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1. Introduction

The Late-glacial to early Holocene transition, from ca. 17 to
6 ka cal BP, was marked by significant climatic change leading to
a global warming, and the development of temperate landscape
and faunal recomposition in western Europe. The succession of
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rapid oscillations between warm (interstadial) and cold (stadial)
events before the final global warming of the early Holocene is now
extensively documented through oxygen-isotope investigation on
ice-cores from Greenland (Björck et al., 1998; Lowe et al., 2008). As
a result, the vegetation composition changed from steppe-tundra
during the Oldest Dryas (ca. 17.0e14.7 ka cal BP) to temperate
dense deciduous forest that developed by the end of the Preboreal
(ca. 11.6e10.0 ka cal BP). Stadial episodes were reflected by the
development of herbaceous vegetation during the Younger Dryas
(ca. 12.8e11.6 ka cal BP), and interstadial episodes corresponded to
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the development of pine-birch forest during the Bölling/Alleröd (ca.
14.7e12.8 ka cal BP) and Preboreal (e.g. Amman and Lotter, 1989;
De Beaulieu et al., 1994). A major change also occurred in the
faunal composition with the extinction of megafaunal species
inherited from the Pleniglacial, such as woolly rhinoceros (Coelo-
donta antiquitas), giant deer (Megaloceros giganteus) and mammoth
(Mammuthus primigenius) in Western Europe (e.g. Stuart et al.,
2004). Other glacial species such as reindeer (Rangifer tarandus)
were extirpated from most regions of northwestern Europe
including eastern France (Bridault et al., 2000), while temperate
species such as red deer (Cervus elaphus) and roe deer (Capreolus
capreolus) increased in abundance (e.g. Sommer et al., 2008a,
2008b).

Species that survived the climatic changes and the vegetation
modifications of this period offer the opportunity to track potential
habitat change using phenotypic indicators. Stable isotopic
composition of carbon, nitrogen, sulphur and oxygen in fossil bones
are some of these ecological tracers. Among these species, red deer
(C. elaphus) is an opportunistic mixed feeder and is able to live in
variable habitat from open steppe to closed temperate forest
(Heptner et al., 1989; Geist, 1999). The question that this paper will
attempt to answer is, which strategy did red deer use to survive the
global warming of the early Holocene? Eastern France offers
a favorable context to document ecological changes in this large
ungulate in different topographical contexts. French Jura and the
western Alps exhibit contrasted altitudinal ranges that could have
triggered different ecological responses of red deer facing warming.
Isotopic trackers offer the opportunity to investigate several aspect
of mammal, and especially red deer, ecology as reviewed in the
following paragraphs.

2. Habitat and environmental tracking using carbon-13

The carbon-13 abundances (d13C) of herbivore tissues reflect
those of plants, which depend on the source of atmospheric carbon
and the photosynthetic process (review in Tieszen, 1991; Heaton,
1999). In Western Europe, ancient and modern indigenous plants
exhibit a C3 photosynthesis pattern, and their d13C values vary
according to environmental conditions, especially water avail-
ability. Recent studies confirmed a positive correlation between the
discrimination against 13C in plants and mean annual precipitation
(MAP) leading to the decrease of plant d13C values when the MAP
increases (Diefendorf et al., 2010; Kohn, 2010). Light intensity,
temperature, salinity and short term change in the atmospheric
CO2 pressure (pCO2) can also induce variation in plant d13C values
through stomatal conductance, water use efficiency (WUE) and
photosynthetic intensity control (review in Tieszen, 1991; Heaton,
1999; Dawson et al., 2002). Plant d13C values increase with alti-
tude as the result of increasing WUE with lower temperature and
partial atmospheric pCO2 (e.g. Farquhar et al., 1989; Morecroft and
Woodward, 1990; Körner et al., 1991; Hultine and Marshall, 2000).
Landscape closure is another important source of variation in plant
d13C values since plants that develop under close canopies present
depleted d13C values compared to the same plant form growing in
more open conditions (review in Tieszen, 1991; Heaton, 1999;
Dawson et al., 2002). Concentration of recycled CO2 due to poorly
ventilated air, light attenuation and relative high water availability
in closed canopy forest are evoked to explain the so-called “canopy
effect”. (e.g. Gebauer and Schultze, 1991; van der Merwe and
Medina, 1991; Broadmeadow et al., 1992). Altitude and canopy
effect leading to change in d13C values of plants are passed on to
collagen values of herbivores, as it was confirmed by data from
modern ecosystems (e.g. Männel et al., 2007; Drucker et al., 2008,
2010). Thus, herbivores dwelling and foraging in at low altitude
and/or in dense forest are expected to have d13Ccoll values relative
lower than those of their counterparts living at higher altitude and/
or in more open habitat.

3. Habitat and environmental tracking using nitrogen-15

The nitrogen isotopic composition of bone collagen (d15N) from
herbivores depends on dietary, physiological and climatic param-
eters. The enrichment in 15N during the first months of life due to
the consumption of animal protein through maternal milk was
convincingly documented in herbivores (e.g. Jenkins et al., 2001).
For adults, seasonal change in diet composition, nutritional quality
of the forage and physiological status (pregnancy, lactation) can
significantly impact the d15N values of tissues (e.g. Barnett, 1994;
Sponheimer et al., 2003a, 2003b; Barboza and Parker, 2006). The
effect of such punctual changes on isotopic signature can be
retained in dentine collagen coming from tooth roots, which grow
on short period of time and are not remodeled once completely
formed (e.g. Balasse et al., 2001; Britton, 2009; Drucker et al. in
press). In contrast, bone collagen is reflecting long-term isotopic
trend as bone is continuously remodeled with a turnover of several
years over life (review in Koch, 2007). Thus, bone d15Ncoll values of
mature individuals of a given species are more sensitive to envi-
ronmental change through long time periods. Temperature and
aridity are mostly quoted as climatic parameters driving significant
changes in d15Ncoll values of herbivores as a result of change in d15N
values of foraged plants in modern and ancient ecosystems (e.g.
Iacumin et al., 2000; Drucker et al., 2003a; Murphy and Bowman,
2006; Stevens et al., 2006). In Western Europe during the last
40,000 years, the chronological and geographical variation in
d15Ncoll values of large herbivore seemed to follow the intensity of
soil activity driven by temperature and glacier occurrence (Drucker
et al., 2003a, 2003b; Stevens et al., 2008). A previous study focused
on the Late-glacial and early Holocene red deer from the Rochedane
site in Jura has confirmed the relation between increasing d15Ncoll
values and rising temperature over time (Drucker et al., 2009).
Implied mechanism most probably involved increasing nitrogen
cycling process in soils since a positive relation was found between
15N abundances in plants and pedogenic activity (e.g. Hobbie et al.,
1998, 2005). The same mechanism can also explain the lower d15N
values of herbivores, plants and soils observed with higher altitude
in modern ecosystems (e.g. Mariotti et al., 1980; Männel et al.,
2007). Hence, the d15N values of the red deer considered in this
study should reflect change in global temperature over time and
local altitude at a given period of time.

