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Abstract

Many parametric image alignment approaches assume equality of the images
to register up to motion compensation. In presence of noise this assumption
does not hold. In particular, for gradient-based approaches, which rely on
the optimization of an error functional with gradient descent methods, the
performances depend on the amount of noise in each image. We propose in
this paper to use the Asymmetric Composition on Lie Groups (ACL) for-
mulation of the alignment problem to improve the robustness in presence
of asymmetric levels of noise. The ACL formulation, generalizing state-of-
the-art gradient-based image alignment, introduces a parameter to weight
the influence of the images during the optimization. Three new methods are
presented to estimate this asymmetry parameter: one supervised (MVACL)
and two fully automatic (AACL and GACL). Theoretical results and ex-
perimental validation show how the new algorithms improve robustness in
presence of noise. Finally, we illustrate the interest of the new approaches
for object tracking under low-light conditions.

Keywords: Asymmetric image alignment, noisy images, parametric motion
estimation, gradient methods, Lie Groups.

1. Introduction1

Parametric motion estimation is a fundamental task of many vision ap-2

plications such as object tracking, image mosaicking, video compression and3
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augmented reality. To recover the motion parameters, direct image align-4

ment works by optimizing a pixel-based error measure between a moving5

image and a fixed-image called template. Gradient-based alignment uses6

more specifically a local optimization relying on the gradients of the error7

measure with respect to the motion parameters, usually applied in an it-8

erative scheme. These gradients in turn depend on the gradients of the9

images themselves. Also known as template matching, this method was first10

introduced for optical-flow computation (Lucas and Kanade, 1981). Since11

then, many related approaches were proposed. Baker and Matthews (2004)12

summarized four main classes of algorithms as Forwards Additive, Forwards13

Compositional, Inverse Additive, and Inverse Compositional.14

Mégret et al. (2008) extended this taxonomy of the methods in order to15

take into account recent approaches: the Efficient Second-order Minimization16

(ESM) algorithm (Benhimane and Malis, 2007) and the Symmetric Gradient17

Method (SGM) (Keller and Averbuch, 2004). These methods symmetrically18

weight the gradients of both images when estimating the update of motion19

parameters, which yields faster convergence and improved robustness. An-20

other contribution of Benhimane and Malis (2007) was to introduce Lie group21

parameterization in image alignment, which is a natural and efficient way to22

parameterize motion (Vercauteren et al., 2009), especially for rigid motion23

estimation.24

The approches using symmetrically weighted gradients have been shown25

to be more robust (Keller and Averbuch, 2004; Benhimane and Malis, 2007)26

than the forwards and inverse approaches. Those methods rely implicitely27

on the assumption that the gradients of both images are equally reliable. In28

presence of images of different SNR (Signal to Noise Ratio), this assumption29

does not hold. To improve the robustess of alignment algorithms in that case,30

Authesserre et al. (2009) introduced the Asymmetric Compositional method31

as an extension of the ESM approach. This approach is based on the opti-32

mization of a closed-form error measure that leads to weighting the gradients33

of both images asymmetrically according to a free parameter α that tunes34

the level of asymmetry. Tuning this α parameter produces a family of ap-35

proaches which can yield better performance than the conventional methods.36

However the automatic computation of α was not provided.37

In this paper, we propose new approaches relying on an Asymmetric38

Compositional on Lie Group (ACL) formulation of image alignment. The39

new approaches provide an adaptive computation of α to handle asymmetric40

levels of noise. The paper is organized as follows :41
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• In Section 2, we formalize the image alignment problem as a parame-42

ter optimization procedure on a Lie Algebra. We introduce the ACL43

formulation as a generalization of existing algorithms.44

• In section 3, we provide a theoretical analysis of the ACL objective45

function.46

– Its relationship with the ESM (Benhimane and Malis (2007)) op-47

timization procedure and the effect of noise are highlighted.48

– A first algorithm, the MVACL is introduced in the context of a49

Gauss-Newton optimization of the ACL objective function. This50

approach focus on the amount of noise only and computes α sub-51

ject to the knowledge of the relative variance of noise in the two52

images (section 3.2).53

• In section 4, we introduce new algorithms to compute α :54

– The GACL and AACL approaches propose more general heuristics55

to compute α automatically (sections 4.1 and 4.2).56

– To relieve the overhead for the computation of α, fast approxima-57

tions of those methods are also proposed (section 4.3).58

• In section 5 the state-of-the art and the new approaches performance59

in the context of image alignment under various noise conditions are60

evaluated.61

• In section 6, we illustrate the interest of the new approaches for object62

tracking under low-light conditions.63

2. Image alignment64

2.1. Lie group parameterization of motion65

Rigid motion models such as non degenerate affine motion for the Eu-66

clidian plane x ∈ R
2 and homography for the projective plane x ∈ P

2
67

(Bayro-Corrochano and Ortegón-Aguilar, 2007) can be parameterized us-68

ing Lie Group. A Lie group P is a differentiable manifold structured by the69

composition operation (◦). To any finite dimensional Lie Group is associ-70

ated a Lie algebra P whose underlying finite dimensional vector space is the71

tangent space to P at the neutral element 0. Locally an increment δµ ∈ P72
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around 0 can be bijectively reparameterized by an increment v ∈ P using73

the exponential map:74

δµ(v) = exp(v), (1)

with the following properties:75

exp(−v) = exp(v)−1, (2)

exp(αv) ◦ exp(βv) = exp((α + β)v), (3)

for all α, β ∈ R.76

With such a mapping we can solve for parameters in the algebra and77

get the corresponding element of interest δµ using eq. (1). This ensures78

to obtain δµ inside the group without having to enforce explicit constraints79

(Vercauteren et al., 2009), as opposed to using the more classic vector space80

embedding P ∈ R
p, where p is the number of parameters to estimate in the81

vector δµ.82

In the following, as in (Bayro-Corrochano and Ortegón-Aguilar, 2007;83

Benhimane and Malis, 2007; Vercauteren et al., 2009), we assume that the84

parameter space P forms a Lie group, which acts on image coordinates x85

through W. Moreover, we assume that the motion model satisfies group86

action properties (Miller and Younes, 2001). This action has the following87

properties, which are related respectively to composition (◦), inversion (−1)88

and parameters of the identity transformation 0:89

W(µk ◦ δµ,x) = W(µk,W(δµ,x)), (4)

y = W(µ−1,x) ⇔ x = W(µ,y), (5)

W(0,x) = x. (6)

Explicit expressions of the group action W and of the exponential map90

exp are provided in Appendix B for the case of homography, which will be91

used in the experiments.92

2.2. Asymmetric image alignment on Lie Group93

The goal of the algorithms presented in this paper is to align a template94

image T (x) to an input image I(x), where x = (x, y)T is a column vector95

containing the pixel coordinates. The alignment problem is solved iteratively.96
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We assume that we know at step k a coarse estimation of the warp parameters97

µ
k. Aligning two images on Lie group is formalized (Authesserre et al., 2009)98

as estimating the vector v ∈ P such that the following discrepancy error is99

minimal:100

Eα(v) =
∑

i∈1..N

∣

∣eα,i(v)
∣

∣

2
(7)

where eα,i represents the error at each pixel xi belonging to a region of interest101

