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CRANIOFACIAL RECONSTRUCTION AS A PREDICTION

PROBLEM USING A LATENT ROOT REGRESSION MODEL

MAXIME BERAR , FRANCOISE M. TILOTTA, JOAN A. GLAUNÈS AND YVES

ROZENHOLC

Abstract. In this paper, we present a computer-assisted method for facial re-

construction. This method provides an estimation of the facial shape associated

with unidentified skeletal remains. Current computer-assisted methods using a

statistical framework rely on a common set of extracted points located on the

bone and soft-tissue surfaces. Most of the facial reconstruction methods then con-

sist in predicting the position of the soft-tissue surface points, when the positions

of the bone surface points are known. We propose to use Latent Root Regression

for prediction. The results obtained are then compared to those given by Prin-

cipal Components Analysis linear models. In conjunction, we have evaluated the

influence of the number of skull landmarks used. Anatomical skull landmarks are

completed iteratively by points located upon geodesics which link these anatomi-

cal landmarks, thus enabling us to artificially increase the number of skull points.

Facial points are obtained using a mesh-matching algorithm between a common

reference mesh and individual soft-tissue surface meshes. The proposed method

is validated in term of accuracy, based on a leave-one-out cross-validation test

applied to a homogeneous database. Accuracy measures are obtained by comput-

ing the distance between the original face surface and its reconstruction. Finally,

these results are discussed referring to current computer-assisted reconstruction

facial techniques.

Keywords: Facial Reconstruction; Anatomical Landmarks; Surface Reg-

istration; Geodesics; Latent Root Regression

1. Introduction

In forensic medicine, craniofacial reconstruction refers to any process that aims to

approximate the morphology of the face from the shape of the skull [1]. It is usually

considered when confronted with an unrecognisable corpse and when no other iden-

tification evidence is available. This reconstruction may hopefully provide a route

to a positive identification. In recent years, computer-assisted techniques have been

developed following the evolution in medical imaging and computer science. As
1
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presented in the surveys in [2, 3, 4], new approaches are now available with reduced

performance timeline and operator subjectivity.

Reproducing the stages of manual methods, the first machine-aided techniques

fitted a skin surface mask to a set of interactively-placed virtual dowels which were

on the digitised model of the remains [5, 6, 7]. Latter techniques have moved away

from the manual techniques and two kind of methods can be distinguished based

on the representation of bone and soft-tissue volumes. The first techniques aim to

conserve the continuous nature of the skull and soft-tissue surfaces. Estimates of

the face are obtained by applying space-deformations to couples of identified bone

and soft tissue surfaces, called reference surfaces. These deformations are learned

between the surface of the dry skull and the surfaces of the reference skull. They

can be parametric (e-g B-splines) [8, 9], implicit using variational methods [10, 11]

or volumetric [12, 13]. Depending on the method, the final estimated face can be

either the deformed face whose reference skull is the nearest to the dry skull [12, 13]

or a combination of all the deformed soft-tissue surfaces [9, 14].

The second type of approach chooses to represent individuals using a common set

of points. As the position of the corresponding points for all the individual can be

summarized as variables in a table, the main idea is then to use statistics to decipher

the relation between the skull and the soft-tissue. The common set of points can

either be anatomical landmarks [6, 15] or semi-landmarks located following a point

correspondence procedure [16, 18]. Semi-landmarks are defined as points that do

not have anatomical meanings but that match across all the samples of a data set

under a reasonable model of deformation [19]. The larger the set of points, the closer

this surface representation is to a real surface.

Apart from the practical constraint of the number of anatomical landmarks that

an expert can define and extract, there is no justification to a chosen number of

points. Indeed, the information given by the position of a skull anatomical land-

marks is double. First, there is the geometric information given by the coordinates

of the point. Then, the “anatomic” information is provided by the measuring of

tissue thickness made at this point. This information is available for a limited num-

ber of points, due to the difficulties in localisation and in thickness computation.

