) of X that f maps to a non-geodesic path, and let n be the smallest such
integer. Since f is locally injective we have n ≥ 2.

Two of the edges f(e1), . . . , f(en) are dual to the same hyperplane K of Y . By
minimality of n both subpaths (f(~e1), . . . , f(~en−1)) and (f(~e2), . . . , f(~en)) are geodesic.
Thus f(e1) and f(en) are dual to the same hyperplane K. By the combinatorial convexity
of the polygonal neighborhood N(K) the combinatorial geodesic (f(~e1), . . . , f(~en−1)) is
entirely contained inside N(K).

Since f is locally injective, the edge f(e2) is not dual to the hyperplane. Since
f(e2) is contained inside N(K) there is a polygon Q of Y that contains both f(e1)
and f(e2). Let e′ be the edge of Q which is opposite to f(e1). Then the locally injective
path (f(~e1), . . . , f(~en−1)) must touch e′ : there is some integer m ≤ n − 1 such that
(f(~e1), . . . , f(~em)) describes half of the polygon Q and ends in an extremity of e′.

Since f has no missing half-cell there is a polygon P of X which contains the path
(~e1, ~e2, . . . , ~em). Then f(P ) = Q and moreover f(e) = e′, where e denotes the edge of P

that is opposite to e1. Note em+1 6= e since (~e1, . . . , ~en) is a geodesic edge path. Let ~e

be the orientation of e such that the endpoint is the vertex of em ∩ em+1.
The path (~e,~em+1, . . . , ~en) is still geodesic in X1, its image is not a geodesic, contra-

dicting the minimality of our n. �

Corollary 3.3. Let X, Y denote two CAT (0) evengonal complexes with µ(Y ) ≥ 6 and
let f : X → Y be a locally injective polygonal map with no missing double corner. Then
f induces an isometric embedding X1 → Y 1 (thus it is a quasi-isometric embedding).

Proof. Indeed since µ(Y ) ≥ 6 we note that no missing corner ⇒ no missing half-cell. We
then apply Proposition 3.2. �

We will use Corollary 3.3 above in case when all vertex links of Y are complete graphs,
and µ(X) ≥ 4 : so any combinatorial map X → Y has missing corners, but it will be
possible to find combinatorial maps with no missing double corner. Thus even when there
cannot exist any local isometry X → Y , it may possible to find an isometric embedding
X1 → Y 1.

Remark 3.4. There is a similar statement for CAT (0) cube complexes.
Namely let f : X → Y be a combinatorial locally injective map. Assume there exists

an integer R ≥ 1 such that f has no missing rectangle [0, R]× [0, 1] of size R×1 and is an
isometric embedding on combinatorial geodesics of length ≤ R+1. Then f : X1 → Y 1 is
an isometric embedding. The case R = 1 corresponds to the assumption that f : X → Y

be a local isometry of CAT (0) cube complex.

4. Real hyperbolic convex cocompact Coxeter groups.

Coxeter groups correspond to certain kinds of presentations (see the Introduction).
In this section we study methods to produce real hyperbolic convex cocompact Coxeter
groups.
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4.1. Reflection subgroups in Hp. A major source of examples of Coxeter groups is
given by discrete reflection groups in real hyperbolic space (meaning discrete subgroups
of Isom(Hp) generated by reflections).

We will identify Hp with

{(x1, . . . , xp, xp+1) ∈ R
p+1, x2

1 + · · · + x2
p − x2

p+1 = −1, xp+1 > 0}

For vectors ~u = (x1, . . . , xp, xp+1), ~v = (y1, . . . , yp, yp+1) we denote by << ~u,~v >> the
inner product in Rp,1 : so << ~u,~v >>= x1y1 + · · · + xpyp − xp+1yp+1. And < ~u,~v >

denotes the standard inner product in Rp+1

Definition 4.1 (hyperbolic polyhedra, Poincaré polyhedra).
A hyperbolic polyhedron P is a (non empty) intersection of finitely many closed half-

spaces of some real hyperbolic space Hp (we allow P = Hp). A face of P is a hyperbolic
polyhedron F such that F ⊂ P and P \ F is connected. The span of a face F is
the smallest totally geodesic subspace of Hp containing F . The dimension of F is the
dimension of its span. We will always assume that the span of P is the whole ambient
space Hp.

Note P has finitely many faces. The relative boundary of a face F is the union ∂relF

of all faces F ′ < F with F ′ 6= F . The relative interior of F is then the subspace
IntrelF := F \ ∂relF .

The boundary hyperplanes of P are the finitely many hyperplanes H1, . . . ,Hr of Hp

such that Hi∩P is a codimension one face of P , which we will always denote by P1, . . . , Pr.
The defining half-spaces of P are the half-spaces X1, . . . , Xr of Hp such that ∂Xi = Hi

and P ⊂ Xi. We will always denote by ~ni the vector of Rp,1 that is orthogonal to Hi,
of unit length, and that points outside the half-space Xi. Note that for any p ∈ Hi the
vector ~ni belongs to the tangent space at p.

The Gram matrix of P consists in the r × r-matrix Gram(P ) of all inner products
<< ~ni, ~nj >>.

We say P is a Poincaré polyhedron provided any two codimension one faces Pi, Pj are
either disjoint, or intersect along a codimension two face of P , and moreover the angle
between the unit normal vectors ~ni,−~nj is of the form π

mij
(for some integer mij ≥ 2

depending on the intersecting faces Pi, Pj).

Note in our definition a Poincaré polyhedron P is a simple polyhedron : the links of
faces are simplices. Note also that when two codimension one faces Pi, Pj of a hyperbolic
polyhedron P intersect at some point p then the unit normal outgoing vectors ~ni, ~nj

are both in the tangent space of p, and then << ~ni, ~nj >>=< ~ni, ~nj >. The angle
between the unit normal vectors ~ni,−~nj is nothing else than the dihedral angle of P

between Hi and Hj at p. So the condition on P for being a Poincaré polyhedron can
be rephrased as follows: for any pair of intersecting codimension 1 faces Pi, Pj , the
coefficient << ~ni, ~nj >> of the Gram matrix is − cos( π

mij
) (which is > −1).

Theorem 4.2 (Poincaré’s theorem). Let P ⊂ Hp denote a Poincaré polyhedron, and let
H1, . . . ,Hr denote the boundary hyperplanes. Let s1, . . . , sr denote the reflections along
H1, . . . ,Hr, and let W = W (P ) < Isom(Hp) be the group generated by s1, . . . , sr.

Then P is a strict fundamental domain for the action of W onto Hp (any W -orbit
intersect P in a single point) and in particular every relation in W on the generators
s1, . . . , sr can be deduced from the relations

(sisj)
mij = 1
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In other words (W, {s1, . . . , sr}) is a Coxeter system.
Moreover the stabilizer of any face F of P is the finite subgroup WF generated by all

reflections si along a boundary hyperplane Hi that contains F .

The above theorem contains the spherical and euclidean versions as special cases.
For an argument we refer to []. Note that the subgroup WF is the reflection group
associated with the Poincaré polyhedron PF obtained by intersecting the closed half-
spaces containing P and bounded by some boundary hyperplane Hi which contains F .
Any finite group of isometries of Hp has a fixed point, thus each finite subgroup of W is
conjugate in one of the finite subgroups WF .

Observe also that two disjoint faces Pi, Pj of a Poincaré polyhedron P span disjoint
hyperplanes. This follows since in a Coxeter system (W,S) the order of sisj is infinite
if and only if mij is infinite. It is then easy to check that the unit normal vector ~ni, ~nj

satisfy << ~ni, ~nj >>≤ −1. So we may characterize Poincaré polyhedra by a criterion
using the Gram matrix :

A simple hyperbolic polyhedron P is a Poincaré polyhedron if and only if the off-
diagonal entries of Gram(P ) are either ≤ −1 or of the form − cos( π

mij
).

Definition 4.3 (non-obtuse polyhedra). Let P ⊂ Hp be a polyhedron with boundary
hyperplanes H1, . . . ,Hr. We say P is non-obtuse provided for any pair of intersecting
facets Pi, Pj the dihedral angle of Hi,Hj is ≤ π

2 .

Poincaré polyhedra are examples of non-obtuse polyhedra.

Lemma 4.4 (geometry of non-obtuse polyhedra).
Let P ⊂ Hp be a non-obtuse polyhedron and let H be a boundary hyperplane of P . We

denote by Q the corresponding codimension one face : Q := P ∩ H.

(1) For any point x ∈ P the orthogonal projection of x onto H belongs to Q.
(2) We set Q⊥ = {x ∈ Hp, the orthogonal projection of x onto H belongs to Q}.

Then P ⊂ Q⊥ and Q⊥ is a hyperbolic polyhedron.
(3) For any point x ∈ H the orthogonal projection of x onto P belongs to Q.

Proof. 1) Let xi be the point of the closed subset Pi which is nearest to x. We must
show that d(x, xi) = d(x,Hi).

We may and will assume that x 6= xi. So let σ denote the (non-trivial) geodesic
segment from xi to x. By convexity σ ⊂ P . We must prove that σ is perpendicular to
Hi at xi. Let ~u be the unit tangent vector of σ at xi, let Si be the hypersphere of the
unit sphere of the tangent space of Hp at xi corresponding to the hyperplane Hi, and
finally let ~νi be the unit vector at xi that is orthogonal to Hi and points toward P .

Assume by contradiction that the distance between ~u and Si is < π
2 . Let then Π be

the totally geodesic plane of Hp through xi, whose tangent space at xi is generated by
(~u, ~νi). Let also ~v be the unit vector of the tangent space of Π at xi that is perpendicular
to ~νi and such that ~u lies in the cone generated by ~νi and ~v.

The open half-line R of Π starting at xi and directed by ~v is disjoint from Pi, otherwise
σ wouldn’t be minimizing. Since R ⊂ Hi we must also have R ∩ P = ∅. So let Hk be a
boundary hyperplane of P through xi that separates R from σ. Let ~νj be the unit vector
at xi that is normal to Hk and points intside P .