R = (x1, . . .xN):102

eα,i(v) =I(W(µk ◦ exp((1 − α)v),xi))

− T (W(exp(−αv),xi)).
(8)

The particularity of eq. (8) is to introduce a tuning parameter α ∈ [0, 1] cor-103

responding to an asymmetric constraint imposed on the alignment process.104

The α coefficient allows us to formulate existing approaches generically:105

the particular cases α = 0 and α = 1 correspond to extending the classical106

approaches (Forwards Compositional (Shum and Szeliski, 2000) and Inverse107

Compositional (Baker and Matthews, 2004)) to Lie Group parameterization.108

We call these extensions FCL (Forward Compositional Lie) and ICL (Inverse109

Compositional Lie). The FCL approach has already been introduced under110

the name LIEMANIFOLD approach in Guangwei et al. (2008). The case111

α = 0.5 corresponds to the ESM (Efficient Second-order Minimization) algo-112

rithm presented by Benhimane and Malis (2007) under conditions discussed113

in (Mégret et al., 2008; Authesserre et al., 2009). Thus the asymmetric114

method consists in generalizing previous approaches to any α ∈ [0, 1]. Fol-115

lowing this naming scheme we will denote in the sequel ACL (Asymmetric116

Compositional Lie) the asymmetric approach where α is arbitrarily set a117

priori.118

Aligning two images consists in optimizing locally the error defined by119

eq. (7) and (8) at step k with respect to v. Once v is computed, the update120

rule provides a new estimation of the motion parameters:121

µ
k+1 = µ

k ◦ exp(v). (9)

Baker and Matthews (2004) showed that the Gauss-Newton (GN) opti-122

mization has efficient convergence properties and a reasonable computational123
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cost. Following most authors (Lucas and Kanade, 1981; Shum and Szeliski,124

2000; Keller and Averbuch, 2004; Vercauteren et al., 2009), we will use this125

approach. In the sequel we denote by eα = (eα,i)i=1..N the vector obtained126

by concatenating the pixel-wise errors eα,i. The Gauss-Newton optimization127

of the error function (7) yields:128

v̂α = −(Jα(0))† eα(0) = −(Jα(0)tJα(0))−1Jα(0)teα(0), (10)

where t is the transpose operator and (Jα(v0))
† is the pseudo-inverse of the129

jacobian matrix of the error vector e at 0. The jacobian matrix is defined as:130

Jα(w) =
∂eα(v)

∂v

∣

∣

∣

∣

v=w

(11)

This matrix can be expressed as the concatenation of the gradients Jα,i(w)131

of the pixelwise errors eα,i : Jα(w) = [Jα,1(w)t
, . . .Jα,N(w)t]t with132

Jα,i(w) = (1 − α)JI,i((1 − α)w) + αJT,i(−αw), (12)

where JI,i and JT,i are the jacobian matrices defined as:133

JI,i(w) =
∂I(W(µk ◦ exp(v),xi))

∂v

∣

∣

∣

∣

v=w

, (13)

JT,i(w) =
∂T (W(exp(v),xi))

∂v

∣

∣

∣

∣

v=w

. (14)

3. Theoretical analysis of the ACL objective function134

We now introduce a theoretical study showing the usefulness of the generic135

ACL formulation to provide new insights into existing gradient-based ap-136

proaches and the effect of noise. Considering successively the noiseless and137

the noisy cases, second-order expansion of the error function eα(v) is per-138

formed. This allows us to highlight in section 3.2 the trade-off that needs139

to be done between the minimization of both second-order structural terms140

and noise variance terms.141

Let us consider two images corrupted by independant additive noises142

characterized by respective variances σ2
I and σ2

T :143

I = Inf + ǫI and T = Tnf + ǫT , (15)
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where the indice nf indicates noise-free values. This yields the noisy jaco-144

bians:145

JI(w) = J
nf
I (w) + JǫI

(w) and JT (w) = J
nf
T (w) + JǫT

(w), (16)

where JǫI
(w) and JǫT

(w) are the jacobian matrices obtained by concatenat-146

ing the pixelwise gradients:147

JǫI ,i(w) =
∂ǫI(W(µk ◦ exp(v),xi))

∂v

∣

∣

∣

∣

v=w

, and (17)

JǫT ,i(w) =
∂ǫT (W(exp(v),xi))

∂v

∣

∣

∣

∣

v=w

. (18)

3.1. Noise-free case148

In this section we consider that the noise-free images are identical up to149

the true motion parameter vector v∗:150

∀x Inf (W(µk ◦ exp((1 − α)v∗),x) = T nf (W(exp(−αv∗),x)), (19)

which yields:151

enf
α (v∗) = 0. (20)

Under this assumption we can show that:152

Theorem 1 (Second-order expansion under noise-free conditions at optimum153

v∗). For any α:154

enf
α (v∗) = enf

α (0) +
1

2
(Jnf

I (0) + J
nf
T (0))v∗ + O(||v∗||3). (21)

Proof. We use here the lemmas presented in Appendix A. According to155

(A.1), we have to second-order:156

enf
α (v) = enf

α (0) +
1

2
(Jnf

α (0) + Jnf
α (v))v + O(||v||3). (22)

Moreover, for the true parameter v∗, and using (A.13), we have:157

(Jnf
α (0) + Jnf

α (v∗))v∗ = (Jnf
I (0) + J

nf
T (0))v∗ + O(||v∗||3) (23)

Plugging (23) into (22) yields (21).158
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Note that eα(0) is independant of α. Benhimane and Malis (2007) ini-159

tially proposed the ESM procedure consisting in plugging the jacobian JESM160

into the equation (10) as a second-order minimization of the forward objec-161

tive function (α = 0 in (8)) where:162

JESM =
1

2
(JI(0) + JT (0)). (24)

Their proof was based on the assumption (19). Under the same assumption,163

equation (21) generalizes this result by revealing that the ESM optimization164

yields in fact a second-order minimization of any ACL objective function,165

with FCL and ICL objective functions as special cases.166

3.2. In presence of noise167

Under noisy conditions eq. (23) cannot be applied on the noisy jacobian168

Jα and holds only for the noise-free part Jnf
α . Furthermore, during the op-169

timization procedure we have only access to the noisy image jacobian JI(0)170

and JT (0). Thus, we are looking for the α value that produces a jacobian171

Jα(0) as close as possible to the jacobian J
nf
ESM.172

Theorem 2 (Discrepancy between Jα(0) and the ideal jacobian J
nf
ESM).

J
nf
ESM = Jα(0) − (Aα + Bα), (25)

with:173

Aα = (
1

2
− α)Jnf

⊖ (0),

Bα = (1 − α)JǫI
(0) + αJǫT

(0),
(26)

where :174

J
nf
⊖ (0) = J

nf
I (0) − J

nf
T (0). (27)

Proof.