4. Habitat and environmental tracking using oxygen-18

Oxygen isotopic (d18O) values in the phosphate fraction of bone
relate to those of ingested water for large mammals (e.g. Longinelli,
1984; Iacumin et al., 1996; Kohn et al., 1996). In the case of red deer,
the d18O values of bone phosphate reflect those of the local
precipitation (D’Angela and Longinelli, 1990; Iacumin et al., 1996).
This results points to the main contribution of drinking water and
the negligible influence of relative humidity in the oxygen isotopic
signature of red deer. The d18O value of meteoric water reflects
essentially the temperature in boreal and temperate contexts
(Fricke and O’Neil, 1999). A consistent patternwas found in modern
red deer between intra-tooth variations in phosphate d18O values
and seasonal change in temperature (Fricke et al., 1998). In the
context of eastern France during the Late-glacial and early Holo-
cene, d18O values of meteoric water are predicted to decrease with
lower temperatures and higher altitudes. In areas with important
altitudinal gradients, it would be possible to track the altitude at
which the studied animals obtained their drinking water at a given
period of time.



5. Habitat and environmental tracking using sulphur-34

The sulfur isotopic values (d34S) of the diet are passed on to
a consumer’s tissues, such as bone, with almost no fractionation
effect (Richards et al., 2001). The measurement of d34S of bone and
tooth collagen has recently been developed and its application on
archaeological material was first devoted to the distinction
between aquatic and terrestrial sources in diet (e.g. Richards et al.,
2001; Craig et al., 2006; Privat et al., 2007). While marine ecosys-
tems are characterized by rather uniform high d34S values
(ca. þ20&), freshwater and terrestrial ecosystems display more
variable d34S values as the result of the environmental parameters,
such as bedrock weathering, atmospheric deposition and microbial
processes (Peterson and Fry, 1987). The possible discrimination in
d34Scoll values among geographical origins of diet sources was also
mentioned (Vika, 2009; Craig et al., 2010). Studies on modern
herbivores have confirmed that the natural abundance in 34S in
unpolluted plants is essentially a function of distance from the sea
and geology of the local area (e.g. Rossmann et al., 2000; Camin
et al., 2007). A recent work from Britton (2009) has shown con-
trasted collagen d34S values in modern reindeer and bison, which
are correlated with strontium isotope ratios, a direct indicator of
geological context. The potential of sulphur isotope analyses as
a tracker of geographical origin was suggested in studies of human
remains from archaeological sites as a result of local geology
contrast and proximity of the sea (Vika, 2009; Craig et al., 2010). So
far, there was no sulfur isotope investigation based on herbivores
from continental ecosystems, where marine influence through sea
spray effect is insignificant and pollution by industrial activity
inexistent. It is hypothesized that in such conditions, the d34S
values passed to herbivore through plants should reflect contrast in
local geology and soil microbial activity.

The present study aims to (1) evaluate the change in habitat and
pedogenic activities through time reflected by the collagen d13C and
d15N values of red deer from French Jura in contrast to French Alps,
(2) to consider the temporal trends in d18O values in phosphate
fraction of skeletal remains for red deer in French Jura and Alps (3)
to explore the collagen d34S values as a potential marker of mobility
of red deer in both regions.

6. Material and methods

Sixty-two skeletal parts of red deer (C. elaphus) were selected
from nine archaeological sites of French Jura (n ¼ 62, Table 1, Fig. 1;
Pétrequin, 1970; Thévenin and Sainty, 1980; Thévenin, 1982;
Vuaillat et al., 1984; Campy et al., 1989; Pion et al., 1990; Aimé,
1993; Cupillard and David, 1995; Cupillard et al., 2000; Pion,
2004; Voruz et al., 2004; Cupillard, 2008). In addition, twenty red
Table 1
List of the studied archaeological sites from the French Jura and the western Alps with t

Site Locality District

Mannlefelsen I Oberlarg Haut-Rhin
La Baume Gonvillars Haute-Saône
Sous la Roche Bavans Doubs
Rochedane Villars-sous-Dampjoux Doubs
La Baume de Montandon Saint-Hippolyte Doubs
Gigot 1 and 2 Bretonvillers Doubs
Les Cabônes Ranchot Jura
La Baume Gigny-sur-Suran Jura
Le Gardon Ambérieu-en-Bugey Ain
Les Douattes Musièges Haute-Savoie
La Fru St-Christophe-la-Grotte Savoie
Aulp du Seuil St-Bernard-du-Touvet Isère
La Grande Rivoire Sassenage Isère
Les Corréardes Lus-la-Croix-Haute Drôme
deer remains from five stratified sites located in the neighboring
region of the western Alps were considered (Table 1, Fig. 1;
Chaffenet and Cordier, 1999; Bintz and Pelletier, 2000; Nicod and
Picavet, 2003; Pion and Mével, 2005). In both cases, identified
anatomical parts were sampled and bones were favored to teeth in
order to access to a time-life record. Tooth root was analyzed in
only two cases, for which the nitrogen-15 abundances were not
retained because of the possible interference caused by the suck-
ling effect, as previously mentioned. For the same reason, bones of
mature individuals were systematically chosen. In some cases,
different individuals from the same site were sampled by selecting
the same anatomical part.

