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We consider the discretization in time of a system of parabolic stochastic partial differential equations with slow and fast components; the fast equation is driven by an additive space-time white noise. The numerical method is inspired by the Averaging Principle satisfied by this system, and fits to the framework of Heterogeneous Multiscale Methods.

The slow and the fast components are approximated with two coupled numerical semi-implicit Euler schemes depending on two different timestep sizes.

 in the case of infinite dimensional processes.

Introduction

In this paper, we are interested in the numerical approximation of a randomly-perturbed system of reaction-diffusion equations that can be written (1.1)

∂x ǫ (t, ξ) ∂t = ∂ 2 x ǫ (t, ξ) ∂ξ 2 + f (ξ, x ǫ (t, ξ), y ǫ (t, ξ)), ∂y ǫ (t, ξ) ∂t = 1 ǫ ∂ 2 y ǫ (t, ξ) ∂ξ 2 + 1 ǫ g(ξ, x ǫ (t, ξ), y ǫ (t, ξ)) + 1 √ ǫ ∂ω(t, ξ) ∂t ,
for t ≥ 0, ξ ∈ (0, 1), with initial conditions x ǫ (0, ξ) = x(ξ) and y ǫ (0, ξ) = ξ, and homogeneous Dirichlet boundary conditions x ǫ (t, 0) = x ǫ (t, 1) = 0, y ǫ (t, 0) = y ǫ (t, 1) = 0. The stochastic perturbation ∂ω(t,ξ) ∂t is a space-time white noise and ǫ > 0 is a small parameter. In the recent article [START_REF] Bréhier | Strong and weak order in averaging for spdes[END_REF], we have proved that an Averaging Principle holds for such a system, and we have exhibited an order of convergence -with respect to ǫ -in a strong and in a weak sense: the slow component x ǫ is approximated thanks to the solution of an averaged equation. In this article, we analyse a numerical method of time discretization which reproduces this averaging effect at the discrete time level. More precisely, our aim is to build a numerical approximation of the slow component x ǫ , taking care of the stiffness induced by the time scale separation. The Heterogeneous Multiscale Method -HMM -procedure can be used, as it is done in [START_REF] Weinan | Analysis of multiscale methods for stochastic differential equations[END_REF] for SDEs of the same kind. First we recall the general principle of such a method, which has been developped in various contexts, both deterministic and stochastic -see the review article [START_REF] Weinan | Heterogeneous multiscale methods: a review[END_REF] and the references therein, as well as [START_REF] Weinan | Analysis of the heterogeneous multiscale method for ordinary differential equations[END_REF], [START_REF] Weinan | The heterogeneous multiscale methods[END_REF], [START_REF] Vanden-Eijnden | Numerical techniques for multi-scale dynamical systems with stochastic effects[END_REF].

In system (1.1), the two components evolve at different time scales; x ǫ is the slow component of the problem, while the fast component y ǫ has fast variations in time. We are indeed interested in evaluating the slow component, which can be thought as the mathematical model for a phenomenon appearing at the natural time scale of the experiment, whereas the fast component can often be interpreted as data for the slow component, taking care of effects at a faster time scale. Instead of using a direct numerical method, which might require a very small time step size because of the fast component, we use a different solver for each time scale: a macrosolver and a microsolver. The macrosolver leads to the approximation of the slow component; it takes into account data from the evolution at the fast time scale. The microsolver is then a procedure for estimating the unknown necessary data, using the evolution at the microtime scale, which also depends on the evolution at the macrotime scale. We emphasize a difference with the framework of [START_REF] Weinan | Analysis of multiscale methods for stochastic differential equations[END_REF]: instead of analysing various numerical schemes, the infinite dimensional setting implies that we only focus on a semi-implicit Euler scheme.

In Section 4.1, we state the two main Theorems of this article: we show a strong convergence result -Theorem 4.1 -as well as a weak convergence result -Theorem 4.2 -which are similar to the available results for SDEs. Compared to [START_REF] Weinan | Analysis of multiscale methods for stochastic differential equations[END_REF], we propose modified and simplified proofs leading to apparently weaker error estimates; we made this choice for various reasons. First, even if apparently we get weaker estimates, under an appropriate choice of the parameters the cost of the method remains of the same order. Second, the generalization of the final dimensional results would not yield the same bounds, due to the regularity assumptions we make on the nonlinear coefficients of the equations. Finally, we can extend the weak convergence result to the situation where the fast equation only satisfies a weak dissipativity assumption.

In the case of a linear fast equation -when g is equal to 0 -it is well-known that the second equation in (1.1) is dissipative. In the general case, we make assumptions on g so that this property is preserved for y ǫ -see Assumptions 3.8 and 3.9 below. The fast equation with frozen slow component -defined by (5.1) in the abstract framework -then admits a unique invariant probability measure, which is ergodic and strongly mixing -with exponential convergence to equilibrium. Under the strict dissipativity condition 3.8, we can prove that the averaging principle holds in the strong and in the weak sense; moreover the "fast" numerical scheme has the same asymptotic behaviour as the continuous time equation. If we only assume weak dissipativity of Assumption 3.9, the averaging principle only holds in the weak sense, and we can not prove uniqueness of the invariant law of the fast numerical scheme. Nevertheless, in the general setting [START_REF] Bréhier | Approximation of the invariant measure via an euler scheme for stochastic pde's driven by space-time white noise[END_REF] gives an approximation result of the invariant law of the continuous time equation with the numerical method which is used to prove Theorem 4.2; the order of convergence is 1/2 with respect to the timestep size -the precise result is recalled in Theorem 5.11.

The paper is organized as follows. In Section 2, we give the definition of the numerical scheme. We then state the main assumptions made on the system of equations. In Section 4.1 we state the two main Theorems proved in this article, while in Section 4.2 we compare the efficiency of the HMM scheme with a direct one in order to justify the use of a new method. Before proving the theorems, we give some useful results on the numerical schemes. Finally the last two sections contain the proof of the strong and weak convergence theorems.

Description of the numerical scheme

Instead of working directly with system (1.1), we work with abstract stochastic evolution equations in Hilbert spaces H:

(2.1) dX ǫ (t) = (AX ǫ (t) + F (X ǫ (t), Y ǫ (t)))dt dY ǫ (t) = 1 ǫ (BY ǫ (t) + G(X ǫ (t), Y ǫ (t)))dt + 1 √ ǫ dW (t), with initial conditions X ǫ (0) = x ∈ H, Y ǫ (0) = y ∈ H.
To get system (2.1) from (1.1), we take H = L 2 (0, 1); the linear operators A and B are Laplace operators with homogeneous Dirichlet boundary conditions -see Example 3.2 -and the nonlinearities F and G are Nemytskii operators -see Example 3.10. The process (W (t)) t≥0 is a cylindrical Wiener process on H -see Section 3.1. For precise assumptions on the coefficients, we refer to Section 3.

We recall the idea of the Averaging Principle -proved in the previous article [START_REF] Bréhier | Strong and weak order in averaging for spdes[END_REF]: when ǫ goes to 0, X ǫ can be approximated by X defined by the averaged equation

(2.2) dX(t) dt = AX(t) + F (X(t)) X(t = 0) = x ∈ H;
the error is controlled in a strong sense by Cǫ 1/2-r and in a weak sense by Cǫ 1-r , where r > 0 can be chosen as small as necessary, and where C is a constant. The averaged coefficient F -see (5.4) -satisfies

F (X) = H F (X, y)µ X (dy) = lim s→+∞ E[F (X, Y X (s, y))],
where µ X is the unique invariant probability measure of the fast process Y X with frozen slow component -more details are given in Section 5.1.

To apply the HMM strategy, we need to define a macrosolver and a microsolver. We denote by ∆t the macrotime step size, and by δt the microtime step size. Let also T > 0 be a given final time.

The construction of the macrosolver is deeply based on the averaging principle: for n∆t ≤ T X ǫ (n∆t) can be approximated by X(n∆t). If the averaged coefficient F was known, one could build an approximation with a deterministic numerical scheme on the averaged equation; nevertheless in general it is not the case, and the idea is to calculate an approximation of this coefficient on-the-fly, by using the microsolver.

Therefore the macrosolver is defined in the following way: for any 0

≤ n ≤ ⌊ T ∆t ⌋ := n 0 , X n+1 = X n + ∆tAX n+1 + ∆t Fn ,
with the initial condition X 0 = x. Fn has to be defined; before that, we notice that the above definition leads to a semi-implicit Euler scheme -we use implicitness on the linear part, but the nonlinear part is explicit. If we define a bounded linear operator on H by S ∆t = (I -∆tA) -1 , we rather use the following explicit formula (2.3) X n+1 = S ∆t X n + ∆tS ∆t Fn .

