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A Coherent Computational Approach to
Model Bottom-Up Visual Attention

Olivier Le Meur, Patrick Le Callet, Member, IEEE,

Dominique Barba, Senior Member, IEEE, and Dominique Thoreau

Abstract—Visual attention is a mechanism which filters out redundant visual information and detects the most relevant parts of our visual

field. Automatic determination of the most visually relevant areas would be useful in many applications such as image and video coding,

watermarking, video browsing, and quality assessment. Many research groups are currently investigating computational modeling of the

visual attention system. The first published computational models have been based on some basic and well-understood Human Visual

System (HVS) properties. These models feature a single perceptual layer that simulates only one aspect of the visual system. More recent

models integrate complex features of the HVS and simulate hierarchical perceptual representation of the visual input. The bottom-up

mechanism is the most occurring feature found in modern models. This mechanism refers to involuntary attention (i.e., salient spatial

visual features that effortlessly or involuntary attract our attention). This paper presents a coherent computational approach to the

modeling of the bottom-up visual attention. This model is mainly based on the current understanding of the HVS behavior. Contrast

sensitivity functions, perceptual decomposition, visual masking, and center-surround interactions are some of the features implemented

in this model. The performances of this algorithm are assessed by using natural images and experimental measurements from an eye-

tracking system. Two adequate well-known metrics (correlation coefficient and Kullbacl-Leibler divergence) are used to validate this

model. A further metric is also defined. The results from this model are finally compared to those from a reference bottom-up model.

Index Terms—Computationally modeled human vision, bottom-up visual attention, coherent modeling, eye tracking experiments.

�

1 INTRODUCTION

VISUAL attention is one of the most important features of
the human visual system. Rather than speaking about

the usefulness of visual attention, which seems obvious, it is
worth lingering about its description. The first trial dates back
to 1890 when James [1] suggested that everyone knows what
attentions is. It is the taking possession by the mind, in clear and
vivid form, of one out of what seem several simultaneously possible
objects or trains of thought. In others words, visual attention
serves as a mediating mechanism involving competition
between different aspects of the visual scene and selecting the
most relevant areas to the detriment of others.

Nevertheless, our environment presents far more per-
ceptual information than can be effectively processed. In
order to keep the essential visual information, humans have
developed a particular strategy, first outlined by James.
This strategy, confirmed during the last two decades,
involves two mechanisms. The first refers to the sensory
attention driven by environmental events, commonly called
bottom-up or stimulus-driven. The second one is the
voluntational attention to both external and internal stimuli,
commonly called top-down or goal-driven.

Most recent computational models of visual attention can
be placed in two categories. A recent trend concerns a
statistical signal-based approach [2] which consists of
automatically predicting salient regions of the visual scene
by directly using image statistics at the point of gaze. In fact,
several studies have recently reported [3], [4], [5] that the
human fixation regions present higher spatial contrast and
spatial entropy than random fixation regions. These studies
show that human eyes movements are not necessarily
random but rather driven by particular features. The second
category consists of models [6], [7], [8], [9], [10], [11] built
around two important concepts: the Feature Integration
Theory (FIT) from Treisman and Gelade [12] and a neurally
plausible architecture proposed by Koch and Ullman [13].
The FIT suggests that visual information is analyzed in
parallel from different maps. These maps are retinotopically
organized according to locations in our visual field. There is a
map for each early visual feature. From this theory, several
frameworks for simulating human visual attention have been
designed. The most interesting one has been proposed by
Koch and Ullman [13]. Their framework is based on the
concept of saliency map which is a two-dimensional topo-
graphic representation of conspicuity for every pixels in the
image. Fig. 1 illustrates the general synoptic of their model. It
mainly consists of early visual features extraction, feature
maps building, and feature map fusion.

In this paper, a new bottom-up model based on the FIT and
the plausible architecture proposed by Koch and Ullman [13]
is described. Its purpose is to automatically detect the most
relevant parts of a color picture displayed on a television
screen. The general philosophy of this approach is to design a
biologically-inspired algorithm that performs better than
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conventional approaches. The proposed model is based on a

coherent psychovisual space from which a saliency map is

deduced. This space, well justified with psychophysic

experiments, is used to combine the visual features (intensity,

color, orientation, spatial frequencies...) of the image, that are

normalized to their individual visibility threshold. Accurate

nonlinear models simulating visual cells behaviors are used

to calculate the visibility threshold associated to each value of

each component. From this coherent psychovisual space, a

new way of calculating a saliency map is proposed.
The paper is organized as follows: Section 2 gives insight

into the natural mechanisms that allow us to reduce the

amount of visual information. Experiments are conducted

to record and track real observer’s eye movements with an

eye tracking apparatus. These experiments aim to build the

ground truth required to achieve a performance assessment

of the bottom-up model described here. This experiment is

presented in Section 3. The proposed coherent computa-

tional approach to model the bottom-up visual attention is

described in Section 4. In Section 5, the performances of this

model are evaluated, both qualitatively and quantitatively,

using relevant metrics. A particular saliency-based applica-

tion is then briefly described. Finally, the results are

summarized and some conclusions are drawn in Section 6.

2 THE NATURAL SELECTION OF THE VISUAL

INFORMATION

2.1 A Passive Selection

HVS acts as a passive selector, acknowledging some stimuli

but rejecting others. The first information reduction appears

in the retina in which the photoreceptors only process the

wavelengths of the visible light. The neural signal is then

treated by ganglion cells which are insensitive to uniform

illumination. This particular property is due to the spatial

organization of their receptive fields (RF). This fundamental

notion was first emphasized in the work of Hartline [33]: The

RF is defined as a particular region of the retina within which

an appropriate stimulation gives a relevant response. The RF

presents an antagonistic center-surround organization. The
center is roughly circular surrounded by an annulus. These
two regions provide an opposite response for the same
stimulation. This center-surround organization is responsi-
ble for our great sensibility to the contrast and to the spatial
frequency leading to the definition of Contrast Sensitivity
Function (CSF).

The responses stemming from the retina neurons are then
transmitted to the primary visual cortex. Hubel and Wiesel
who received the Nobel prize for medicine and physiology
in 1981 discovered that the RF’s structure of the cortical cells
is considerably different to the structure of the RF of retinal
and lateral geniculate nucleus (LGN) cells. The RFs of retinal
and LGN cells have a circular structure with a center-
surround organization whereas the cortical cells present an
elongated RF and respond best to a particular orientation
and to a particular spatial frequency. In addition, recent
studies [15], [16], [17], [18], [19], [20] have shown that the
cortical cell’s response can be influenced by stimuli outside
their classical RF. These contextual influences are mediated
by long-range connections linking cells with nonoverlap-
ping receptive fields. Studies by Kapadia et al. [19], [20]
show that the cell’s response can be greatly enhanced by the
presentation of coaligned, coorientated stimuli in the
neighborhood and increases with the number of appropriate
stimuli placed outside the CRF. Generally speaking, the
contour, feature linking [21], [23], [43], and texture segmen-
tation [22] are assumed to be in close relation with the long-
range connections.