However, the geometric information given by the position of the point can be com-

pleted by automatic methods of semi-landmarks extraction. The second part of the

data analysis framework consists in learning relationships between the soft-tissue

variables and the bone variables. Facial reconstruction consists of predicting the
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positions of the soft-tissue points knowing the positions of the set of skull land-

marks. In this regression problem, the skull points are entries of a regression model

while the face points are the model output. Typically, a linear modelisation is used

to fit this regression based on Principal Components Analysis (PCA) for example

[14, 15, 16], following the work made in the statistical atlas field. However, several

linear regression methods have been developed, some sharing the use of PCA. For

example latent variables regression methods such as Latent Root regression [20, 21]

are designed to take the presence of variable colinearity into account, namely the

positions of the skull landmarks and of the face semi-landmarks.

In this paper, we propose a facial reconstruction technique using Latent Root

Regression, before comparing the results given to those obtained by a PCA model.

In conjunction, we question the number of skull landmarks necessary. Basing our

first experimentation on skull anatomical landmarks extracted by an expert, we

will iteratively add supplementary mathematical skull semi-landmarks following the

point correspondence technique described in [22], which relies on the geodesic paths

between the landmarks to define new landmarks.

The paper is organised as follows. The material and method are presented in

Section 2: Section 2.1 presents the material on which this study has been carried out.

Section 2.2 and Section 2.3 focus on resolving the point correspondence problem,

describing the two methods used to obtain the two subject-shared description of

the bone and soft-tissue surfaces. Section 3 presents the statistical methods used:

the building and use of a statistical shape model and the multivariate Latent Root

Regression method. Section 4 shows the results obtained by the different models

and discusses the influence of the number of skull landmarks and of the statistical

method chosen.

2. Material and method

2.1. Material. This study was performed using whole head and skull surface meshes

extracted from whole head CT scanners for a project on facial reconstruction at

Paris Descartes University. The head CT-scan database of healthy people build for

this project is composed of several type of data: head CT-scans, triangulated and

closed surfaces covering the skull and the face, soft-tissue measurements at prede-

fined skull landmarks [23, 24]. These anatomical skull landmarks were manually

located on each CT Scan according to classical methods of physical anthropology
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(13 midpoints and two sets of 13 lateral points). This database, and the processes

performed on it, are described in detail in Tilotta et al. 2008.

In the framework of this study, we focus on a group of 47 European female patients

aged from 20 to 40 years. As properties such as age, gender and ancestry can

be determined by anthropological examination [25], we choose to build statistical

models on a homogeneous database following these criteria. In our case, the 85

subjects of the database were distributed according to sex and age group (20-40

years, 40-65 years) with age groups determined so as to take ageing into account.

Women aged from 20 to 40 years correspond to the largest group of the database.

Body weight is another factor that affects facial form [26]. In our case, none of the

47 women has a Body Mass Index (BMI) superior to 30. 8 subjects are underweight

(BMI < 19), 34 subjects correspond to a normal weight (BMI: 19-24) and 5 subjects

are overweight (BMI: 14-30).

The entries of our database will consist of left or right halves of each surface.

The skull and the face do not have symmetric shapes, but the relationship between

these shapes do not depend on the side of the head. The plan minimising the

distances to the anatomical midpoints has been chosen as an artificial boundary

between the right and left part of the shapes. The next step is to extract points

which correspond to the same places on the different individuals, with respect to

this symmetry constraint.

Figure 1. Extracted landmarks and semi-landmarks for the skull ([22])

2.2. Point correspondence procedure for the bone surface. The anatomi-

cal landmarks located by the expert (Figure 1,A) establish a first correspondence
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between the skulls. Following the scheme presented in [22], we define a set of trian-

gular connections between these anatomical landmarks. For each pair of connected

points, we can extract a geodesic between these points. Geodesics are defined to

be the shortest path between points on the curved spaces of the shape surfaces (see

Figure 1,B). As the shape surface between two landmarks is different from a sphere,

theses geodesics are unique with high probability. At this step, a gross template

of curbs on the surface between the landmarks is built. We then can define new

landmarks as the midpoints of each geodesic. These landmarks are used to build

new geodesics as seen in Figure 1,C and a more dense triangulation is then derived.