J
nf
ESM = Jnf

α (0) − (
1

2
− α)Jnf

⊖ (0)

= Jα(0) − (
1

2
− α)Jnf

⊖ (0) − ((1 − α)JǫI
(0) + αJǫT

(0))
(28)

175

Equation (25) highlights the presence of two kinds of corrupting terms Aαv
∗

176

and Bαv
∗ when plugged into eq. (21).177
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Term of structure. The term Aαv
∗ corresponds to second-order terms of the178

noise-free error enf
α (v∗) at optimum as it can be shown by plugging (A.13)179

into (A.4):180

J
nf
⊖ (0)v∗ = (Jnf

I (0) − J
nf
I (v∗))v∗ (A.4)

= O(||v∗||2). (29)

Using the ESM algorithm allows us to compensate them and therefore reach181

a second-order approximation in the noise-free case.182

Term of noise. The term Bαv
∗ corresponds to first-order contribution of183

noise. Assuming the noises on I and T are independant of respective variance184

σ2
I and σ2

T and of zero mean, the total variance of Bαv
∗ is proportional to:185

var(Bαv
∗) ∝ (1 − α)2σ2

I + α2σ2
T (30)

Minimizing (30) with respect to α defines a new Minimal Variance ACL186

approach denoted MVACL:187

αMVACL =
σ2

I

σ2
I + σ2

T

. (31)

This α value has the following properties: it yields an ESM behaviour188

for symmetric amount of noise (σI = σT ) and unidirectional FCL behaviour189

(resp. ICL behaviour) when σI ≪ σT (resp. σI ≫ σT ).190

Several typical cases can be considered:191

• The SNR is high and the initialization is close to the optimum (||v∗||2 ≪192

||v∗||): the terms Aα and Bα are small and do not influence the align-193

ment process, the FCL, ICL, ESM and MVACL perform equivalently.194

• The SNR (signal to noise ratio) is high and the initialization is far195

from the optimum (||v∗|| is large): the term Aα dominates Bα and the196

optimal α is near 0.5, as used by the ESM.197

• The SNR is low, but the noise is symmetrically distributed (σI ≈ σT )198

on I and T , then the variance of Bαv
∗ is also minimum for α = 0.5,199

which is used by both the ESM and the MVACL algorithms.200

• The SNR is low and asymmetrically distributed σI ≫ σT (resp. σI ≪201

σT ) and the initialization is close to the optimum : Bα dominates Aα,202

and the optimal α is the one that minimizes the variance of Bα as203
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Term of Term of Recommended
structure noise approach
Aαv∗ Bαv∗

Noiseless or low noise negligible negligible FCL, ICL,
with close initialization ESM, MVACL
Noiseless or low noise X negligible ESM
with far initialization

Symmetric noise X X MVACL, ESM
Near initialization with negligible X MVACL
strong asymmetric noise
Far initialization with X X proposed heuristics

strong asymmetric noise AACL and GACL

Table 1: Summary of methods fitness to several typical situations of alignement. Noiseless
or low noise : σI , σT are negligible. Strong noise : σI or/and σT are high values. Symmetric
noise : σI ≈ σT . Near initialization : the motion to estimate ||v∗|| is close to 0. Far
initialization : the motion to estimate ||v∗|| is large.

estimated by the MVACL. For very asymmetric noise levels, one of the204

images is far more corrupted than the other. The optimal α value can205

reach the bounds 0 if T is the image strongly corrupted (resp. 1 if I is206

the image strongly corrupted), which is used by the FCL (resp. ICL)207

approach.208

• The SNR is low and the initialization is far from the optimum : both209

terms Aα and Bα are not negligible and should be taken care of. In that210

case it is difficult to predict which algorithm is more efficient between211

the MVACL and the ESM.212

It follows from the previous analysis that the ESM and the MVACL213

provide the same result for symmetrical levels of noise, but that in other214

cases, each one assumes one of terms Aα or Bα is negligible. Those remarks215

are summarized in table 1 and will be discussed further in the experimental216

section 5.2. The MVACL furthermore requires the knowledge of the noise217

variances. We propose in the next section to take a different perspective218

on this problem by using a geometrically motivated solution for the fully-219

automatic estimation of α.220

4. Fully-automatic estimation of α221

Authesserre et al. (2009) have shown that the asymmetric approach can222

outperform other approaches in terms of robustness to noise by choosing223
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an appropriate α. In the robotic community Marey and Chaumette (2008)224

propose a similar approach for designing command law in visual servoing. In225

both cases no rule was presented to compute the α-value. In this section we226

propose two methods based on an automatic computation of this coefficient.227

4.1. Method 1 : Geometric ACL (GACL)228

In the following, we denote by Fα the affine subspace passing through229

eα(0) and parallel to the span of the columns of Jα(0). The elements of Fα230

can be obtained by the linearized error:231

ẽα(v) = eα(0) + Jα(0)v. (32)

We also denote by v̂α the Lie algebra increment estimated by plugging Jα(0)232

into eq. (10).233

The geometric interpretation of the Gauss-Newton algorithm is that the234

increment v̂α is chosen such that êα = ẽα(v̂α) corresponds to the orthogonal235

projection of the origin O of the error space onto the affine subspace Fα.236

Thus, the different ACL methods can be distinguished by the choice of the237

subspace Fα onto which O is projected. This is illustrated in fig. 1 for the238

case of a motion model with one degree of freedom.239

Figure 1: Geometric interpretation of the different approaches using a Gauss-Newton
optimization for one parameter motion: O is projected orthogonally onto a particular
affine subspace Fα (in this case, affine line for a model of p = 1 parameter). The projection
of O onto Fα is noted êα.

The α value of the ACL approach can be seen as a confidence value on the240

directions (in the error space), of the subspaces F0 and F1. It should favor241
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the directions that lead closer to the origin O of the error space. We propose242

to compute α by using the distances of O to both subspaces F0 and F1.243

Considering the plane passing through the points ê0, ê1 and O (see fig. 2),244

we denote by P the orthogonal projection of O onto the line passing through245

ê1 and ê0, by l the distance between ê1 and ê0 and by d1 (respectively d0)246

the distance between O and ê1 (respectively ê0). Using the Pythagorean247

theorem in (O,P, ê0) and in (O,P, ê1), we obtain:248

αGACL =
d2

0 − d2
1

2l2
+

1

2
=

< ê0|(ê0 − ê1) >

||(ê0 − ê1)||2
, (33)

where < .|. > (respectively ||.||) stands for the regular scalar product (re-249

spectively the Euclidean vector norm) in R
N .250

Figure 2: Generic interpretation of the αGACL value: The distances between the point O

and the subspaces F0 and F1 are estimated. Then αGACL is chosen to favor the nearest
subspace to O.

