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APPROXIMATION OF THE INVARIANT MEASURE WITH AN EULER

SCHEME FOR STOCHASTIC PDE’S DRIVEN BY SPACE-TIME WHITE

NOISE

CHARLES-EDOUARD BREHIER

Abstract. In this article, we consider a stochastic PDE of parabolic type, driven by a space-time
white-noise, and its numerical discretization in time with a semi-implicit Euler scheme. When the
nonlinearity is assumed to be bounded, then a dissipativity assumption is satisfied, which ensures
that the SDPE admits a unique invariant probability measure, which is ergodic and strongly mixing
- with exponential convergence to equilibrium. Considering test functions of class C

2, bounded and
with bounded derivatives, we prove that we can approximate this invariant measure using the
numerical scheme, with order 1/2 with respect to the time step.

1. Introduction

In this paper, we are interested in the discretization in time of the following stochastic reaction-
diffusion equation

(1)
∂y(t, ξ)

∂t
=

∂2y(t, ξ)

∂ξ2
+ g(ξ, y(t, ξ)) +

∂ω(t, ξ)

∂t
,

for t ≥ 0, ξ ∈ (0, 1), with the initial condition y(0, ξ) = y(ξ), and homogeneous Dirichlet boundary

conditions y(t, 0) = y(t, 1) = 0. The stochastic perturbation ∂ω(t,ξ)
∂t is a space-time white noise: the

rigorous interpretation of (1) is given by an abstract evolution equation (2) - in the sense of [3] - in
the Hilbert space H = L2(0, 1), driven by a Wiener cylindrical process - see Section 2.3.

The numerical approximation of stochastic equations has been extensively studied during the last
thirty years. First we recall that one can look at strong approximation results - when the trajectories
of the continuous and the discrete-time processes are compared - or at weak approximation results
- when the laws at a fixed time are compared. The simplest method in the case of SDEs is the
Euler-Maruyama scheme; it is built as a straightforward extension of the well-known explicit Euler
method for ODEs, which is of order 1: if we consider in R

d a SDE with regular coefficients

dXt = f(Xt)dt+ σ(Xt)dBt,X0 = x,

its numerical approximation is defined for a given step-size ∆t by

X0 = x,

Xn+1 = Xn + f(Xn)∆t+ σ(Xn)(Btn+1
−Btn).

Due to the regularity properties of the Brownian Motion, this scheme is in general only of order
1/2 in the strong sense - i.e. for n∆t ≤ T we have E|Xn∆t −Xn|2 ≤ C(T )∆t - while it is of order
1 in the weak sense - i.e. for test functions φ of class C3, with bounded derivatives, we have a
bound |Eφ(Xn∆t) − Eφ(Xn)| ≤ C(T, φ)∆t. The idea for proving that weak order is 1 and not 1/2
is to consider the Kolmogorov equation associated with the process Xt, which is satified by the
function (t, x) 7→ Eφ(X(t, x)) - see [26], [28]. The books [14] and [22] - see also [21] - contain various
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numerical schemes - like the well-known Milstein scheme, some implicit schemes, and methods based
on stochastic Taylor expansions - with their order of convergence in both strong and weak senses.

Numerical methods for SPDEs like (1) need discretization both in time and in space. For example,
time discretization leads to explicit or implicit methods, while discretization in space can be done
with finite difference or finite element methods. Basically, the result for space-time white noise
driven equations is convergence with strong order 1/2 in space and only 1/4 in time - under some
Courant-Friedrichs-Lewy conditions when necessary: see [5], [10], [11], [12], [13], [29].

If we look at the abstract formulation of (1) in the Hilbert space H, results have also been proved
for the time discretization using semi-implicit Euler schemes: the strong order of convergence is
1/4 - see [24] - while the weak order of convergence is 1/2 - see [6]. Moreover in [8], the authors
have studied weak convergence in the case of linear equations when using a finite element method
in space. We follow here the framework of [6]: we consider the stochastic evolution equation in H
and we use a time discretization with a semi-implicit Euler scheme, with no discretization in space.

In this work, we are interested in the behaviour of the weak convergence estimates when the final
time T goes to infinity: can we replace constants C(T, φ) by a constant C(φ) independent from
T ? Passing to the limit, we thus ask the more general following question: can we use a numerical
scheme to approximate the invariant probability measure of the continuous time process - which is
assumed to be unique, ergodic and with exponential convergence to equilibrium? The SDE case has
been studied with various methods: in [27], the weak error analysis is made by showing that the
time derivatives of the solution of the Kolmogorov equation are exponentially decreasing in time;
in [17], some general conditions are given for the ergodicity of the numerical scheme, thanks to the
theory of geometric ergodicity of Markov Chains. In [19], the approximation result is shown thanks
to the use of a Poisson equation.