The process is iterated to form a dense geodesic triangulation with associated semi-

landmarks. The obtained structures form meshes, which share the same structure

for each individual, and implicitly solve the point correspondence problem. More-

over, the defined structure is symmetric: the two entries (left and right) of the

database share a common substructure and set of midpoints (Figure 1,D). Due to

numerical instabilities, two methods of geodesics computation on surface meshes

have been used: The Surashky algorithm [28] and the Fast Marching Algorithm al-

gorithm [29] implemented by Peyre in the Geowave library. For two iterations of this

procedure, the results show three sets of skull landmarks for each individual: the 26

original landmarks (13 midpoints), a second set composed of 55 points added by the

first iteration of the procedure (10 midpoints) then completed with 164 points (24

midpoints). For more iteration, the point correspondence step is confronted with

degenerated triangles - i.e. segments or points - in the zones where the anatomical

landmarks are close to each other.

2.3. Point correspondence procedure for the soft-tissue surface. For the

soft-tissue surface, no landmarks are located. Moreover measures of tissue thick-

ness are not provided. Instead of facial points analogous to the anatomical skull

points, we extract for each individual a set of semi-landmarks which are neither re-

ally dense nor sparse. Working on the “half” surfaces previously defined, the point

correspondence procedure registers a reference mesh (see Figure 2,A) on the individ-

ual soft-tissue surface (see Figure 2,B) resulting in a deformed reference mesh (see

Figure 2,C). The mesh used as the reference mesh corresponds to the face region of

the head mesh modelled by F. Pighin [27], where the density of vertices is greater

in zones with high bending than in zones with low bending. The registration is

made computing an elastic deformation between the reference mesh and soft-tissue

surfaces of the database. The deformed meshes of each entry of the database have
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Figure 2. Mesh-matching points correspondence procedure : (A)

reference mesh (B) Soft-tissue surface (C) Deformed reference mesh

Figure 3. Distance card from the vertices of the soft-tissue surface

mesh to the deformed reference mesh. Right: color scheme associated

to the distance values from 0.0 mm (blue) to 4.0 mm (red)

the same number of vertices (1741 for the mesh of a half face). The assumption of

semi landmarks is then made: each vertex of the deformed reference meshes matches

the same point for every individual. The 3D to 3D meshes matching algorithm used

is a modified version of Szeliski algorithm [30].

This dissimilarity between the soft-tissue surface meshes and the reference meshes

have consequences. The distances from the vertices of the deformed reference mesh
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to its associated soft-tissue surface mesh are null. But, the distances from the ver-

tices of the soft-tissue mesh surface to the deformed reference mesh are not null,

as seen in Figure 3. The highest distances (larger than 3 mm) correspond to parts

of the soft-tissue surfaces which do not have corresponding regions in the reference

surface. Other distances correspond to regions like the forehead or the cheeks where

the registration suffers from the low density of the semi-landmarks reference mesh.

Vertices with no direct counterparts can be as far as 2 mm from the surface defined

by the deformed reference mesh. Measures of the error introduced during this point

correspondence are influenced by the large distances generated by the lack of cor-

respondence on the boundaries. The individual mean of the distances ranges from

0.54 mm to 2.66 mm. However, the median which correspond to the middle sample

of the ordered samples, is by definition less influenced by the presence of a small

number of high value outliers. Individual distance medians range from 0.17 mm to

0.34 mm. The mean median of distances is 0.22 mm (with standard deviation of

0.04 mm).

3. Statistical Methods

3.1. Statistical Frameworks. The variables x̃i are obtained from the positions

of the N skull points. The variables ỹi are obtained from the positions of the L

soft-tissue points :

x̃i = [Sx
1 S

y
1 Sz

1 · · ·S
x
N S

y
N S

y
N],(1)

ỹi = [Fx
1 F

y
1 Fz

1 · · ·F
x
L F

y

L Fz
L].(2)

Two geometricaly averaged templates x̄ and ȳ are computed and the data centred :

xi = x̃i − x̄,(3)

yi = ỹi − ȳ.(4)

The datatables X and Y, of size n × 3N and n × 3L, encompass the variables

corresponding to the n centred samples xi and yi of the learning database. Consider

the matrix Z = [XY] formed by merging data tablesX andY and perform Principal

Component Analysis on Z. The result of this PCA is a correlation-ranked set of

statistically independent modes of principal variations aj. These principal modes or

components are in turn vectors of 3D coordinates (of size 3(N+L)) defined as linear

combinations of points position. These vectors capture the variations observed over

all subjects in the database and are the eigenvectors of the matrix tZZ associated
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to the eigenvalues λi sorted such as λ1 ≥ · · · ≥ λi ≥ · · · ≥ λN+L ≥ 0.