We want Fn to be an approximation of F (X n ). The role of the microsolver is to give an approximation of Y Xn -the fast process with frozen slow component X n , when n is fixed; moreover we compute a finite number M of independent replicas of the process, in order to approximate theoretical expectations by discrete averages over different realizations of the random variables, in a Monte-Carlo spirit. Therefore the microsolver is defined in the following way: we fix a realization index j ∈ {1, . . . , M }, and a macrotime step n; then for any m ≥ 0

Y n,m+1,j = Y n,m,j + δt ǫ BY n,m+1,j + δt ǫ G(X n , Y n,m,j ) + δt ǫ ζ n,m+1,j .
As above we can give an explicit formula

(2.4) Y n,m+1,j = R δt ǫ Y n,m,j + δt ǫ R δt ǫ G(X n , Y n,m,j ) + δt ǫ R δt ǫ ζ n,m+1,j ,
where for any

τ > 0 R τ = (I -τ B) -1 .
The noises ζ n,m,j are defined by

ζ n,m+1,j = W (n,j) (m+1)δt -W (n,j) mδt √ δt ,
where (W (n,j) ) 1≤j≤M,0≤n≤n 0 are independent cylindrical Wiener processes on H. It is essential to use independent noises at each macrotime step. It is important to remark that this equation is well-posed in the Hilbert space H -see the conditions required when a cylindrical Wiener process is used in Section 3.1 -since R τ is a Hilbert-Schmidt operator from H to H, under assumptions given in Section 3.

The missing definition can now be written: Fn is given by (2.5)

Fn = 1 M N M j=1 n T +N -1 m=n T F (X n , Y n,m,j ).
n T is the number of microtime steps that are not used in the evaluation of the average in Fn , while N is the number of microtime steps that are then used for this evaluation. Each macrotime step then requires the computation of m 0 = n T + N -1 values of the microsolver.

At each macrotime step Y n,m,j must be initialized at time m = 0. In our proofs, this is not as important as in [START_REF] Weinan | Analysis of multiscale methods for stochastic differential equations[END_REF], but for definiteness we use the same method: we initialize with the last value computed during the previous macrotime step: Y n+1,0,j = Y n,m 0 ,j , while Y 0,0,j = y.

The aim of the analysis for HMM schemes is to prove that under an appropriate choice of the parameters n T , N, M of the scheme, we can bound the error by expressions of the following kind, where r > 0 is chosen as small as necessary: for n = n 0 = ⌊ T ∆t ⌋, we have the strong error estimate

E|X ǫ (n∆t) -X n | ≤ C ǫ 1/2-r + ∆t 1-r + δt ǫ 1/2-r
, and if Φ is a test function of class C 2 , bounded and with bounded derivatives, we have the weak error estimate

|EΦ(X ǫ (n∆t)) -EΦ(X n )| ≤ C ǫ 1-r + ∆t 1-r + δt ǫ 1/2-r
.

The origin of the three error terms appears clearly in the proofs -see Sections 6 and 7: the first one is the averaging error, the second one is the error in a deterministic scheme with the macrotime step, and the third one is the weak error in a scheme for stochastic equations with the microtime step. We recall that in the SPDE case the strong order of the semi-implicit Euler scheme for the microsolver used here is 1/4, while the weak order is 1/2, while in the SDE situation the respective orders are 1/2 and 1. The macrosolver is deterministic, so that the order is 1. Precise results for any choice of n T , N, M are given in Theorems 4.1 and 4.2 below, while the choice of these parameters is explained in Section 4.2.

Assumptions

As mentioned above, System (2.1) satisfies an averaging principle, and strong and weak order of convergence can be given. The HMM method relies on that idea. The natural assumptions are basically the same as the hypothesis needed to prove those results, but must be strenghtened sometimes. The typical kind of coefficients is specified in Examples 3.2 and 3.10.

3.1.

The cylindrical Wiener process and stochastic integration in H. Here, we recall the definition of the cylindrical Wiener process and of stochastic integral on a separable Hilbert space H -its norm is denoted by |.| H or just |.|. For more details, see [START_REF] Da | Stochastic equations in infinite dimensions[END_REF].

We first fix a filtered probability space (Ω, F, (F t ) t≥0 , P). A cylindrical Wiener process on H is defined with two elements:

• a complete orthonormal system of H, denoted by (q i ) i∈I , where I is a subset of N;

• a family (β i ) i∈I of independent real Wiener processes with respect to the filtration ((F t ) t≥0 ):

(3.1)

W (t) = i∈I β i (t)q i .
When I is a finite set, we recover the usual definition of Wiener processes in the finite dimensional space R |I| . However the subject here is the study of some Stochastic Partial Differential Equations, so that in the sequel the underlying Hilbert space H is infinite dimensional; for instance when H = L 2 (0, 1), an example of complete orthonormal system is (q k ) = (sin(k.)) k≥1 -see Example 3.2.

A fundamental remark is that the series in (3.1) does not converge in H; but if a linear operator Ψ : H → K is Hilbert-Schmidt, then ΨW (t) converges in L 2 (Ω, H) for any t ≥ 0.

We recall that a linear operator Ψ : H → K is said to be Hilbert-Schmidt when

|Ψ| 2 L 2 (H,K) := +∞ k=0 |Ψ(q k )| 2 K < +∞,
where the definition is independent of the choice of the orthonormal basis (q k ) of H. 

E| t 0 Ψ(s)dW (s)| 2 K = E t 0 |Ψ(s)| 2 L 2 (H,K) ds, (Itô isometry), E t 0 Ψ(s)dW (s) = 0.
A generalization of Itô formula also holds -see [START_REF] Da | Stochastic equations in infinite dimensions[END_REF].

For instance, if v = k∈N v k q k ∈ H, we can define < W (t), v >= t 0 < v, dW (s) >= k∈N β k (t)v k ;
we then have the following space-time white noise property

E < W (t), v 1 >< W (s), v 2 >= t ∧ s < v 1 , v 2 > .
Therefore to be able to integrate a process with respect to W requires some strong properties on the integrand; in our SPDE setting, the Hilbert-Schmidt properties follow from the assumptions made on the linear coefficients of the equations.

3.2.

Assumptions on the linear operators. First, we have to specify some properties of the linear operators A and B coming into the definition of system (2.1); we assume that the linear parts are of parabolic type, with space variable ξ ∈ (0, 1).

We assume that A and B are unbounded linear operators, with domains D(A) and D(B), which satisfy the following assumptions: Assumptions 3.1.

(1) There exist complete orthonormal systems of H, (e k ) k∈N and (f k ) k∈N , and (λ k ) k∈N and (µ k ) k∈N non-decreasing sequences of real positive numbers such that:

Ae k = -λ k e k for all k ∈ N Bf k = -µ k f k for all k ∈ N.
We use the notations λ := λ 0 > 0 and µ := µ 0 > 0 for the smallest eigenvalues of A and B.

(2) For every k ∈ N, f k is Lipschitz continuous and bounded on [0, 1], with a uniform control with respect to k: there exists C > 0 such that for any ξ 1 , ξ 2 ∈ [0, 1]

|f k (ξ 1 )| ≤ C and |f k (ξ 1 ) -f k (ξ 2 )| ≤ C √ µ k |ξ 1 -ξ 2 |.
(3) The sequences (λ k ) and (µ k ) go to +∞; moreover we have some control of the behaviour of (µ k ) given by:

+∞ k=0 1 µ α k < +∞ ⇔ α > 1/2. Example 3.2. A = B = d 2 dx 2 , with domain H 2 (0, 1) ∩ H 1 0 (0, 1) ⊂ L 2 (0, 1) -homogeneous Dirichlet boundary conditions: in that case λ k = µ k = π 2 k 2 , and e k (ξ) = f k (ξ) = √ 2 sin(kπξ) -see [1].
In the abstract setting, powers of -A and -B, with their domains can be easily defined:

Definition 3.3. For a, b ∈ [0, 1],
we define the operators (-A) a and (-B) b by

(-A) a x = ∞ k=0 λ a k x k e k ∈ H, (-B) b y = ∞ k=0 µ b k y k f k ∈ H, with domains D(-A) a = x = +∞ k=0 x k e k ∈ H; |x| 2 (-A) a := +∞ k=0 (λ k ) 2a |x k | 2 < +∞ ; D(-B) b = y = +∞ k=0 y k f k ∈ H, |y| 2 (-B) b := +∞ k=0 (µ k ) 2b |y k | 2 < +∞ .
On D(-A) a , the norm | . | (-A) a and the Sobolev norm of H 2a are equivalent: when x belongs to a space D(-A) a , the exponent a represents some regularity of the function x.

When a ≥ 0, we can also define a bounded linear operator (-A) -a in H with

(-A) -a x = +∞ k=0 λ -a k x k ∈ H,
where x = +∞ k=0 x k e k ∈ H. Under the previous assumptions on the linear coefficients, it is easy to show that the following stochastic integral is well-defined in H, for any t ≥ 0:

(3.2) W B (t) = t 0 e (t-s)B dW (s).
It is called a stochastic convolution, and it is the unique mild solution of

dZ(t) = BZ(t)dt + dW (t), Z(0) = 0.
Under the second condition of Assumption 3.1, there exists δ > 0 such that for any t > 0 we have H) ds < +∞; it can then be proved that W B has continuous trajectories -via the factorization method, see [START_REF] Da | Stochastic equations in infinite dimensions[END_REF] -and that for any 1 ≤ p < +∞, any 0 ≤ γ < 1/4, there exists a constant C(p, γ) < +∞ such that for any t ≥ 0

t 0 1 s δ |e sB | 2 L 2 (
(3.3) E|W B (t)| p (-B) γ ≤ C(p, γ).
3.3. Assumptions on the nonlinear coefficients. We now give the Assumptions on the nonlinear coefficients F, G : H × H → H. First, we need some regularity properties:

Assumptions 3.4. We assume that there exists 0 ≤ η < 1 2 and a constant C such that the following directional derivatives are well-defined and controlled:

• For any x, y ∈ H and h ∈ H, |D x F (x, y).h| ≤ C|h| H and |D y F (x, y).h| ≤ C|k| H .