New direct AMS radiocarbon (14C) dating were performed on
fifteen red deer samples from French Jura in addition to those
already available on other red deer bones included in this study
(Table S1). The results were calibrated at 2 sigma based on the
intcal09.14C calibration dataset and calculated by CALIB REV6.0.0
program (Reimer et al., 2009). Corresponding chronological phases
were indicated using pollen chronozone succession based on
studies in Jura (Table S1 and S2; Richard and Bégeot, 2000; Magny
et al., 2006) and NGRIP isotopic record stratigraphy (Table S1; Lowe
et al., 2008). Chronological attribution were assigned to undated
samples based on the AMS 14C dates obtained on the red deer
remains from the same levels for the sites of French Jura and on
published 14C dating of the archaeological deposits for the sites of
the western Alps (Table S2).

Collagen was extracted following a protocol based on Longin
(1971) and modified by Bocherens et al. (1997). The extraction
process includes a step of soaking in 0.125 M NaOH between the
demineralization and solubilization steps to achieve the elimina-
tion of lipids. Elemental analysis (Ccoll, Ncoll, Scoll) and isotopic
analysis (d13Ccoll, d15Ncoll, d34Scoll) were conducted at the Depart-
ment of Geosciences of Tübingen University using a NC2500 CHN-
elemental analyzer coupled to a Thermo Quest Delta þ XL mass
spectrometer. The standard, internationally defined, is a marine
carbonate (PDB) for d13C and atmospheric nitrogen (AIR) for d15N.
Analytical error, based on within-run replicate measurement of
laboratory standards (albumen, modern collagen, USGS 24, IAEA
305A), was �0.1& for d13C values and �0.2& for d15N values.
Samples were calibrated to d34S values relative to CDT of NBS 123
(d34S ¼ 17.10&), NBS 127 (d34S ¼ 20.31&), IAEA-S-1
(d34S ¼ �0.30&) and IAEA-S-3 (d34S ¼ 21.70&). The reproduc-
ibility is �0,4& for d34S measurements, and the error on amount of
S measurement is 5%. Reliability of the d13Ccoll and d15Ncoll values
can be established by measuring its chemical composition, with C/
Ncoll atomic ratio ranging from 2.9 to 3.6 (DeNiro, 1985), percentage
of Ccoll and Ncoll above 8% and 3%, respectively (Ambrose, 1990). The
d34S values of samples with atomic C/Scoll and N/Scoll ratios in the
heir geographical location and altitude.

Region (district) Altitude (m) Lab code N� in Fig. 1

French Jura 550 OB- 1
French Jura 388 GNV- 2
French Jura 275 BVN- 3
French Jura 355 RCD- 4
French Jura 590 STH- 5
French Jura 457 BRT- 6
French Jura 216 RAN- 7
French Jura 485 GIS- 8
French Jura 373 GAR- 9
western Alps 370 LDT- 10
western Alps 570 FRU- 11
western Alps 1700 APS- 12
western Alps 580 GRV- 13
western Alps 1070 LUS- 14



range of 300e900 and 100e300, respectively (Nehlich and
Richards, 2009) were retained.

The d18O analyses of phosphate were performed at the Depart-
ment of Geosciences (University Tübingen, Germany). Prior to these
analyses of the bone phosphate fraction, bone powders were
chemically pre-treated with 2% NaOCl solution, followed by a 1 M
Ca-acetate from acetic acid buffer solution (Bocherens et al., 1996).
Oxygen isotope composition of phosphate (d18Op) wasmeasured on
silver phosphate (Ag3PO4). About 4 mg of pre-treated powder were
dissolved in 2 M HF, neutralized with NH4OH and the PO4 in
solution was rapidly precipitated as Ag3PO4 by adding 2 M AgNO3
according to the method described in Tütken et al. (2006). Ag3PO4
of each sample and standard was analysed in triplicate (w500 mg
for a single measurement) for d18Op. The d18Op measurements were
performed using a Finnigan TC-EA at 1450 �C linked via a Finnigan
Conflow III to a ThermoFinnigan Delta Plus XL CFIRMS at the
University of Tübingen with a reproducibility of �0.3&. Samples
are calibrated to d18O values of TU-1 (d18O ¼ 21.11&, relatively to
VSMOW); TU-2 (d18O ¼ 5.35&, relatively to VSMOW); 130e0.5e1
(d18O ¼ �1.13&, relatively to VSMOW) and 130e0.5e9
(d18O ¼ 8.42&, relatively to VSMOW).
Fig. 1. Geographical location of the archaeological sites in eastern France that provided Lat
Jura: 1 ¼ Oberlarg e Mannlefelsen 1 (Haut-Rhin), 2 ¼ Gonvillars e La Baume (Haute-Saône),
5 ¼ Saint-Hippolyte e Montandon (Doubs), 6 ¼ Bretonvillers e Gigot 1 et 2 (Doubs), 7 ¼ Ra
Bugey e Le Gardon (Ain); in the Alps: 10 ¼ Musièges e Les Douattes (Haute-Savoie), 11 ¼ Sain
(Isère), 13 ¼ Sassenage e La Grande Rivoire (Isère), 14 ¼ Lus-la-Croix-Haute e Les Corréarde
7. Results and discussion