The αGACL value favors the subspace nearest to O. If both subspaces are251

equally near to O, the αGACL value is equal to 0.5, and the behaviour of the252

ESM approach occurs. This method in its simplest form requires computing253

both ê0 and ê1 to estimate αGACL which is quite costly.254

4.2. Method 2 : Analytic ACL (AACL)255

The AACL algorithm considers the linearization of the pixelwise residual256

eq. (8) around v = 0 (cf. eq. (32)). An approximation of the complete257

residual error is obtained by plugging eq. (32) into eq. (7):258

Eα(v) ≈ ||eα(0) + JI(0)v||2

− 2α(eα(0) + JI(0)v)TJ⊖(0)v + α2||J⊖(0)v||2,
(34)
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where J⊖ = JI(0) − JT (0).259

Minimizing this residual with respect to α for a fixed v̂ yields the confi-260

dence value used by the AACL algorithm:261

αAACL(v̂) =
< ẽ0(v̂)|(ẽ0(v̂) − ẽ1(v̂) >

||ẽ0(v̂) − ẽ1(v̂)||2
, (35)

where ẽα(v̂) is defined by equation (32).262

Notice the similarity between the expressions (33) and (35). In the first263

case, α is obtained by projecting O orthogonally onto the affine line (ê0, ê1).264

In the second one, O is projected orthogonally onto the line (ẽ0(v̂), ẽ1(v̂))265

instead. For the AACL method, a fixed v̂ has to be set before using eq.266

(35). In the sequel, we note AACLM the analytic AACL approach using the267

method M for computing v̂, where M can be the FCL approach (α = 0),268

the ICL approach (α = 1) or the ESM approach (α = 0.5).269

4.3. Summary of the algorithms and fast approximations270

The state-of-the-art gradient-based approaches and the new ones can be271

seen as particular cases of the ACL formulation using different values of α272

for the computation of the jacobian matrix eq. (12). The different methods273

considered in this paper are summarized in the table 2. The main steps of274

the algorithm scheme is summarized in table 3.

ACL Methods

Non-adaptive to noise Adaptive to noise
Fixed-α Supervised-α Automatic-α

FCL ICL ESM MVACL GACL AACLM

α 0 1 0.5
αMVACL αGACL αAACL(v̂)
eq. (31) eq. (33) eq. (35)

Table 2: The different asymmetric approaches. For the AACL approach, M stands for the
method (FCL, ICL or ESM approach) used to set v̂ in equation (35).

275

For step 2b), if the automatically computed α is such that α > 1 (resp. is276

such that α < 0), we arbitrarily set it to 1 (resp. 0) yielding the behaviour of277

the ICL (resp. FCL) approach. All approaches are based on the computation278

of the Jacobian matrices JI and JT . Implementation issues are tackled in279

appendix Appendix C.280

As noted by Baker and Matthews (2004), steps 2a, 2b and 2c can be281

skipped for the ICL approach (α = 1). Moreover, for this method, the282
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Iterative scheme of the ACL approaches

1. Precomputation:

(a) Compute the template jacobian JT (0) (eq. (14)),
(b) Estimate α for the MVACL, F -GACL and F -AACL

(eq. (31), (33) and (35)).

2. Iterate until convergence:

(a) Compute the current error eα(0) (eq. (8)) and the
image jacobian JI(0) (eq. (13)),

(b) Only for AACL and GACL approaches, compute α

(eq. (35) or (33)),
(c) Compute the asymmetric jacobian Jα(0) (eq. (12)),
(d) Solve for v (eq. (10)),
(e) Update parameters µ

k+1 (eq. (9)).

Table 3: Unified presentation of the algorithm scheme of the ACL approaches.

pseudo-inverse of the jacobian Jα=1(0) = JT (0) can be precomputed. The283

ICL algorithm is thus the most efficient of the ACL approaches in terms of284

computational time per iteration.285

The AACL and GACL algorithms may introduce a significant overhead286

in terms of computational time for the computation of α (step 2b) if they287

are run on a sequential processor. To improve the efficiency, we propose288

estimating α only once during the first iteration. This yields an approxima-289

tion of the AACL and GACL denoted F -GACL (Fast-GACL) and F -AACL290

(Fast-AACL). The fast new approaches only introduce an additional compu-291

tational effort for computing α during the first iteration compared with fixed292

α-ACL approaches (except for the ICL approach).293

This computational cost is called E-CC (for Extra Computational Cost)294

in the sequel. Moreover, we denote by P-CC (Pre-Computational Cost) the295

computational effort induced each time the image used as the template T296

changes (step 1) in table 3) and by I-CC (iterative computational cost) the297

standard cost of each iteration of a fixed-α-ACL algorithm (step 2a), 2c)298

and 2d) in table 3). The table 4 summarizes the computational time of the299

different approaches obtained with a Matlab implementation on a Intel(R)300

Core(TM)2 duo CPU 3.0 GHz with 4 GB of RAM. The number of pixels N301

of the template is 10000. The number of parameters for the homography is302

p = 8.303
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Methods P-CC E-CC I-CC

FCL 4.22 0 7.00
ICL 7.60 0 4.53
ESM 6.73 0 7.16

AACLESM 6.38 0 9.08

F − AACLESM 6.40 1.33 7.15

GACL 7.57 0 8.99
F − GACL 7.61 1.25 7.15

Table 4: Computational time (in ms) of the different approaches. Three steps are distin-
guished : the precomputation for the template T (P-CC), the extra computation performed
by the fast new approaches each time a new image I has to be processed (E-CC), and the
per iteration cost performed by each algorithm (I-CC).

The E-CC for the fast approaches takes approximately a fifth of the compu-304

tational time of one iteration of the ESM. Thus the additional computational305

cost for computing α with the fast approximations of the GACL and AACL306

is very small when several iterations are required for convergence. The next307

section will show in which situations this cost is counterbalanced by an in-308

creased robustness of the estimation.309

5. Experimental validation310

The performance assessment uses a methodology inspired by the bench-311

mark proposed by Baker and Matthews (2004). Random homographies are312

generated by adding spatial Gaussian noise of standard deviation σp (called313

Point Sigma) to four canonical point locations in a reference image Iref . The314

new locations are called test points. Using these homographies, the image315

Iref is warped onto the template image Tref . Iref (resp. Tref ) is then cor-316

rupted with additive gaussian noise: I = Iref + ǫI (resp. T = Tref + ǫT ).317

Noise level is characterized by the SNR (Signal to Noise ratio) between the318

noise-free image and the image of noise: SNRdB = 10 log10

(

E(I2)
V ar(ǫ)

)

. The319

RMS point error is defined as the root mean square error between the test320

points and the point locations obtained from the motion parameter estimated321

by an alignment algorithm in the reference image coordinates.322

We will consider two main performance criteria defined by Baker and323

Matthews (2004):324

- Average frequency of convergence: percentage of tests where an algo-325

rithm converged to the correct estimate (RMS Point Error < 1 pixel),326
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A A.1 A.2 A.3

B C D E

Figure 3: Images used for the experiments. First raw: The noise-free image (left) is used
for extracting the template image. Image I is then obtained by adding gaussian noise
to the noise free image. The noisy images (right) are shown with respective SNR : 15
dB, 10 dB and 5 dB. Second raw: other images used for the experimentations. Images
A and E come from the INRIA Learning and Recognition in Vision (LEAR) dataset
(http://lear.inrialpes.fr/data). Images B and C come from the benchmark of Baker and
Matthews (2004). Image D was synthetized using an openGL implementation.