λiai =
tZZai.(5)

Every entry zi in the database can now be represented as a weighted linear combi-

nation of these principal components :

zi =
m∑

j=1

bij aj,(6)

where bij is the weight attached to sample i and component j. Each eigenvector ai

obtained with PCA for which λi > 0 can be decomposed as the juxtaposition of two

vectors ai = [vi wi], with vi ∈ ℜ3N and wi ∈ ℜ3L. Each part xi and yi associated

to the entry zi can be represented in the model sharing the same weights bij and

the 3D coordinates vi and wi of the vectors of the principal components :

xi = x̃i − x̄ =
m∑

j=1

bijvj,(7)

yi = ỹi − ȳ =

m∑

j=1

bijwj.(8)

3.2. Best Model Fit. For facial reconstruction, we seek the best model fit of the

PCA-model, i.e. the weights b0j of the model the nearer from the centred measured

skull landmarks x0 = x̃0 − x̄, which are the only points known. The problem is

resolved finding successively each weight b0j and removing its contribution to the

skull landmarks :

b̂0j = argmin
b0j

||x0j−1 − b0jvj||
2,(9)

x0j = x0j−1 − b0jvj,(10)

with x00 = x0.

The solution is given by the projection of the residual centred skull x0j landmarks

upon the vector vj :

b̂0j =
< x0j,vj >

||vj||2
.(11)

and the facial reconstruction obtained is:

ỹi = ȳ +
m∑

j=1

b̂0jwj.(12)
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3.3. Latent Root Regression. Latent Root Regression (LRR) is also a linear

regression method. The multiresponse linear regression model for centred data is

defined as :

Y = XB+ E,(13)

where B is a 3N×3L matrix of regression coefficients and E is a noise matrix of size

n× 3L. The elements of the matrix E are assumed to be centred with EE = ~0 with

covariance matrix Σ. Given a new set of centred skull landmarks x0, an estimate of

y0 will be:

ŷ0 = x0B̂.(14)

where B̂ is an estimate of B.

LRR is similar to Partial Least Square (PLS) regression or Principal Component

Regression (PCR). It originates from chemiometrics were a small number of pre-

dictors must predict a great number of output. It is then particulary adapted to

the ratio between the 245 skull landmarks and the 1741 face points. Multiresponse

Latent Root Regression gives an estimate of the regression matrix coefficients using

Principal Components Analysis. Single response Latent Root Regression [21] uses

the same vectors vi as the statistical shape model to estimate B. As these vectors

are not necessarily orthogonal, an iterative procedure build upon the first latent vari-

able is needed (see Vigneau and Qannari [20] for details). It results in a sequence

of r orthogonal vectors ṽi which enables us to compute regression coefficients B̂,

following the formula :

B̂ =

r∑

i=1

ṽi
tṽi

tṽi
tXXṽi

tXY.(15)

The prediction of the vector ŷ0 is then given by

tŷ0 = tx0

r∑

i=1

ṽi
tṽi

tṽi
tXXṽi

tXY.(16)

4. Results

4.1. Validation. The validation of the proposed statistical methods for craniofacial

reconstruction is obtained by a leave-one-out cross-validation procedure. In turn,

a sample is removed from the database and used as a test case. The remaining

samples are used to create the statistical model. The reconstruction procedure is

applied to the test sample and a reconstruction error computed. Each sample is
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composed of two couples, left and right, of soft-tissue and bone surfaces while skull

points of each couple are used as separate entries. The resulting predicted surfaces

for the half of the face can then be compared with the skin surface of the test case

representing the home truth.