The vector ~νj is not orthogonal to Π and moreover the orthogonal projection ~ν ′
j of

~νj onto the plane generated by (~u, ~νi) has positive coordinate along ~νi and negative
coordinate along ~v.
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This implies that the dihedral angle between Hi and Hk is obtuse, a contradiction.

2) The inclusion P ⊂ Q⊥ follows by the first part of the Lemma. Either Q = H, in
which case Q⊥ = Hp. Or Q is an intersection of H-half-spaces G1, . . . , Gs. We then have
Q⊥ = ∩s

k=1(Gk)
⊥, and each (Gk)

⊥ is a closed half-space of Hp.

3) We now prove the third statement. For x ∈ H let y denote the orthogonal projection
of x onto P , and let z denote the orthogonal projection of x onto Q⊥.

Clearly Q⊥ is invariant under the orthogonal reflection along H. It follows that z ∈ H.
So z ∈ H ∩ Q⊥. We note H ∩ Q⊥ = Q so that z ∈ Q ⊂ P . Since P ⊂ Q⊥ we conclude
that y = z. �

Corollary 4.5. Let P ⊂ Hp be a non-obtuse polyhedron with boundary hyperplanes
H1, . . . ,Hr.

(1) Any face F < P is a non-obtuse polyhedron (of Span(F )).
(2) For any point x ∈ P and any face F < P , the orthogonal projection of x onto

Span(F ) belongs to F .
(3) For any two faces F,G of P , either F ∩G 6= ∅, or Span(F )∩Span(G) = ∅. In the

latter case either d(F,G) = 0 or d(F,G) > 0 and there exists a geodesic segment
σ ⊂ P connecting orthogonally the faces F,G so that d(Span(F ),Span(G)) =
d(F,G) > 0.

Proof. 1) To show that a face F is non-obtuse it suffices by induction to handle the
case when F has codimension one. So let H be a boundary hyperplane of P such that
F = H ∩ P . The boundary hyperplanes of F in its span H are the intersections with
H of the boundary hyperplanes Hi of P which intersect transversally H. Let ~n, ~ni, ~nj

be the unit vectors at some point x ∈ F ∩Hi ∩Hj , such that ~n, ~ni, ~nj are orthogonal to
H,Hi,Hj and are going out of P . Consider the decomposition ~ni = ~νi+λi~n where ~νi ⊥ ~n

and λi ∈ R. The non-obtuse condition yields λi ≤ 0. Similarly we have ~nj = ~νj + λj~n

with ~νj ⊥ ~n and λj ≤ 0. Now < ~νi, ~νj >=< ~ni, ~nj > −λiλj and it follows that the
dihedral angle between H ∩ Hi and H ∩ Hj inside F is non-obtuse.

2) The second statement follows by induction on codim(F ), using Lemma 4.4 (since
faces are non-obtuse polyhedra by 1)), as well as the following standard fact :

Let F1, F2 be two totally geodesic subspaces of Hp, and let pi denote the orthogonal
projection onto Fi. If F1 ⊂ F2, then p1 = p1 ◦ p2

3) Let us prove the last stated trichotomy. So assume F,G are faces of P with
F ∩G = ∅. Assume by contradiction that Span(F ) ∩ Span(G) contains a point x. Let y

denote the orthogonal projection of x onto P . For every boundary hyperplane H of P

containing F we have y ∈ H ∩ P by the third part of Lemma 4.4. It follows that y ∈ F .
By symmetry y ∈ G, which contradicts F ∩ G = ∅.

Assume moreover d(F,G) > 0. Since F,G are closed convex subsets of Hp it follows
that there are points p, q ∈ F,G such that d(p, q) = d(F,G). Let σ ⊂ P be the geodesic
segment joining p and q. By 2) the point q is the orthogonal projection of p onto Span(G),
and similarly p is the orthogonal projection of q onto Span(F ), so we are done. �

In the situation of Poincaré’s theorem we obtain a geometrically finite Coxeter group
W (P ). We will now give conditions under which W (P ) is convex-cocompact.
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Lemma 4.6. Let P ⊂ Hp denote a Poincaré polyhedron, let H1, . . . ,Hr denote the
boundary hyperplanes, and let W be the group generated by the reflections si along Hi.
Let F,G be disjoint faces of P .

(1) If d(F,G) > 0 then ∂∞Span(F ) ∩ ∂∞Span(G) = ∅.
(2) If d(F,G) = 0 then ∂∞Span(F )∩∂∞Span(G) 6= ∅ and W is not convex cocompact.

In either cases Span(F ) ∩ Span(G) = ∅.

Here as usual for a subspace X ⊂ Hp we denote by ∂∞X the set of points ξ ∈ Sp−1 =
∂∞Hp which are in the closure of X.

Proof. The third part of Corollary 4.5 tells us that Span(F ) ∩ Span(G) = ∅.

1) When d(F,G) > 0 the third assertion in Corollary 4.5 insures that

d
(
Span(F ),Span(G)

)
= d(F,G) > 0

and thus ∂∞Span(F ) ∩ ∂∞Span(G) = ∅.

2) Assume now d(F,G) = 0. Since d(F,G) = 0 and F∩G = ∅ it follows that ∂∞Span(F )∩
∂∞Span(G) 6= ∅. So let ξ ∈ ∂∞Span(F )∩∂∞Span(G). The whole subgroup Π generated
by WF and WG fixes ξ and in fact preserves all horospheres based at ξ.

Observe that the fixed point set of Π equals Span(F ) ∩ Span(G), so it is empty. It
follows that Π is infinite. Thus Π contains an element g of infinite order, which preserves
all horospheres based at ξ. We deduce that no orbital map 〈g〉 → Hp, gn 7→ gnx is a
quasi-isometric embedding, and so W is not convex-cocompact. �

Two faces F,G of a hyperbolic polyhedron P are said to be asymptotic if F ∩ G = ∅
and d(F,G) = 0.

Theorem 4.7 (convex cocompact reflection groups of Hp).
Let P ⊂ Hp denote a Poincaré polyhedron and let W be the group generated by the

reflections along the boundary hyperplanes of P .
Then W < Isom(Hp) is convex cocompact if and only if P has no pair of asymptotic

faces.

We are certain that this result is familiar to certain people working in the field but
we couldn’t find a reference. So we provide a proof of the theorem in the next section.

4.2. Convex cocompactness when there is no pair of asymptotic faces (proof of
Theorem 4.7). The existence of an asymptotic pair of faces in the Poincaré polyhedron
P prevents W = W (P ) from being convex cocompact : this has been established in
Lemma 4.6.

We now assume that P has no pair of asymptotic faces. In fact we only assume that
no face is asymptotic with a codimension one face : the convex-cocompactness state-
ment holds true under this weaker assumption. We denote by H1, . . . ,Hr the boundary
hyperplanes of P .

We choose a point x in the interior of P . Then by Poincaré’s theorem the orbital
map W ∋ w 7→ w.x ∈ Hp is injective, and we identify W with the orbit {wx}w∈W . We
show that W is convex cocompact, by proving that the orbital map is a quasi-isometric
embedding (W is equipped with its word metric | · |S).

We work with the tiling of Hp by W -translates of P : Hp =
⋃

w∈W wP . A hyperplane
of the tiling is a hyperplane of the form wHi ⊂ Hp. Since Hi is the fixed point set of
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the hyperbolic reflection si, the conjugate wsiw
−1 is again a hyperbolic reflection and

its fixed point set is precisely wHi.
At the end of this section we establish the following three results:

Lemma 4.8 (the word distance is the hyperplane distance). The number of hyperplanes
of the tiling separating wx from w′x equals |w′−1w|S.

Lemma 4.9 (pencil of hyperplanes). There exists a positive integer M > 0 such that for
any w,w′ ∈ W , the set R of hyperplanes of the tiling separating wx from w′x contains a
subset T with |T | ≥ 1

M
|R|, and moreover two distinct hyperplanes in T are disjoint.

Lemma 4.10 (no pair of asymptotic hyperplanes). There exists a positive constant
D = D(P ) such that for any two hyperplanes H,H ′ of the tiling we have either H∩H ′ 6= ∅
or d(H,H ′) ≥ D.

We now use these three results to finish the argument.
We will show that there exists a positive constant c > 0 such that for w,w′ ∈ W we

have
(∗) dHp(wx, w′x) ≥ c|w′−1w|S

(the reverse inequality is not a problem). It is enough to work with w 6= w′.
Let R be the set of hyperplanes of the tiling which separate wx from w′x. By

Lemma 4.8 we have
(1) |R| = |w′−1w|S

By Lemma 4.9 there exists a subset T ⊂ R such that (2) |T | ≥ 1
M
|R|, and moreover

two distinct hyperplanes in T are disjoint. The geodesic segment σ of Hp from wx to
w′x crosses successively the hyperplanes of T , so we may write T = {H1, . . . ,Hn} and σ

meets first H1, then H2 a.s.o. It follows that

dHp(wx, w′x) ≥ dHp(wx, H1) + dHp(H1,H2) + · · · + dHp(Hn−1,Hn) + dHp(Hn, w′x)

≥ 2d(x, ∂P ) + (n − 1)D

where D is the constant of Lemma 4.10. Up to replacing D by min(D, d(x, ∂P )) we have
thus (3) dHp(wx, w′x) ≥ nD. Combining (1), (2), (3) we obtain the relation (∗) with
c = D

M
.

We finally turn to the proof of the remaining statements. We will consider an em-
bedded copy of the Cayley graph G(W,S) inside Hp. We first embed the set of vertices
by the orbital map w 7→ wx. Note that the injectivity of this map follows by Poincaré’s
theorem 4.2, since x is in the interior of P . We then map each edge [w,ws] by a con-
stant speed geodesic segment joining wx to wsx, thus getting a W -equivariant map
G(W,S) → Hp. We now check that this map is injective. The midpoint q of [w,ws]
maps to the midpoint m of [wx, wsx]. Observe that m belongs to both tiles wP and
wsP since by Lemma 4.4 the orthogonal projection of wx onto the hyperplane of fixed
points of wsw−1 belongs to wP . It follows that the intersection of [wx, wsx] with the
interior of wP is the segment [wx, m[, and similalrly the intersection of [wx, wsx] with
the interior of wsP is the segment ]m,wsx].