7.1. Chronological distribution of red deer

When considering the fifty direct radiocarbon AMS dates
obtained so far (Table S1), a gap was observed for red deer from
French Jura and northern Alps for the most part of the Younger
Dryas (Fig. 2). The absence of data could be due either to the
scarcity of this species during this period or to the lack of preser-
vation of archaeological deposits as the result of the harsh climatic
conditions during the Younger Dryas in Jura. Since the development
of systematic radiocarbon dating of a given species, some temporal
gaps have been documented especially around the Last Glacial
Maximum (ca. 29.0-18.5 ka cal BP) for carnivores, such as the cave
lion (Panthera spelaea), and for large herbivores such as giant deer
and mammoth (Stuart et al., 2004; Stuart and Lister, 2010). These
gaps have been interpreted as the reflection of local extirpation and
possible bottleneck events. Sommer et al. (2008b) noted the small
number of direct evidence of red deer during the Younger Dryas
(GS-1) in northwestern Europe. This decrease in red deer record
was considered to be the result of the harsh climatic conditions and
e-Glacial and early Holocene red deer samples selected for isotopic analysis. In French
3 ¼ Bavans e Sous la Roche (Doubs), 4 ¼ Villars-sous-Dampjoux e Rochedane (Doubs),
nchot e Les Cabônes (Jura), 8 ¼ Gigny-sur-Suran e La Baume (Jura), 9 ¼ Ambérieu-en-
t-Christophe-la-Grotte e La Fru (Savoie), 12 ¼ Saint-Bernard-du-Touvet e Aulp du Seuil
s (Drôme).



Fig. 2. The d13Ccoll values of AMS dated red deer (Cervus elaphus) from the French Jura
(white circles) and the western Alps (gray triangles) against time through the Late-
glacial to early Holocene transition. Values below ca.�22& are interpreted as the
result of the canopy effect. The AMS results were calibrated at based on intcal09.14C
calibration dataset and calculated by CALIB REV6.0.0 program (Reimer et al., 2009).
the disappearance of the interstadial forest, which would have
favored the cold-adapted reindeer. A larger dataset of dates on red
deer as well as on archaeological contexts in the French Jura and the
western Alps would be necessary to confirm the observed temporal
gap and to interpret it in terms of prey distribution.
7.2. Carbon-13 and canopy development in French Jura and
western Alps

The red deer d13Ccoll values varied from�24.0 to�19.4& in Jura
(Table 2) and from�22.4 to�18.7& in the Alps (Table 3) during the
Late-glacial and early Holocene. Directly dated red deer from Jura
showed a clear decrease in d13Ccoll values over time, as previously
observed in Drucker et al. (2008) on a more limited number of
specimens (Fig. 2). Before the onset of the early Holocene (ca.
11.6 ka cal BP), Jura red deer yielded relatively high d13C values
(from �21.6 to �19.4&), which were comparable to those of red
deer from the Alps (�21.1 to �19.2&). In the beginning of the
Holocene, the Preboreal period (ca. 11.6e10.0 ka cal BP) exhibited
an initial decrease in d13Ccoll values of red deer in Jura with a range
of �22.7 to �21.1&. Later, Jura red deer had d13Ccoll values ranging
from �24.0 to �21.9&, which are lower than the values of those
observed during the Late-glacial as well as those measured on the
early Holocene red deer from the Alps (from�22.4 to�20.1&). The
decrease of d13Ccoll values of red deer from Jura was previously
described and interpreted as the result of habitat change from open
to closed habitat (Drucker et al., 2003b, 2008). Some authors
insisted on the effect of increase in atmospheric pCO2 between the
Late-glacial and the Holocene to explain a comparable decrease in
d13Ccoll values of horse in northern Europe (Richards and Hedges,
2003; Stevens and Hedges, 2004). However, plants were found to
maintain a stable d13C values while they were facing long-term
change in atmospheric CO2 thanks to their capacity to adapt their
stomatal conductance (see Arens et al., 2000). Therefore, d13C value
of atmospheric CO2 has a more significant impact on plant d13C
values over time (Arens et al., 2000). Between the post Last Glacial
Maximum and the Holocene, a decrease of up to 0.5& in the
atmospheric CO2 d13C value was reconstructed from fossil plant
remains (Marino et al., 1992) and thus cannot entirely explain the
mean d13Ccoll decrease of 2.3& observed for the Jura red deer.
Temperature was another quoted factor that could influence the 13C
amounts of red deer as a negative correlation was observed
between the d13Ccoll values of modern deer and the mean annual
maximum temperatures (Stevens et al., 2006). However, different
pattern of 13C decrease was found among ungulate species in the
Paris Basin at the Late-Glacial/early Holocene transition, which
could hardly be explained by the sole impact of a global environ-
mental parameter such as temperature (Drucker et al., 2008).
Moreover, the effect of temperature change on carbon isotope
fractionation in plants can be considered asminor (Diefendorf et al.,
2010; Kohn, 2010). Altitudinal effect in Jura could not either account
alone for the decrease in red deer d13Ccoll value, since it would
imply a difference of at least 2,000 m between the dwelling areas of
red deer over time, a value that exceeds the whole altitudinal range
found in the Juramountains. Finally, the canopy effect appears to be
the most likely explanation of the significant depletion in red deer
d13C values at the Late-glacial/early Holocene transition in Jura.