A quantitative reconstruction error is performed by calculating the distances be-

tween every point on the reconstructed skin surface and the measured skin surface of

the test case. Other criteria for assessing the resemblance between the reconstructed

and the original face surfaces can be chosen. On the one hand, exterior experts can

judge the resemblance between the two shapes offering a subjective evaluation of the

results [15, 31]. However, this kind of evaluation needs the reconstruction process

to be more complete than the prediction of the shape of surfaces, for example by

including a virtual make-up step. On the other hand a selection of specific measure-

ments can be made between landmarks of the bone and tissue surfaces (for examples

of such anthropological distances see [31]). As our methodology chooses to use semi-

landmarks instead of landmarks located by an expert, such a type of measurement

will in our case be very dependent from the point correspondence step. However,

the local repartition of the distance error can be computed for each semi-landmark

providing distance maps which give the prediction error for each semi-landmark.

Another point-to-surface error can be computed: the distance between the points of

the skin surface of the test case and the reconstructed skin surface. As it has been

observed during the evaluation of the mesh-matching procedure, the dissimilarity in

densities of the meshes overestimates the error and the median of the distances is a

good way to take these problems into account. Subsequently, reconstruction errors

will denote the mean distance between every point on the reconstructed skin surface

and the measured skin surface of the test case.

4.2. Results. The leave-one-out cross validation procedure described previously

was performed on the currently available database resulting in 47 test cases. As

the database is composed of half parts of the bone and skin surface, we can use as

much as 91 components for the prediction of the soft-tissue surface. A first degree of

freedom is taken away by the data average. The other limiting factor of the number

of components is the number of skull points. The numbers of coordinates of the

known points are 65 (N0), 220 (N1) and 688 (N2), which in the first case is less than

the size of the learning base.
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Figure 4. Mean reconstruction errors

The reconstruction errors for the first 64 components are presented in Figure 4

for the varying number of points and following the statistical methods presented in

sections 3.2 and 3.3. For the first method, the reconstruction errors decrease greatly

for the first parameters until a minimal value is achieved, then the reconstruction

errors increase lightly. The minima of the mean reconstruction errors are 2.07±0.78

mm (N0), 1.95 ± 0.73 mm (N1), 1.90 ± 0.72 mm (N2)) and are achieved for 10

components (N0,N1) or 12 components. For LRR models, reconstruction errors

follow another behaviour: reconstruction errors increase greatly after the optimal

number of components. The minima of the mean reconstruction errors are 1.69±0.40

mm achieved for 7 components (N0), 1.44±0.36 mm achieved for 14 components (N1)

and 1.39± 0.26 mm achieved for 15 components (N2). For all models, the increase

in the number of skull points corresponds to a decrease in the reconstruction error.

It also results in the increase in the number of selected components. The numbers

of skull semi-landmarks are defined by the initial configuration of the mesh linking

the anatomical landmarks. Improvements to the point correspondence procedure of

the skull semi-landmarks will enable more points to be obtained as well as trying to

find the optimal number of skull semi-landmarks. The minima of the reconstruction

error for the LRR models are a half millimetre below the minima obtained for the

PCA models. The selection of the number of components for the model has not

the same consequences for the two methodologies. The reconstruction error for the
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maximum number of components in PCA models is near the minimal error whereas

for LRR models the validation of the number of components must be carried out.

Figure 5. histogram of the individual reconstruction errors for N2 points

The model with the best results is the LRR model with N2 points with 15 com-

ponents. For this number of components, the individual errors range from 1.02 mm

to 2.16 mm. Figure 5 (left) shows the histogram of the individual reconstruction

error. For comparison purpose, the histogram of the reconstruction errors for the

best PCA model is shown Figure 5 (right). The individual errors range from 1.07

mm to 4.45 mm. An example of facial reconstruction is presented in Figure 6. The

resulting spatial maps of the quality of the reconstruction procedure can be seen in

Figure 7. The distance card from the predicted points toward the original surface

has a mean error of 1.08 mm (left). For this case, the highest reconstruction errors

are located on the superior part of the forehead and on the lips. This part of the

forehead corresponds to a zone with no skull landmarks. The position of the lips

is influenced by the mouth overture, where variations occur during the acquisition.