Assume now two points y, y′ inside two edges [w,ws] and [w′, w′s′] of G(W,S) get
identified inside Hp, and let z denote their common image. We may assume y ∈]w, q]
and y′ ∈]w′, q′] (with q, q′ the midpoints of [w,ws], [w′, w′s′]). If y 6= q (or y′ 6= q′) then
wx and w′x are contained in the interior of the same tile and thus wx = w′x, so in fact
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w = w′. Moreover [wx, z] = [w′x, z] and it follows by extending the geodesic segment
until we reach the boundary of the tile that m = m′. By extending further this geodesic
we get that wsx = w′s′x, so that ws = w′s′, and finally y = y′.

To finish the argument assume y = q and y′ = q′. Since the orthogonal projection
of the whole polyhedron wP onto the hyperplane H = Fix(wsw−1) belongs to the
codimension one face F = H ∩ wP (Lemma 4.4), and because x is interior to P we
deduce that the point m (midpoint of [wx, wsx]) belongs to the relative interior of F .
Similarly m is in the relative interior of H∩wsP . Moreover wP and wsP are the only two
tiles containing m. It follows that {w,ws} = {w′, w′s′}, and so y = y′. This concludes
the proof of the injectivity of the map G(W,S) → Hp.

proof of Lemma 4.8. Let (w0 = w,w1, . . . , wn = w′) be a combinatorial geodesic in
(W,S) from w to w′. For i = 1, . . . , n set ti = wiw

−1
i−1. The ti’s are pairwise distinct re-

flections of (W,S). We now consider the sequence of tiles P0 = w0P, P1 = w1P, . . . , Pn =
wnP . Two consecutive tiles intersect. So if a hyperplane H of the tiling separates wx

from w′x then it must separate the interior of two consecutive tiles Pi−1, Pi. It then
follows that H contains the relative interior of the codimension one face Pi−1 ∩Pi. Thus
the reflection along H is ti. So the number of hyperplanes of the tiling separating wx

from w′x is the combinatorial distance dS(w,w′).
�

proof of Lemma 4.9. As we have just seen the hyperplanes of R correspond to the half-
spaces of (W,S) which separate w from w′. Moreover two hyperplanes of the tiling are
disjoint iff the product of the corresponding reflections is of infinite order. We now let X

be the CAT (0) cube complex associated to the wall-space (W,S), as in [21]. In particular
the 1-skeleton of X contains the Cayley graph of (W,S) as a totally geodesic subgraph.

Niblo and Reeves showed that there exists a positive constant M = M(W,S) such
that any family of M + 1 hyperlanes of the Cayley graph contains a pair of nested
hyperplanes (see their Lemma 3 in [21]). This shows that the Niblo-Reeves cube complex
has dimension ≤ M . Recall that the hyperplanes [resp: half-spaces] of X correspond
bijectively to the walls [resp: half-spaces] of (W,S). Moreover in this construction,
crossing walls correspond to intersecting hyperplanes.

So to conclude the argument it is enough to prove the following :

Lemma 4.11 (pencils in finite dimensional cube complexes). Let X be a CAT (0) cube
complex of dimension M . Then for any two vertices v, v′ ∈ X0 at distance n there is a
family T of hyperplanes of X separating v from v′ such that any two hyperplanes of T

are disjoint and moreover |T | ≥ 1
M

n.

We will in fact construct T as a sequence of hyperplanes with the additional property
that two consecutive hyperplanes have non-disjoint cubical neighborhoods.

proof of the cubical statement. Let e1, . . . , ed be the edges of X at v which are the initial
edges of combinatorial geodesics from v to v′. Then it is well known that e1, . . . , ed span
a cube Q1 at v. In particular d ≤ M . Let v1 be the vertex opposite to v inside Q.

If v1 = v′ we are done. Otherwise, let R [resp : R1] be the set of hyprplanes of X

separating v from v′ [resp: v1 from v′]. Then R = R1 ⊔ {H1, . . . ,Hd}, where Hi is the
hyperplane dual to ei. By induction there is a set T1 ⊂ R1 such that any two hyperplanes
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of T1 are disjoint, T1 contains a hyperplane K1 adjacent to v1, and

|T1| ≥
1

M
|R1| =

1

M
(|R| − d) ≥

1

M
|R| − 1

One of the hyperplanes Hi cutting Q must be disjoint from K1, otherwise there would
exist a (d+1)-cube Q′ at v1 cut by all hyperplanes H1, . . . ,Hd,K1. Then there would be
one more edge at v sitting on a geodesic from v to v′ (through v1). The set T = T1∪{Hi}
has the desired properties. �

�

proof of Lemma 4.10. Let ε1 denote the smallest of the distances d(F,G) where F,G are
disjoint faces of P , and F has codimension one. Under the assumption on P we note
that ε1 is positive.

Let H,H ′ be two hyperplanes of the tiling such that H ∩ H ′ = ∅. We show that for
(x, x′) ∈ H × H ′ we have d(x, x′) ≥ D = min(α′, ε1

2 ) where α′ = α′(P ) is some positive
constant that we will choose later.

So let (x, x′) ∈ H×H ′. Up to letting W act on the situation we may assume x ∈ P and
H is a boundary hyperplane of P . The corresponding face is F = P ∩H. Up to moving
slightly both x and x′ we may assume each point of the segment [x, x′] is contained in
at most one of the hyperplanes of the tiling. Note that under this genericity assumption
F has codimension one. Up to applying the reflection along H we may also assume that
H separates the interior of P from x′.

We can order the hyperplanes of the tiling which cut [x, x′], namely H0 = H,H1, . . . ,Hℓ =
H ′, in such a way that the sequence xi = Hi ∩ [x, x′] is increasing from x to x′. None
of the open geodesic segments ]xi, xi+1[ meets a hyperplane of the tiling, so there exists
a (unique) tile Pi+1 such that [xi, xi+1] ⊂ Pi+1. The face spanned by xi in both Pi and
Pi+1 has codimension one, and we denote it by Fi. For example F0 = F .

We also consider the non-increasing sequence of faces defined inductively by G0 =
F0, Gi+1 = Gi ∩ Fi+1. Let k + 1 be the integer such that Gk 6= ∅ and Gk+1 = ∅ (recall
Hℓ ∩ H0 = ∅).

We may assume k > 0. For k = 0 means that [x0x1] is a geodesic segment joining two
disjoint codimension one faces of P1. It follows that d(x0, x1) ≥ ε1 and thus d(x, x′) ≥ ε1.

Let N be the total number of hyperplanes of the tiling whose intersection with P is
non-empty (note N is bounded by a number depending only on the isomorphism class
of the Coxeter system (W,S)). Let also α > 0 denote some positive constant, that we
will specify later.

Either one the distances d(xi, xi+1), i = 0, 1, . . . , k − 1 is at least α
N

. In that case we
have d(x, x′) ≥ α′ where we define α′ = α

N
.

So from now on we assume that all distances d(xi, xi+1), i = 0, 1, . . . , k − 1 are < α
N

.
Thus d(x0, xi) < α for i = 1, . . . , k. We will prove that in this case x is near to Gk. We
first retract the situation inside P as follows. For each i = 0, 1, . . . , k the reflection sHi

maps the tile Pi+1 onto Pi, and fixes pointwise both faces Gi and Gi+1. The retraction
map ρi : Pi → P is then defined inductively by ρ1 = sH0 |P1

, . . . , ρi+1 = ρi ◦ sHi |Pi+1
, . . . .

Note each ρi is the restriction of an isometry. The retractions ρi and ρi+1 agree on
Fi. Each face Fi is sent to a codimension one face F ′

i of P . We note that for each
i = 0, 1, . . . , k we have Gi = F ′

0 ∩ F ′
1 ∩ · · · ∩ F ′

i . In particular Gk = F ′
0 ∩ F ′

1 ∩ · · · ∩ F ′
k.
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By retracting the points xi we find that d(x, F ′
i ) ≤ α and thus d(x,H ′

i) ≤ α where
H ′

i denote the boundary hyperplane of P spanned by F ′
i . The Poincaré polyhedron P is

simple so the dimension of G is p−(k+1), and the span of G coincides with H ′
0∩· · ·∩H ′

k.
We argue that there is a function αG : (0,+∞) → (0,+∞) such that if a point y of Hp is
at distance ≤ α(r) of each hyperplane H ′

0,H
′
1, . . . ,H

′
k then y is r-near to the intersection

of the Hi’s.
We can now specify the value of α : we choose α = minG a proper face of P αG( ε1

2 ).
With this choice of α our point x is ε1

2 -near to the span of G. Since P is non-obtuse
it follows that the orthogonal projection p of x onto the span of G belongs to G. The
tile Pk contains both faces Fk and Fk+1, and G ⊂ Fk. So the distance from p ∈ G to
xk+1 ∈ Fk+1 is ≥ ε1 (recall Fk+1 has codimension one). We conclude that d(x, xk+1) ≥

ε1
2

and we are done. �

We note that we can slightly simplify the characterization of convex cocompact reflec-
tion groups :

Theorem 4.12 (convex cocompact reflection groups II). Let P ⊂ Hp denote a Poincaré
polyhedron and let W be the group generated by the reflections along the boundary hy-
perplanes of P .

Then W is convex cocompact if and only if

(1) W is word-hyperbolic
(2) P has no pair of asymptotic codimension one faces

Proof. If W is convex cocompact then it is a hyperbolic group, and by Theorem 4.7 there
is no pair F,G of asymptotic faces, where F has codimension one and G has arbitrary
codimension.