In the case of SPDEs, general ergodicity results have only been obtained recently - see Section
4.3 - and the problem of approximation of invariant measures by numerical schemes has not been
studied yet.

We prove the following result:

Theorem 1.1. For any 0 < κ < 1/2, τ0 > 0 and for any C2
b function φ, there exists a constant

C > 0 such that for any m ≥ 2, y ∈ H and 0 < τ ≤ τ0

|E[φ(Y (mτ, y))]− E[φ(Ym(τ, y))]| ≤ C(1 + |y|3)(((m − 1)τ)−1/2+κ + 1)τ1/2−κ.

The continuous process Y is defined by Equation (2) below, and the numerical approximation
(Ym(τ, y)) with time step τ and initial condition y is defined by (8).

We notice that the right-hand side of the previous estimate contains a singularity when m = 1,
which is due to a lack of regularity of the infinite-dimensional processes - details are given in Sub-
Section 6.1 below. However, if we look at the error at a fixed time T = mτ , if τ is small enough
we just need to change the constant C = C(T ); moreover since we are interested in the behaviour
when m goes to infinity, this term plays no role.

With the assumptions precised below, we show in Section 4.3 that the SPDE admits a unique
invariant probability measure µ, which is ergodic and strongly mixing, with exponential convergence
to equilibrium; nevertheless we can in general only show the existence, not the uniqueness, of
invariant measures for the numerical approximation, and we can prove the following result:

Corollary 1.2. For any 0 < κ < 1/2, τ0 > 0 and for any C2
b function φ, there exists constants

c > 0, C > 0 such that for any 0 < τ ≤ τ0, any initial condition y ∈ H and any m ≥ 1

|E[φ(Ym(τ, y))]−
∫

H
φdµ| ≤ C(1 + |y|3)( 1

m1/2−κ
+ τ1/2−κ) + C(1 + |y|2)e−cmτ .
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Moreover, if µτ is an ergodic invariant probability measure of the numerical scheme (Ym(τ, .))m∈N,
we have

|
∫

H
φdµτ −

∫

H
φdµ| ≤ Cτ1/2−κ;

all the ergodic invariant measures of the numerical approximation are then close to the unique
invariant probability measure of the continuous process.

Up to our knowledge, this is the first result of this kind for SPDEs.
The key point, like in [27], for obtaining bounds independent from the time T = mτ , is to prove

that derivatives of the solution u of the underlying Kolomogorov equation - mentioned above -
decrease exponentially in time: this is done in Section 5.2, using a coupling method.

Moreover, an essential tool in [6] is the use of Malliavin calculus and of an integration by parts
formula in order to transform a stochastic integral - which is not regular enough in space in the
infinite dimensional setting - into an expression which can be controlled; in Lemma 4.5, we see that
the involved Malliavin derivatives may increase exponentially fast with respect to time. The solution
is to separate the lack of regularity problem and this badly controlled growth with a decomposition
of the interval into two parts: in the first one we need the integration by parts formula, and we can
control the Malliavin derivatives, while in the other one we can directly give an appropriate bound.
We also provide an improvement with respect to [6]: we can consider a more general nonlinear
coefficient G - like a Nemytskii operator, see Example 2.7.

We also notice that some more general equations, with additive noise which is white in time but
colored in space, can be studied with our method, with suitable assumptions on the coefficients.
For a very smooth noise, the numerical analysis on finite time is easier to treat, but then ergodic
properties and long-time behaviour require different techniques; this will be treated elsewhere.

The case of some equations with multiplicative noise which satisfy the Strong Feller Property is
also covered by our technique of proof, but with some additional difficulties - see for instance the
restrictive condition on the diffusion coefficient in [6]. Since all the necessary ideas are contained
here and in [6], we only focus on the additive noise case.

The paper is organized as follows: in Section 2, we precise the assumptions made on the coefficients
of the equations, and we define the numerical method in Section 3. In Section 4, we give some
bounds on the solutions of the continuous and discrete equations, and we study their asymptotic
behaviour: existence of invariant measures, and uniqueness for the continuous equation, following
from Proposition 4.7. In Section 5, we explain the proof of Theorem 1.1, and we give a proof of
Corollary 1.2; more precisely, in Section 5.2 we prove the exponential decreasing in time of the
derivatives of the function u. Eventually Section 6 contains the proofs of the remaining estimates

2. Notations and assumptions

Let H be a separable Hilbert space, with norm denoted by |.|H or simply |.|. We consider
equations of the form

(2)
dY (t, y) = (BY (t, y) +G(Y (t, y)))dt + dW (t)

Y (0, y) = y.