• For any x, y ∈ H, h ∈ H, k ∈ D(-A) η , |D 2 xx F (x, y).(h, k)| ≤ C|h| H |k| (-A) η . • For any x, y ∈ H, h ∈ H, k ∈ D(-B) η , |D 2 yy F (x, y).(h, k)| ≤ C|h| H |k| (-B) η . • For any x, y ∈ H, h ∈ H, k ∈ D(-B) η , |D 2 xy F (x, y).(h, k)| ≤ C|h| H |k| (-B) η . • For any x, y ∈ H, h ∈ D(-A) η , k ∈ H, |D 2 xy F (x, y).(h, k)| ≤ C|h| (-A) η |k| H .
We moreover assume that F is bounded.

We also need: Assumptions 3.5. For η defined in the previous Assumption 3.4, we have for any x, y ∈ H and

h, k ∈ H |(-A) -η D 2 xx F (x, y).(h, k)| ≤ C|h| H |k| H |(-A) -η D 2 xy F (x, y).(h, k)| ≤ C|h| H |k| H |(-A) -η D 2 yy F (x, y).(h, k)| ≤ C|h| H |k| H .
We assume that the fast equation is a gradient system: for any x the nonlinear coefficient G(x, .) is the derivative of some potential U . We also assume regularity assumptions as for F .

Assumptions 3.6. The function G is defined through G(x, y) = ∇ y U (x, y), for some potential U : H × H → R. Moreover we assume that G is bounded, and that the regularity assumptions given in the Assumption 3.4 are also satisfied for G.

For G, we need a stronger hypothesis than for F -in order to get Proposition 5.5 . Assumption 3.5 becomes: Assumptions 3.7. We have for any x, y ∈ H, h, k ∈ H, z ∈ L ∞ (0, 1)

| < D xx G(x, y).(h, k), z > H | ≤ C|h| H |k| H |z| L ∞ (0,1) .
Finally, we need to assume some dissipativity of the fast equation. Assumption 3.8 is necessary to obtain strong convergence in the Averaging Principle, while Assumption 3.9 is weaker and can lead to the weak convergence. Assumptions 3.8 (Strict dissipativity). Let L g denote the Lipschitz constant of G with respect to its second variable; then

(SD) L g < µ,
where µ is defined in Assumption 3.1.

Assumptions 3.9 (Weak Dissipativity).

There exist c > 0 and C > 0 such that for any y ∈ D(B)

(WD) < By + G(y), y >≤ -c|y| 2 + C.
The second Assumption is satisfied as soon as G is bounded, while the first one requires some knowledge of the Lipschitz constant of G.

Example 3.10. We give some fundamental examples of nonlinearities for which the previous assumptions are satisfied:

• Functions F, G : H × H → H of class C 2 , bounded and with bounded derivatives, such that G(x, y) = ∇ y U (x, y) and satisfying (SD) fit in the framework, with the choice η = 0.

• Functions F and G can be Nemytskii operators: let f : (0, 1) × R 2 → R be a measurable function such that for almost every ξ ∈ (0, 1) f (ξ, .) is twice continuously differentiable, bounded and with uniformly bounded derivatives. Then F is defined for every x, y ∈ H = L 2 (0, 1) by F (x, y)(ξ) = f (ξ, x(ξ), y(ξ)). For G, we assume that there exists a function g with the same properties as f above, such that G(x, y)(ξ) = g(ξ, x(ξ), y(ξ)). The strict dissipativity Assumption SD is then satisfied when

sup ξ∈(a,b),x∈R,y∈R | ∂g ∂y (ξ, x, y)| < µ.
The conditions in Assumption 3.4 are then satisfied for F and G as soon as there exists η < 1/2 such that D(-A) η and D(-B) η are continuously embedded into L ∞ (0, 1) -it is the case for A and B given in Example 3.2, with η > 1/4. Assumptions 3.5 and 3.7 are also satisfied.

We then deduce that the system (2.1) is well-posed for any ǫ > 0, on any finite time interval [0, T ]. Under Assumptions 3.1, 3.4, 3.6, the nonlinearities F and G are Lipschitz continuous, and the following Proposition is classical -see [START_REF] Da | Stochastic equations in infinite dimensions[END_REF]:

Proposition 3.11. For every ǫ > 0, T > 0, x ∈ H, y ∈ H, system (2.1) admits a unique mild solution (X ǫ , Y ǫ ) ∈ (L 2 (Ω, C([0, T ], H))) 2 : for any t ∈ [0, T ], (3.4) X ǫ (t) = e tA x + t 0 e (t-s)A F (X ǫ (s), Y ǫ (s))ds Y ǫ (t) = e t ǫ B y + 1 ǫ t 0 e (t-s) ǫ B G(X ǫ (s), Y ǫ (s))ds + 1 √ ǫ t 0 e (t-s) ǫ B dW (s).

Convergence results

4.1.

Statement of the Theorems. We can now state the main results: the numerical process (X n ) defined by (2.3) approximates the slow component X ǫ (n∆t) of system (2.1), with strong and weak error estimates given in the Theorems.

If the Strict Dissipativity Assumption 3.8 is satisfied, we can prove the following:

Theorem 4.1 (Strong convergence). Assuming (SD), for any 0 < r < 1/2, 0 < κ < 1/2, T > 0, ǫ 0 > 0, ∆ 0 > 0, τ 0 > 0, there exists C > 0 such that for any 0 < ǫ ≤ ǫ 0 , 0 < ∆t ≤ ∆ 0 , δt > 0 such that τ = δt ǫ ≤ τ 0 and 1 < n ≤ n 0 = ⌊ T ∆t ⌋ E|X ǫ (n∆t) -X n | ≤ C ǫ 1/2-r + 1 n + ∆t 1-r + C ( δt ǫ ) 1/2-κ + 1 N δt ǫ + 1 e -cn T δt ǫ + C √ ∆t M (N δt ǫ + 1)
.

Under the more general Weak Dissipativity Assumption 3.9, we can prove the following:

Theorem 4.2 (Weak convergence). Assume that x ∈ D((-A) θ ) and y ∈ D((-B) β ), with θ, β ∈ ]0, 1]. Let Φ : H → H bounded, of class C 2
, with bounded first and second order derivatives. Then with the weak dissipativity assumption (WD), for any

0 < r < 1, κ < 1/2, T > 0, ǫ 0 > 0, ∆ 0 > 0, τ 0 > 0, there exists C > 0 such that for any 0 < ǫ ≤ ǫ 0 , 0 < ∆t ≤ ∆ 0 , δt > 0 such that τ = δt ǫ ≤ τ 0 and 1 < n ≤ n 0 = ⌊ T ∆t ⌋ |EΦ(X ǫ (n∆t)) -EΦ(X n )| ≤ C ǫ 1-r + 1 n + ∆t 1-r + C ( δt ǫ ) 1/2-κ (1 + 1 ((n T -1) δt ǫ ) 1/2-κ ) + 1 N δt ǫ + 1 e -cn T δt ǫ .
Moreover, if we assume (SD) in Theorem 4.2, the factor (1 +

1 ((n T -1) δt ǫ ) 1/2-κ ) is replaced by 1.
If we look at the estimates of Theorems 4.1 and 4.2 at time n = n 0 , the factor 1 n-1 is of size ∆t = O(∆t 1-r ).

4.2. Some comments on the convergence results. The proofs rely on the following decomposition, which explains the origin of the different error terms:

(4.1) X ǫ (n∆t) -X n = X ǫ (n∆t) -X(n∆t) + X(n∆t) -X n + X n -X n .
The numerical process (X n ) is defined in (5.12) below: it is the solution of the macrosolver with a known F , while (X n ) is solution of the macrosolver using Fn . The continuous processes X and X ǫ are defined at the beginning of Section 2. The first term is bounded thanks to the averaging result, using strong and weak order of convergence results -see the article [START_REF] Bréhier | Strong and weak order in averaging for spdes[END_REF]. The second term is the error in a deterministic numerical scheme, for which convergence results are classical; we recall the estimate in Proposition 5.13. The third term is the difference between the two numerical approximations, and the main task is the control of this part: we show that an extension of the averaging effect holds at the discrete time level, where X n plays the role of an averaged process for X n .

When we look at the Theorems 4.1 and 4.2, we first remark that we obtain the same kind of bounds as in the finite dimensional case of [START_REF] Weinan | Analysis of multiscale methods for stochastic differential equations[END_REF]. However we notice some differences; they are due both to the infinite dimensional setting and to different proofs.

First, the weak order of the Euler scheme for SPDEs is only 1/2 -see [START_REF] Debussche | Weak approximation of stochastic partial differential equations: the nonlinear case[END_REF] -while it is 1 for SDEs; in the estimate, the strong order never appears, and this is one of the main theoretical advantages of the method. For completeness, we recall that the strong order is 1/4 in the SPDE case -see [START_REF] Printems | On the discretization in time of parabolic stochastic partial differential equations[END_REF] -and 1/2 for SDEs. In fact, at least in the strictly dissipative case, we are comparing the invariant measures of the continuous fast equation with the invariant measure of its numerical approximation -see Theorem 5.11 and Corollary 5.12. In the weakly dissipative case, we use the weak error estimates where the constants do not depend on the final time.