Conversely assume W is word-hyperbolic but not convex cocompact. Then by The-
orem 4.7 there is a codimension one face F and a face G such that F ∩ G = ∅ but
d(F,G) = 0. Then G is an intersection of k codimension one faces: G = P ∩H1∩· · ·∩Hk,
and we may choose G so that k is minimal. Let H0 be the boundary hyperplane of P

such that F = H0 ∩ P . We will show k = 1 which is the conclusion we need.
Let then ξ ∈ ∂∞Hr−1 be a point belonging to both ∂∞F and ∂∞G. Let us now

consider a horosphere of Hr−1 centered at ξ, which we denote by Hξ. It follows that
each reflection sHi

for i = 0, 1, . . . , k preserves Hξ, and so does the whole group W ′

generated by these reflections.
As a discrete isometry group of euclidean space W ′ is virtually abelian. But (W,S) is

assumed to be hyperbolic, so either W ′ is finite or W ′ is virtually Z.
Since F ∩ G = ∅ the group W ′ must be infinite.
So the only remaining possibility is that W ′ is virtually Z. Assume by contradiction

that k > 1. Since d(H0,Hi) = 0 it follows by minimality of k that H0 ∩ Hi 6= ∅. Note
(W ′, S′ = {sH0 , sH1 , . . . , sHk

}) is a Coxeter system where any two reflections sHi
, sHj

generate a finite group. By the work of Davis and Meier (see [8]) the infinite Coxeter
system (W ′, S′) is one-ended, contradiction.

�

4.3. Constructions using the Witt-Tits quadratic form. In this section we use
the so-called Witt-Tits quadratic form for two opposite purposes:

(1) construct families of convex cocompact reflection groups in hyperbolic space
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(2) construct new families of word-hyperbolic Coxeter groups which cannot be rep-
resented as discrete reflection group in hyperbolic spaces

Definition 4.13 (the Witt-Tits quadratic form). For any (abstract) Coxeter system
(W,S = {s1, . . . , sr}) with Coxeter matrix (mij)1≤i,j≤r let B denote the bilinear form
on Rr defined by B(ei, ej) = − cos( π

mij
). The corresponding quadratic form q(W,S) is

called the Witt-Tits form. When the signature of the Witt-Tits form is (r− 1, 1) we say
the Witt-Tits quadratic form is hyperbolic. In this case there is a Poincaré polyhedron
P inside Rr−1,1 whose Gram matrix is precisely given by the B(ei, ej)’s. Unit vectors
normal to the codimension one faces of P are just the vectors of the standard basis of
Rr−1,1. We call P the Witt-Tits polyhedron of (W,S) (see also [23]). Using the reflections
along the sides of P we get a representation of (W,S) into Isom(Hr−1), which we call the
Witt-Tits representation. So having a hyperbolic Witt-Tits quadratic form is one way
to get a reflection group.

Lemma 4.14 (pairs of asymptotic hyperplanes in the Witt-Tits polyhedron). Assume
the Witt-Tits form is hyperbolic and r ≥ 3. Then the hyperplanes Hi,Hj are asymptotic
exactly when B(ei, ej) = −1.

Proof. The non-zero vector ei + ej is isotropic (so it defines a point ξ in ∂∞Hr−1) and
orthogonal to both ei and ej (so ξ ∈ ∂∞Hi ∩ ∂∞Hj). �

So the Witt-Tits representation is convex cocompact only if all coefficients mij are
finite, in other words (W,S) is 2-spherical.

Proposition 4.15 (convex cocompact Witt-Tits representation). Let (W,S = {s1, . . . , sr})
be a Coxeter system whose Witt-Tits quadratic form has signature (r − 1, 1).

Then the Witt-Tits representation is convex cocompact if and only if

(1) W is 2-spherical.
(2) W is word-hyperbolic.

Proof. The two conditions are clearly necessary. The converse holds by applying Theo-
rem 4.12. �

We note that the Witt-Tits polyhedron may have to appear in any representation by
reflection of a Coxeter system.

Lemma 4.16. Let P ⊂ Hp be a Poincaré polyhedron with boundary hyperplanes H1, . . . ,Hr

and let W be the group generated by the set of reflections S = {sH1 , . . . , sHr}. Let
~n1, . . . , ~nr denote the unit vectors of Rp,1 which are orthogonal to H1, . . . ,Hr and point

outwards of P . Let ~V ⊂ Rp,1 be the linear subspace spanned by ~n1, . . . , ~nr. Set V =

Hp ∩ ~V . We denote by G the Gram matrix of P and by B the matrix of the Witt-Tits
quadratic form.

(1) V ⊂ Hp is empty or a totally geodesic W -invariant subspace. The action of W

on the orthogonal complement of ~V is trivial. The matrices G and B have the
same coefficient in the place i, j provided Hi ∩ Hj 6= ∅ (in other words : mij is
finite). In particular if (W,S) is 2-spherical then G = B.
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(2) V 6= ∅ iff W is infinite and not virtually euclidean. In that case we obtain a
hyperbolic Poincaré polyhedron Q ⊂ V by setting Q = V ∩ P , which we call
the core of P . The r boundary hyperplanes of the polyhedron Q ⊂ V are H1 ∩
V, . . . ,Hr ∩ V and the Gram matrix of Q is G.

(3) Assume W is not virtually abelian. Then the Gram matrix G is non-degenerate,

and the dimension of ~V is r if and only if G is non singular.

Proof.

(1) This is obvious.

(2) By homogeneity V = ∅ precisely when the quadratic form of Rp,1 is ≥ 0 on ~V .

Either it is positive on ~V \ {~0}, in which case W is finite. Or ~V intersects the
set of isotropic vectors along a line, corresponding to a unique point ξ ∈ ∂∞Hp.
Thus all reflections sHi

fix ξ, and W is virtually abelian.
So assume now that V 6= ∅. Since V is W -invariant each hyperplane Hi has

a non-empty intersection with V . For x ∈ V ∩ Hi the plane spanned by x and

~ui is contained inside ~V and it intersects Hp along an infinite geodesic line that
leaves Hi orthogonally. So in fact Hi ∩ V is a hyperplane of V . For x ∈ P

we consider the decomposition x = ~v + ~n with ~v ∈ ~V and ~n orthogonal to ~V .

Since V ∩Hp 6= ∅ the quadratic form of Rp,1 has hyperbolic signature on ~V , and

thus it is positive definite on the subspace orthogonal to ~V . It follows that ~n

has non-negative norm and so ~v has negative norm. In other words ~v defines
a point v in V . Moreover for each i we have << ~v, ~ni >>=<< x,~ni >>, so
v ∈ P . The intersection Q = P ∩ V is thus non-empty, and it is bounded by the

V -hyperplanes V ∩Hi. We note th at the vectors ~ni are in ~V , are normal to the
V -hyperplanes V ∩Hi, and are pointing outwards Q. It follows that GramQ = G.

(3) Assume W is not virtually abelian. Then either ~V is a euclidean subspace, or it
is a hyperbolic subspace of (Rp,1, <<,>>). In both cases the restriction of the
bilinear form <<,>> is non degenerate.

Assume first one of the ~ni is a linear combination of the others. Then the
i-th line of G is the corresponding linear combination of the others lines of G,
so G is singular. Conversely assume the i-th line - say: the first line - is a
linear combination of the others lines of G. It means that there are real numbers
λ2, . . . , λr such that ~u := ~n1 −

∑
k>1 λk~nk satisfies << ~u,~ni >>= 0 for each i.

Since ~V is spanned by the ~ui’s it follows that ~u is in the kernel of the hyperbolic

bilinear form of Rp,1 restricted to ~V . Under our assumption we get ~u = ~0, so the

dimension of ~V is < r.

�

Corollary 4.17 (2-spherical ⇒ rigidity of the core). Let P ⊂ Hp be a Poincaré polyhe-
dron with boundary hyperplanes H1, . . . ,Hr and let W be the group generated by the set
of reflections S = {sH1 , . . . , sHr}. Assume W is infinite, not virtually abelian and (W,S)
is 2-spherical. Assume moreover that B is non-singular. Then the Witt-Tits quadratic
form is hyperbolic, the core Q of P is non empty and it is isometric to the Witt-Tits
polyhedron. The action of W onto the span V of Q in Hp is conjugate to the Witt-Tits
representation.
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So under the assumptions of the Corollary there is essentially one possible represen-
tation of (W,S) as a discrete reflection group.

Corollary 4.18. Let (W,S) be an abstract 2-spherical Coxeter system with non degen-
erate Witt-Tits form. Assume W is hyperbolic and non elementary.

Then (W,S) can be realized as a discrete reflection group in some real hyperbolic space
Hp if and only if the signature of the Witt-Tits form is (r − 1, 1).

In that case W preserves a totally geodesic subspace V of Hp of dimension r − 1, the
action of W onto V is conjugate to the Witt-Tits representation and the action on the
orthogonal complement of V is trivial. Moreover W is convex cocompact on both V and
Hp.

The equivalence stated in this corollary appears in [10] who also refer to Lemma 12 of
[23]. We thank Anna Felikson for telling us about the rigidity phenomenon for 2-spherical
Poincaré polyhedra in hyperbolic space.

In the rest of this section we will compute the signature of the Witt-Tits quadratic
form under certain type of assumptions which will usually imply that all coefficients mij

are large (for i 6= j).
So for r ≥ 3 we consider a r × r Coxeter matrix M = (mij). (Recall this means

M is symmetric, mii = 1 and for i 6= j we have mij ∈ {2, 3, 4, . . . } ∪ {∞}.) Let
(W,S = {s1, . . . , sr}) be the associated Coxeter system. Let B be the matrix of the
Witt-Tits quadratic form.

Definition 4.19 (m-large, m-small). Let m ≥ 2 be some natural number. We say the
Coxeter matrix M is m-large if mij ≥ m for any pair (i, j) with i 6= j. We say M is
m-small if mij ≤ m for any pair (i, j) with i 6= j.