2.2 An Active Selection

Human beings have a collection of passive mechanisms
lessening the amount of incoming visual information. For
instance, the signal stemming from the photoreceptors is
assumed to be compressed by a factor of about 130:1, before it
is transmitted to the visual cortex. Nevertheless, the visual
system is still faced with too much information. To deal with
the still overwhelming amount of input, an active selection,
involving eye movement, is required to allocate processing
resources to some parts of our visual field. Oculomotor
mechanisms involve different types of eye movements. A
saccade is a rapid eye movement allowing jump from one
location to another. The purpose of this type of eye move-
ment, occurring up to three times per second, is to direct a
small part of our visual field into the fovea in order to achieve
a closer inspection. This last step corresponds to a fixation.

Saccades are therefore a major instrument of the selective
visual attention. This active selection is assumed to be
controlled by two major mechanisms called bottom-up and
top-down control. The former, the bottom-up attentional
selection, is linked to involuntary attention. This mechanism
is fast, involuntary, and stimulus-driven. Our attention is
effortlessly drawn to salient parts in our visual field. These
salient parts consist of an abrupt onsets [25] or a local
singularity [12]. An image containing one green circle (called
target) located among a number of red circles (distractors) is a
classic example. The target is easily seen against the red
circles due to its local singularity (its local hue), no matter how
many distractors are present. The appearance of new
perceptual object consistent or not with the context of the
scene could also attract our attention [24], [26]. Several studies
have shown that observers tend to make longer and more
frequent fixations on such object [24].

The second control, top-down attentional selection,
refers to voluntary attention closely linked to the experience
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Fig. 1. Framework proposed by Koch and Ullman. Early visual features
are extracted from the visual input into several separate parallel
channels. After this extraction and a particular treatment, a feature
map is obtained for each channel. Next, the saliency map is built by
fusing all these maps.



of the observers and to the task they have in mind.
Compared to the bottom-up attentional selection, the top-
down mechanism, voluntary and task-driven, is slower.

3 EYE TRACKING EXPERIMENTS

3.1 Apparatus and Procedure

In order to track and record real observers eye movements,
experiments have been conducted using an eye tracker from
Cambridge Research Corporation. This apparatus is
mounted on a rigid headrest for greater measurement
accuracy (less than 0.5 degree on the fixation point).
Experiments were conducted in normalized conditions
(ITU-R BT 500-10) at a viewing distance of four times the
TV monitor height. Ten natural color images with various
contents have been selected. The quality of these pictures was
then degraded using different techniques (spatial filtering,
JPEG, JPEG200 coding...). Forty-six pictures were finally
obtained. Every image was seen in random order by up to
40 observers for 15 seconds each in a task-free viewing mode.
The collected data corresponds to the regular time sampling
(20 ms) of eye gaze on the monitor.

3.2 Human Fixation Density Map Computation

A fixation map, which encodes the conspicuous locations, is
computed from the collected data. For a particular picture
and for each observer, the samples corresponding to
saccades are filtered out. A data point is removed if the
number of data included in a squared window is below a
given threshold. The size of the window and the threshold
are functions of the viewing distance, the accuracy of the eye
tracker (0.25 degrees of visual angle) and the resolution of
the display (800� 600 pixels). In practice, the size of the
window and the threshold are, respectively, 9� 9 (corre-
sponding to 0.25 degrees of visual angle) and 5 (correspond-
ing to the number of data required in the previous defined
window).

All fixation patterns for a given picture are added together
providing a spatial distribution of human fixation (see
examples in Fig. 2). The resulting map is then smoothed

using a two-dimensional Gaussian filter. Its standard devia-
tion is determined according to the accuracy of the eye-
tracking apparatus. The result is a fixation density map [34]
which represents the observer’s regions of interest (RoI). This
is often compared to a landscape map [35] consisting of peaks
and valleys (see examples in Fig. 2).

3.3 Conclusions from Empirical Data

3.3.1 Coverage

Coverage has been previously defined by Wooding [34] in
the following terms: the coverage is a measure of the amount of
the original stimulus covered by the fixations. The coverage
value is therefore given by the ratio between the number of
fixated pixels and the number of inspected pixels. A
threshold, called T , is required in order to decide whether
a pixel is fixated or not.

The coverage value is assessed on the human fixation
density maps for three threshold values 0:25; 0:5; 0:75 and
for three viewing times (2s, 8s, and 14s). Table 1 gives the
results for three pictures (Kayak (see Fig. 3), Rapids (second
row of the Fig. 2), and ChurchandCapitol).

As expected, the coverage value increases with increas-
ing viewing time and decreasing threshold T . Moreover, the
coverage value is highly dependent on the picture content:
for picture Kayak, the coverage is equal to 21 percent for a
viewing time of 14s and for a threshold of 0.75 whereas, in
the same condition, the coverage is about 40 percent for
picture ChurchandCapitol. It is worth noticing that only a
small area of the pictures (on average 36 percent for the
three thresholds T for 14s of viewing time) has been fixated.
In fact, humans pursue to fixate areas of interest rather than
to scan the whole scene.

3.3.2 Bias toward the Central Part of Pictures

Fig. 2 shows the spatial distribution and the density of human
fixations. These results are coherent with a well-known
property of the human visual strategy. Observers have a
general tendency to stare at the central locations of the screen.
This tendency is not reduced with the viewing time: It can be
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Fig. 2. (a) The original picture, (b) the spatial distribution of human fixations for 14s of viewing time, (c) fixation density map obtained by convolved
the spatial distribution with a 2D Gaussian filter, and (d) highlighted human RoI (Regions of Interest) obtained by redrawing the original picture by
leaving in the darkness in the nonfixated areas.



shown that observers continue to focus on these areas rather

than to scan the whole picture. There are at least two plausible

explanations: The nonuniform distribution of photoreceptors

is a biological candidate. However, it seems more logical to

tackle this question by introducing a top-down or higher-

level explanation as proposed by Parkhurst et al. [14]. The

great majority of visually important information is tradition-

ally located in the central part of the picture frame.