Similar remarks can be made concerning the more localised error in the regions of

the nose and of the eyes.

For the optimal component number, we calculate mean and standard deviation

for each predicted point of the mask. The mean of the point errors correspond to

the reconstruction error (1.39 mm) and the standard deviation by points is then

1.02 mm. The resulting spatial maps of the quality of the reconstruction procedure

for the optimal number of parameters can be seen in Figure 8 for the local mean

and Figure 9 for the local standard deviation. The facial area with the highest

reconstruction error (3 mm) corresponds to the boundary between the neck and
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Figure 6. Example of reconstructed complete face (left) and refer-

ence (right)

Figure 7. Distance cards of a reconstruction: distribution of esti-

mation errors over the surface (A) full frontal: predicted (left) refer-

ence(right) (B) profile: predicted (left) reference (right). The color

plot shows the errors from 0.0 mm (blue) to 4.0 mm (red).

the chin and is an artifact of the point correspondence step. There is no explicit

correspondence to fix the limits of the mask in these zone. Others regions where the

prediction error is high (2 mm to 3 mm) are the masseter region and the tip of the

nose. These regions have few skull-landmarks and the bones do not support the soft-

tissue for a large part of the cheeks. The regions with the smallest errors (0.5 mm

to 1 mm) are concentrated towards the middle of the face, a part where the number

of skull landmarks is high and where the inter-subject correspondence between the
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face meshes is more constrained. Figure 10 shows the distance map obtained for

the best PCA model. The repartition of the error is similar with a greater amplitude.

5. Discussion

We compare our results to those of [15] and [9]. Among reconstruction tech-

niques, the technique described in [15] is close to the PCA model reconstruction

techniques described here, with a supplementary deformation phase after the statis-

tical prediction. The study is conducted on a database of 118 samples and use 57

landmarks for prediction. The number of face points obtained is likely to be high

as the face meshes presented seem to tend towards surfaces. The reconstruction

error corresponds roughly to our point-to-surface reconstruction errors. The mean

reconstruction error observed is 1.14 mm with a standard deviation of 1.04 mm.

The highest reconstruction errors (4 mm) are located in the chin and eye regions.

Then, the region of the cheeks and the nose contains reconstruction errors of up to

2 mm, with a notable exception of the tip of the nose which is predicted separately.

Regarding the smaller database and difference in the points correspondence step,

our method achieves similar results with a generally simpler methodology. Concern-

ing the distribution of the error on the face, we share similar zones in the cheeks

and the nose whereas the chin and eye regions show smaller errors. The quality

of prediction in the latter regions is more susceptible to be influenced by the point

correspondence step of the soft-tissue surfaces.

The technique developed in [9] is based on the use of continuous surface and the

study conducted on 20 samples. The mean reconstruction error is 1.9 mm with a

standard deviation of 1.7 mm. The largest reconstruction errors (2-3 mm on average)

occurs on the nostrils and masseter region. We surpass those results, however based

on a smaller database. We can add that the regions with large reconstruction errors

coincide once more.

A local method of facial reconstruction proposed by [23] combines prediction ob-

tained on surface patches, delimited by landmarks. The study has been performed

on two regions: the nose region and the chin region. Local mean reconstruction

errors of 1.40 ± 0.25 mm (nose) and 1.51 ± 0.67 mm (chin) occur for our method.

The results presented in this report outperform these estimations with a mean re-

construction error of 0.99 mm, which motivates us to consider more local procedure

in the reconstruction process.
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Figure 8. Mean of the local error. The color plot shows the distri-

bution over the surface from 0.0 mm (blue) to 3.0 mm (red).

Figure 9. Standard deviation of the local error.The color plot shows

the distribution over the surface from 0.0 mm (blue) to 3.0 mm (red).