- Average rates of convergence: for tests that converge for all methods, the327

average RMS point error is plotted against the algorithm iteration number.328

In the sequel, the results are obtained by averaging the performances329

obtained on the five images [A-E] shown in figure 3. The motion model330

is a homography parameterized as in Appendix B: a 3 × 3 homography331

matrix H which belongs to the Lie group P of matrices with det(H) = 1. Its332

associated Lie algebra P is the vector space of matrices with null trace. For333

each algorithm and each test, 30 iterations are done. For average frequency of334

convergence, 500 tests are done per image and per Point Sigma. For average335

rates of conververgence, 100 tests which converge are averaged per image.336

5.1. ACL algorithms behavior in presence of noise337

Figure 4 shows the behaviours of the ACL approaches, using a fixed value338

for α, in terms of frequency of convergence with respect to image SNR, when339

aligning an almost noise free template to a noisy image. As mentioned by340

Authesserre et al. (2009), the best performance is obtained by a compromise341

between the use of the gradients of both T and I, and the weighting of the342

influence of noise. Thus, when the images are noise free (high SNR), the343

FCL (α = 0) and the ICL (α = 1) provide identical results and the ESM344

(α = 0.5) outperforms these two methods. However, when the noise level345

increases on I, the performance of the ESM decreases. When the SNR of I346
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becomes too low, the ICL provides the best results. Between these two cases347

the best robustness is obtained using an intermediate α value.348
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Figure 4: Average frequency of convergence of fixed-α ACL approaches with respect to
image SNR for a Point Sigma equal to 12 pixels. A SNR of 100 dB was used on the
template. The image is corrupted using a SNR varying from -15 dB to 30 dB.

5.2. Influence of the noise asymmetry349

To simulate controled noise asymmetry, noise is parameterized by a total350

variance σ2, and an asymmetry coefficient β ∈ [0,1]. The total variance σ2 is351

computed from a given global SNR in order to average results with images352

(figure 3) of the same quality. The amount of noise is allocated to I and T353

as follows:354

σ2
I = (1 − β)σ2, σ2

T = βσ2, with β ∈ [0, 1]. (36)

where σI (resp. σT ) is used as noise standard deviation to corrupt the image355

I (resp. the template T ) with an additive centered white Gaussian noise.356
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Six configurations are considered to evaluate the comparative perfor-357

mances for various typical situations:358

• Exp.0 : near initialization (Point Sigma σp equal to 6 pixels) and high359

SNR (Total SNR=15 dB)360

• Exp.1 : near initialization (Point Sigma σp equal to 6 pixels) and361

medium SNR (Total SNR=10 dB)362

• Exp.2 : near initialization (Point Sigma σp equal to 6 pixels) and low363

SNR (Total SNR=5 dB)364

• Exp.3 : far initialization (Point Sigma σp equal to 12 pixels) and high365

SNR (Total SNR=15 dB)366

• Exp.4 : far initialization (Point Sigma σp equal to 12 pixels) and367

medium SNR (Total SNR=10 dB)368

• Exp.5 : far initialization (Point Sigma σp equal to 12 pixels) and low369

SNR (Total SNR=5 dB)370

The results of the experiments 0-5 are shown on figure 5 and discussed in the371

sequel.372

5.2.1. Conventional algorithms373

The first column of the figure 5 shows the results of the FCL, ICL, ESM374

and MVACL algorithms. As mentioned in the theoretical analysis (section375

3.1), the ESM provides better results when β is near 0.5 (see exp. 0-5), or376

when the total SNR is high (Exp. 0 and 3). By using only the gradients of377

I (resp. T ), the FCL (resp. ICL) yields only the best performance for β near378

1 (resp. 0) or when the image T (resp. I) is sufficiently corrupted (Exp. 2,379

low SNR).380

5.2.2. MVACL approach381

As it can be seen on the first column of the figure 5, the MVACL provides382

performance similar to ICL for β = 0 that evolves smoothly to be similar to383

ESM for β = 0.5 and to FCL for β = 1. On the one hand, the MVACL yields384

a better behaviour than the standard approaches under low SNR conditions385

(Exp.2 and 5) because in that case the MVACL appropriately averages the386

term of noise Bα of the equation (25). On the other hand, this approach387
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is outperformed by the ESM under high SNR conditions (Exp. 0 and 3).388

Indeed, by only taking into account the noise variance for computing α, the389

MVACL optimally weights noise-jacobian terms at the expense of taking into390

consideration the term Aα, which is in that case not negligible compared to391

the term of noise Bα.392
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Figure 5: Average frequency of convergence with respect to noise asymmetry for the
different approaches. Exp. 0: σp = 6 pixels, SNR=15 dB. Exp. 1: σp = 6 pixels, SNR=10
dB. Exp. 2: σp = 6 pixels, SNR=5 dB. Exp. 3: σp = 12 pixels, SNR=15 dB. Exp. 4:
σp = 12 pixels, SNR=10 dB. Exp. 5: σp = 12 pixels, SNR=5 dB. Corresponding numerical
values for characteristic β values are presented in table 5.
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Conditions Exp.0 Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

σp = 6 pixels σp = 6 pixels σp = 6 pixels σp = 12 pixels σp = 12 pixels σp = 12 pixels
SNR=15 dB SNR=10 dB SNR=5 dB SNR=15 dB SNR=10 dB SNR=5 dB

β 0 0.2 0.5 0 0.2 0.5 0 0.2 0.5 0 0.2 0.5 0 0.2 0.5 0 0.2 0.5

FCL 83.6 85.7 88.2 53.6 62.7 75.0 13.6 18.2 30.6 32.8 37.3 43.2 10.2 13.6 23.3 0.8 1.6 4.8
ICL 92.4 91.2 88.9 92.4 87.4 75.7 90.4 63.6 32.0 54.4 49.9 42.8 53.6 40.2 24.4 52.7 18.2 4.5
ESM 95.2 95.0 95.4 91.0 91.3 91.7 59.4 63.9 67.3 67.4 67.2 67.4 52.2 52.4 52.3 18.6 19.7 20.7

MVACL 92.4 94.0 95.4 92.4 92.2 91.7 90.4 76.0 67.3 54.4 63.4 67.4 53.6 54.2 52.3 52.7 29.0 20.7

GACL 95.1 95.0 95.1 94.4 92.5 91.4 90.5 73.3 67.6 68.5 67.4 66.4 63.6 56.0 52.2 55.4 27.5 20.5

AACLFCL 94.5 94.3 94.6 90.7 89.7 90.2 51.6 49.9 58.2 65.1 64.4 64.5 54.4 51.2 50.1 20.3 17.1 17.4

AACLICL 94.4 94.2 94.3 93.7 92.4 90.0 91.6 74.3 58.1 65.3 65.1 64.0 61.5 54.8 50.3 56.8 28.6 18.0

AACLESM 95.3 95.1 95.2 94.4 92.9 91.6 86.4 73.3 67.8 68.9 68.0 67.1 63.9 56.6 52.6 51.5 28.0 20.6

F -GACL 95.0 94.8 95.0 94.1 92.4 90.6 89.1 73.0 63.6 67.4 66.4 65.1 61.8 53.7 48.7 50.0 24.0 17.0

F -AACLESM 95.2 94.8 95.1 94.0 92.5 90.6 86.3 74.4 64.2 68.0 67.0 66.1 62.6 54.6 50.1 44.7 26.7 18.6

Table 5: Average frequency of convergence with respect to noise for the different approaches for characteristic β values. Best
overall method is in bold, best methods in each category are underlined.
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5.2.3. Influence of the choice of v̂ for the AACL approaches393