We need some regularity on the initial condition x in Theorem 4.2, since we apply the weak order averaging Theorem of [START_REF] Bréhier | Strong and weak order in averaging for spdes[END_REF]; nonetheless the parameter θ > 0 does not appear in the different orders of convergence, but only in the constant C.

In Theorem 4.2, we do not exactly obtain the same estimate as in [START_REF] Weinan | Analysis of multiscale methods for stochastic differential equations[END_REF], since M does not appear: as a consequence, the estimate is not improved when M is increasing. Since we are looking at some weak error estimate, this can seem natural; first M appeared in the estimate of [START_REF] Weinan | Analysis of multiscale methods for stochastic differential equations[END_REF] only because of some strong error estimate used in the proof, while here to prove Theorem 4.2 we always think with a weak error state of mind. Second, the corresponding term in the weak estimate of [START_REF] Weinan | Analysis of multiscale methods for stochastic differential equations[END_REF] is easily controlled by ∆t, which already appears in another part of the error since we use a first order scheme for the macrosolver -and not a general scheme -so that there is no need for getting a better estimate.

The proofs of Theorems 4.1 and 4.2 are inspired by the ones in [START_REF] Weinan | Analysis of multiscale methods for stochastic differential equations[END_REF], but are different. The strong error is analysed in a global way, as in the proof of the strong order Theorem in [START_REF] Bréhier | Strong and weak order in averaging for spdes[END_REF]. Moreover we do not need a counterpart of Lemma 2.6 in [START_REF] Weinan | Analysis of multiscale methods for stochastic differential equations[END_REF], and we thus think that our method is more natural. For the control of the weak error, we introduce a new appropriate auxiliary function.

As explained in the introduction, we present here some simplified results and proofs. In the stricly dissipative case, we could go further in the analysis of the error, thanks to the initialization procedure of the scheme, and to additional exponential convergence results. But after a very technical work, due to the regularity assumptions made on the nonlinear coefficients F and G we would only obtain a factor ∆t 1-r-η instead of ∆t in the finite dimensional case -where is any r > 0, which can be chosen as small as necessary, and η is defined in Assumption 3.4 and depends on the regularity properties of the nonlinearities F and G. Nevertheless, the cost of the scheme remains of the same order even if we do not use those better estimates.

We consider that ǫ is fixed, and then the numerical method depends on several parameters N, M, n T , δt, ∆t; we would like to give some explicit choices of the parameters for which we have a simple bound, and for which a direct scheme, where the stiffness of the system (2.1) is not treated, is less efficient, for the cost defined by cost = M m 0 ∆t . This is the total number of microtime steps for T = 1.

We take n = n 0 : then 1 n ≤ C∆t. The time scale separation parameter ǫ is supposed to be very small, while we fix some tolerance tol for the error in the numerical scheme: more precisely, we want the error to be

(4.2) E|X ǫ (n∆t) -X n | ≤ C(ǫ 1/2-r + tol) (strong error) |EΦ(X ǫ (n∆t)) -EΦ(X n )| ≤ C(ǫ 1-r + tol) (weak error),
where r satisfies either r < r s -strong error -or r < r w -weak error -if the parameters r s and r w are defined by the conditions ǫ 1/2-rs = o(tol) (strong error) and ǫ 1-rw = o(tol) (weak error): the numerical error is dominant with respect to the averaging error. We want to show that we can choose the parameters of the scheme such that each term of the estimate of the Theorem 4.1 are of size tol, except the first one, and such that the cost of the scheme is lower than the cost of a direct scheme.

• We first notice that the choice for ∆t and δt ǫ is easy:

(4.3) ∆t ≈ tol 1 1-r δt ǫ ≈ tol 1 1/2-κ ,
where r < r s or r < r w , and κ < 1/2 are fixed. The choice of other parameters N, M, n T changes when we look at the strong or at the weak error. • We first focus on the strong convergence case. We consider the case when either M = 1 or N = 1. We obtain parameters cost

M = 1 N ≈ tol -2+ 1 1-r -1 1/2-κ n T ≈ tol -1 1/2-κ log(tol -1 ) tol -2-1 1/2-κ + 1 1-r N = 1 M ≈ tol 1 1-r -2 n T ≈ log(tol -1 )tol -1 1/2-κ tol -2-1 1/2-κ + 1 1-r log(tol -1 )
Unlike in the finite dimensional situation, the bound depends on a factor ∆t 1-η-rwhere η is linked to the regularity of the nonlinear coefficients F and G. The charge of this difference could be taken by either N or n T ; the advantage of choosing n T is that the difference only involves a logarithmic factor on the final cost. As a consequence, we can make no difference between the choices N = 1 and M = 1.

We can now make a comparison with the cost coming from the use of a direct scheme: since the strong order of Euler scheme for SPDEs is 1/4κ, the error can be bounded by C( δt ǫ ) 1/4-κ for some constant C. Therefore to have a bound of size tol, the time step size δt much satisfy δ ǫ ≈ tol 1 1/4-κ . This leads to a cost

1 δt ≈ ǫ -1 tol -1 1/4-κ ;
we conclude that in this situation the HMM numerical method is better, since the ratio of the cost tends to 0 when ǫ → 0 -under the condition r < r s .

• We now focus on the weak error estimate. Here M plays no role, so that M = 1 is the good choice! The time steps ∆t and δt are still given by (4.3). It remains to look for parameters N and n T such that

1 N δt ǫ + 1 e -cn T δt ǫ ≈ ∆t.
Once again, we need to choose n T and N such that N δt ǫ or n T δt ǫ is large. Since exponential decrease is faster than polynomial decrease, the best choice is e -cn T δt ǫ ≈ ∆t, and therefore n T ≈ tol

-1 1/2-κ log(tol -1 ), while N = 1.
We then see that

1 ((n T -1) δt ǫ ) 1/2-κ ≤ C,
so that the additional factor appearing when only weak dissipativity is satisfied plays no role.

The corresponding cost of the scheme is then of order m 0 ∆t ≈ log(tol -1 )tol

-1 1-r -1
1/2-κ . We can again compare this cost with the cost coming from the use of a direct scheme: the weak order of Euler scheme for SPDEs is 1/2κ; to obtain the second estimate of (4.2), we need a cost

1 δt ≈ ǫ -1 tol -1 1/2-κ ,
and again the HMM scheme is better than the direct scheme for such a range of parameters.

Preliminary results

5.1.

Known results about the fast equation and the averaged equation. In this section, we just recall without proof the main results on the fast equation with frozen slow component and on the averaged equation, defined below. Proofs can be found in [START_REF] Cerrai | Averaging principle for a class of stochastic reaction-diffusion equations[END_REF] for the strict dissipative case, and the extension to the weakly dissipative situation relies on arguments explained below. If x ∈ H, we define an equation on the fast variable where the slow variable is fixed and equal to x:

(5.1)

dY x (t, y) = (BY x (t, y) + G(x, Y x (t, y)))dt + dW (t), Y x (0, y) = y.
This equation admits a unique mild solution, defined on [0, +∞[. Since Y ǫ is involved at time t > 0, heuristically we need to analyse the properties of Y x ( t ǫ , y), with ǫ → 0, and by a change of time we need to understand the asymptotic behaviour of Y x (., y) when time goes to infinity.

Under the strict dissipativity Assumption 3.8, we obtain a contractivity of trajectories issued from different initial conditions and driven by the same noise: Proposition 5.1. With (SD), for any t ≥ 0, x, y 1 , y 2 ∈ H we have

|Y x (t, y 1 ) -Y x (t, y 2 )| H ≤ e -(µ-Lg ) 2 t |y 1 -y 2 | H .
Under the weak dissipativity Assumption 3.9, we obtain such an exponential convergence result for the laws instead of trajectories. The proof of this result is not staightforward, and can be found in [START_REF] Debussche | Ergodic BSDEs under weak dissipative assumptions[END_REF] -see also [START_REF] Bréhier | Approximation of the invariant measure via an euler scheme for stochastic pde's driven by space-time white noise[END_REF] for further references. Proposition 5.2. With (WD), there exist c > 0, C > 0 such that for any bounded test function φ, any t ≥ 0 and any y 1 , y 2 ∈ H

(5.2) |Eφ(Y (t, y 1 )) -Eφ(Y (t, y 2 ))| ≤ C φ ∞ (1 + |y 1 | 2 + |y 2 | 2 )e -ct .
As a consequence, we can show that there exists a unique invariant probability measure associated with Y x , and that the convergence to equilibrium is exponentially fast.

First, let ν = N (0, (-B) -1 /2) be the centered Gaussian probability measure on H with the covariance operator (-B) -1 /2 -which is positive and trace-class, thanks to Assumption 3.1.