Figure 10. Mean of the local error for PCA model. The color plot

shows the distribution over the surface from 0.0 mm (blue) to 3.0 mm

(red).
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6. Conclusion

We proposed a statistical method for 3D computerised forensic facial reconstruc-

tion, based upon Latent Root Regression. In conjunction, we have evaluated the

influence of the number skull landmarks used. This method was based on an homo-

geneous database described in [24]. As with most techniques based on a data analysis

framework, the presented method relies on the use of a common set of points for the

description of the individuals. In this set of points, anatomical skull landmarks are

completed iteratively by points located upon geodesic curbs linking the anatomical

landmarks. It enables us to artificially increase the number of skull landmarks. Fa-

cial landmarks are obtained using a mesh-matching algorithm between a common

reference mesh and the individual soft-tissue surface meshes.

The regression problem of predicting the positions of the semi-landmarks of the

soft-tissue surface knowing the positions of the skull landmarks has been resolved

using two methodologies: the building of a linear regression model, based on PCA

and the use of Latent Root Regression. The accuracy of the reconstructions made

by the methods was measured by leave-one-out cross-validation. First these results

show the impact of an increased number of skull landmarks for the accuracy of the

error computation of the reconstruction for both statistical methods. On this same

set of couples of points, the LRR model shows better results whatever the number

of components and the number of points. These results were discussed in regard

to other facial reconstruction methods and performs comparatively to these other

methods.

Some extensions can be proposed to the reconstruction method. First of all, hav-

ing a larger database will increase the flexibility of the model. The more surface

examples the model has, the better it learns the relationship between the two sur-

faces. Secondly, improvements of the correspondence steps will greatly benefit the

reconstruction process. Improvement in the geodesics point correspondence method

will help define an optimal number of skull landmarks. Improvements in the point

correspondence step for the face will reduce the disparity observed in the computa-

tion of the distances between the reconstructed and the reference surface. Lastly an

automatic extraction of the anatomical landmarks from the skull would make the

complete reconstruction pipeline automatic.



FACIAL RECONSTRUCTION METHOD USING LATENT ROOT REGRESSION 17

References

[1] C. Wilkinson, Computerized forensic facial reconstruction: A review of current systems, Foren-

sic Science, Medicine, and Pathology, 1 (2005) 173-177.

[2] T. Buzug, Special issue on computer assisted craniofacial reconstruction and modelling: Edi-

torial, J. Computing and Information Technology 14 (2006) 1-6.

[3] J. G. Clement, M. K. Marks, Computer-Graphic CranioFacial Reconstruction, Academic

Press, San Diego, 2005.

[4] S. De Greef, G. Willems, Three-dimensional cranio-facial reconstruction in forensic identi-

fication: latest progress and new tendencies in the 21st century, J. Forensic Sci. 50 (2005)

12-17.

[5] R. Evenhouse, M. Rasmussen, L. Sadler, Computer-aided forensic facial reconstruction. J.

Biocomm. 19 (1992) 22-28.

[6] P. Vanezis, M. Vanezis, G. McCombe, T. Niblett, Facial reconstruction using 3-D computer

graphics, Forensic Sci. Int. 108 (2000) 81-95.

[7] A.W. Shahrom, P. Vanezis, R.C. Chapman, A. Gonzales, C. Blenkinsop, M. L. Rossi, Tech-

niques in facial identification: computer-aided facial reconstruction using a laser scanner and

video superimposition, Int. J. Legal Medicine 108 (1996) 194-200.

[8] A. Kermi, I. Bloch, M.T. Laskri, A non-linear registration method guided by b-splines free-

form deformations for three-dimensional facial reconstruction, Int. Review on Computers and

Software, 2 (2007) 609-619.

[9] D. Vandermeulen, P. Claes, D. Loecks, S. De Greef, G. Willems, P. Suetens, Computerized

craniofacial reconstruction using CT-derived implicit surface representations, Forensic Sci. Int.

159 (2006) S164-S174

[10] A. Mang, J. Müller, T.M. Buzug, A multi-modality computer-aided framework towards post-

mortem identification, J. Computing and Information Technology 14 (2006) 7-19.

[11] A. Mang, J. Müller and T.M. Buzug, Soft-tissue segmentation in forensic applications, in:
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P. Bailet and A. Ollier, A fully three-dimensional method for facial reconstruction based on

deformable models, J. Forensic Sciences 42 (1997) 653-661.

[13] L.A. Nelson and S.D. Michael, The application of volume deformation to three dimensional

facial reconstruction: a comparison with previous technique, Forensic Sci. Int. 94 (1998) 167-

181.