In the following we evaluate the new approaches. The second column of394

figure 5 shows the different behaviors of the AACLFCL, AACLICL, AACLESM
395

and the GACL algorithms in terms of frequency of convergence with respect396

to image noise asymmetry. The ESM performances are also plotted as refer-397

ence. We observe that:398

• For any Point Sigma and Total SNR and for any β, the AACLM ap-399

proach using the method M to initialize v̂ in (35) always provides at400

least as good results as the method M itself (Exp.0-5).401

• The performance of the AACLM is correlated to the performance of the402

method M itself. Thus, for situations where the FCL (resp. ICL) works403

well, such as in Exp.2 and and in Exp.5 for β near 1 (resp. near 0), the404

AACLFCL provides better results than the conventional methods and405

other AACL approaches by improving the performances of the FCL406

(resp. ICL) approach. In all other cases, the AACLESM provides better407

results.408

5.2.4. AACL vs GACL409

For any β value and for any global SNR, the GACL and AACLESM yield410

similar results. Moreover, they always provide the best results (Exp. 0, 1, 3411

and 4) or near the best results (Exp. 2 and 5). The AACLFCL and AACLICL
412

are only more robust in very asymmetric cases (Exp.2 and 5) where the noisy413

image is not the one used for computing the gradients allowing the estimation414

of v̂. For all these reasons, we consider in the sequel only the GACL and415

AACLESM approaches.416

5.3. Performance of the fast approximations417

The figure (5), third column shows the different behaviors of the ESM,418

F -AACLESM and F -GACL algorithms in terms of frequency of convergence419

with respect to image noise asymmetry. It can be seen that the fast ap-420

proximations produce the same behaviors as the exact AACL and GACL421

approaches. However, the fast approximations provide slightly worse results422

than the exact approaches, particularly for quasi symmetric amount of noise423

(β between 0.35 and 0.65) where they are outperformed by the ESM ap-424

proach (see Exp. 2, 4 and 5). The fast approaches are thus a good choice for425

aligning a noisy image to another noisy image, but of greater quality (which426
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in practice takes place for example in image mosaicking (Pham et al., 2005)427

where a noisy image is aligned to the current mosaic).428

To illustrate this, fig. 6 shows the average rate of convergence (Point429

Sigma σp equal to 6 pixels) and average frequency of convergence with re-430

spect to σp for a noisy image (SNRI = 10 dB) and a high quality template431

(SNRT = 100 dB). For legibility, only the fast approximations and the state-432

of-the art approaches are plotted.433
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Figure 6: Average Frequency of convergence and average Convergence Rate for the ESM,
ICL, FCL, F − AACLESM, F − GACL algorithms in presence of image noise. A SNR of
10 dB has been used on the image and 100 dB on the template.

The fast new approaches outperform the state-of-the-art approaches in434

terms of frequency of convergence and convergence rate. The improvement435

in convergence rate counter-balances the E-CC introduced by the computa-436

tion of α during the first iteration. Thus, the new approaches are at least437

as efficient as the best reference algorithms while better handling noisy im-438

ages. Thus, for an equivalent computational complexity and according to the439

repartition of noise on images we can provide the following recommandation:440

• In quasi noiseless condition or in symmetric noise condition (SNRI ≈441

SNRT ), the ESM algorithm would provide the best results among the442

studied approaches.443

• In very asymmetric noise condition SNRI ≫ SNRT (resp. SNRI ≪444

SNRT ), the FCL algorithm (resp. ICL) would provide the best results445

among the studied approaches.446
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• In the other cases, the AACLESM and GACL would be prefered if the447

best robustness is required. Trading off for computational performance,448

the F -AACLESM or F -GACL would be chosen in presence of strong449

corruption with asymmetric noise levels.450

6. Object tracking under low-light conditions451

In low-light conditions, an optical imaging system produces bad quality452

images (cf. figure 7) that can be modeled according to Alter et al. (2006) : the453

observed number of photons at one pixel is drawn from a Poisson distribution454

whose parameter is proportional to the average received intensity. Thus,455

tracking an object using gradient-based approach becomes a challenging task456

because the Poisson noise can severely corrupt the gradients of the images.457

In order to improve the tracking performance for this kind of data, one458

would try to lower the noise on the template by averaging several registered459

frames. This approach yields an asymmetric image alignment problem where460

the current image I is registered to the template T of higher quality. We now461

evaluate the usefulness of the proposed algorithms in such a context.462

6.1. Corpus and ground truth design463

We considered two sequences of 40 and 32 images captured with the same464

imaging device (samples are presenred on figure 7). In the first sequence one465

object of interest is selected and three are selected in the second sequence.466

This yields 136 independent observations of real shot noise associated to low-467

light imaging. For each sequence and object, a ground-truth is generated by468

using the following protocol:469

Figure 7: Samples of low-light image.
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• the object of interest is selected in the frame 1 of the sequence (which470

plays the role of the template image T ) through the use of a rectangular471

bounding-box. This location defines the true parameter µ̄(1) of the472

position of the object in the first image.473

• The ESM algorithm is run to align image t+1 and image 1 by initializing474

alignment parameter with µ̄(t) and by using 200 iterations which allows475

the algorithm to estimate parameter µ̄(t + 1). The ESM algorithm is476

used here because it has been shown to be the more efficient in presence477

of symmetric noise. The motion model used is 2D translation. We478

checked manually frame by frame that the ESM produced reasonable479

motion parameters.480

The generated ground-truth µ̄ is approximative. We will not use it to do481

accuracy evaluation. However, we can use it to evaluate convergence rate482

and frequency of convergence of the different algorithms with a sufficiently483

large error threshold.484

6.2. Evaluation methodology485

The following results are obtained by averaging performance obtained for486

many different motion initializations for each image and for each object of487

interest. In order to do this, we use a benchmark similar to the one presented488

in section 5. First, the corners associated to the object of interest in the cur-489

rent image t are computed by using the parameters µ̄(t). A perturbation δx490

drawn randomly from a zero-mean normal distribution of standard deviation491

σp = 10 is added to the spatial location x of each corner. The new locations492

of the corners yield the initial parameters µ
0
I(t) used to initialize the different493

alignment algorithms.494

Two setups are studied here :495

• Exp.6 : the algorithms are run using only the first image as a template.496

The level of noise is thus symmetric.497

• Exp.7 : each algorithm generates its template by averaging the five498

first frames of the video, after compensating the images in the same499

coordinate frame by using the estimated motion parameters.500

For each frame, 20 different motion initializations are generated which501

yield more than 2000 tests for each setup.502
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6.3. Results503