The review of the d13Ccoll values from directly and indirectly
dated red deer samples from Jura (Fig. 3) confirmed the trend of
significant decrease between the Late-glacial and the early Holo-
cene periods, with a possible intermediate step during the Pre-
boreal (Fig. 3). The change of red deer habitat toward dense
forested areas in Jura, reflected by d13Ccoll values lower than �22&
(Drucker et al., 2008), seemed to take place by the end of the Pre-
boreal. In contrast, the red deer d13Ccoll values in the Alps were
rather stable over time (Fig. 3). Most of the values are comprised
between �21.1 and �19.2&. As a result the red deer exhibited
significantly less negative values in the Alps than in Jura during the
early Holocene (ManneWhitneyeWilcoxon test, p < 0.0001). Thus,
the habitat of red deer in the Alps did not reflect a significant
canopy effect. This absence of canopy effect could be a consequence
of higher altitude and/or lower degree of canopy density in the Alps
than in Jura. Interestingly, one specimen from a high altitude site in
the Alps (LUS-2 from Les Corréardes) yielded a d13Ccoll value of
�18.7& during the early Atlantic, which is 2.5& higher than the
mean values of the coeval red deer of the same region. For a raise of
1000 m in altitude, an increase in d13C value of about 1.1& was
measured in plants as the result of increasing water use efficiency
along altitudinal gradient (e.g. Körner et al., 1991; Männel et al.,
2007). Such a rate of d13C increase with altitude would imply
a difference of about 2300 m of altitude between the dwelling area
of LUS-2 specimen and those of the red deer from the other Alpine
sites. Such an altitudinal contrast is larger than the actual difference
of altitude among the considered sites and their surroundings,
which corresponds to the Prealps range. Therefore, a slight influ-
ence of understory vegetation from dense forest could be suspected
in the Alps, especially as a significant decrease in the early Holocene
was detected when the LUS-2 specimen, most likely from high
altitude territory, was excluded (ManneWhitneyeWilcoxon test,
p < 0.05). Either the forest stands of the Alps were less dense than
in Jura and/or the red deer hunted in the Alps were consuming only
occasionally understory vegetation from closed woodland.

7.3. Nitrogen-15, soil development and altitude of habitat

Dated collagen of the red deer from Jura exhibited a dramatic
increase in d15N values in the early Holocene (3.4e7.8&) compared
to the Late-glacial (0.8e3.8&) (Table 2, Fig. 4). As for the d13Ccoll

values, the Preboreal red deer provided intermediate d15Ncoll values
compared to those of the Late-Glacial on one hand and those of the
Boreal and early Atlantic on the other hand. The trend in increasing
d15Ncoll values of Jura red deer followed the trend in increasing
temperature due to the global warming witnessed during the Late-
glacial to early Holocene transition. Enhanced biological activity
linked to soil development leads to 15N enrichment in soils and
plants through the intensification of nitrogen turnover (e.g.
Nadelhoffer and Fry, 1994; Hobbie et al., 2005). The increase in
pedogenic activities during the early Holocene is evidenced by the
increase in plant biomass linked to the development of temperate



Table 2
Results of the isotopic analysis of collagen (d13Ccoll, d15Ncoll, d34Scoll) and of phosphate (d18Op) for the French Jura red deer. The carbon, nitrogen and sulfur composition of the
collagen is given through elemental composition (Ccoll, Ncoll, Scoll) and atomic ratio (C/Ncoll, C/Scoll, N/Scoll). Chronological attributions, based on radiocarbon dating, are
indicated using pollen chronozone.

Lab n� Ccoll (%) Ncoll (%) C/Ncoll d13Ccoll (&) d15Ncoll (&) Scoll (%) C/Scoll (%) N/Scoll (%) d34Scoll (&) d18Op (&) Pollen chronozone