Consequently, observers unconsciously tend to select central

locations in order to catch the potentially most important

visual information.

4 THE PROPOSED COMPUTATIONAL MODEL

The model proposed in this paper is based on the architecture

of Koch and Ullman. The model designed by Itti et al. [7] was

one of the first to take advantage of such architecture. It has

been chosen as a benchmark for the model presented here

and is therefore briefly described hereafter.
The first step of Itti et al.’s model consists of the extraction

of early visual features. The visual input is broken down into

three separate feature channels (color, intensity, and orienta-

tion). Each channel is obtained from Gaussian pyramids as in

[32]. This allows the computation of different spatial scales by

progressively applying a low-pass filter and subsampling the

visual features. In order to take into account the organization

of the visual cells, a center-surround mechanism based on a

Difference of Gaussian (DoG) is applied on each scale. The

resulting maps are then linearly summed across feature

channels to form the saliency map.
Although this model provides good results on several

types of picture, it contains arbitrary steps that are difficult

to justify with respect to the HVS:

. several normalization steps are applied before and
after the fusion step,

. each channel is normalized independently to a
common scale in order to be independent of the
feature extraction mechanisms, and

. there are strong links between the visual sensitivity
and the viewing distance. However, this has been
overlooked.

The proposed computational bottom-up model has been
developed bearing numerous properties of human visual
cells in mind. Three aspects of the vision process are
sequentially tackled, namely, the visibility, the perception,
and the perceptual grouping. The complete synoptic is
shown in Fig. 3 and described in the following sections.

4.1 Visibility Process

The visibility process simulates the limited sensitivity of the
HVS. Despite the seemingly complex mechanisms under-
lying the human vision, the visual system is not able to
perceive all information present in the visual field with the
same accuracy. A coherent normalization is first used to
scale all the visual data. A value of 1 represents a feature
which is just noticeable. All the normalized data is grouped
into a psychovisual space. This space is built from the
following set of basic mechanisms entirely identified and
validated from psychophysic experiments.

4.1.1 Transformation of the RGB Luminance into the

Krauskopf’s Color Space

There are two different types of photoreceptors in the retina:
cones and rods. As TV displays luminance levels not
corresponding to scotopic conditions (low light levels), rods
can be neglected. Cones form the basis of color perception
and work at photopic conditions. Cones are of three types:
L-cones, M-cones, and S-cones which are sensitive to long,
medium, and short wavelengths, respectively. They are
mainly located in the central part of the retina, called fovea,
which is 2 degrees in diameter. Both psychological and
physiological experiments give evidences to the theory of
early transformation in the HVS of the L, M, and S signals
issued from cones absorption. This transformation provides
an opponent-color space in which the signals are less
correlated. The principal components of opponent colors
space are black-white (B-W), red-green (R-G), and blue-
yellow (B-Y). There is a variety of opponent color spaces
which differ in the way they combine the different cone
responses. The color space proposed by Krauskopf was
validated from psychophysic experiments. These experi-
ments are based on the interaction between a color masking
signal and a color stimulus signal in term of differential
visibility threshold1 (DVT) of the stimulus. The color
orientations of the masking and stimulus signal, respectively,
for which the DVT value is minimum are determined. These
experiments have been made with still and time varying
stimulus. The color space is given by the relation (1):

A
Cr1

Cr2

0
@

1
A ¼ 1 1 0

1 �1 0
�0:5 �0:5 1

0
@

1
A L

M
S

0
@

1
A: ð1Þ
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1. The differential visibility threshold of a stimulus superimposed to a
background (masking signal) is defined as the magnitude required by the
stimulus to be just noticeable.

TABLE 1
Coverage Evolution in Function of Viewing Time

and of Picture Content



A is a pure achromatic perceptual signal whereas Cr1 and

Cr2 are pure chromatic perceptual signals.
During these experiments, the adaptation effects through a

mechanism of “desensibilization” [16] were taken into

account. While Krauskopf used only a temporal “desensibi-

lization” mechanism, a spatial “desensibilization” mechan-

ism was used here. Both methods produced the same result.

4.1.2 Early Visual Features Extraction

It was previously mentioned that visual cells can be

characterized by a radial spatial frequency and by orienta-

tion. It could therefore be interesting to group visual cells

sharing similar properties. The early visual features extrac-

tion performed by a perceptual channel decomposition

consists of splitting the 2D spatial frequency domain both in

spatial radial frequency and in orientation. This decomposi-

tion is applied to each of the three perceptual components.

Psychophysic experiments [17] show that psychovisual

spatial frequency partitioning for the achromatic component

leads to 17 psychovisual channels in standard TV viewing

conditions while only five channels are obtained for

chromatic component (see Fig. 3). Each resulting subband

or channel may be regarded as the neural image correspond-

ing to a population of visual cells tuned to a range of spatial

frequency and to a particular orientation.
The achromatic subbands are distributed over four

crowns noted I, II, III, and IV (see Fig. 3). Chromatic

subbands are distributed over two crowns noted I, II. The

main properties of these decompositions and the main

differences from a similar transform, called the cortex

transform [27], are a nondyadic radial selectivity and an

orientation selectivity that increases with radial frequency

(except for the chromatic components).

4.1.3 Contrast Sensitivity Functions

Contrast sensitivity functions (CSF) have been widely used to

measure the visibility of natural images components. In fact,

these components can be described by a set of Fourier function

andtheir amplitude. The visibility of a specific component can

be assessed by applying a CSF in the frequency domain. When

the amplitude of a frequency component is greater than a

threshold CT0, the frequency component is perceptible. This

threshold is called the visibility threshold, and its inverse

defines the value of the CSF at this spatial frequency. In the
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Fig. 3. Flow chart of the proposed computational model of bottom-up visual selective attention. It presents three aspects of the vision: visibility,
perception, and perceptual grouping. The visibility part, also called the psychovisual space, simulates the limited sensitivity of the human eyes and
takes into account the major properties of the retinal cells. The perception is used to suppress the redundant visual information by simulating the
behavior of cortical cells. Finally, the non-CRF and the saliency map building are achieved by the perceptual grouping.



approach presented here, CSFs are applied to each compo-
nents (A,Cr1,Cr2). A 2D anisotropic CSF designed by Daly is
applied on the achromatic component [31]. The CSFs of the
two color visual componentsCr1 andCr2 are modeled using
sinusoidal color gratings. Two 2D anisotropic functions are
obtained [28], [29], [30]. They are two low pass filters with a
cut-off frequency of about 5.5 cpd (cycle per degree) and
4.1 cpd for Cr1 and Cr2 component, respectively, and are
given in relations (2) and (3), respectively. They are functions
of the radial pulsation w (expressed in cpd) and the
orientation � (expressed in degrees).