Figures 8 show the performance of the different algorithms in terms of504

mean RMS Point Error and frequency of convergence as a function of the505

iteration number for the Exp.6 and 7. The mean RMS Point Error corre-506

sponds to the mean euclidean distance between the four corners of the region507

of interest predicted by the tested algorithm and those of the ground truth.508

For the frequency of convergence, the convergence threshold is 4 pixels in509

terms of RMS Point Error.510
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Figure 8: Convergence rate in terms of mean RMS Point error relatively to the iteration number and frequency of convergence
relatively to the iteration number on a sequence of real images corrupted by shot noise. A threshold of 4 pixels on the RMS
Point Error is used to check the convergence of an approach. Left : only the first frame is used as a template (Exp.6). Right :
The five first frames are used to generate the template after motion compensation (Exp.7).
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The ESM algorithm and the new approaches ACL provide better results511

than the more conventional approaches FCL and ICL for the Exp.6 which512

confirms on real data the good behavior of such approaches under symmet-513

rical level of noise.514

The use of an averaged template (Exp.7) improves the performance of515

all approaches that use the gradients of T . This improvement yields the516

approaches AACL, GACL and their fast approximations to outperform the517

other approaches in terms of convergence rate and frequency of convergence.518

Remark on the accuracy of the approaches. In figure 8, after convergence,519

using only the first frame as the template (Exp. 6) has lower RMS point520

error than generating the template with the first five frames (Exp.7). The521

difference in accuracy observed under symmetric or asymmetric conditions522

are around 0.5 pixel. Because the images are very corrupted, it is difficult to523

check manually that the ground truth provides the position of the object with524

such a precision. Thus, there are two possible explanations for the difference525

in RMS Point Error at convergence :526

1. By reducing the noise injected to the system in the Exp.7, averaging527

yields results which are more accurate than without the averaging (in-528

accurate ground-truth).529

2. Because of a non perfect motion estimation, frame averaging in Exp.7530

introduces a slight blur on the template which yields a decrease of the531

accuracy of the approaches (blurred template).532

This analysis reveals that, when averaging frames, a trade off has to be made533

between noise and blur reduction.534

The averaging process was only introduced to illustrate the potential of535

the ACL formulation to register images in presence of noise level asymmetry.536

The study of using many frames to generate a high quality template is an537

interesting perspective, which is out of the scope of this paper.538

In both Exp.6 and Exp.7 the automatic-ACL approaches provide as ac-539

curate results as the best of the state-of-the art approach, while improving540

robustness and convergence rate under asymmetric conditions, thus showing541

their ability to estimate a relevant α on such real datasets.542

6.4. Illustration of tracking543

To illustrate the principle of tracking using an average template, figure 9544

presents the results of the approaches FCL, ICL, ESM and F -AACLESM (the545
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different heuristics AACL, GACL, F -AACLESM and F -GACLESM approaches546

provide similar results on those data) under real tracking conditions. As547

in Exp.7, each algorithm generates its template by averaging the five first548

frames of the video, after compensating the images in the same coordinate549

frame by using the estimated motion parameters. The motion parameters550

are initialized in each frame by those estimated in the previous frame. Each551

algorithm performs 30 iterations per image. The FCL approach fails to track552

the object of interest. The approach ESM looses the object of interest after553

the frame 20. The ICL approach accumulates tracking error and fails to track554

after the frame 25. The F -AACLESM approach is able to track the object555

during the whole sequence.556

Such an illustration shows under a realist context, the potentiality of the557

new Asymmetric approaches.558

7. Conclusion559

In this paper we used the Asymmetric Composition on Lie Group (ACL)560

formulation proposed by Authesserre et al. (2009) to provide new gradient-561

based image alignment methods that compute automatically the asymmetry562

parameter α. A theoretical analysis allowed us to identify that in presence563

of noise, the role of the asymmetry parameter α is to perform a trade-off564

involving two terms : the deterministic structural term and the random565

noise term. Three new approaches have been proposed, i.e. the MVACL,566

GACL and AACL. The MVACL approach is more of a theoretical interest567

as it ignores the structural term completely, in favor of the minimization of568

noise variance. The two other approaches GACL and AACL are heuristics569

based on a geometrical and an analytical interpretation of the problem, which570

were shown to estimate relevant values of α, yielding improvement in the571

robustness to asymmetric noise. Those heuristics have practical interest,572

since they are fully automatic and reach comparable performance as the573

MVACL for asymmetric noise, even though the later requires the knowledge574

of noise variances. An interesting perspective for a future work, would be to575

take into account this information to further improve the performances.576

The new methods introduce a computational overhead because of the577

need to compute α. To alleviate the computational burden, fast approxi-578

mations of the new methods have been introduced, which have comparable579

computational complexity as fixed-α state-of-the-art methods, but with bet-580

ter robustness in case of asymmetric noise levels.581
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Figure 9: Tracking performance of the FCL, ICL, ESM and F -AACLESM approaches on
a video captured under low-light conditions. The first five images are used to build an
average template. The dashed line rectangle corresponds to the ground truth location of
the object. The solid line rectangle corresponds to the tracking results of the different
algorithms after 30 iterations.
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The benefits of the new methods were studied in the case of image align-582

ment with L2 pixelwise errors. As done by Brooks and Arbel (2009) for the583

inverse compositional and the ESM methods, the proposed approach could584

be extended to more generic error metrics and motion models to fit particu-585

lar needs in various applications. We think their properties could be useful586

in applications where a slighty noisy template would be aligned to a highly587

noisy image under low-light condition (Alter et al., 2006).588

In this paper, we focused on the problem of noise related asymmetry. In589

applications such as super-resolution (Dijk et al., 2008), where the images590

to align can have different resolutions, the derivatives of the low-resolution591

frame is less reliable than the derivatives of the high resolution estimate. This592

problem of resolution asymmetry has been thoroughly discussed in (Dedeoglu593

et al., 2007) in term of bias on the estimation of the warp. However, the594

problem of the reliability of the image derivatives has not been tackled. We595

think that it is an interesting perspective for future developments, to merge596

those two sources of asymmetry in a single formulation.597
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Appendix A. Second-order approximation of the ACL objective601

function602

In the following we present the main properties used for the derivation of603

the second-order approximation of the ACL objective function (cf. eq. (21))604

under noise-free conditions.605

Lemma (Second-order linearization of the ACL objective function).

eα(v) = eα(0) +
1

2
(Jα(0) + Jα(v))v + O(||v||3) (A.1)

Proof. By developping (8) to second-order around v = 0, we have at each606

pixel xi:607

eα,i(v) = eα,i(0) + Jα,i(0)v +
1

2
vtHα,i(0)v + O(||v||3) (A.2)
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with Jα,i(0) the jacobian matrix and Hα,i(0) the Hessian matrix of eα,i at 0:

Hα,i(w) =
∂2eα,i(v)

∂v2

∣

∣

∣

∣

w

(A.3)

We also have:608

Jα,i(v) = Jα,i(0) + vtHα,i(0) + O(||v||2) (A.4)

Thus, by plugging (A.4) into (A.2), we obtain (A.1). This linearization is609

valid in noise-free as well as in noisy cases.610

Lemma (Jacobian equivalence along v∗).