In the next paragraphs, we explain the assumptions on the linear operator B and on the nonlinear
coefficient G; we also recall how the cylindrical Wiener process W is defined, and how we can
construct solutions of this equation.

2.1. Test functions. To quantify the weak approximation, we use test functions φ in the space
C2
b (H,R) of functions from H to R that are twice continuously differentiable, bounded, with first

and second order bounded derivatives.
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Remark 2.1. In the sequel, we often identify the first derivative Dφ(x) ∈ L(H,R) with the gradient
in the Hilbert space H, and the second derivative D2φ(x) with a linear operator on H, via the
formulas:

< Dφ(x), h >= Dφ(x).h for every h ∈ H

< D2φ(x).h, k >= D2φ(x).(h, k) for every h, k ∈ H.

In the sequel, we use the following notations:

‖Φ‖∞ = sup
x∈H

|Φ(x)|H

‖Φ‖1 = sup
x∈H

|DΦ(x)|H

‖Φ‖2 = sup
x∈H

|D2Φ(x)|L(H).

2.2. Assumptions on the coefficients.

2.2.1. The linear operator. We denote by N = {0, 1, 2, . . .} the set of nonnegative integers.
We suppose that the following properties are satisfied:

Assumptions 2.2. (1) We assume that there exists a complete orthonormal system of elements
of H denoted by (fk)k∈N, and a non-decreasing sequence of real positive numbers (µk)k∈N
such that:

Bfk = −µkfk for all k ∈ N.

(2) The sequence (µk) goes to +∞ and

+∞
∑

k=0

1

µα
k

< +∞ ⇔ α > 1/2.

The smallest eigenvalue of −B is then µ0.

Example 2.3. The equation (1) enters in this framework: we can choose B = d2

dx2 , with the domain

H2(0, 1) ∩ H1
0 (0, 1) ⊂ L2(0, 1) - corresponding to homogeneous Dirichlet boundary conditions. In

this case for any k ∈ N µk = π2(k + 1)2, and fk(ξ) =
√
2 sin((k + 1)πξ) - see [2].

For a N ∈ {1, 2, . . .}, we denote by HN the subspace of H spanned by f0, . . . , fN−1, and by PN

the orthogonal projection of H onto HN .
The domain D(B) of B is equal to D(B) =

{

y =
∑+∞

k=0 ykfk ∈ H,
∑+∞

k=0(µk)
2|yk|2 < +∞

}

. We
can more generally define fractional powers of −B, for b ∈ [0, 1]:

(−B)by =

∞
∑

k=0

µb
kykfk ∈ H,

with the domains

D(−B)b =

{

y =
+∞
∑

k=0

ykfk ∈ H, |y|2b :=
+∞
∑

k=0

(µk)
2b|yk|2 < +∞

}

.

When b ∈ [0, 1], we can also define the spaces D(−B)−b and operators (−B)−b, with norm

denoted by |.|−b; when y =
∑+∞

k=0 ykfk ∈ H, we have (−B)−by =
∑+∞

k=0 µ
−b
k ykfk and |y|2−b :=

∑+∞
k=0(µk)

−2b|yk|2.
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The semi-group (etB)t≥0 can be defined by the Hille-Yosida Theorem - see [2]. We use the

following spectral formula: if y =
∑+∞

k=0 ykfk ∈ H, then for any t ≥ 0

etBy =
+∞
∑

k=0

e−µktykfk.

For any t ≥ 0, etB is a continuous linear operator in H, with operator norm e−µ0t. The semi-group
(etB) is used to define the solution Z(t) = etBz of the linear Cauchy problem

dZ(t)

dt
= BZ(t) with Z(0) = z.

To define solutions of more general PDEs of parabolic type, we use mild formulation, and Duhamel
principle.

This semi-group enjoys some smoothing properties that we often use in this work. Basically we
need the following properties, which are easily proved using the above spectral properties.

Proposition 2.4. Under Assumption 2.2, for any σ ∈ [0, 1], there exists Cσ > 0 such that we have:

(1) for any t > 0 and y ∈ H,

|etBy|σ ≤ Cσt
−σe−

µ0
2
t|y|H .

(2) for any 0 < s < t and y ∈ H,

|etBy − esBy|H ≤ Cσ
(t− s)σ

sσ
e−

µ0
2
s|y|H .

(3) for any 0 < s < t and y ∈ D(−A)σ,

|etBy − esBy|H ≤ Cσ(t− s)σe−
µ0
2
s|y|σ.

2.2.2. The nonlinear operator. The nonlinear operator G is assumed to satisfy some general assump-
tions. In Example 2.7, we give the two main kind of operators that can be used in our framework.