SCr1
ð!; �Þ ¼ 33

1þ ð w5:52Þ
1:72

1� 0:27sinð2�Þð Þ; ð2Þ

SCr2
ð!; �Þ ¼ 5

1þ ð w4:12Þ
1:64
ð1� 0:24sinð2�ÞÞ: ð3Þ

These typical CSF show that the human eye is more sensitive
to chromatic components with frequencies up to 4-5 cpd.
Sensitivity rolls off at both higher and lower frequencies.

4.1.4 Visual Masking

Masking effect refers to the modification of the differential
visibility threshold CT0 of a stimulus due to the influences
of the context, called the masking signal [18]. The value CT0

of the DVT (without any masking effects) is modified into
CT by the masking effect. This modification is simply given
by the relation CT ¼ CT0 � T . When T > 1, the threshold
increases meaning that there is a masking effect. When
0 < T < 1, the threshold decrease corresponding to a
pedestal effect. The visibility of the stimulus is increased.
An illustration of the masking effect is shown in Fig. 4: CT
and CM are the magnitude of the target in the presence of
the masker and the contrast of the masker, respectively. CT0

is the contrast threshold measured using a CSF without
masking effects. Fig. 4a refers to a masker and a target
having similar properties (orientation and spatial frequen-
cies). Fig. 4b refers to different cues. When the contrast of
the masker varies, three regions can be defined (see Fig. 4):

. At low values of CM, the DVT remains constant. The
visibility of the target is not modified by the masker.

. When CM is close to CT0, the masker eases the
detection of the target by decreasing the contrast

threshold. This phenomenon is called facilitative or
pedestal effect.

. When CM increases, the target is masked by the
masker. The contrast threshold increases.

Most of the time, psychophysics experiments based on the
detection of simple signals (such as sinusoidal patterns) are
used to determine an analytic expression for the visual
masking. It is obvious that this is a strong simplification from
the intrinsic complexity of natural pictures. Nevertheless,
numerous applications (watermarking and video quality
assessment) are built around such principles with interesting
results. In the context of subband decomposition, three types
of masking (intrachannel masking, interchannel masking,
and intercomponent masking) can be defined.

Intrachannel masking occurs between signals having the
same features (frequency and orientation) and consequently
belonging to the same subband. It is the most important
masking effect. Intracomponent interchannel masking
corresponds to interaction between signals coming from
the same component but having different visual features
(orientation and spatial frequency). This masking effect is
weaker than the intracomponent intrachannel masking. So,
it will be neglected here. Finally, intercomponent masking
involves two different components, one for the masker,
another one for the stimulus.

. Intramasking: The function designed by Daly [31] is
used to model the intramasking effect for the achro-
matic component. The strength of this model comes
from its optimization which uses vast amount of
experimental results, even if the pedestal effect has
been overlooked. The variation of the visibility thresh-
old is given by:

T intrai;j;A ðx; yÞ¼ 1þ k1� k2� R
ð0Þ
i;j;Aðx; yÞ

��� ���� �s� �b� �1
b

; ð4Þ

where R
ð0Þ
i;j;c is a subband coming from the perceptual

decomposition. ði; j; cÞ represent, respectively, the

spatial frequencies range, the orientation index, and

the considered component ðA;Cr1; Cr2Þ. The super-

script of the letterR (in parenthesis) is used to number

each processing step of the model. ðx; yÞ is the

considered spatial location, k1 ¼ 0:0153, k2 ¼ 392:5,

s; b are constant per subband and given in [31].
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Fig. 4. Nonlinear transducer model of masking effect. When CM varies, three regions can be defined: 1) At low values of CM, the detection
threshold remains constant. The visibility of the target is not modified by the masker. 2) When CM tends toward CT0, the masker eases the detection
of the target by decreasing the visibility threshold. This phenomenon is called facilitative or pedestal effect. 3) When CM increases, the target is
masked by the masker. Its contrast threshold increases. (a) The target and the masker have similar properties. (b) They have different properties.



The function designed by Le Callet [28] was used

to model the intramasking effect for the chromatic

components. The analytic form of the model given in

relation (5) takes into account the pedestal effect:

T intrai;j;Crðx; yÞ ¼
1þ akRð0Þi;j;Crðx; yÞk þ bkR

ð0Þ
i;j;Crðx; yÞk

2

1þ ckRð0Þi;j;Crðx; yÞk
:

ð5Þ

The parameters a, b, and c are a function of ði; j; CrÞ.
For example, the masking parameters fa; b; cg for
the channel I of the component Cr1 (respectively,
Cr2) are equal to f0:45; 0:06; 1:22g (f0:72; 0:22; 2:78g,
respectively).

. Interchannel masking: Experimental data clearly
shows that there are two different masking effect
behaviors. They are functions of the type of the
component of the masker and of the type of the
stimulus. In some cases, depending on the subbands
involved, a facilitation effect lowering the DVT,
appears before the masking effect takes place. It
corresponds to a first model (Model A). In the other
cases, only a pure masking effect is observed. It
corresponds to a second model (Model B). The
analytic form of theses models:

Model A:

T interi;j;C ðx; yÞ ¼
1þ akRð0Þi0;j0;C0ðx; yÞk þ bkR

ð0Þ
i0;j0;C0ðx; yÞk

2

1þ ckRi0;j0;C0ðx; yÞð0Þk
:

ð6Þ

Model B:

T interi;j;C ðx; yÞ ¼ a� bexp �ckR
ð0Þ
i0;j0;C0ðx; yÞk

� �
: ð7Þ

As before, the parameters a, b, and c are function of
ði; j; CrÞ and depend on the model type (A or B).

The final DVT is given by CT ¼ CT0 � T , where T is
defined in (8) for a particular channel ði; jÞ and for a
particular component C:

Ti;j;Cðx; yÞ ¼ T intrai;j;C ðx; yÞ
Y
i0

Y
j0

Y
C0
T interi0;j0;C0!i;j;Cðx; yÞ: ð8Þ

The term T interi0;j0;C0!i;j;Cðx; yÞ expresses a particular interaction

produced by a particular location ðx; yÞof the channel ði0; j0Þof

the component C0 on the channel ði; jÞ of the component c.