The following is clear:

Lemma 4.20. Assume the matrix M is 4-large, r ≥ 3 and all mij’s are finite. Then
(W,S) is a hyperbolic non elementary 2-spherical Coxeter system.

In fact it suffices to assume that M is 3-large and there is no triple {i, j, k} with
mij = mjk = mik = 3.

Proposition 4.21 (examples of hyperbolic Witt-Tits form).

(1) Assume for i 6= j all mij’s are infinite (and r ≥ 3 as usual). Then B is hyperbolic.
(2) For any r ≥ 3 there is a natural number m(r) ≥ 4 such that if the r × r Coxeter

matrix M is m(r)-large then B is hyperbolic.
(3) Assume for i 6= j all mij’s are equal to some fixed number m ≥ 4. Then B is

hyperbolic. This is still true if for i 6= j all mij’s are equal to 3 and r ≥ 4.

Combining Corollary 4.18, Lemma 4.20 and Proposition 4.21[3] we obtain

Corollary 4.22 (the Coxeter group W (p, m)). For p ∈ N, p ≥ 3 and m ∈ N,m ≥ 3,
let M(p, m) be the p × p Coxeter matrix all of whose entries are m. Let W (p, m) be the
associated Coxeter group.

The signature of the corresponding Witt-Tits form is (p − 1, 1) unless m = p = 3.
For m ≥ 4 the Witt-Tits representation of W (p, m) is convex cocompact in Hp−1. For

m = 3 and p ≥ 4 it is not.
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In [19] an other reflection representation for W (p, m) is considered, but it occurs in
Hp. Kapovich needs this specific representation because it allows the use of right-angled
polygons, which in turn lead to quasi-isometric embedding results. Nevertheless the core
of the polyhedron considered in [19] is isometric to the Witt-Tits polyhedron.

For the next result let us denote by Ŵ (p, m) the semi-direct product of W (p, m) with
Sp. (Note the action of Sp on the generating set {s1, . . . , sp} extends to an action by
automorphisms of W (p, m) because all mij ’s are equal to the same number m.)

Proposition 4.23 (extending the representation). Let p ∈ N, p ≥ 3 and m ∈ N,m ≥ 4.
The Witt-Tits representation of W (p, m) on Hp−1 extends to a convex cocompact rep-

resentation of Ŵ (p, m).

This completes the proof of Lemma 1.2 in the Introduction.

Proof. Since W (p, m) ⊂ Isom(Hp−1) is already convex cocompact by Corollary 4.22 and

[Ŵ (p, m) : W (p, m)] < ∞ it suffices to prove that the action of W (p, m) extends to

Ŵ (p, m).
We note that the permutation group Sp acts on the standard basis by preserving

the Witt-Tits quadratic form of W (p, m). This induces an isometric action of Sp on
Hp−1 that preserves the Witt-Tits polyhedron by permuting the codimension one faces.
Clearly Sp ∩ W (p, m) = {IdHp−1} and Sp normalizes W (p, m). Moreover the action of
Sp by conjugation on W (p, m) is the action by diagram automorphisms. It follows that

the subgroup of Isom(Hp−1) generated by Sp and W (p, m) is isomorphic to Ŵ (p, m).
�

4.4. Computation of signatures, proof of Proposition 4.21 and new examples.
In this section we fix a natural number r ≥ 3. We consider a regular graph G with

vertex set {1, . . . , r}, and we denote by k its valency (note that k ≤ r− 1). Let A be the
adjacency matrix of G, and let Ā be the adjacency matrix of the complementary graph.
Thus Ir + A + Ā is the r × r matrix J all of whose entries are equal to 1.

Now let a, ā ∈ [0; 1], a ≤ ā be fixed real numbers, and let us consider the r × r real
symmetric matrix B = Ir − aA − āĀ. We study the signature of the quadratic form

QG,a,ā : X 7→t XBX

or in other words we study the sign of the eigenvalues of B. We use the decomposition

B = (1 + ā)Ir + (ā − a)A − āJ

When a = cos( π
m

) and a = ā (or equivalently G is the complete graph) the matrix B

is the matrix of the Witt-Tits form of W (r, m). So the computation below will prove
Proposition 4.21. But we want to study also Coxeter systems where the off-diagonal
coefficients mij ’s can take two distinct values. Our examples are in the same spirit as
the examples of [1], but our Coxeter systems will not be right-angled.

Let U denote the r-colon all of whose entries are equal to 1. Since G is k-regular we
have

BU = (1 + ā)U + (ā − a)kU − rāU = [(1 − ak + (1 + k − r)ā)]U

So U is an eigenvector and the corresponding eigenvalue is λU = −[(ak−1)+ā((r−1)−k)].
Note λU < 0 in the cases we will be interested in. For example since ā ≥ a we have
(ak − 1) + ā((r − 1) − k) ≥ a(r − 1), so when a ≥ 1

2 and r ≥ 4 we have λU < 0. When
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r = 3 and either a > 1
2 or a = 1

2 and ā > a we still have λU < 0. We could also assume

ā > 1
(r−1)−k

.

Now if V is any colon whose sum of components is zero (in other words : if V is in
the kernel of J), we have

BV = (1 + ā)V + (ā − a)AV

Note that since G is regular we have JA = kJ and so the term AV is still in the kernel
of J . We deduce that the kernel of J is invariant under B. Since on KerJ we have

BV = (1 + ā)V + (ā − a)AV

our initial eigenvalue problem for B reduces to the corresponding problem for the matrix
T = (1 + ā)Ir + (ā− a)A (restricted to the invariant subspace KerJ). In other words up
to an affine transformation we are really studying the spectrum of the adjacency matrix
of G.

For instance when G is the complete graph on r vertices, then A = J − Ir, and we
deduce that for V ∈ KerJ we have BV = (1+a)V , so that the signature of Q is (r−1, 1).

This proves part (1) and (3) of Proposition 4.21. Part (2) follows from (1) by a
standard continuity argument.

We now assume G is bipartite, and let V be the vector with entries 1 on black vertices
and -1 on white vertices. Then AV = −kV so that

BV = (1 + ā)V + (ā − a)AV = (1 + ā − k(ā − a))V

so that A has a second negative eigenvalue, provided k is large enough with respect to
ā − a : specifically k > 1+ā

ā−a
. The discussion above leeds to the following :

Lemma 4.24. For fixed numbers 1
2 ≤ a < ā ≤ 1 let k be any natural number such

that k > 1+ā
ā−a

). Let r = 2k and let G be the complete bipartite graph on k + k vertices.
Precisely : in G the integers i < j are linked by an edge iff 1 ≤ i ≤ k and k +1 ≤ j ≤ 2k.

Then the signature of the quadratic form QG,a,ā is (r − 2, 2). In particular QG,a,ā is
not degenerate and not hyperbolic.

Proof. Let Π− be the plane spanned by the vector U all of whose entries are 1, and the
vector V whose entries are 1 on the first k coordinates, and −1 on the last k coordinates.
By the previous discussion and the assumption k > 1+ā

ā−a
) we have QG,a,ā < 0 on Π−.

Now let E+ be the subspace consisting in vectors X such that the sum of the k first
coordinates is 0, and the sum of the k last coordinates is 0 too. Observe dim(E+) =
2(k − 1) = r − 2. Moreover since X ∈ Ker(J) we have

BX = (1 + ā)X + (ā − a)AX

Clearly AX = 0 so that BX = (1 + ā)X. Thus QG,a,ā > 0 on E+. �

Corollary 4.25. Let m,m′ be natural numbers with 4 ≤ m < m′. Let k be any natural

number such that k >
1+cos( π

m′
)

cos( π

m′
)−cos( π

m
)). Let r = 2k and let G be the complete bipartite

graph on k + k vertices. Consider the Coxeter system (W,S) of rank r with mij = m

if i, j are linked inside G, and mij = m′ when i, j are linked inside the complementary
graph of G.

Then (W,S) is word hyperbolic, but does not act by reflection on Hp in any dimension.



ON SOME CONVEX COCOMPACT GROUPS IN REAL HYPERBOLIC SPACE 31

5. Faithfull representation of large even-gonal groups into
two-dimensional Coxeter groups.

5.1. Various complications for the action of a group on the set of hyperplanes.
Let X be a simply-connected even-gonal complex such that all polygons have at least

four sides, and all vertex links have girth ≥ 4. Let Γ be an automorphism group of X.
In this section we adapt the various definitions leading to the notion of a special action

on a CAT (0) cube complex (see [16]) to the present context, where ramified hyperplanes
are allowable. We then study variations around it.

Since X is even-gonal and CAT (0) we may consider the family H of its straight
hyperplanes. And since X is furthermore large at vertices we may also consider the
family R of its ramified hyperplanes.

For H a hyperplane in either H or R :

(1) the group Γ has a self-intersection at H provided there is some γ ∈ Γ such that
γH and H intersect.

(2) the group Γ has a self-osculation at H provided there is some γ ∈ Γ such that
γH and H osculate.

For H,K two hyperplanes both in either H or R :

(3) the group Γ has an inter-osculation at H,K provided H and K osculate and
there is some γ ∈ Γ such that γK and H intersect.

(4) (here we assume H,K are ramified hyperplanes) the group Γ has an ambiguous
intersection at H,K provided H and K intersect at the center of a 2m-gon and
there is some γ ∈ Γ such that γK and H intersect at the center of a 2m′-gon
with m′ 6= m.

Definition 5.1 (special action). The action of Γ on R (resp. H) is special provided
none of the above complications arise : Γ has no self-intersection, no self-osculation, no
inter-osculation and no ambiguous intersection (this is required only for pairs of ramified
hyperplanes).

When X is 2m-gonal (for example a square complex) then any automorphism group
Γ ⊂ Aut(X) acts without ambiguous intersections.