Then µ x defined by

(5.3) µ x (dy) = 1 Z(x)
e 2U (x,y) ν(dy),

where Z(x) ∈]0, +∞[ is a normalization constant, is the unique probability invariant measure associated to Y x . This expression comes from the gradient structure of equation (5.1), given in Assumption 3.6. Second, under any of the dissipativity assumptions, the convergence to equilibrium is exponential in the following sense: Proposition 5.3. If we assume (SD) or (WD), there exist constants C, c > 0 such that for any bounded function φ : H → R or φ : H → H, t ≥ 0 and x, y ∈ H we have

|Eφ(Y x (t, y)) - H φ(z)µ x (dz)| ≤ C φ ∞ (1 + |y| 2 H )e -ct .
Now we define the averaged equation. First we define the averaged nonlinear coefficient F : Using Assumptions 3.4, 3.6 and the expression of µ x , it is easy to prove that F is bounded and Lipschitz continuous.

Under Assumptions 3.4, 3.6, we can easily prove the following properties on F : Proposition 5.5. There exists 0 ≤ η < 1 and a constant C such that the following directional derivatives of F are well-defined and controlled:

• For any x ∈ H, h ∈ H, |DF (x).h| ≤ C|h| H . • For any x ∈ H, h ∈ H, k ∈ D(-A) η , |D 2 F (x).(h, k)| ≤ C|h| H |k| (-A) η . • For any x ∈ H, h, k ∈ H, |(-A) -η D 2 F (x).(h, k)| ≤ C|h| H |k| H . Moreover, F is bounded and Lipschitz continuous.
The last estimate above is a consequence of Assumptions 3.5 and 3.7, and of the following fact: we have almost surely W B (t) ∈ L ∞ (0, 1) for any t ≥ 0, and

(5.5) H |z| L ∞ (0,1) ν(dz) < +∞.
Moreover if η > 1/4 -which is the right condition in the case of linear Laplace operators and of nonlinear Nemytskii operators -we have H |z| (-A) η ν(dz) = +∞: we thus need the restrictive condition in Assumption 3.7.

Remark 5.6. Even when F and G are Nemytskii operators, F is not such an operator in general.

Then the averaged equation (see (2.2) in the introduction) can be defined:

dX(t) dt = AX(t) + F (X(t)),
with initial condition X(0) = x ∈ H. For any T > 0, this deterministic equation admits a unique mild solution X ∈ C([0, T ], H).

5.2.

Estimates on the numerical solutions. We can give uniform estimates on X n and Y n,m,j , defined by 2.3 and 2.4:

Lemma 5.7. There exists C > 0 such that we have P-almost surely

|X n | ≤ C(1 + |x|),
for any 0 ≤ n ≤ n 0 .

Proof The linear operator S ∆t satifies |S ∆t | L(H) ≤ 1 1+λ∆t ; moreover F is bounded, so that by (2.5) we almost surely have for any n ≥ 0 | Fn | ≤ F ∞ . The end of the proof is then straightforward; we also notice that C does not depend on the final time T . Lemma 5.8. There exists C > 0 -which does not depend on T > 0, on N , on n T or on M -such that for any ∆t > 0, τ

= δt ǫ > 0, 0 ≤ n ≤ n 0 , 0 ≤ m ≤ m 0 and 1 ≤ j ≤ M , we have E|Y n,m,j | 2 ≤ C(|y| 2 + 1).
Proof We introduce ω n,m,j defined by the fast numerical scheme with no nonlinear coefficientsee (2.4) -with the notation τ = δt ǫ : for any 0

≤ j ≤ M , 0 ≤ n ≤ n 0 and 0 ≤ m ≤ m 0 (5.6) w n,m+1,j = R τ w n,m,j + √ τ R τ ζ n,m+1,j ,
with the initial condition w n,0,j = 0. w n,m,j is the numerical approximation -using the microsolver scheme with a step size τ -of the process defined by dZ (n,j) (t) = BZ (n,j) (t)dt + d W (n,j) (t)

Z (n,j) (0) = 0, where W (n,j) t = 1 √ ǫ W (n,j) ǫt
. Notice that the ( W (n,j) ) are independent cylindrical Wiener processes, and that

ζ n,m+1,j = W (n,j) (m+1)τ - W (n,j) mτ √ τ .
The Z (n,j) are independent realizations of Z(t) = W B (t) = t 0 e (t-s)B dW (s). Using Theorem 3.2 of [START_REF] Printems | On the discretization in time of parabolic stochastic partial differential equations[END_REF], giving the strong order 1/4 for the microsolver -when the initial condition is 0, with no nonlinear coefficient, with a constant diffusion term and under the assumptions made here -we get the following estimate: for any 0 < κ < 1/2, there exists C κ > 0, such that for any τ > 0, 0

≤ n ≤ n 0 , 1 ≤ j ≤ M and 0 ≤ m ≤ m 0 (5.7) E|ω n,m,j -Z (n,j) (mτ )| 2 ≤ C κ τ 1/2-κ .
Thanks to (3.3) and (5.7), for any τ 0 > 0, there exists a constant C(τ 0 ) such that for any 0 ≤ τ < τ 0 ,

0 ≤ n ≤ n 0 , 1 ≤ j ≤ M and 0 ≤ m ≤ m 0 we have E|ω n,m,j | 2 ≤ C(τ 0 ).
Now for any 0 ≤ m ≤ m 0 we define D n,m,j = Y n,m,jw n,m,j ; it is enough to control |D n,m,j | 2 , P-almost surely. By (2.4), we have the following expression: for any 0 ≤ m ≤ m 0

D n,m+1,j = R τ D n,m,j + τ R τ G(X n , Y n,m,j ).
Since G is bounded, and using the inequality

|R τ | L(H) ≤ 1 1+µτ , we get |D n,m+1,j | ≤ 1 1 + µτ |D n,m,j | + Cτ.
Therefore we have for any 0 ≤ m ≤ m 0

(1 + µτ ) m |D n,m,j | ≤ |D n,0,j | + C[(1 + µτ ) m -1].
But D n,0,j = D n-1,m 0 ,j . So we get

(1 + µτ ) m 0 |D n+1,0,j | ≤ |D n,0,j | + C[(1 + µτ ) m 0 -1].
Therefore

(1 + µτ ) nm 0 |Z n,0,j | ≤ |D 0,0,j | + C(1 + µτ ) nm 0 = |y| + C(1 + µτ ) nm 0 .
As a consequence, we get for any 0 ≤ n ≤ n 0 and any 0 ≤ m ≤ m 0 , |D n,0,j | ≤ C(1 + |y|), and then |Z n,m,j | ≤ 2C(1 + |y|).

5.3.

Asymptotic behaviour of the "fast" numerical scheme. At the continuous time level, the averaging principle proved in [START_REF] Bréhier | Strong and weak order in averaging for spdes[END_REF] comes from the asymptotic behaviour of the fast equation with frozen slow component (5.1), as described in Section 5.1. The underlying idea of the HMM method in our setting is to prove a similar averaging effect at the discrete time level: we therefore study the asymptotic behaviour of the fast numerical scheme which defines the microsolver, with frozen slow component -in other words we are looking at the evolution of the microsolver during one fixed macrotime step. In Section 5.1, we have seen that under the weak dissipativity Assumption 3.9 the fast equation with frozen slow component admits a unique invariant probability measure µ x . At the discrete time level, this Assumption only yields the existence of invariant laws; to get a unique invariant law µ x,τ , we need strict dissipativity SD, and we obtain: Theorem 5.9. Under Assumption 3.8, for any τ > 0 and any x ∈ H; the numerical scheme 5.9 admits a unique ergodic invariant probability measure µ x,τ . Moreover, we have convergence to equilibrium in the following sense: for any τ 0 > 0, there exist c > 0 and C > 0 such that for any 0 < τ ≤ τ 0 , x ∈ H, y ∈ H, any Lipschitz continuous function φ from H to R, and m ≥ 0, we have

(5.8) |E(φ(Y x m (y))) - H φ(z)µ x,τ (dz)| ≤ C(1 + |y|)[φ] Lip e -cmτ .
We recall the notation τ = δt ǫ for the effective time step; the noise is defined with a cylindrical Wiener process W : ζm+1 = W(m+1)τ -Wmτ √ τ

. If we fix the slow component x ∈ H, we define (5.9)

Y x m+1 (y) = R τ Y x m (y) + τ R τ G(x, Y x m (y)) + √ τ R τ ζm+1 ,
with the initial condition Y x 0 (y) = y.

5.3.1.

Existence of an invariant law. With Equation (5.9), we associate the transition semi-group (P x,τ m ): if φ is a bounded measurable function from H to R, if y ∈ H and m ≥ 0

(5.10) P x,τ m φ(y) = E[φ(Y x m (y))].
We also denote by ν x,τ m,y the law of Y x,τ m (y): then

P x,τ m φ(y) = E[φ(Y x,τ m (y))] = H φ(z)ν x,τ m,y (dz).
We notice that the semi-group (P m ) satisfies the Feller property: if φ is bounded and continuous, then P m φ ∈ is bounded and continuous.

The required tightness property is a consequence of the following estimate, which can be proved thanks to regularization properties of the semi-group (R m τ ) m : for any 0 < γ < 1/4, τ > 0, there exists C(γ, τ ) > 0 such that for any m ≥ 1 and τ ≤ τ 0

E|Y m (y)| 2 (-B) γ ≤ C(γ, τ ).
Moreover if 0 < γ < 1/4, the embedding of D(-B) γ in H is compact.

5.3.2.