BVN-2 37.9 13.3 3.3 �23.0 7.1 0.15 656 197 8.6 15.8 Early Atlantic
BVN-1 31.5 12.3 3.0 �23.5 7.5 e e e e 16.2 Early Atlantic
GNV 3 40.4 14.1 3.3 �23.0 6.5 e e e e e Early Atlantic
GNV-6 39.7 15.2 3.0 �23.4 7.1 0.16 676 222 8.5 e Early Atlantic
RCD-10500 42.2 16.5 3.0 �23.6 4.8 0.19 599 201 8.4 16.6 Early Atlantic
RCD-10600 40.7 15.1 3.1 �22.3 6.0 0.16 688 219 8.8 16.8 Early Atlantic
RCD-10700 40.6 14.9 3.2 �23.7 5.5 e e e e 16.5 Early Atlantic
GIS-1 41.9 16.6 2.9 �22.9 6.4 0.16 711 242 8.1 e Early Atlantic
STH-1 43.7 16.4 3.1 �22.4 5.9 0.15 753 242 10.3 e Early Atlantic
GAR-1 39.7 14.6 3.2 �21.7 4.7 e e e e e Early Atlantic
OB-15 42.5 14.9 3.3 �22.3 5.6 0.18 617.2 185.5 10.0 e Early Atlantic
RCD-10100 37.4 13.5 3.2 �22.8 5.8 e e e e 15.6 Early Atlantic
RCD-10200 38.2 14.2 3.1 �22.7 4.3 e e e e 15.7 Early Atlantic
RCD-10300 38.1 14.0 3.2 �22.9 6.4 e e e e 17.2 Early Atlantic
RCD-10400 37.7 13.7 3.2 �22.6 4.2 e e e e 17.1 Early Atlantic
BVN-7(2) 40.6 15.2 3.1 �23.3 7.2 e e e e 16.1 Early Atlantic
OB-14 23.3 8.3 3.3 �22.6 6.4 e e e e e Early Atlantic
RCD-6500 40.5 14.6 3.2 �23.0 5.2 0.15 719 222 9.7 15.9 Early Atlantic
OB-11 24.7 9.6 3.0 �22.9 7.3 e e e e e Boreal/E. Atlantic
RAN-9(2) 36.8 13.6 3.1 �22.9 7.8 e e e e e Boreal
RAN-8(2) 37.3 13.9 3.1 �21.9 6.6 e e e e e Boreal
BVN-4(2) 34.9 11.7 3.5 �22.7 4.9 0.15 602 173 6.4 16.4 Boreal
BVN-5(2) 39.2 13.9 3.3 �22.4 4.7 e e e e 16.0 Boreal
BVN-3(2) 41.4 15.2 3.2 �23.2 5.8 0.15 716 226 5.6 e Boreal
RCD-6300 39.1 14.3 3.2 �23.4 4.7 e e e e 16.8 Boreal
BRT-4 40.3 14.4 3.3 �22.5 4.0 0.18 603 185 10.3 e Boreal
RAN-2 44.7 15.8 3.3 �23.6 7.4 0.15 818 248 1.1 e Boreal
RAN-3 41.6 15.3 3.2 �23.5 8.1 e e e e e Preboreal/Boreal
RAN-4 43.3 14.9 3.4 �23.4 7.0 e e e e e Preboreal/Boreal
RAN-5 42.7 15.2 3.3 �24.0 7.8 e e e e e Preboreal/Boreal
RAN-6 44.0 14.8 3.5 �22.4 6.4 0.17 681 196 5.6 e Preboreal/Boreal
RCD-6200 38.8 14.2 3.2 �22.5 3.5 0.19 559 175 7.2 16.9 Preboreal
STH-2 41.5 15 3.2 �22.7 3.4 0.17 667 207 7.9 e Preboreal
OB-5 42.8 15.9 3.1 �21.1 4.4 0.19 601 191 5.8 e Preboreal
OB-3 20.6 7.9 3.0 �21.6 2.7 e e e e e Alleröd/Y.Dryas
BRT-2 40.7 15.1 3.2 �19.4 3.1 e e e e e Alleröd/Y.Dryas
RCD-6400 36.8 13.4 3.2 �21.5 3.8 e e e e 15.1 Alleröd/Y.Dryas
RCD-4700 39.7 14.8 3.1 �19.5 1.4 e e e e 14.5 Alleröd/Y.Dryas
RCD-4800 40.7 14.7 3.2 �20.6 1.3 e e e e 14.9 Alleröd/Y.Dryas
RCD-4900 39.9 14.8 3.2 �20.0 1.3 0.14 747 237 3.1 14.0 Alleröd/Y.Dryas
RCD-5000 39.5 14.3 3.2 �20.3 0.4 0.17 629 195 2.7 14.4 Alleröd/Y.Dryas
RCD-5100 39.8 14.7 3.2 �20.0 0.2 0.18 593 187 8.5 14.1 Alleröd/Y.Dryas
OB-1 39.3 13.7 3.4 �20.1 2.7 e e e e e Alleröd
BRT-1 42.1 14.5 3.4 �20.9 1.4 e e e e e Alleröd
BRT-3 38.6 14.1 3.2 �20.6 1.0 0.13 763 239 0.4 e Alleröd
RCD-2300 38.5 14.2 3.2 �20.8 1.6 0.15 673 212 4.0 14.9 Alleröd
RCD-2400 38.9 13.3 3.2 �20.6 3.1 0.18 575 169 1.7 14.8 Alleröd
RCD-2500 40.0 14.6 3.2 �21.2 2.6 e e e e 14.6 Alleröd
RCD-2600 38.8 14.0 3.2 �20.0 2.3 0.16 656 204 3.3 15.1 Alleröd
RCD-2700 38.2 14.2 3.2 �20.9 1.6 0.16 653 207 1.4 15.4 Alleröd
RCD-2800 40.3 14.7 3.2 �20.5 1.3 0.14 771 241 �0.1 14.8 Alleröd
RCD-900 40.3 14.6 3.2 �20.1 1.8 e e e e 15.0 Alleröd
RCD-1000 42.5 15.4 3.2 �20.7 2.5 e e e e 15.1 Alleröd
RCD-1100 42.0 15.3 3.2 �21.9 3.0 0.15 728 228 4.2 15.3 Alleröd
RCD-1200 38.9 14.4 3.1 �19.9 1.3 e e e e 14.8 Alleröd
RCD-1300 37.8 13.9 3.2 �20.6 2.0 e e e e 14.8 Alleröd
RCD-1400 41.0 15.0 3.2 �20.7 0.4 e e e e 14.9 Alleröd
BVN-9(2) 28.1 10.3 3.2 �20.8 2.1 e e e e 15.3 Bölling/Alleröd
RCD-500 42.3 15.5 3.2 �19.9 0.8 e e e e 15.0 Bölling/Alleröd
RCD-600 41.2 14.8 3.2 �20.1 e 0.15 744 229 1.8 14.9 Bölling/Alleröd
RCD-10900 41.7 16.0 3.0 �20.4 2.0 e e e e e Bölling/Alleröd
RCD-11000 44.0 16.1 3.2 �20.6 2.4 e e e e e Bölling/Alleröd
forest (De Beaulieu et al., 1994). Moreover, increase in temperature
favors plant biomass decomposition, organic nitrogen mineraliza-
tion and loss of soil nitrate by volatilization (Sprent, 1987; Garten,
1993), all those processes driving to higher d15N values in plants
from boreal and peri-arctic ecosystems (Nadelhoffer and Fry, 1994;
Amundson et al., 2003). During the Late-glacial, soils in Jura and the
Alps were recently released from the influence of the local glaciers.
The persistence of low temperature, low biomass and low soil N
content could explain the relatively low d15Ncoll of red deer with no
distinction between the two regions (0.2e3.8& in Jura,1.3e3.6& in
the Alps; Tables 2 and 3, Fig. 5). Based on the samemechanisms, the
gradient of decreasing d15N values of soils and plants and their



Table 3
Results of the isotopic analysis of collagen (d13Ccoll, d15Ncoll, d34Scoll) and of phosphate (d18Op) from thewestern Alps red deer. The carbon, nitrogen and sulfur composition of the
collagen is given through elemental composition (Ccoll, Ncoll, Scoll) and atomic ratio (C/Ncoll, C/Scoll, N/Scoll). Chronological attributions, based on radiocarbon dating, are
indicated using pollen chronozone.