[14] P. Tu, R. Book, X. Liu, N. Krahnstoever, C. Adrian and P. Williams, Automatic face recog-

nition from skeletal remains, in: Proceedings Conference on Computer Vision and Pattern

Recognition (CVPR 2007), IEEE Computer Society, Hilton Head, SC, USA. (2007) pp.1-7

[15] P. Claes, D. Vandermeulen, S. De Greef, G. Willems and P. Suetens, Craniofacial reconstruc-

tion using a combined statistical model of face shape and soft tissue depths: methodology and

validation, Forensic Sci. Int. 159 (2006) S149-S158



18 BERAR ET AL.

[16] M. Berar, M. Desvignes, G. Bailly, and Y. Payan, 3D semi-landmarks-based statistical face

reconstruction, J. of Computing and Information Technology 14 (2006) 31-43.

[17] M. Berar, M. Desvignes, G. Bailly and Y. Payan, 3d meshes registration: Application to

statistical skull model, In: Proceedings Conference on Image Analysis and Recognition, (2004)

pp 100-107.

[18] K. Kähler, J. Haber and H.-P. Seidel, Reanimating the dead: Reconstruction of expressive

faces from skull data, In: ACM Transactions on Graphics (SIGGRAPH 2003 Conference

Proceedings), (2003) pp: 554-561.

[19] F. L. Bookstein, Landmark methods for forms without landmarks: morphometrics of group

difference in outline shape, Med. Image Analysis 1 (1997) 225-243.

[20] E. Vigneau and M. Qannari, A new algorithm for latent root regression analysis, Computa-

tional Statistics & Data Analysis 41 (2002) 231-242.

[21] R. Gunst, J. Webster and R. Mason, A comparison of least squares and latent root regression

estimator, Technometrics 18 (1976) 75-83.

[22] Y. Wang, B. Peterson and L. Staib. Shape-Based 3D Surface Correspondence Using Geodesics

and Local Geometry, in: Proc. Int. Conf. on Computer Vision and Patern Recognition, Vol.

2 (2000) pp. 644-651.

[23] F. Tilotta et al., Statistical Facial reconstruction by tree functional regression on surfaces,

in: Proc. of the third Mediterranean Academy of Forensic Sciences Congress, Porto, Portu-

gal,2007.

[24] F. Tilotta, F. Richard, J. Glaunès, et al. Construction and analysis of a head ct-scan data-

base for craniofacial reconstruction. Technical Report 00278579, MAP5, UMR CNRS 8145,

University Paris Descartes, http://hal-descartes.archives-ouvertes.fr/hal-00278579/fr/, 2008.

[25] K. Reichs, Forensic anthropology in the 1990s. Am. J. Forensic Med. Path. 13 (2) (1992)

146-153.

[26] J.M. Starbuck, R.E. Ward, The affect of tissue depth variation on craniofacial reconstructions,

Forensic Sci. Int. 172 (2007), 130-136.

[27] F. Pighin, R. Szeliski, D.H. Salesin, Resynthesizing facial animation through 3D model-based

tracking, in: Proc. Int. Conf. on Computer Vision, vol. 1, (1999) pp 143-150.

[28] V. Surazhsky, T. Surazhsky, D. Kirsanov, et al. Fast exact and approximate geodesics on

meshes, in: Proc. of ACM SIGGRAPH 2005, Vol 24 (3), 2005.

[29] J. Sethian, Level sets methods and fast marching methods, Cambridge University Press, Cam-

bridge, 1999.

[30] R. Szeliski, S. Lavallee, Matching 3-D anatomical surfaces with non-rigid deformation using

octree splines, Int. J. Computer Vision, vol. 18 (2) (1996) 171-186.

[31] G. Quatrehomme, T. Balaguer, P. Staccini, V. Alunni-Perret, Assessment of the accuracy of

three-dimensional manual craniofacial reconstruction: a series of 25 controlled cases, Int J

Legal Med 121 (2007) 469-475.

E-mail address :

Berar M. (Corresponding author) : maxime.berar@univ-rouen.fr