Note also that when X is a CAT (0) square complex we have R = H so the two notions
of special actions coincide, and we recover the notion of a C-special group as in [16]. In
fact considering the action of Γ onto the Sageev CAT (0) cube complex Y associated
with the (straight) hyperplanes we note that the Γ-action on Y is cubically special if
and only if the Γ-action on H is special. Indeed the hyperplanes of X and Y are in 1-1
correspondence, intersections of pairs of hyperplane occur in X iff they occurs in Y , and
the same equivalence holds true for osculations (since µ(X) ≥ 4).

We will consider an other kind of situation that is relevant to our context :
For H a hyperplane in R :

(2’) the group Γ has a self-osculation at distance 1 at H provided there is some γ ∈ Γ
such that the polygonal neighborhoods of γH and H are disjoint but connected
by an edge.

(2”) the group Γ has a self-osculation at distance ≤ n at H provided there is some
γ ∈ Γ such that γH 6= H but the polygonal neighborhoods of γH and H are
connected by a combinatorial path of length ≤ n.
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Thus for example self-intersection or self-osculation at H amounts to self-osculation
at distance 0 at H.

Definition 5.2 (strongly clean). The action of the group Γ on R has no self-osculation at
distance ≤ n provided there is no ramified hyperplane H at which it has a self-osculation
at distance ≤ n.

The action of the group Γ on R is strongly clean provided it has no self-osculation at
distance ≤ 1.

Lemma 5.3 (separability properties ⇒ virtually special). Let X be a locally compact
simply-connected even-gonal complex with µ(X) ≥ 4. Let Γ act cocompactly on X.

(1) If the stabilizers of the ramified hyperplanes are separable subgroups of Γ then for
any integer n ≥ 0 the group Γ has a finite index subgroup Γ′ whose action on R
has no self-intersection and no self-osculation at distance ≤ n

(2) If double cosets of crossing ramified hyperplane stabilizers are closed in the profi-
nite topology then Γ has a finite index subgroup Γ′′ whose action has no inter-
osculation and no ambiguous intersection.

Note the corresponding statement for straight hyperplanes appears in [16] (except of
course for the non ambiguous intersections). We provide a complete argument for the
convenience of the reader.

Proof. 1) Let H ∈ R be a ramified hyperplane, and let N(H) be its polygonal neigh-
borhood. We define Bn(H, Γ) = {g ∈ Γ, there is a combinatorial path of length ≤ n

connecting N(H) with g(N(H))}.
Then Bn(H, Γ) is a union of double cosets modulo the stabilizer ΓH of H in Γ:

Bn(H, Γ) = ΓHb1ΓH ⊔ · · · ⊔ ΓHbkΓH .

Note the union is finite because under the assumptions ΓH is cocompact on H. By sep-
arability, let Γ′

1 be a finite index subgroup containing ΓH and disjoint from {b1, . . . , bk}.
Clearly Bn(H, Γ′

1) = ∅. This means that Γ′
1 does not self-intersect H, and has no self-

osculation at distance ≤ n at H. The same properties hold for any finite index subgroup
of Γ′

1 ; in particular we may replace Γ′
1 by a finite index subgroup Γ′(H) which is normal

in Γ.
Choose such a finite index normal subgroup Γ′(H) for each ramified hyperplane of a

finite family that intersects each orbit of Γ in R (recall Γ is cocompact on X).
Then the intersection of the finitely many subgroups Γ′(H) yields a finite index sub-

group Γ′ whose action on R has no self-intersection and no self-osculation at distance
≤ n.

2) We now assume that for each crossing pair (H,K) of ramified hyperplanes the double
coset ΓHΓK is closed in the profinite topology.

So let H,K be crossing ramified hyperplanes and let us define Cross(H,K,Γ) = {g ∈
Γ, gK and H are crossing}. Note 1 ∈ Cross(H,K,Γ), and by cocompactness there are
finitely many elements c0 = 1, c1, . . . , cℓ such that

Cross(H,K,Γ) = ΓHc0ΓK ⊔ ΓHc1ΓK ⊔ · · · ⊔ ΓHcℓΓK .

By separability let N be a finite index normal subgroup such that

ΓHΓK ∩
(
∪ℓ

i=1 ciN
)

= ∅
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We define Γ′′
2 = ΓHN and observe that Γ′′

2 is a finite index subgroup of Γ that contains
ΓH . Moreover we claim that

Cross(H,K,Γ′′
2) = ΓH(ΓK ∩ Γ′′

2)

Indeed for g ∈ Cross(H,K,Γ′′
2) we may write g = hcik for some i = 0, 1, . . . , ℓ and with

h ∈ ΓH , k ∈ ΓK , and since g ∈ Γ′′
2 we also have g = h′n with h′ ∈ ΓH and n ∈ N . It

then follows that cikn−1k−1 = h−1h′k−1. Thus ciN ∩ ΓHΓK is not disjoint, i = 0 and
k = h−1h′n ∈ Γ′′

2 ∩ ΓK .
As a consequence Γ′′

2 has the following property : for g ∈ Γ′′
2 such that gK crosses H

at the center of a polygon P ′, there exists γ ∈ ΓH such that γP = P ′ (in particular P

and P ′ have the same number of sides);
Note the above property remains true for any finite index subgroup of Γ′′

2. In particular
we may replace Γ′′

2 by a finite index subgroup Γ′′(H,K) that is normal in Γ.
Choose such a finite index normal subgroup Γ′′(H,K) for each pair of crossing ramified

hyperplanes of a finite family that intersects each orbit of Γ in {(H,K) ∈ R × R such
that H,K cross }.

Then the intersection of the finitely many subgroups Γ′′(H,K) yields a finite index
subgroup Γ′′ whose action on R has no ambiguous intersections.

In the construction of Γ′′
2 above we may also choose the finite index normal subgroup

N so that ΓHΓK ∩
(
∪s

i=1 diN
)

= ∅, where d1, . . . ds are finitely many elements such that

if gK osculates H then g ∈ ∪i=s
i=1ΓHdiΓK . The same argument as above shows that Γ′′

2

has no inter-osculation at (H,K). It follows that Γ′′ has no inter-osculation on R. �

Corollary 5.4 (cubically special ⇒ polygonally special). Let X be a locally compact
simply-connected even-gonal complex with µ(X) ≥ 4. Assume X is Gromov-hyperbolic.
Let Γ ⊂ Aut(X) be a discrete cocompact subgroup.

If Γ is virtually cubically special then Γ has a finite index normal subgroup whose
action on the set of ramified hyperplanes of X is special and strongly clean.

Proof. Since Γ is virtually cubically special and Gromov-hyperbolic it follows by [16] that
each quasi-convex subgroup and each double coset of quasiconvex subgroups is separable.
We conclude by applying Lemma 5.3. �

5.2. The Coxeter group associated to an action without ambiguous intersec-
tion.

In this section we assume X is a CAT (0) even-gonal complex with µ(X) ≥ 4. Let
Γ ⊂ Aut(X) be a group acting without ambiguous intersection. We explain how to
associate to the Γ-action onto X a Coxeter system (W,S) (= (W (Γ, X), S(Γ, X))).

5.2.1. Generators. For each ramified hyperplane H ∈ R we denote by [H] the orbit of
H in R under Γ. For each such orbit let s[H] denote a generating involution. We let
S(X, Γ) = {s[H],H ∈ R}. So when Γ is cocompact the generating set S(X, Γ) is finite.

5.2.2. Relations. Consider the map m : {H,K} 7→ N∪{∞} that sends a pair of distinct
ramified hyperplanes H,K to the number mH,K = k if N(H) ∩ N(K) is a 2k-gon, and
to mH,K = ∞ otherwise (that is: when H ∩ K = ∅).

Let H,K be two crossing ramified hyperplanes, so that N(H) ∩ N(K) consists in
some polygon P with 2m sides. Since Γ acts without ambiguous intersection for any two
crossing ramified hyperplanes H ′,K ′ with H ′ ∈ [H],K ′ ∈ [K] the intersection N(H ′) ∩
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N(K ′) consists in a single polygon P ′ having again 2m sides. This means that the
map {H,K} 7→ mH,K induces a map on the set of pairs of distinct orbits of ramified
hyperplanes. We denote it by m[H],[K], and extend as usual this map on the full set of
pairs by setting m[H],[H] = 1.

We then impose the relations

(s[H]s[K])
m[H],[K] = 1

and denote by (W (Γ, X), S(Γ, X)) the corresponding Coxeter system.

5.2.3. The W -distance. For each combinatorial path π = (v0, v1, . . . , vn) we define the
W -length of π (denoted by lengthW (π)) to equal the product s(v0,v1)s(v1,v2) . . . s(vn−1,vn),
where s(vi,vi+1) = 1 if vi = vi+1 and otherwise s(vi,vi+1) is the generator s[H] where [H] is
the Γ-orbit of the ramified hyperplane dual to the edge joining vi to vi+1.

Lemma 5.5 (properties of the W -length).

(1) For g ∈ Γ we have lengthW (gπ) = lengthW (π).
(2) For concatenable paths π1, π2 we have lengthW (π1π2) = lengthW (π1)lengthW (π2).
(3) If π and π′ are homotopic with fixed extremities then lengthW (π) = lengthW (π′).

Proof. We give an argument only for the third property. Since X is simply-connected
there is a sequence (π0 = π, π1, . . . , πk = π′) such that πi and πi+1 differ by one of the
three types of elementary moves :

(1) (. . . , v, v, . . . ) ↔ (. . . , v, . . . )
(2) (. . . , v, w, v, . . . ) ↔ (. . . , v, . . . )
(3) polygonal move (or “exchange condition”) - see below

The homotopy invariance of the W -length is obvious in the case of the two first moves.
Thus it suffices to consider the case when π and π′ are two complementary paths of the
boundary of a polygon P . Let H,K be the two ramified hyperplanes dual two edges of P .
Then (s[H]s[K])

mH,K = 1 and this can be reformulated as lengthW (π) = lengthW (π′). �

Corollary 5.6 (W -distance). There is a map δ (= δW ) : X0 × X0 → W such that

(1) For any combinatorial path π from p to q we have δ(p, q) = lengthW (π).
(2) For any three vertices p, q, r we have δ(p, r) = δ(p, q)δ(q, r).
(3) For any two vertices p, q and any element g ∈ Γ we have δ(gp, gq) = δ(p, q).