Lab n� Ccoll (%) Ncoll (%) C/Ncoll d13Ccoll (&) d15Ncoll (&) Scoll (%) C/Scoll (%) N/Scoll (%) d34Scoll (&) d18Op (&) Pollen chronozone

LUS-2 41.7 15.2 3.2 �18.7 2.2 0.12 908 283 6.4 e Early Atlantic
APS-2 42.9 15.9 3.2 �21.7 4.2 e e e e e Early Atlantic
GRV-12 39.9 14.7 3.2 �20.9 4.0 e e e e 12.7 Early Atlantic
GRV-9 41.8 15.6 3.1 �21.1 3.6 0.16 692 221 3.9 15.1 Early Atlantic
GRV-5 41.4 15.1 3.2 �21.1 3.2 0.12 935 292 6.4 14.7 Boreal
FRU-2 35.2 13.7 3.0 �22.4 4.2 0.15 620 207 6.0 15.7 Boreal
FRU-9 39.4 14.8 3.1 �20.2 1.6 0.15 693 223 2.3 e Boreal
GRV-1 42.1 15.3 3.2 �20.4 2.2 0.15 749 234 6.4 e Preboreal
FRU-3 32.7 12.4 3.1 �21.1 2.7 e e e e e Preboreal
FRU-1 38.1 13.7 3.2 �20.1 2.4 e e e e e Preboreal
FRU-6 36.8 13.9 3.1 �20.2 1.8 0.15 635 206 3.0 e Y. Dryas
FRU-7 34.5 13.2 3.1 �20.3 1.6 0.17 530 174 3.5 e Y. Dryas
FRU-4 29.5 11.6 3.0 �20.8 3.1 0.12 676 228 5.5 16.7 Alleröd
FRU-13 43.3 16.0 3.2 �20.2 3.0 0.15 772 245 6.6 15.9 Alleröd
FRU-15 42.7 15.9 3.1 �21.1 3.3 0.17 689 219 5.9 e Alleröd
FRU-10 43.7 16.0 3.2 �19.9 2.2 0.15 765 239 3.4 e Alleröd
LDT-200 41.7 15.3 3.2 �20.7 e e e e e e Bölling/Alleröd
FRU-11 41.5 15.7 3.1 �19.2 1.3 0.16 698 227 2.6 e Bölling/Alleröd
FRU-5 36.3 14.1 3.0 �20.3 3.6 0.16 614 205 �0.2 18.3 Bölling
LDT-600 41.8 15.4 3.2 �19.8 2.0 0.14 786 249 �3.1 e O. Dryas/Bölling
consumers is found with increasing altitude (e.g. Männel et al.,
2007). It could explain the lower red deer d15Ncoll found in the
Alps than in Jura during the early Holocene (Man-
neWhitneyeWilcoxon test, p < 0.0001). However, the lack of
significant d15Ncoll increase in the Alps red deer over the Late-glacial
to early Holocene transition was rather unexpected. Occurrence of
oak mixed forest was documented as high as 1500 m asl during the
Boreal in the Alps. Thus, the development of soil maturity in the
Alps should be reflected by an increase in the d15N values of soils
and thus on plants consumed by red deer. The stability of the red
deer d15Ncoll values in the Alps through the considered period as
well as the lack of significant canopy effect could be linked to
a change in home range toward higher altitude areas in the early
Holocene.
Fig. 3. The d13Ccoll values of directly and un-directly red deer (Cervus elaphus) from the
French Jura in a) and the western Alps in b). Values below ca.�22& are interpreted as
the result of the canopy effect. Chronological attributions are given in Table S1 and S2.
7.4. Oxygen-18 and altitude

The increase in red deer d18Op values observed in the French Jura
site of Rochedane at the Late-glacial/early Holocene transition
(Drucker et al., 2009) was confirmed by the new data obtained in
the nearby site of Bavans (Table 2). The linear relationship between
the d15Ncoll values and d18Op values measured on the same speci-
mens was also confirmed but with a coefficient of correlation
slightly lower (r2 ¼ 0.60) than the one calculated for the sole site of
Rochedane (r2 ¼ 0.67) (Fig. 6). Local effect in terms of hydrogeology
could influence the general pattern of global warming resulting in
global increase in d18O values of available drinking water.

The isotopic contrast between Jura and Alps red deer was also
reflected in d18Op values of red deer despitemore limited number of
data (Tables 2 and 3, Fig. 7). While higher d18Op values were
measured in the Alps (La Grande Rivoire and La Fru sites) than in
Jura during the Late-glacial, a reverse pattern was observed during
the early Holocene. Difference in Late-glacial d18Op values between
both regions may be explained by higher aridity rather than higher
temperature in the Alps compared to French Jura. In the early
Fig. 4. The d15Ncoll values of AMS dated red deer (Cervus elaphus) from the French Jura
(white circles) and the western Alps (grey triangles) against time through the Late-
glacial to early Holocene transition. Increasing collagen d15N values are interpreted
as the result of increasing soil activity. The AMS results were calibrated at based on
intcal09.14C calibration dataset and calculated by CALIB REV6.0.0 program (Reimer
et al., 2009).



Fig. 5. The d15Ncoll values of directly and un-directly red deer (Cervus elaphus) from the
French Jura in a) and the western Alps in b). Increasing collagen d15N values are
interpreted as the result of increasing soil activity. Chronological attributions are given
in Table S1 and S2.

Fig. 7. The d18Op values of red deer (Cervus elaphus) from the French Jura (white circles,
sites of Rochedane and Bavans) and the western Alps (grey triangles, sites of La Grande
Rivoire and La Fru) at the Late-glacial and early Holocene periods. The increase in red
deer d18Op values in the French Jura over time is considered to be the result of the
global rise of temperature. In contrast, the decreasing in red deer d18Op values in
western Alps is interpreted as a change in habitat toward areas higher in altitude in the
early Holocene compared to the Late-glacial.
Holocene, the low d18Op values of the Alps red deer could corre-
spond to local temperatures lower than in Jura. However, the d18Op
values of red deer from the Alps were not only lower to those of the
red deer from Jura, but also from those of the red deer of the same
sites in the previous period of the Late-Glacial. A decrease of d18Op
values at the Late-glacial to early Holocene transition could be
attributed to the driving effect of increasing humidity instead of the
impact of increasing temperature observed in Jura. However, the
combined action of lower aridity and higher temperature should
have led to higher d15N values of plants and their consumers over
time, while no change in 15N abundances of red deer collagen was
observed in the Alps. Similarly, the increase in water availability
Fig. 6. Relationship between the d15Ncoll values and the d18Op values measured on the
same bone of red deer (Cervus elaphus) from Rochedane and Bavans in French Jura. A
positive linear correlation is found that confirms the indirect influence of climate on
the 15N amounts in red deer collagen at the Late-glacial to early Holocene transition.
was expected to enhance the decrease in d13C of forage linked to the
canopy effect, whereas only a slight decrease in d13Ccoll values of red
deer could be suspected in the western Alps. Thus, higher altitude
in the home range of the Alps red deer, due to an altitudinal
movement of the animals and/or a change in human hunting
territories, could explain the trends provided together by the
d13Ccoll, d15Ncoll and d18Op values in the early Holocene compared to
the Late-glacial.
7.5. Sulphur-34, soil warming and mobility