Table 2 gives all the masking interactions that have been

integrated in the proposed model. Finally, the modification of

the DVT is the product of all the variations of the visibility

threshold stemming from both the intrachannel intracompo-

nent masking and from the interchannel intercomponent

masking. All the subbands are then weighted by the

appropriate modulation value of the DVT:

R
ð1Þ
i;j;Cðx; yÞ ¼

R
ð0Þ
i;j;Cðx; yÞ

Ti;j;Cðx; yÞ
ð9Þ

with C ¼ fA;Cr1; Cr2g. These mechanisms transform the
image into a fully psychovisual space. This space consists of

all the visual features normalized to their own differential
visibility threshold. It is thus possible to manage visual
features stemming from different modalities. For instance,
chromatic information could be directly compared, in term
of visibility, to achromatic ones.

4.2 Perception

The second part of the model described here deals with
perception. The goal is to determine the achromatic compo-
nents necessary for the calculation of the saliency map. Two
mechanisms are involved to detect these components.

4.2.1 Achromatic Reinforcement by Chromatic Context

Color is one of the major visual feature attractors (see [40] for a
recent review of early visual features) and can efficiently
guide the attention to the most salient areas of our visual field.
Any computational models of the visual attention should take
advantage of this visual dimension. An original and a
plausible way to use the color information is proposed. It
consists of increasing the magnitude R of each site of the
achromatic channels by accounting for the locally oriented
smooth gradient of the chromatic low frequencies. In others
words, the saliency of an achromatic structure will be
enhanced if this structure is surrounded by a high color
contrast (the spatial coordinates ðx; yÞ have been omitted):

R
ð2Þ
i;j;A ¼ R

ð1Þ
i;j;A 1þ �Cr1

�Cr1
þ �Cr2

�Cr2
ð Þ; ð10Þ

where �Cr1
and �Cr2

control the strength of the contribution
of the Cr1 and Cr2 component (respectively). These
strengths are set to 1 by default.

�Cr1
and �Cr2

are the locally oriented smooth gradient
computed over a small area around the current position. This
area is elongated in accordance to the prefered orientation of
the subband. Fig. 5 highlights the interest of this process. The
relevancy of the first fixation points is greatly enhanced by
using the two psychovisual chrominance signals.

4.2.2 Center/Surround Suppressive Interaction

To deal with a large amount of visual information, the visual
system uses attentional mechanisms to select relevant areas
and to reduce the redundancy of the incoming visual
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TABLE 2
Intra and Intermasking Considered in This

Bottom-Up Model (a Couple Y ; Z½ � Means that Channel Y
Decreases or Increases the Differential Visibility Threshold

of Signal Containing in Channel Z)

Example of the bold couple: channels II; n of the Cr1 component
(crown II with orientation n) can be masked by channel I of the
A component.



information. The former mechanism concerns the bottom-up

and top-down behaviors, previously mentioned. The latter
mechanism is probably the most straightforward common
feature shared by all the visual cells. In order to form an
economical representation of the visual world, the particular
oriented center/surround organization of the cortical cells is

really important. For instance, center/surround organiza-
tions imply that visual cells are insensitive to uniform
illumination. The responses of such cells are efficiently
simulated by a difference-of-Gaussian function.

This mechanism is thus simulated by subtracting an
inhibition contribution to the current subband location as
proposed in (1). The inhibition contribution is obtained
from the convolution of a normalized weighting function

called !�x;�y with the current signal in the subband ði; jÞ.

R
ð3Þ
i;j;A ¼ H R

ð2Þ
i;j;A �R

ð2Þ
i;j;A � !�x;�y

� �
ð11Þ

with

!�x;�yðx; yÞ ¼
1

jjHðDoG�x;�yðx; yÞÞjj1
HðDoG�x;�yðx0; y0ÞÞ; ð12Þ

HðzÞ ¼ z if z � 0
0 if z < 0;

�
ð13Þ

and jj:jj1 denotes the L1 norm. ðx0; y0ÞT is obtained by
translating the original coordinate system by ðx0; y0ÞT and
rotating it by �i;j:

x0

y0

� �
¼ cos�i;j sin�i;j
�sin�i;j cos�i;j

� �
x� x0

y� y0

� �
: ð14Þ

4.3 Perceptual Grouping

Perceptual grouping refers to the human visual ability to
group and bind visual features to organize a meaningful

higher-level structure. There are numerous mechanisms
involved in the perceptual grouping. One of the most
common is the facilitative interactions that have been
reported in numerous studies. In most cases, these
interactions appear outside the CRF along the preferred
orientation axis and are maximal when center and
surround stimuli are iso-oriented and coaligned [15], [19]
(due to the long-range horizontal connections). In other
words, the activity of cells is enhanced when the stimuli
within the CRF and a stimuli within the surrounding area
are bound to form a contour. This facilitative interaction is
usually termed contour enhancement or contour grouping.
Most of the recent computational models are based on the
Gestalt principles of colinearity and proximity [42], [43].
Fig. 6 gives an illustration of contour grouping due to the
long-range grouping interactions. Contour grouping is
simulated using two half butterfly filters B0

�i;j;A
and B1

�i;j;A
.

Butterfly filters are obtained by a directional term Di;jðx; yÞ
and a proximity term generated by a circle Cr blurred by a
Gaussian filter Gðx; yÞ. They are given by:

Bi;j;Aðx; yÞ ¼ Di;jðx; yÞ � Crðx; yÞ �Gðx; yÞ ð15Þ

with

Di;jðx; yÞ ¼ cosð�=2
� ’Þ if � � < ’ < �

0 otherwise

�
ð16Þ

and ’ ¼ arctanðy0x0Þ, where ðx0; y0ÞT is obtained by (14). The
parameter � defines the opening angle of the Butterfly
filters. It depends on the angular selectivity of the
considered subband.

The Butterfly filter Bi;j;A is then decomposed into the half
butterfly filters B0

i;j;A and B1
i;j;A. For every oriented

subbands ði; jÞ and location ðx; yÞ, we compute the facil-
itative factor:

fisoi;j;Aðx; yÞ ¼
L1
i;jðx; yÞ þ L0

i;jðx; yÞ

max �; jL1
i;jðx; yÞ � L0

i;jðx; yÞj
� � ð17Þ

with � a constant (saturation), L0
i;jðx; yÞ ¼ R

ð3Þ
i;j;Aðx; yÞ �

B0
i;j;Aðx; yÞ, and L1

i;jðx; yÞ ¼ R
ð3Þ
i;j;Aðx; yÞ �B1

i;j;Aðx; yÞ.
Finally, the subband stemming from this facilitation step,

noted R
ð4Þ
i;j;A, is obtained by weighting the subband R

ð3Þ
i;j;A by

a factor �isoðx; yÞ depending on the ratio of the local

maximum of the facilitative factor fisoi;j ðx; yÞ and on the

global maximum of this factor computed on all subbands

LE MEUR ET AL.: A COHERENT COMPUTATIONAL APPROACH TO MODEL BOTTOM-UP VISUAL ATTENTION 809

Fig. 6. The long-range grouping interactions for a preferred horizontal
orientation are often represented by the above picture [21]. The filtering
kernel of a Butterfly filter favorably simulates this spatial distribution.