Uniqueness under strict dissipativity. The key estimate to prove uniqueness is the following contractivity property, which holds thanks to Assumption 3.8:

Proposition 5.10. For any τ 0 > 0, there exists c > 0 such that for any 0 < τ ≤ τ 0 , m ≥ 0, y 1 , y 2 ∈ H, x ∈ H we have P-almost surely

(5.11) |Y x m (y 1 ) -Y x m (y 2 )| ≤ e -cmτ |y 1 -y 2 |. Proof If we define r m = Y m (y 1 ) -Y m (y 2
), then we have the equation

r m+1 = r m + τ BR m+1 + τ (G(x, Y m (y 1 )) -G(x, Y m (y 2 ))), r 0 = y 1 -y 2 .
If we take the scalar product in H of this equation with r m+1 , we get

|r m+1 | 2 -< r m , r m+1 > = τ < Br m+1 , r m+1 > + τ < G(x, Y m (y 1 )) -G(x, Y m (y 2 )), r m+1 >;
The left hand-side is equal to

1 2 (|r m+1 | 2 -|r m | 2 ) + 1 2 |r m+1 -r m | 2 , and we get 1 2 (|r m+1 | 2 -|r m | 2 ) ≤ -τ |(-B) 1/2 r m+1 | 2 + τ L g |r m ||r m+1 | ≤ -µτ |r m+1 | 2 + 1 2 τ L g (|r m+1 | 2 + |r m | 2 ).
Therefore we have

(1 + τ (2µ -L g ))|r m+1 | 2 ≤ (1 + τ L g )|r m | 2 .
We remark that SD implies that for any τ 0 > 0, there exists c > 0 such that if τ ≤ τ 0 we have ρ = 1+τ Lg 1+τ (2µ-Lg ) ≤ e -2cτ ; therefore

|r m | 2 ≤ ρ m |y 1 -y 2 | 2 ≤ e -2cmτ |y 1 -y 2 | 2 .
As a consequence, there exists a unique ergodic invariant probability measure µ x,τ , which is strongly mixing. Moreover one can prove that there exists C > 0 such that for any τ > 0 and any

x ∈ H H |y|µ x,τ (dy) ≤ C; we therefore get

|E(φ(Y x m (y))) - H φ(z)µ x,τ (dz)| = |E(φ(Y x m (y))) - H Eφ(Y x m (z))µ x,τ (dz)| ≤ H E|φ(Y x m (y)) -φ(Y x m (z)|µ x,τ (dz) ≤ [φ] Lip H e -cmτ |y -z|µ x,τ (dz) ≤ C[φ] Lip e -cmτ .
5.3.3. Approximation of the invariant law µ x by the fast numerical scheme. We recall that µ x denotes the invariant law of the continuous time fast equation with frozen slow component (5.1). Thanks to the fast numerical scheme, we can get an approximation result, which is proved in [START_REF] Bréhier | Approximation of the invariant measure via an euler scheme for stochastic pde's driven by space-time white noise[END_REF]: with test functions of class C 2 b , we can control the weak error for any time with a convergence of order 1/2 with respect to the time step τ . Moreover the estimate is easily seen to be independent from the slow component x.

We define for any

Φ of class C 2 b Φ (2) = sup y∈H |Φ(y)| + sup y∈H,h∈H,|h|=1 |D y Φ(y).h| + sup y∈H,h,k∈H,|h|=|k|=1 |D 2 yy Φ(y).(h, k)|.
Theorem 5.11. With the dissipativity condition (WD), for any 0 < κ < 1/2, for any τ 0 > 0, there exists C, c > 0 such that for any Φ of class C 2 b , for any x, y ∈ H, for any 0 < τ ≤ τ 0 and any integer

2 ≤ m < +∞ |E[Φ(Y x (mτ, y))] -E[Φ(Y x m (y))]| ≤ C Φ (2) (1 + |y| 3 )(((m -1)τ ) -1/2+κ + 1)τ 1/2-κ .
As explained in Section 5.3, in general the fast numerical scheme does not admit a unique invariant probability measure, but when the strict dissipativity Assumption 3.8 is satisfied, it admits a unique invariant law µ x,τ . Corollary 5.12. Under the assumptions of Theorem 5.11:

(i) if only (WD) is satisfied, we have for any m ≥ 2

| H Φdµ x -E[Φ(Y x m )]| ≤ C Φ (2) (1 + |y| 3 )(((m -1)τ ) -1/2+κ + 1)τ 1/2-κ + CN (Φ)(1 + |y| 2 )e -cmτ .
(ii) if moreover (SD) is satisfied,

| H Φdµ x - H Φdµ x,τ | ≤ C Φ (2) τ 1/2-κ .
We recall that in the case of Euler scheme for SDEs this kind of results holds with the order of convergence 1.

5.4.

Error in the deterministic scheme (5.12). We define a scheme based on the macrosolver, for theoretical purpose, in the situation when F is known:

(5.12)

X n+1 = S ∆t X n + ∆tS ∆t F (X n ) X 0 = x.
We can look at the error between X n , defined by (5.12), and X(n∆t), defined by (2.2). Here quantities are deterministic, and the following result is classical -see [START_REF] Roux | Semidiscretization in time for parabolic problems[END_REF], [START_REF] Crouzeix | On the discretization in time of semilinear parabolic equations with nonsmooth initial data[END_REF], or the details of the proofs in [START_REF] Printems | On the discretization in time of parabolic stochastic partial differential equations[END_REF]: Proposition 5.13. For any 0 < r < 1, ∆t 0 > 0 and T > 0, there exists C > 0, such that for any 0 < ∆t ≤ ∆t 0 and 1

≤ n ≤ ⌊ T ∆t ⌋ |X n -X(n∆t)| ≤ C n + C(1 + |x|)∆t 1-r .
6. Proof of the strong convergence Theorem 4.1

Thanks to the following remark on the construction of the scheme, we can consider that Y n,m,j corresponds to a process evaluated at time m + nm 0 . The idea is to build noise processes ζ (j) by concatenation of the ζ (n,j) for the different n. Remark 6.1. To compute Y n,m,j with the microsolver, the total number of microtime steps used is nm 0 + m. It is then natural to use only one noise process ζ (j) . , for each 1 ≤ j ≤ M , and to make an evaluation involving time nm 0 + m. More precisely, we can use

ζ (j) k+1 = W (j) (k+1)δt -W (j) kδt √ δt ,
with (W (j) ) 1≤j≤M being M independent cylindrical Wiener processes on H.

Then one can define for 0 ≤ t ≤ m 0 δt and for 0 ≤ m ≤ m 0 -1

W (n,j) (t) = W (j) (t + nm 0 δt) -W (j) (nm 0 δt) ζ n,m+1,j = ζ (j)
nm 0 +m+1 . We also introduce the following notation: E n denotes conditional expectation with respect to the σ-field

(6.1) G n = σ(ζ k,m,j , 0 ≤ k ≤ n -1, 1 ≤ m ≤ m 0 , 1 ≤ j ≤ M ) = σ(ζ (j) m , 1 ≤ m ≤ nm 0 ). We notice that X n is G n -measurable, but that Fn is not.
The final time T is fixed and we recall the notation n 0 = ⌊ T ∆t ⌋. To simplify notations, we do not always precise the range of summation in the expressions below: the indices j, j 1 , j 2 belong to {1, . . . , M }, and m, m 1 , m 2 belong to {n T , . . . , n T + N -1 = m 0 }.

We recall that according to the decomposition of the error (4.1), we have to control

(6.2) E|X ǫ (n∆t) -X n | ≤ E|X ǫ (n∆t) -X(n∆t)| + |X(n∆t) -X n | + E|X n -X n |.
The first part is controlled thanks to the strong order Theorem of [START_REF] Bréhier | Strong and weak order in averaging for spdes[END_REF]: for any 0 < r < 1/2, we have for any 0 ≤ n ≤ n 0 E|X ǫ n∆t -X n∆t | ≤ Cǫ 1/2-r . The second part is deterministic and is controlled thanks to Proposition 5.13:

|X n -X(n∆t)| ≤ C n + C(1 + |x|)∆t 1-r ,
where C depends on T, r, x, y. It remains to focus on the third part e n = X n -X n . Instead of analyzing the local error like in [START_REF] Weinan | Analysis of multiscale methods for stochastic differential equations[END_REF], we adopt a global point of view, and we follow the idea of the proof of Theorem 1.1 in [START_REF] Bréhier | Strong and weak order in averaging for spdes[END_REF]: for any 0 ≤ n ≤ n 0 (6.3)

X n -X n = S n ∆t x + ∆t n-1 k=0 S n-k ∆t Fk -S n ∆t x -∆t n-1 k=0 S n-k ∆t F (X k ).
The averaged coefficient F is Lipschitz continuous, and |S ∆t | L(H) ≤ 1; moreover we can define the averaged coefficient F τ with respect to the invariant measure µ x,τ of the fast numerical schemewhich is unique since we assume strict dissipativity (SD): for any x ∈ H (6.4)

F τ (x) = H F (x, y)µ x,τ (dy).
The error in (6.3) can then be decomposed in the following way -the idea of looking at the square of the norm in the second expression is an essential tool of the proof: (6.5)

E|X n -X n | ≤ C∆t n-1 k=0 E|X k -X k | + E|∆t n-1 k=0 S n-k ∆t Fk -S n-k ∆t F τ (X k )| 2 1/2 + ∆t n-1 k=0 E|S n-k ∆t F (X k ) -S n-k ∆t F τ (X k )|.
If we can control the two last terms by a certain quantity Q, by a discrete Gronwall Lemma we get for any 0