The d34Scoll values measured on the red deer from Jura ranged
between �0.1 and 8.5& for the Late-Glacial period and 1.1 and
10.3& for the early Holocene period (Table 2, Fig. 8). The collagen
34S abundances of Jura red deer were thus significantly more
positive in the Holocene than in the Late-glacial (Man-
neWhitneyeWilcoxon test, p < 0.001). In the western Alps
(Table 3, Fig. 8), the red deer d34Scoll values varied from �3.1e6.6&
with no significant contrast between the Late-glacial (�3.1e6.6&)
and the early Holocene (2.3e6.4&). There was also no significant
difference in 34S abundances between French Jura and the western
Alps during the Late-glacial despite the rather low d34Scoll value
exhibited by LDT-600 specimen (�3.1&) from the Alps. In the early
Holocene, the red deer from Jura had significantly higher d34Scoll
values than those of red deer from the Alps (Man-
neWhitneyeWilcoxon test, p < 0.05). Thus, the pattern of d34Scoll
variation over time in a given region or between regions in a given
period was comparable to the pattern of d15Ncoll variation. A part of
the sulphur assimilated by plants derives from soil sources
(Peterson and Fry, 1987). Interestingly, both d15N and d34S values in
soil profiles show increase with depth, and similar behavior of N
and S stable isotopes are found in soils like the preferential
assimilation of lighter isotopes (14N, 32S) and the enrichment in
heavier isotopes 15N and 34S of the in situ residues of mineralization
(Novák et al., 2003). Moreover, volatilization processes favor the
lighter isotopes and result in the enrichment of heaver isotopes in
the remaining soil residues (Fry et al., 1986; Högberg, 1997).

The impact of the Late-glacial to early Holocene global warming
through soil processes could be suspected for the evolution of red
deer d34Scoll values over time in Jura as it was hypothesized for the



Fig. 8. The d34Scoll values of directly and un-directly red deer (Cervus elaphus) from the
French Jura in a) and the western Alps in b). Difference in collagen d34S values for
a given chronozone is thought to result from contrast in nature of geological bedrock.
Chronological attributions are given in Table S1 and S2.
coeval d15Ncoll values. Increasing temperatures could lead to an
increase in the d34S values of soils by increasing the rate of
mineralization and volatilization of sulphur (Fry et al., 1986; Novák
et al., 2003). Moreover, higher temperatures lead to higher rate of
bacterial reduction (Kaplan and Rittenberg, 1964), which results in
less 34S depletion in the reduced products (Krouse and Mayer,
2000). It would thus be possible that the d34Scoll values of red
deer reflected the increasing soil activity linked to increasing
temperature at the Late-glacial/early Holocene transition in Jura.
Local effect could be hypothesized for RAN-2 specimens that had
a relatively low d34S value (1.1&) compared to the other Holocene
red deer form Jura (5.6e10.3&) as well as for the RCD-5100 spec-
imen that gave a rather high d34Scoll value (8.5&) compared to the
other Late-Glacial red deer from Jura (�0.1e4.2&). RAN-2 provided
one of the highest d15Ncoll values of the Boreal chronozone while
RCD-5100 had the lowest d15Ncoll value of the Late-glacial period.
This is not consistent with the observed rough correlation between
d34Scoll and d15Ncoll values over time. The studied sites of Jura are
situated on soils dominated by limestones with some areas of
detrital deposit and some granitic massifs such as the massif of La
Serre close to Ranchot and the Vosges close to Oberlarg. Thus, some
differences in the nature of the geological bedrock could explain
the cause of local soil d34S values contrast reflected by some red
deer specimens. A more systematic survey of d34S values of
different bedrocks found in Jura could provide the baseline to
investigate mobility during the Late-glacial and the Holocene in
this region.

8. Conclusions

The analysis of different stable isotopes on red deer collagen
offered the possibility to track combined local conditions of habitat
using 13C, climate using 18O, and soil using 15N. Results in 34S
confirmed the potential of this isotope to reflect the mobility of
mammals in purely terrestrial contexts. The multi-element stable
isotope analysis of red deer from eastern France at the Late-glacial/
early Holocene transition evidenced temporal and geographical
contrasts linked to differences in the response of red deer pop-
ulations facing a significant change in their environment. A drastic
modification in ethology was reflected by the red deer of French
Jura with the change of habitat to dense forest in warmer and more
productive conditions. In contrast, the red deer of the western Alps
persisted in open landscape and rather cool conditions with low
soil productivity by dwelling at higher altitudes than before. This
difference in adaptation to the global warming of the early Holo-
cene was probably favored by the difference in topography
between the two regions. It is also interesting to note that a species
such as red deer, traditionally associated with forested environ-
ments, even if it is sufficiently flexible to cope with more open
landscapes, continued to favor open environments, even when
closed-canopy environments were available in the surrounding
areas.

As the studied specimens come from archaeological sites,
selection by prehistoric human hunters should also be considered.
For example, the occurrence of red deer groups in dense forest at
low altitude in the Alps cannot be excluded, as human populations
may have preferred to hunt red deer in open areas for technical
and/or cultural reasons. If it were the case, the isotopic results
obtained on red deer would also give an insight on human foraging
of their environment. In any case, the multi-element stable isotope
tracking of red deer is a valuable tool to decipher the ecological
response of a terrestrial ungulate to changing environment.
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