Fig. 5. The first fixation points (five for the first row and 10 for the

second) obtained by using only the component A (left) and the three

components (A, Cr1, Cr2) (right) on the picture Kayak. When the

number of conspicuous points is decreased, the importance of the color

component on the saliency ordering is important. The scan path is more

relevant when the color component is used.



having the same radial spatial frequency range. The

resulting subband is thus given by

R
ð4Þ
i;j;Aðx; yÞ ¼ R

ð3Þ
i;j;Aðx; yÞ 1þ �isoðx; yÞfisoi;j;Aðx; yÞ

� �
ð18Þ

with

�isoðx; yÞ ¼
maxðx;yÞ f

iso
i;j;Aðx; yÞ

� �
maxj maxðx;yÞ f

iso
i;j;Aðx; yÞ

� �� � : ð19Þ

4.4 Saliency/Density Map Building

A two-dimensional saliency map S is computed by

summing directly the output of the different achromatic

channels. During eye tracking experiments, participants

have to stare at the center of the screen prior to stimulus

onset. In order to deal with this constraint, the saliency map

can be favorably weighted by a anisotropic Gaussian with

standard deviations ð�ex; �eyÞ centered on the location where

the participant was fixating at the beginning of the

experiments (ðx0; y0Þ represent the picture’s center coordi-

nates in (20)). The resulting saliency map, called S0, is then

given by (20):

S0ðx; yÞ ¼ Sðx; yÞexp �ðx� x0Þ2

2�ex
2
� ðy� y0Þ2

2�ey
2

 !
: ð20Þ

The standard deviation values ð�ex; �eyÞ have been obtained

from an optimization routine conducted over 18 pictures. The

average correlation coefficient between human fixation

density maps and the predictions was maximized during

the optimization. The average correlation coefficient evolu-

tion is plotted in Fig. 7. Three types of weighting function are

considered: uniform weighting, isotropic Gaussian and

anisotropic Gaussian. As expected, the uniform weighing

function gives the worst results. Gaussian functions improve

results with an advantage for the anisotropic Gaussian

function. The best results are obtained for a standard

deviation related to the x-axis equal to �ex ¼ 2:5 degrees
(correlation coefficient close to 0.71). The standard deviation
related to the y-axis �ey is obtained by calculating a ratio
depending on the picture’s size on the standard deviation �ex:

�ey ¼ �ex �
Rx

Ry
IndðRx < RyÞ þ

Ry

Rx
IndðRx > RyÞ

� �
; ð21Þ

where Rx and Ry are the picture’s size (width and height,
respectively) expressed in degree of visual angle and IndðÞ
is the indicatric function. Several remarks can be made
regarding the weighting function. First, the weighting
function is centered on the screen in order to deal with
one of the constraints encountered during the previous eye
tracking tests. Second, the context of this study concerns the
detection of the most visually important regions of a picture
displayed on a TV screen. The center of the screen is then a
natural point that attracts the attention. This weighting is
not applied to all the fixations points because the goal is to
simulate the behavior of an average observer. Moreover, the
scan path is idiosyncratic, meaning that the sequence of
fixation points is different for each of the participants. These
precisions were necessary to unravel the role of the
anisotropic Gaussian weighting function. It is not a
bottom-up mechanism. It is rather an experimental con-
straint encountered during the eye tracking experiments.

5 PERFORMANCE EVALUATION

Computational bottom-up model performance can not be
readily assessed and there is no real consensus on any
assessment method. Nevertheless, several objective methods
have already been proposed. They depend on both the type of
assessed images (synthetic or natural) and the knowledge of
the ground truth coming from eye tracking experiments. In
addition, there are two major ways to conduct the objective
assessment. The first one consists in comparing the first
fixations of the scan paths whereas the second compares two
fixation density maps [14], [34], [36], [37], [38], [39].
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Fig. 7. Linear correlation coefficient as a function of standard deviations of the Gaussian function used to weight the predicted saliency map
computed over 18 pictures. The best performances are achieved by anisotropic Gaussian weighting. For �ex ¼ 2:5 degrees, the correlation coefficient
is equal to 0.71



In this paper, the performance of the proposed model is

evaluated both qualitatively and quantitatively. The former

method refers to qualitative assessments involving human

appreciations with all underlying drawbacks. The latter

deals with objective methods. As the saliency ordering of

the fixation points is not of interest here, the objective

methods have to yield a unique scalar value representing

the effectiveness of the proposed model. Two objective

metrics (the linear correlation coefficient and the Kullback-

Leibler divergence in the continuity of the work initiated in

[41]) have been used. Further analysis is also performed in

order to determine the contribution of the visual masking

and the achromatic reinforcement by chromatic context.

5.1 Qualitative Evaluation

Qualitative or subjective evaluation provides an insight into

the effectiveness of the proposed model. First of all, it is

important to point out that the way to display the results can

affect judgment. For example, a logarithmic function lessen-

ing the high values is applied on the ground truth in order to

favor the display. Fig. 8 shows the ground truth and the

results for three pictures. The similarity between the predic-

tions and the experimental results is good. The most relevant

areas are well detected.

5.2 Quantitative Evaluations

Quantitative or objective evaluations are conducted follow-

ing two different methods (the linear correlation coefficient

and the Kullback-Leibler divergence). A comparison with

the model of Itti is also conducted. The degraded pictures
used during the psychovisual tests do not produce
significant modifications both in the human and in the
predicted saliency map. Therefore, only the 10 original color
pictures are used to perform the assessments.

5.2.1 The Linear Correlation Coefficient

The linear correlation coefficient, noted cc and given by (22),
is widely used to compare two images for applications such
as image registration, object recognition, and disparity
measurement.

The linear correlation coefficient measures the strength
of a linear relationship between two variables. It has some
interesting advantages. The first one is its capacity to
compare two variables by providing a single scalar value.
The correlation coefficient has a value between �1 and þ1.
When the correlation is close to þ=� 1, there is an almost
perfectly linear relationship between the two variables.

ccðp; hÞ ¼ covðp; hÞ
�p�h

: ð22Þ

p and h represent, respectively, the human fixation density
map and the predicted fixation density map. covðp; hÞ is the
covariance value between p and h. �p and �h are the standard
deviation for the human and the predicted density map,
respectively.