≤ k ≤ n 0 E|X n -X n | ≤ e CT Q.
First, the third term in (6.5) is linked to the distance between the invariant measures µ x and µ x,τ -since we assume strict dissipativity for this strong estimate -which is evaluated thanks to Theorem 5.11 and Corollary 5.12 for test functions of class

C 2 b . Since |(-A) η S n-k ∆t | L(H) ≤ C ((n-k)∆t
) η , using Assumption 3.5, we can apply Corollary 5.12 to obtain

|S n-k ∆t F (X k ) -S n-k ∆t F τ (X k )| ≤ C ((n -k)∆t) η τ 1/2-κ ,
and summing we get

∆t n-1 k=0 E|S n-k ∆t F (X k ) -S n-k ∆t F τ (X k )| ≤ Cτ 1/2-κ .
The other term is more complicated; in order to get a precise estimate, we expand the square of the norm of the sum. We can then use some conditional expectations, which allow to use exponential convergence to equilibrium via Theorem 5.9. Therefore we obtain the following expansion:

E|∆t n-1 k=0 S n-k ∆t Fk -S n-k ∆t F τ (X k )| 2 = ∆t 2 n-1 k=0 E|S n-k ∆t ( Fk -F τ (X k ))| 2 + 2∆t 2 0≤k 1 <k 2 ≤n-1 E < S n-k 1 ∆t ( Fk 1 -F τ (X k 1 )), S n-k 2 ∆t ( Fk 2 -F τ (X k 2 )) > =: Σ 1 + Σ 2 .
(i) We first treat Σ 1 . By (2.5), for any 0 ≤ k ≤ n -1 we have

Fk = 1 M N M j=1 n T +N -1 m=n T F (X k , Y k,m,j );
therefore we can see that

E|S n-k ∆t ( Fk -F τ (X k ))| 2 = 1 M 2 N 2 j 1 ,j 2 m 1 ,m 2 EE k < S n-k ∆t (F (X k , Y k,m 1 ,j 1 ) -F τ (X k )), S n-k ∆t (F (X k , Y k,m 2 ,j 2 ) -F τ (X k )) >,
with the conditional expectation E k with respect to G k -see (6.1).

When

j 1 = j 2 , ζ (j 1 )
m and ζ

(j 2 )
m are independent, so that we treat differently the cases j 1 = j 2 and j 1 = j 2 in the above summation, and we obtain

M 2 N 2 E|S n-k ∆t ( Fk -F τ (X k ))| 2 = j 1 =j 2 E < m 1 E k S n-k ∆t (F (X k , Y k,m 1 ,j 1 ) -F τ (X k )), m 2 E k S n-k ∆t (F (X k , Y k,m 2 ,j 2 ) -F τ (X k )) > + M j=1 m 1 ,m 2 E < S n-k ∆t (F (X k , Y k,m 1 ,j ) -F τ (X k )), S n-k ∆t (F (X k , Y k,m 2 ,j ) -F τ (X k )) > .
For the first part, we can directly use the exponential convergence to equilibrium result of (5.8) to have a bound with

( 1 N m 0 m=n T e -cmτ ) 2 ≤ ( 1 N e -cn T τ -e -c(N +n T )τ 1 -e -cτ ) 2 ≤ (Ce -cn T τ 1 -e -cN τ N τ ) 2 ≤ ( Ce -cn T τ N τ + 1 ) 2 .
For the second part, we see that we can treat only the case m 1 ≤ m 2 , and we introduce the conditional expectation E k,m 1 ,j with respect to the σ-field generated by G k and (ζ (j) km 0 +m ) 0≤m≤m 1 -1 , when m 1 ≤ m 2 . We get a bound with

2 M N 2 n T ≤m 1 ≤m 2 ≤m 0 e -c(m 2 -m 1 )τ ≤ C M (N τ + 1)
.

We therefore get (6.6)

Σ 1 ≤ C∆t ( e -cn T τ N τ + 1 ) 2 + 1 M (N τ + 1)
.

(ii) We now consider Σ 2 , which corresponds to the cross-terms in the expansion of the square of the norm of the quantity S n-k ∆t ( Fk -F τ (X k )). By the definition of Fk , the general term with indices

k 1 < k 2 in |Σ 2 | is bounded by |E < S n-k 1 ∆t ( Fk 1 -F τ (X k 1 )), S n-k 2 ∆t ( Fk 2 -F τ (X k 2 )) > | ≤ ∆t 2 M 2 N 2 | m i ,j i E < S n-k 1 ∆t (F (X k 1 , Y k 1 ,m 1 ,j 1 ) -F τ (X k 1 )), S n-k 2 ∆t (F (X k 2 , Y k 2 ,m 2 ,j 2 ) -F τ (X k 2 )) > | ≤ C ∆t 2 M N m 0 m=n T E|E k 2 [S n-k 2 ∆t (F (X k 2 , Y k 2 ,m,j ) -F τ (X k 2 )]|,
using conditional expectation E k 2 and the boundedness of F .

Using the exponential convergence result of (5.8) and Lemma 5.8, we get the bound

E|E k 2 [S n-k 2 ∆t (F (X k 2 , Y k 2 ,m,j ) -F τ (X k 2 )]| ≤ Ce -mτ ,
so that the previous quantity is bounded by

C ∆t 2 M N m 0 m=n T M j=1 e -cmτ ≤ C∆t 2 e -cn T τ N τ + 1 .
Summing on k 1 < k 2 , we can now conclude that (6.7)

Σ 2 ≤ C e -cn T τ N τ + 1 ;
then by (6.6) and (6.7)

E|∆t n-1 k=0 S n-k ∆t Fk -S n-k ∆t F τ (X k )| 2 ≤ C e -cn T τ N τ + 1 + ∆t( e -cn T τ N τ + 1 ) 2 + ∆t M (N τ + 1)
, and the result of Theorem 4.1 now follows from (6.5).

7. Proof of the weak convergence Theorem 4.2

In order to get a better bound for the weak error than for the strong error, we use an auxiliary function which is solution of a Kolmogorov equation.

The proof is valid under the general dissipativity Assumption 3.9.

We divide the proof in two parts: the first one contains the elements of the proof, while the second one is devoted to two technical lemmas. 

≤ n ≤ n 0 (7.1) |EΦ(X ǫ (n∆t)) -EΦ(X n )| ≤ |EΦ(X ǫ (n∆t)) -EΦ(X(n∆t))| + |Φ(X(n∆t)) -Φ(X n )| + |Φ(X n ) -EΦ(X n )|.
Thanks to the averaging Theorem of [START_REF] Bréhier | Strong and weak order in averaging for spdes[END_REF], which is proved under the weak dissipativity assumption (WD), the first term above can be controlled by C r ǫ 1-r , where C r is a constant -depending on r, Φ, x, y, T , for any 0 < r < 1.

For the second term, since we look at the error made by using a deterministic scheme to approximate a deterministic equation, there is no difference between the strong and the weak orders -since the test function Φ is Lipschitz continuous; so we again use Proposition 5.13.

For the third term, we see that we have to control some error between two different numerical schemes, in a weak sense. The usual strategy is to decompose this error by means of an auxiliary function satisfying some kind of Kolmogorov equation.

More precisely, we use the deterministic scheme defining X k in order to define for any 0 ≤ k ≤ n

(7.2) u n (k, x) = Φ(X n-k (x)),
where we explicitly mention dependence of the numerical solution X k on the initial condition x.

Remark 7.1. We can easily prove that we have

u n (n, x) = Φ(x) u n (k, x) = u(k + 1, S ∆t x + ∆tS ∆t F (x)) for any k < n.
This is the way this function is defined in [START_REF] Weinan | Analysis of multiscale methods for stochastic differential equations[END_REF].

We now analyse the error by identifying a telescoping sum:

(7.3) |Φ(X n ) -EΦ(X n )| = |u n (0, x) -Eu n (n, X n )| = | n-1 k=0 (Eu n (k, X k ) -Eu n (k + 1, X k+1 ))| ≤ n-1 k=0 |Eu n (k, X k ) -Eu n (k + 1, X k+1 )|.
According to Lemma 7.2 below, u n is of class C 2 b , and we can control the first and second order derivatives: Lemma 7.2. For any 0 < T < +∞, there exists C T > 0 such that for any 0 ≤ n ≤ n 0 = ⌊ T ∆t ⌋ and 0 ≤ k ≤ n, we have, for any x ∈ H, h ∈ H, h 1 , h 2 ∈ H:

|D x u n (k, x).h| ≤ C T |h|, |D 2 xx u n (k, x).(h 1 , h 2 )| ≤ C T |h 1 ||h 2 |. Moreover for any 0 ≤ k ≤ n -1 and any x ∈ H, h ∈ H, |D x u n (k, x).h| ≤ C T (∆t|h| + |h| (-A) -η ((n -k)∆t) η ),
where η is defined in Assumption 3.4.

Since the auxiliary functions u n are linked to the deterministic discrete-time process (X n ) n≥0 , the proof does not use stochastic tools.