J
nf
I ((1 − α)v∗)v∗ = J

nf
T (−αv∗)v∗ (A.5)

Proof. Using directional derivative along v∗, the assumption (20) and the611

exponential map properties (2) and (3), we have:612

J
nf
I,i((1 − α)v∗)v∗

=
∂Inf (W(µk ◦ exp((1 − α)v∗ + tv∗),xi))

∂t

∣

∣

∣

∣

t=0

=
∂T nf (W(exp(−αv∗ + tv∗),xi))

∂t

∣

∣

∣

∣

t=0

= J
nf
T,i(−αv∗)

∂(−αv∗ + tv∗)

∂t

∣

∣

∣

∣

t=0

= J
nf
T (−αv∗)v∗

(A.6)

613

Corollary.

Jnf
α (v∗)v∗ = J

nf
I ((1 − α)v∗)v∗ = J

nf
T (−αv∗)v∗ (A.7)

614

with the special cases:615

J
nf
I (v∗)v∗ = J

nf
T (0)v∗ (A.8)

J
nf
T (−v∗)v∗ = J

nf
I (0)v∗ (A.9)
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Proof. We have:616

Jnf
α (v∗)v∗ = (1 − α)Jnf

I ((1 − α)v∗)v∗ + αJ
nf
T (−αv∗)v∗. (A.10)

Using lemma A.5 into the previous equation to replace JT
nf (−αv∗)v∗ yields617

(A.7). The special cases are obtained for α = 0 and α = 1.618

Note that we generalize here the proof of (A.8) proposed by Benhimane619

and Malis (2007) to the generic ACL jacobian.620

Lemma (Linear approximation of the image jacobian).621

For γ ∈ [0, 1]622

JI(γv) = JI(0) + γ(JI(v) − JI(0)) + O(||v||2) (A.11)

Proof. By expanding JI,i(γv) to first-order around 0 we have:623

JI,i(γv) − JI,i(0) = γvt ∂2I(W(µk ◦ exp(v), xi))

∂v2

∣

∣

∣

∣

v=0

+ O(||γv||2) (A.12)

624

Lemma (Linear approximation of the α-ACL jacobian).

Jnf
α (v∗)v∗ = (αJ

nf
I (0) + (1 − α)Jnf

T (0))v∗ + O(||v∗||3) (A.13)

Proof.

Jnf
α (v∗)v∗ (A.7)

= J
nf
I ((1 − α)v∗)v∗

(A.11)
= (Jnf

I (0) + (1 − α)(Jnf
I (v∗) − J

nf
I (0)))v∗ + O(||v∗||3)

(A.8)
= (αJ

nf
I (0) + (1 − α)Jnf

T (0))v∗ + O(||v∗||3)

(A.14)

625
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Appendix B. Parametrization of homography626

In this section we present the homography parameterization of motion627

used in the experimental section.628

A 2D Homography is a transformation in the projective image plane P
2.

A homography can be represented by a 3 × 3 matrix H :

H =





1 + µ1 µ2 µ3

µ4 1 + µ5 µ6

µ7 µ8 1 + µ9



 . (B.1)

with µ = [µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9]
T in P , which is isomor-629

phic to SL(3), the Special Linear Group of dimension 3 (Benhimane and630

Malis, 2007) satisfying det(H) = 1.631

A group action W, fulfilling equations (4), (5) and (6) can be defined
from SL(3) to P

2. For H ∈ SL(3) and x = [x y 1]T ∈ P, we have:

W : SL(3) × P
2 7−→ P

2

(H,x) 7−→













µ1x+µ2y+µ3

µ7x+µ8y+µ9

µ4x+µ5y+µ6

µ7x+µ8y+µ9

1













(B.2)

Lie Algebra local reparameterization. For H around identity, H can be repa-
rameterized using the matrix exponential map:

H(v) = expm(
8

∑

m=1

vmGm) (B.3)

with for any matrix X:

expm(X) =
∞

∑

m=0

1

m!
(Xm) (B.4)

and v = [v1 v2 v3 v4 v5 v6 v7 v8]
T in the Lie Algebra P associated

to P . {Gm}m=1..8 are 3 × 3 matrix called Lie algebra generators. Under the
condition det(H) = 1, the generators must satisfy:

∀m, Tr(Gm) = 0 (B.5)
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where Tr is the trace of a matrix. The Gm are the vector basis of the tangent632

space to the Lie Group manifold around the identity parameter µ = 0.633

The Gm are chosen such that they convey a geometrical meaning. The
generators associated to translations are :

G1 =





0 0 1
0 0 0
0 0 0



 G2 =





0 0 0
0 0 1
0 0 0



 . (B.6)

Indeed, by applying (B.4) to G1 (resp. G2) we obtain the standard 3 ×
3 matrix of a translation along the x-axis (resp. y-axis). The generators
associated respectively to isotropic dilation about the origin and rotation
about the origin are:

G3 =





1
2

0 0
0 1

2
0

0 0 −1



 G4 =





0 −1 0
1 0 0
0 0 0



 . (B.7)

The generators associated to shear at 0 and 45 degrees are :

G5 =





1 0 0
0 −1 0
0 0 0



 G6 =





0 1 0
1 0 0
0 0 0



 . (B.8)

The generators corresponding to the projective transformations induced by
the parameters of the line at infinity are :

G7 =





0 0 0
0 0 0
1 0 0



 G8 =





0 0 0
0 0 0
0 1 0



 . (B.9)

Appendix C. Images Jacobian computation634

In this section we tackle implementation issues about the Jacobian matrix635

associated to an image.636

The Jacobian Matrix associated to I and T are

JI,i(0) =
∂I(W(µk ◦ exp(v),xi))

∂v

∣

∣

∣

∣

v=0

(C.1)
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and

JT,i(0) =
∂T (W(exp(v),xi))

∂v

∣

∣

∣

∣

v=0

. (C.2)

Using chain-rule, we can decompose these Jacobians as

JI,i(0) = MIMWML and JT,i(0) = MTMWML. (C.3)

1. MI (resp. MT ) is a 1× 3 matrix corresponding to the gradient of the
warped image I (resp. T ) with parameters µ

k (resp. 0):

MI =
∂I(W(µk,x))

∂x

∣

∣

∣

∣

xi

and MT =
∂T (x)

∂x

∣

∣

∣

∣

xi

(C.4)

Those gradients can be implemented using the Söbel operator.637

2. MW is a matrix corresponding to the Jacobian of the warp:

MW =
∂W(µ,xi))

∂µ

∣

∣

∣

∣

0

(C.5)

3. ML corresponds to the Jacobian of the Lie algebra reparameterization:

ML =
∂ exp(v)

∂v

∣

∣

∣

∣

0

(C.6)

MW and ML can be precomputed before running the alignment algorithm.638

MT can also be precomputed. That is why the inverse approach using only639

gradient of the template is computationally the most efficient of the ACL640

approaches. MI (and consequently JI,i(0)) has to be computed at each641

iteration.642

Particular case of homography. For the homography model

MW =





xT
i 0 −xix

T
i

0 xT
i −yix

T
i

0 0 0



 ∈ R3×9 (C.7)

ML = [[G1]v ... [G8]v] ∈ R9×8 (C.8)

where [Gm]v is the matrix Gm reshaped as a vector (in row major order) and643

xi are homogeneous image coordinates xi = [xi yi 1]T ∈ P
2.644
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