The proposed approach outperforms the reference model
in all tested configurations. The first assessment concerns
the computation and the comparison of the correlation

LE MEUR ET AL.: A COHERENT COMPUTATIONAL APPROACH TO MODEL BOTTOM-UP VISUAL ATTENTION 811

Fig. 8. From left to right: the original picture, the highlighted human RoI and the highlighted prediction RoI. Predicted and human RoI are highlighted

while the nonfixated areas remain in darkness.



coefficients (listed in Table 3) for both models. The average
correlation coefficient is improved by 0:07 (0:44� 0:37)
when the weighting function is disabled. This means that
the proposed mechanisms are of interest. Even though a
simple t-test does not reveal a significant improvement (the
probability that a significant difference exist between the
means of two sets is only about 0:7), the Kullback-Leiblur
metric will give the same tendency.

The performances of the two purely bottom-up models
are less relevant than a basic Gaussian function centered on

the center of the image (called weighting in Tables 3 and 4).

To deal with both the experimental constraint encountered

during the eye tracking experiments and the natural

attraction toward the center of the picture, the predicted

saliency maps are weighted by this Gaussian function.
When the weighting function is enabled, the improvement is

less important than the previous one but more significant

regarding the t-test value (p > 0:02). The gain is about 0:04

on average (see Table 3) regardless of the viewing time (see

Table 4 in which the gain is shown in the last column). As

Parkhurst et al. emphasized in [14] (they applied a

weighting function on the prediction stemming from Itti’s

model), the efficiency of the two approaches is improved by

the application of a weighting function: The average

correlation of the proposed model (Itti’s model) is multi-

plied by a factor 1:59 (respectively, 1:78). The benefit yielded

by the weighting function is due to two reasons: The first

one concerns the aforementioned constraint of the experi-

ments whereas the second deals with a top-down property.
Nevertheless, the linear correlation computed between

the predicted and the human saliency map for the

particular picture Parrots2 is equal to 0:59. As the regions

of interest of the picture Parrots are not centered, the
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TABLE 4
Average Correlation Coefficients and Kullback-Leibler Values for Different Pictures and Different Viewing Times

Several predictions are compared: The weighting function, the proposed model, and Itti’s model when the weighting is enabled. The gain yielding by
the proposed model is given when Itti’s model is taken as a reference.

TABLE 3
Correlation Values for Different Pictures

The degree of similarity is given for different predictions: The weighting function, the proposed model, and the reference model (Itti’s model) with/
without eccentricity function for a viewing time of 14s.

2. This picture is not used in the different simulations because
predictions coming from Itti’s model are not available.



weighting function only yields a correlation value of 0:28. It
means that the influence of the weighting function has to be
interpreted with care.

Compared to predictions obtained by the weighting
function solely, the average correlation is increased by
3 percent (relative to Itti’s model). The gain of the proposed
model is about 6 percent (Table 3).

Finally, Itti’s model seems to be more relevant on pictures
that contain a relatively small and unique region of interest.
For instance, it is more relevant for pictures Kayak and
Sailing1. For pictures Patin and Lighthouse2, both models
yield the same results. This relevancy on such pictures is
probably due to the feature normalization operator used by
Itti. This iterative operator, as described in [44], discards all
feature maps that presents over extended regions of the input
image and enhances the feature maps containing isolated
salient locations. This operator, directly inspired by physio-
logical and psychological studies of long-range cortico-
cortical connections, is likely to be the most interesting
element of Itti’s model. The behavior of the reference model is
therefore better when there are fewer salient locations in the
image. The reference model is less relevant when the picture
contains numerous salient locations.

5.2.2 The Kullback-Leibler Divergence

The Kullback-Leibler divergence is used to compute the
degree of dissimilarity between two probability density
functions. Two probability density functions are deduced
from the human saliency maps and the predicted saliency
maps. The Kullback-Leibler divergence, noted KL, is given
by (23):

KLðpjhÞ ¼
X
x

pðxÞLog pðxÞ
hðxÞ

� �
ð23Þ

with h the probability density from human results, and p the
predicted probability density function. When the two

probability densities are strictly equal, the KL value is zero.

The performance evaluation mainly consists in comparing

the two approaches when the weighting function is enabled.

The proposed model exhibits better performances than the

reference model (see Table 4). On average, the gain is greater

than 10 percent regardless of the viewing time. As the

Kullback-Leibler metric is very sensitive to dissimilarities,

these results show that the proposed approach yields less

erroneous data than the reference model. These measure-

ments confirm the results obtained with the linear correlation

coefficient. Notwithstanding the average performance dif-

ference, the reference model outperforms the proposed

approach for the picture Kayak. For a viewing time of 14s,

the performance difference is about 0:152. The t-test value (see

Table 5) shows a difference (p > 0:18) for a viewing time of

14s. For a viewing time of 4s, there are no significant

differences between the two models.
Another way to objectively evaluate the performances of

this model consists in computing the average dissimilarity

over all the observers. This could be obtained by computing

the Kullback-Leibler divergence between the probability

density function for one observer and the probability density

function obtained for all participants. This computation is

iterated over the set of observers. The average of the

Kullback-Leibler values, called KLavg is given in (24). The

behavior of an average observer can then be identified: a high

KLavg value means that the visual strategy of all observers is

different. In others words, the dispersion inter-observers is

high. A weak value means that the visual strategy of all

observers is similar. The minimum value is zero and will be

obtained only if all observers stare at the same locations

during the same amount of time.

KLavg ¼
1

N

X
i

KLðhijhÞ ð24Þ
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TABLE 5
Comparisons between the KLavg Values and the KL Values Stemming from the Proposed Model and from the Reference Model

Results are given for two viewing times.



with h the global probability density function from the data

for all the participants, hi the probability density function

for the i observer, N the number of observers.
Table 5 gives theKLavg values and the results coming from

the proposed model for different pictures. The temporal

evolution of theKLavg value is noticeable. When the viewing

time increases, theKLavg value decreases. This means that the

visual strategies of the observers are the closest. A possible

explanation could refer to a property of human visual

strategy previously observed: Rather than scanning the

whole scene, humans concentrate on areas of interest.

Therefore, when the viewing time increases, the contribution

of spatial locations that are visited with a very low frequency

decreases.
It is also interesting to compare the divergence value,

noted KLðpjhÞ with the KLavg value. KLðpjhÞ is computed

from the predicted probability density and the global

probability density. Three cases can be considered:

. KLðpjhÞ � KLaverage: When the two values are similar,
there is a good pairing between the predicted density
functions and the set of density functions obtained for
each observer. For examples, for a viewing time of 14s,
the pictures Churchandcapitol and Vautour538 fall in
this category.