The above map δW we call the W -distance on X0.

5.2.4. Morphisms Γ → W and polygonal maps X → Σ(W,S). For any vertex p ∈ X0 we
consider two maps

fp : X0 → W ϕp : Γ → W

and
q 7→ δW (p, q) γ 7→ δW (p, γp)

Lemma 5.7. (1) ϕp is a morphism and ϕq = δ(p, q)−1ϕpδ(p, q).
(2) fp defines a simplicial map X1 → Σ1(W,S).
(3) fp is ϕp-equivariant.
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Proof. We use Corollary 5.6.
1) We have ϕp(γ1γ2) = δW (p, γ1γ2p) = δW (p, γ1p)δW (γ1p, γ1γ2p) = ϕp(γ1)ϕp(γ2).

For two vertices p, q in X and for γ ∈ Γ we have

ϕq(γ) = δW (q, γq) = δW (q, p)δW (p, γp)δW (γp, γq) = δW (p, q)−1ϕp(γ)δW (p, q)

2) Assume q, q′ are the endpoints of an edge e. If H is the ramified hyperplane dual to e

then δW (q, q′) = s[H]. Thus fp(q
′) = δW (p, q′) = δW (p, q)δW (q, q′) = fp(q)s[H]. It follows

that fp(q), fp(q
′) are the endpoints of an edge of Σ(W,S).

3) We have fp(γq) = δW (p, γq) = δW (p, γp)δW (γp, γq) = ϕp(γ)fp(q).
�

Thus for each choice of a basepoint p in X we get a morphism ϕp : Γ → W , which we
call a special representation.

5.2.5. Naturality of the construction.

Theorem 5.8 (normalizer extension). Let X be a CAT (0) even-gonal complex with
µ(X) ≥ 4. Assume Γ ⊂ Aut(X) has a normal subgroup Γ whose action on X has no
ambiguous intersections.

Let (W,S) be the Coxeter group associated with the Γ-action on X. Then for each
choice p of a base vertex in X there is a natural action of Γ onto Σ(W,S) with the
following properties:

(1) The morphism ϕp : Γ → Aut(Σ(W,S)) extends ϕp : Γ ⊂ Aut(X) → W ⊂
Aut(Σ(W,S))

(2) The image of Γ in Aut(Σ(W,S)) normalizes W .
(3) fp : X1 → Σ1(W,S) is ϕp-equivariant.

Proof. Since Γ is normal in Γ it follows that Γ acts on the set S of Γ-orbits in the set R
of ramified hyperplanes. For each γ̄ ∈ Γ let ρ(γ̄) be the corresponding permutation of
S. If [H], [K] have representative H,K such that N(H)∩N(K) is a 2m-gon P then for
γ̄ ∈ Γ we have N(γ̄H)∩N(γ̄K) = γ̄P , a 2m-gon again. Thus the permutation morphism
ρ : Γ → S(S) extends to a morphism ρ : Γ → Aut(W,S). Note ρ = idW on Γ. Note also
that for any combinatorial path π and any element γ̄ ∈ Γ we have

lengthW (γ̄π) = ρ(γ̄)(lengthW (π))

It follows that δW (γ̄p, γ̄q) = ρ(γ̄)(δW (p, q)).
Let p denote a fixed vertex inside X. For each γ̄ ∈ Γ we define an automorphism

ϕp(γ̄) ∈ Aut(Σ(W,S)). We first define ϕp(γ̄) as a permutation of Σ0(W,S) = W , by
setting

ϕp(γ̄)(w) = δW (p, γ̄p)ρ(γ̄)(w) .

Observe

ϕp(γ̄1γ̄2)(w) = δW (p, γ̄1γ̄2p)ρ(γ̄1γ̄2)(w) = δW (p, γ̄1p)δW (γ̄1p, γ̄1γ̄2p)ρ(γ̄1)ρ(γ̄2) =

δW (p, γ̄1p))ρ(γ̄1)[δW (p, γ̄2p)]ρ(γ̄1)[ρ(γ̄2)(w)] = ϕp(γ̄1)[ϕp(γ̄2)(w)].

Thus ϕp : Γ → S(W ) is indeed a morphism. We then note that for each γ̄ ∈ Γ the
permutation ϕp(γ̄) defines a simplicial automorphism of Σ1(W,S). Indeed for s = s[H] ∈
S we have

ϕp(γ̄)(ws) = δW (p, γ̄p)ρ(γ̄)(ws) = δW (p, γ̄p)ρ(γ̄)(w)ρ(γ̄)(s) = ϕp(γ̄)(w)s[γ̄H]
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This computation indeed shows that two edges having the same S-label (say: s) are
mapped to two edges with the same label (ρ(γ̄)(s)). Thus ϕp(γ̄) extends to a unique

automorphism of the Davis complex Σ(W,S), and moreover ϕp : Γ → Aut(Σ(W,S)) is a
morphism.

Note that for any γ ∈ Γ and any w ∈ W we have ϕp(γ)(w) = δW (p, γp)ρ(γ)(w) =
δW (p, γp) = ϕp(γ)w. Thus ϕp extends ϕp.

It remains to check that ϕp(γ̄) normalizes W ⊂ Aut(Σ(W,S)). So let w ∈ W ⊂
Aut(Σ(W,S)) and let us compute the ϕp(γ̄)-conjugate of w. For g ∈ W = Σ0(W,S) we
have:

[ϕp(γ̄) ◦ w ◦ ϕp(γ̄)−1](g) = ϕp(γ̄)
(
wϕp(γ̄

−1)(g)
)

= ϕp(γ̄)
(
wδW (p, γ̄−1p)ρ(γ̄−1)(g)

)
=

δW (p, γ̄p)ρ(γ̄)
(
wδW (p, γ̄−1p)ρ(γ̄−1)(g)

)
= δW (p, γ̄p)ρ(γ̄)(w)ρ(γ̄)

(
δW (p, γ̄−1p)

)
g

Thus ϕp(γ̄) ◦ w ◦ ϕp(γ̄)−1 acts on Σ0(W,S) as the multiplication by an element of W

(namely δW (p, γ̄p)ρ(γ̄)(w)ρ(γ̄)
(
δW (p, γ̄−1p)

)
). It follows that ϕp(γ̄) normalizes W inside

Aut(Σ(W,S)).

Remark 5.9. The naturality statement above holds also for virtually special actions
on CAT (0) cube complexes. In other words if Γ acts geometrically on a CAT (0) cube
complex X and has a finite index subgroup Γ whose action is special (C-special in the
sense of [16]), then each special representation ϕp : Γ → W (Γ, X) extends naturally to

a morphism ϕp : Γ → Aut(Σ(W (Γ, X)) whose image is contained in the normalizer of
W (Γ, X).

�

5.3. The special representation is faithfull and convex cocompact when the
action is special.

Proposition 5.10. Let X be a CAT (0) even-gonal complex with µ(X) ≥ 4. Let Γ ⊂
Aut(X) be a group acting without ambiguous intersections. Let (W,S) (= (W (Γ, X), S(Γ, X)))
be the associated Coxeter system.

Then (for each vertex p ∈ X0) the map fp : X1 → Σ1(W,S) extends to a local isometry
fp : X → Σ(W,S) if and only if the Γ-action is special.

Proof. The argument is the same as for actions on CAT (0) cube complexes. Here are
more details.
Claim 1 : fp : X1 → Σ1(W,S) is locally injective iff the Γ-action on the set of ramified
hyperplanes has no self-intersection and no self-osculation.

Indeed let a, b be two distinct edges through some vertex q ∈ X0. Let x, y denote the
endpoints of a, b distinct from q. Recall fp(x) = fp(q)δW (q, x) and fp(y) = fp(q)δW (q, y).
Thus f(a) = f(b) ⇐⇒ δW (q, x) = δW (q, y). And by construction of δW we have
δW (q, x) = δW (q, y) if and only if the ramified hyperplanes dual to a, b are in the same
Γ-orbit. According to Lemma 2.22 this corresponds either to a self-intersection (when
a, b are adjacent in link(q, X)) or to a self-osculation (when a, b are not adjacent in
link(q, X)).

Now assume that fp : X1 → Σ1(W,S) is locally injective. For any 2m-gon P of
X let H,K be the two ramified hyperplanes through the center of P . Since Γ has no
self-intersection we have [H] 6= [K], and thus a boundary path π winding once around
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∂P is mapped under fp to a closed edge path of length 2m = 2m[H][K], whose edge-
labels alternate between s[H] and s[K]. Thus fp(π) is the boundary path of some 2-

cell of Σ(W,S). In other words fp : X1 → Σ1(W,S) extends to a polygonal map
fp : X → Σ(W,S).
Claim 2 : Assuming that fp : X1 → Σ1(W,S) is locally injective, the polygonal ex-
tension fp : X → Σ(W,S) is a local isometry if and only if the Γ-action on the set of
ramified hyperplanes has no inter-osculation.

Indeed fp fails to be a local isometry at some vertex q exactly if there are two edges a, b

containing q s.t. a, b are not contained in a polygon of X but fp(a), fp(b) are contained
in a polygon of Σ(W,S). This latter condition exactly means that there exists g ∈ Γ
such that gH crosses K, where H,K denote the ramified hyperplanes dual to a, b. Since
a, b are not contained in a polygon of X the ramified hyperplanes H,K are osculating
by Lemma 2.22). Thus Γ has an inter-osculation at H,K.