Moreover the second and the third estimates of this Lemma reveal some smoothing effect in the equation, due to the semi-group (S n ∆t ) n∈N . These results are specific to the infinite dimensional framework; if we only use the first estimate above, and a simple one like A) η , we would not obtain an optimal convergence result.

|D 2 xx u n (k, x).(h 1 , h 2 )| ≤ C T |h 1 ||h 2 | (-
To make the proof of Theorem 4.2 clearer, we postpone the proof of Lemma 7.2 in Section 7.2.

In the general term of (7.3), we proceed with a Taylor expansion and we get (7.4)

|Eu n (k, X k )-Eu n (k + 1, X k+1 )| = |Eu n (k + 1, S ∆t X k + ∆tS ∆t F (X k )) -Eu n (k + 1, S ∆t X k + ∆tS ∆t Fk )| ≤ ∆t|ED x u n (k + 1, S ∆t X k + ∆tS ∆t F (X k )).(S ∆t F (X k ) -S ∆t Fk )| + C∆t 2 E| Fk -F (X k )| 2 .
The second term is controlled by using the second estimate of the previous Lemma 7.2. Under the assumption that F is bounded, we therefore get a O(∆t 2 ) term; when summing over 0 ≤ k ≤ n -1, we get a O(∆t) term, which is already dominated in the final estimate.

When k = n -1, since u n (n, .) = Φ, (7.5) |Eu n (n -1, X n-1 ) -Eu n (n, X n )| ≤ C∆t.
In the rest of the proof, we focus on the general case 0 ≤ k < n -1.

For the first term, we do not exactly follow the proof of [START_REF] Weinan | Analysis of multiscale methods for stochastic differential equations[END_REF]; we rather define auxiliary functions for 0 ≤ k ≤ n in order to keep on looking at a weak error term:

(7.6) Ψ n (k, x, y) = D x u n (k, S ∆t x + ∆tS ∆t F (x)).(S ∆t F (x, y)).
Then if we define Ψ n (k + 1, x) = H Ψ n (k + 1, x, y)µ x (dy) we have

|ED x u n (k + 1, S ∆t X k + ∆tS ∆t F (X k )).(S ∆t F (X k ) -S ∆t Fk )| ≤ 1 M N n T +N -1 m=n T M j=1 |EΨ n (k + 1, X k , Y k,m,j ) -EΨ n (k + 1, X k )|.
By using conditional expectation E k with respect to G k defined by (6.1),

EΨ n (k + 1, X k , Y k,m,j ) = EE k Ψ n (k + 1, X k , Y k,m,j )
does not depend on j, so that in the sequel we fix j ∈ {1, . . . , M }.

The following Lemma gives the regularity results for the auxiliary functions:

Lemma 7.3. For any 0 < T < +∞ and ∆t 0 > 0, there exists a constant C, such that for any 0 < ∆t ≤ ∆t 0 , any 1 ≤ n ≤ n 0 = ⌊ T ∆t ⌋ and any 0 ≤ k ≤ n -1, the following derivatives exist and are controlled: for any x, y ∈ H, h, k ∈ H, Like in Lemma 7.2, the proof relies smoothing effect of the semi-group (S n ∆t ) n∈N . The Lemma is proved below in Section 7.2.

We can then apply Theorem 5.11, valid with the weak dissipativity condition (WD), using the conditional expectation E k : for any n T ≤ m ≤ m 0 and k < n -1 To conclude, it remains to use (7.3) and (7.1). Remark 7.4. When the strict dissipativity Assumption is satisfied, we can indeed obtain a bound without 1 ((m-1)τ ) 1/2-κ : we can control the distance between the invariant measures of the continuous and discrete time processes, thanks to the second part of Corollary 5.12. Proof of Lemma 7.2 We use the following expression for X n (x):

|EΨ n (k + 1, X k , Y k,m,j ) -EΨ n (k + 1, X k )| ≤ Ce -cmτ + C(1 + 1 ((m -1)τ ) 1/2-κ )τ 1/2-κ . Therefore
X n (x) = S n ∆t x + ∆t n-1 k=0 S n-k ∆t F (X k (x)).
By definition, for any 0 ≤ k ≤ n we have u n (k, x) = Φ(X n-k (x)); we see that the derivatives in directions h, h (ii) When we look at the second-order derivative, we see that 
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7. 1 .

 1 Proof of the Theorem. According to the decomposition (4.1), we want to control for any 0

  |D y Ψ n (k, x, y).h| ≤ C|h| H , |D 2 yy Ψ n (k, x, y).h| ≤ C(1 + C ((nk)∆t) η )|h| H |k| H .

|EΨ n (k + 1 ,

 1 |ED x u n (k + 1, S ∆t X k + ∆tS ∆t F (X k )).(S ∆t F (X k ) -S ∆t Fk )| X k , Y k,m,j ) -EΨ n (k + 1, X k )| ≤ C e -cn T τ N τ + 1 + Cτ 1/2-κ + C τ 1/2-κ ((n T -1)τ ) 1/2-κ .

7. 2 .

 2 Proof of the auxiliary Lemmas 7.2 and 7.3.

D 2

 2 yy Ψ n (k, x, y).(h, k) = D x u n (k, S ∆t x + ∆tS ∆t F (x)).(S ∆t D 2 yy F (x, y).(h, k)).Thanks to the last estimate of Lemma 7.2, we can control the expression byC ∆t|S ∆t D 2 yy F (x, y).(h, k)| H + |S ∆t D 2 yy F (x, y).(h, k)| (-A) -η ((nk)∆t) η ,We then notice that∆t|S ∆t D 2 yy F (x, y).(h, k)| H ≤ C∆t 1-η |(-A) -η D 2 yy F (x, y).(h, k)| ≤ C|h| H |k| H ,since η < 1 and ∆t is bounded, and thanks to Assumption 3.5; the other part is controlled thanks to Assumption 3.5.

  1 , h 2 ∈ H are given byD x u n (k, x).h = DΦ(X n-k (x)).( d dx X n-k (x).h),andD 2 xx u n (k, x).(h 1 , h 2 ) = DΦ(X n-k (x)).( d 2 dx 2 X n-k (x).(h 1 , h 2 )) + D 2 Φ(X n-k (x)).( d dx X n-k (x).h 1 , d dx X n-k (x).h 2 ).Φ is of class C 2 on H, with bounded derivatives; therefore we just need to control d dx X n-k (x).h andd 2 dx 2 X n-k (x).(h 1 , h 2 ).We use the following estimates of the derivatives of F , given in Proposition 5.5: for anyx ∈ H, h ∈ H, h 1 , h 2 H, |DF (x).h| ≤ C|h| |(-A) -η D 2 F (x).(h 1 , h 2 )| ≤ C|h 1 ||h 2 |.(i) For any 0 ≤ n ≤ n 0 , we can write when k < n, and thanks to the previous estimates on d dx X k (x).h and D 2 F , we get|S n-k ∆t (-A) η (-A) -η D 2 F (X k (x)).( k)∆t) η |h| 1 |h| 2 . X n (x).(h 1 , h 2 )| ≤ C|h 1 ||h 2 | X n (x).(h 1 , h 2 )| ≤ C|h 1 ||h 2 |.(iii) To prove the last estimate of the Lemma, we write (x).h| ≤ C|h| (-A) -η + C∆t(n∆t) η |h| H + C(n∆t) η ∆tTo conclude, we use Gronwall Lemma, to get(n∆t) η | d dx X n (x).h| ≤ C T (|h| (-A) -η + ∆t(n∆t) η ).The first derivative with respect to y is easy to control: we have for any h ∈ H D

	d dx and a discrete Gronwall Lemma then yields X n (x).h = S n ∆t h + ∆t therefore | d dx X n (x).h| ≤ |h| + C∆t n-1 k=0 S n-k ∆t DF (X k (x))( n-1 k=0 | d dx X k (x).h|, d dx X k (x).h); | d dx X n-1 k=0 S n-k ∆t (-A) d dx X k (x).h 1 , + ∆t n-1 k=0 S n-k ∆t DF (X k (x)).( d 2 dx 2 X d dx X k (x).h 1 , d dx X k (x).h 2 )| ≤ C ((n Therefore | d 2 dx 2 + C∆t n-1 k=0 | d 2 dx 2 X k (x).(h 1 , h 2 )|, and a discrete Gronwall Lemma then yields | d 2 d dx X n (x).h| = |S n ∆t h + ∆t n-1 k=0 S n-k ∆t DF (X k (x))( d dx X k (x).h)| ≤ C (n∆t) η |h| (-A) -η + C∆t n-1 j=0 | d dx X k (x).h|. We obtain (n∆t) η | d dx X n n-1 j=1 1 (j∆t) η (j∆t) η | d dx X j (x).h|; d dx Proof of Lemma 7.3 dx 2 | (i)	X k (x).h 2 )

n (x).h| ≤ |h|e Cn∆t ≤ |h|e CT .

(ii) For any 0 ≤ n ≤ n 0 , we can write

d 2 dx 2 X n (x).(h 1 , h 2 ) = ∆t η (-A) -η D 2 F (X k (x)).( k (x).(h 1 , h 2 )). Since |S n-k ∆t (-A) η | ≤ C ((n-k)∆t) η y Ψ n (k, x, y).h = D x u n (k, S ∆t x + ∆tS ∆t F (x)).(S ∆t D y F (x, y).h),

and we get |D y Ψ n (k, x, y).h| ≤ C|h| H .