. KLðpjhÞ < KLaverage: When the value associated to
the prediction is smaller than the KLavg value, the
most important part of the predicted density is well
paired with the set of density functions obtained for
each observer. In others words, the most conspic-
uous areas of the picture are well predicted. The
predicted saliency map is almost fully included in
the saliency map produced by the observers.

. KLðpjhÞ > KLaverage: When the value is greater than
the KLavg value, there is a weak pairing between the
predicted density and the set of density functions

obtained for each observer. Differences stem from
the spatial locations of the most important areas in
the two density functions. There are major dissim-
ilarities between the two sets.

Therefore, in the light of the results summarized in Table 5,
the proposed model succeeds in predicting the spatial
locations of the most important areas. There is no major
dissimilarity in average. It is in accordance with the
previous results listed in Table 3.

5.3 Contribution of Major Computational Steps of
the Proposed Model

In this section, the contributions of the most important
biologically plausible mechanisms proposed in this model
are evaluated. The weighting function is disabled. Therefore,
the contributions yielded from each step are not biased by a
higher level mechanism. Table 6 gives both the contributions
of the visual masking (called VM) and the contributions of the
achromatic reinforcement (called AR) regarding the linear
coefficient correlation. For the two viewing durations, the
best performances are obtained by the model including the
two aforementioned mechanisms. The evaluation of the
perceptual grouping is not assessed because its contribution
is only relevant to particular pictures having high contrasted
straight lines.

The visual masking contribution is considered first. The
visual masking is a bottom-up mechanism and the influences
of such mechanism are the strongest just after the stimulus
onset, prevailing against the higher-level mechanisms. Once
information from the visual input has been acquired through
the bottom-up mechanism, top-down influences are exerted,
involving goal-oriented mechanisms. It is likely that the gain
yielding from the visual masking decreases with the viewing
time. Nevertheless, it is noticeable that the gain obtained by
this mechanism is the same for the two viewing times. On
average, the gain is about 0:04 (the improvement is about
9 percent). These results indicate that the allocation of
attention depends on the visual features throughout the
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TABLE 6
Contribution of the Visual Masking (VM), the Achromatic Reinforcement (AR) as Regard to the CC Value



experiments. In other words, eye movements are influenced
by stimulus properties not only after its onset but even for a
longer viewing time. It is consistent with the work of
Parkhurst et al. [14].

The improvement is similar (þ0:03), as far as the

achromatic reinforcement is concerned, for the two proposed

viewing times. The gain of the achromatic reinforcement is

weak on average. Nevertheless, this plausible biologically

mechanism is still interesting for several reasons.
First, the predicted saliency maps for the pictures Kayak

and Bikes are really improved. These two pictures contain

color regions of interest which become more conspicuous as

the proposed mechanism is applied. In addition, the

correlation coefficient is either improved or unmodified

for all other pictures. For example, the linear correlation

coefficients of the pictures Vautour538, Patin (this picture is

shown in the last row of the Fig. 8) and Sailing1 are not

improved. In fact, these pictures contain little color

information. It is clear that the efficiency of the achromatic

reinforcement can only be assessed on pictures featuring

relevant color information.
The second point concerns the metric used here. The

linear correlation coefficient is a global metric computed
over the complete picture, meaning that the impact of a

local improvement is lessened by the unmodified remaining

values. The relevance of this reinforcement is therefore

difficult to measure. Nevertheless, as it was previously

mentioned, the achromatic reinforcement is interesting,

especially on the first fixation points as illustrated in Fig. 5.

This reinforcement allows to concentrate the first fixation

points on the most interesting parts of a color picture.

5.4 An Example of Saliency-Based Application

A specific application of this model is given. In order to
facilitate the image viewing on devices with limited display
sizes, the saliency map can be a very useful tool. In the
proposed approach, the most important salient parts of the
picture are cropped to fit the limited display size. This
proposed solution eases the browsing, as illustrated by Fig. 9.

Two thumbnail views are depicted: The first one is
obtained by a conventional approach consisting of down-
sampling the original picture. The second approach is the
proposed saliency-based application. The saliency maps,
corresponding to the different pictures and obtained by the
proposed model, are shown on the last row of Fig. 9.

6 CONCLUSION

The automatic determination of the most visually relevant
areas in a picture is important for many applications, such
as image and video browsing, watermarking, image, and
video coding and quality assessment.

A coherent computational model of visual selective
attention is described in this paper. It aims at building a
saliency map for a still color picture, indicating the most
relevant spatial locations. The architecture of the proposed
model is similar in spirit to the Koch and Ullman architecture.
The fundamental difference concerns the normalization of all
the early visual features. They are all normalized by their own
visibility threshold such that a value of one refers to a just
noticeable data. The visibility threshold can be modified by
the context, and this is incorporated by the modeling of visual
masking. This coherent normalization allows for the expres-
sion of all the visual features in term of visibility. The saliency

LE MEUR ET AL.: A COHERENT COMPUTATIONAL APPROACH TO MODEL BOTTOM-UP VISUAL ATTENTION 815

Fig. 9. Example of a saliency-based image browsing. On the left, the results coming from a conventional approach are given. On the right, the results

coming from an approach using a saliency map are shown. The last row gives the saliency maps corresponding to the different pictures.



valuesareobtainedfromthispsychovisualspace.Aparticular
strategy is proposed based on the achromatic structure
reinforced by color information.

The proposed model is compared both qualitatively and

quantitatively to a reference saliency map. This reference, also

called the “ground truth,” is built from the data collected byan

eye-tracking apparatus. Two well-known metrics, the linear

correlation coefficient and the Kullback-Leibler divergence,

are used to conduct the qualitative comparison. These

coefficients are 0.71 and 0.46, respectively. The proposed

model outperforms the model of Itti in all the tested

configurations.
This model only considers the determination of the most

important achromatic structure. It would be therefore

possible to improve its performances by including more

combinations of the early visual features. For example, the

definition of a chromatic saliency map may enhance the

prediction of the most relevant areas of the picture. As all the

early visual features have been coherently normalized, it

would be straightforward to implement other combination

strategies. In addition, psychophysic experiments could be

performed in order to establish several parameters that have

been arbitrarily set. Finally, the framework presented here is

limited to still color images. This model could be further

improved by including the time dimension in order to process

complex dynamic sequences.
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