�

Combining Corollary 5.4, Proposition 5.10 and Theorem 5.8 we obtain :

Corollary 5.11. Let X be a Gromov-hyperbolic CAT (0) even-gonal complex with µ(X) ≥
4. Assume Γ ⊂ Aut(X) is a discrete cocompact subgroup and that Γ is virtually cubically
special. Then

(1) Γ has a finite index normal subgroup Γ whose action on X has no ambiguous
intersections and whose action on the set of ramified hyperplanes of X is special
and strongly clean.

(2) Let (W,S) be the Coxeter group associated with the Γ-action on X. Then (for
each base vertex p ∈ X) there is a monomorphism ϕp : Γ → Aut(Σ(W,S)) and
there is a ϕp-equivariant isometric embedding fp : X → Σ(W,S). Moreover the

image of Γ is contained in the normalizer of W inside Aut(Σ(W,S)).

Observe that so far we have proved the first part of Theorem 1.4. Yet the target Cox-
eter group W is not 2-spherical in general. The additional property of strong cleanliness
will be used to remedy this. But let us first make the following

Remark 5.12 (equivalence of the two notions of virtually special). Let X be a CAT (0)
even-gonal complex with n(X) ≥ 8 and µ(X) ≥ 4 and let Γ be a discrete cocompact
subgroup. Then Γ is virtually cubically special if and only if Γ has a finite index subgroup
whose action on X has no ambiguous intersections and whose action on the set of ramified
hyperplanes of X is special.

The ⇒ direction follows from the Corollary 5.11 above. The ⇐ direction follows since
by Proposition 5.10 the group Γ is virtually convex cocompact in a Coxeter group with all
mij at least 4, and by [17] every hyperbolic Coxeter group is virtually cubically special.

5.4. Constructing a convex cocompact 2-spherical representation. The goal of
this section is to complete the proof Theorem 1.4.

Lemma 5.13 (embedding a subcomplex in a Coxeter quotient). Let (W,S) be a Coxeter
system all of whose finite mij’s are ≥ 3, so that Σ(W,S) is a CAT (0) polygonal complex.

Let X ⊂ Σ(W,S) be a convex subcomplex. Assume that for any i, j with mij = +∞
the connected components of the forest X ∩ Σ1

ij(W,S) have diameter ≤ Dij − 1.
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Choose arbitrary numbers Mij ≥ Dij for each pair i, j with mij = +∞. If mij < ∞
set Mij = mij. Let (V, S) be the Coxeter system with Coxeter matrix (Mij). Then the
polygonal map Σ(W,S) → Σ(V, S) induces an isometric embedding X1 → Σ1(V, S).

Here Σ1
ij(W,S) denotes the subgraph of the 1-skeleton Σ1(W,S) whose edges have

label either i or j. Since mij = ∞ each component of Σ1
ij(W,S) is a line.

Proof. The polygonal map X → Σ(V, S) has no missing half-cell and thus we may apply
Proposition 3.2. �

Lemma 5.14 (geometry of strongly clean). Let Γ denote a uniform lattice of a CAT (0)
even-gonal complex X, with µ(X) ≥ 4. Assume Γ acts on R in a special and strongly
clean way.

Let (W,S) be the Coxeter system associated with the Γ-action and consider the polyg-
onal embedding fp : X → Σ(W,S) (for some fixed vertex p ∈ X0).

Then for any i, j with mij = +∞ the connected components of the forest fp(X) ∩
Σ1

ij(W,S) have diameter ≤ 2.

Proof. Let (ā, b̄, c̄) be an edge path of length 3 in Σ1
ij(W,S). Assume the labels of ā, c̄ are

i, and the label of b̄ is j, and assume moreover that ā = fp(a), b̄ = fp(b) are contained in
fp(X). Let v be the vertex of b not contained in a. We denote by H [H ′] the ramified
hyperplanes dual to a [b]. The label i [j] corresponds to the Γ-orbit of H [H ′].

To conclude we claim that the ramified hyperplane K dual to any edge e containing v

does not receive the label i. Indeed if a∪ e is contained in some polygon of X, then a∪ b

is contained in the same polygon and this contradicts mij = ∞. So a∪ e is contained in
no polygon of X, and (since e is connected to a through the edge b) this implies that e

is not in the polygonal neighborhood N(H) of H. Then since the action of Γ is strongly
clean and N(K) is connected to N(H) by the edge b we deduce that K is not in the
same Γ-orbit as H.

�

proof of Theorem 1.4. Let Γ denote a uniform lattice of a CAT (0) even-gonal complex
X, with µ(X) ≥ 4 and n(X) ≥ 6. Assume Γ is virtually cubically special.

Apply Corollary 5.11 to produce a finite index normal subgroup Γ whose action on
X is special (with associated Coxeter system (W,S)) and strongly clean. Extend the
Γ-action on Σ(W,S) to a Γ-action as in Corollary 5.11.

Choose some finite natural number m ≥ 3 : for example set m =
n(X)

2
. Observe

that when all polygons of X have the same number of sides - say 2m ≥ 6 - the previous
formula yields precisely m.

Let (V, S) be the 2-spherical Coxeter system obtained by replacing by m each in-
finite mij in the Coxeter matrix of (W,S). Any automorphism of the diagram of
(W,S) is still an automorphism of the diagram of (V, S), and thus the quotient map
W → V induces a surjection of the semi-direct product of W with Autdiag(W,S) onto
the semi-direct product of V with Autdiag(V, S). In other words the morphism W → V

extends to a morphism Normalizer(W, Aut
(
Σ(W,S)

)
) → Normalizer(V, Aut

(
Σ(V, S)

)
)

(see Lemma 2.29). And thus we can extend the composition Γ → W → V to a
morphism Γ → Normalizer(W, Aut

(
Σ(W,S)

)
) → Normalizer(V, Aut

(
Σ(V, S)

)
). By ap-

plying successively Lemma 5.14 and Lemma 5.13 we deduce th at the composition
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X → Σ(W,S) → Σ(V, S) is injective. By equivariance it follows that the morphism
Γ → Aut

(
Σ(V, S)

)
is also injective.

When n(X) ≥ 8 then (V, S) is hyperbolic and thus convex cocompactness follows since
Γ preserves the quasi-isometrically embedded subcomplex X. �

6. Wall-defined representations and virtual specialness.

Let X be a CAT (0) even-gonal complex. Let Γ < Aut(X) be a subgroup. We say a

representation Γ → Isom(Hp) is wall-defined provided there is a map X(1) → Hp that

is equivariant w.r.t. Γ → Isom(Hp), and moreover X(1) → Hp is wall-defined: edges are
mapped isometrically to segments, and for any two opposite edges a and a′ of a polygon
of X, the images of a, a′ inside Hp have the same bisecting hyperplane. For example
the 1-skeleton of any regular planar polygon is a wall-defined subgraph of Hp, thus any
polygonal representation is wall-defined. Wall-definition allows a priori more general
representations, where the geometric companion X(1) → Hp does not necessarily send
all edges of a given polygon inside the same totally geodesic plane.

In the CAT (0) even-gonal complex X there are natural hyperplanes: these are discon-
necting totally geodesic subtrees which avoid the 0-skeleton of X, and their intersection
with a polygon of X is either empty, or consists in a straight segment joining orthogonally
two opposite edges (at their midpoints). Any such hyperplane H of X corresponds to

the set of edges it crosses, which we call a wall of X. Let X(1) → Hp be any wall-defined
map, then the edges of any wall of X are mapped to segments of Hp with a common
bisecting hyperplane H. It follows that we have a natural map H → H mapping a
hyperplane H of X to the linear hyperplane H of Hp bisecting the images of all edges
crossed by H. We say that H is the image of H under X(1) → Hp.

We say that a wall-defined map X(1) → Hp is locally wall-injective provided the
following holds:

(1) Let e, e′ be distinct adjacent edges of X. Let H,H ′ be the hyperplanes dual to

e, e′ (note that H 6= H ′). Then the images H,H′ of H,H ′ under X(1) → Hp are
distinct.

(2) Let P be a polygon of X, and let H,H ′ be distinct hyperplanes of X through

the center of P . Then the images H,H′ of H,H ′ under X(1) → Hp are distinct.

We will say that a wall-defined representation Γ → Isom(Hp) is locally wall-injective

provided the equivariant wall-defined map X(1) → Hp is locally wall-injective.
We then observe the following:

Theorem 6.1. Let Γ be a uniform lattice of a simply-connected even-gonal complex X

with n(X) ≥ 8, or n(X) ≥ 6 and µ(X) ≥ 4.
If Γ has a locally wall-injective, wall-defined representation Γ → Isom(Hp), then Γ is

virtually special.

sketch of proof. Let Γ < Isom(Hp) be the image of Γ. We use the separability properties
of Γ to show that Γ is virtually special.

The stabilizer of any linear hyperplane H is a separable subgroup of Γ < Isom(Hp)
(see for example Lemma 10.3 in [15]). Assume now g ∈ Γ self-intersects the hyperplane
H of X, in the sense that gH intersects H transversally at the center of some polygon
P . Let H be the linear hyperplane corresponding to H under the wall-defined map
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X(1) → Hp. Then we deduce that gH intersects H transversally, and in particular
g 6∈ Stabilizer(H,Γ). There are only finitely many Stabilizer(H,Γ)-double cosets of
elements g ∈ Γ that self-intersect H. So there is a first finite index subgroup ΓH < Γ
such that no element of ΓH self-intersects H.

Using the cocompactness of Γ on X it follows that Γ has a finite index subgroup
Γ′ acting without any self-intersection of hyperplanes on X. Thus Γ′ has a malnor-
mal hyperplane hierarchy, and applying Remark 8.4 of [15] we deduce Γ is virtually
special. (In case Γ has torsion one must use the version of malnormal hierarchy using
Theorem 8.5.) �

proof of Theorem 1.7. The result is a consequence of Theorem 6.1 since polygonal rep-
resentations are wall-defined and locally wall-injective. �

References
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Laboratoire de théorie de l’information, INR 140 (Bâtiment INR), EPFL, Station 14,
CH-1015 Lausanne, Suisse,

E-mail address: marc.desgroseilliers@epfl.ch
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