Assumptions 2.5. The function G : H → H is assumed to be bounded and Lipschitz continuous.
We denote by LG the Lipschitz constant of G

We also define for each N ≥ 1 a function GN : HN → HN , with GN (y) = PNG(y) for any
y ∈ HN . We assume that each GN is twice differentiable, and that we have the following bounds on
the derivatives, uniformly with respect to N :

• There exists a constant C1 such that for any N ≥ 1, y ∈ HN and h ∈ HN

|DGN (y).h|H ≤ C1|h|H .

• There exists η ∈ [0, 1) and a constant C2 such that for any N ≥ 1, y ∈ HN and any
h, k ∈ HN we have

|(−B)ηD2GN (y).(h, k)| ≤ C2|h|H |k|H .

• Moreover, there exists a constant C3 such that for any N ≥ 1, y ∈ HN and any h, k ∈ HN

|D2GN (y).(h, k)| ≤ C3|h|(−B)η |k|H .

Since G is bounded, the following property is easily satisfied:

Proposition 2.6 (Dissipativity). There exist c > 0 and C > 0 such that for any y ∈ D(B)

(3) < By +G(y), y >≤ −c|y|2 + C.

We remark that we have uniform control with respect to the dimension N of the bounds on GN

and on its derivatives, and that (3) is also satisfied for GN , with constants c and C independent
from N .
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Example 2.7. We give some fundamental examples of nonlinearities for which the previous as-
sumptions are satisfied:

• A function G : H → H of class C2, bounded and with bounded derivatives, fits in the
framework, with the choice η = 0.

• The function G can be a Nemytskii operator: let g : (0, 1) × R → R be a measurable,
bounded, function such that for almost every ξ ∈ (0, 1) g(ξ, .) is twice continuously differen-
tiable, with uniformly bounded derivatives. Then G(y) is defined for every y ∈ H = L2(0, 1)
by

G(y)(ξ) = g(ξ, y(ξ)).

In general, such functions are not Fréchet differentiable, but only Gâteaux differentiable, with
the following expressions:

[DG(y).h](ξ) =
∂g

∂y
(ξ, y(ξ))h(ξ)

[D2G(y).(h, k)](ξ) =
∂2g

∂y2
(ξ, y(ξ))h(ξ)k(ξ).

If h and k are only L2 functions, D2G(y).(h, k) may only be L1; however if h or k is L∞,
it is L2. The conditions in Assumption 2.5 are then satisfied as soon as there exists η < 1
such that D(−B)η is continuously embedded into L∞(0, 1) - it is the case for B given in
Example 2.3, with η > 1/4. Then the finite dimensional spaces HN are subspaces of L∞,
and differentiability can be shown.

2.3. The cylindrical Wiener process and stochastic integration in H. In this section, we
recall the definition of the cylindrical Wiener process and of stochastic integral on a separable
Hilbert space H with norm |.|H . For more details, see [3].

We first fix a filtered probability space (Ω,F , (Ft)t≥0,P). A cylindrical Wiener process on H is
defined with two elements:

• a complete orthonormal system of H, denoted by (qi)i∈I , where I is a subset of N;
• a family (βi)i∈I of independent real Wiener processes with respect to the filtration ((Ft)t≥0);

then W is defined by

(4) W (t) =
∑

i∈I
βi(t)qi.

When I is a finite set, we recover the usual definition of Wiener processes in the finite dimensional
space R

|I|. However the subject here is the study of some Stochastic Partial Differential Equations,
so that in the sequel the underlying Hilbert space H is infinite dimensional; for instance when
H = L2(0, 1), an example of complete orthonormal system is (qk) = (

√
2 sin(kπ.))k≥1 - see Example

2.3.
A fundamental remark is that the series in (4) does not converge in H; but if a linear operator

Ψ : H → K is Hilbert-Schmidt, then ΨW (t) converges in L2(Ω,H) for any t ≥ 0.
We recall that a bounded linear operator Ψ : H → K is said to be Hilbert-Schmidt when

|Ψ|2L2(H,K) :=

+∞
∑

k=0

|Ψ(qk)|2K < +∞,

where the definition is independent of the choice of the orthonormal basis (qk) of H. The space of
Hilbert-Schmidt operators from H to K is denoted L2(H,K); endowed with the norm |.|L2(H,K) it
is an Hilbert space.
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The stochastic integral
∫ t
0 Ψ(s)dW (s) is defined in K for predictible processes Ψ with values in

L2(H,K) such that
∫ t
0 |Ψ(s)|2L2(H,K)ds < +∞ a.s; moreover when Ψ ∈ L2(Ω× [0, t];L2(H,K)), the

following two properties hold:

E|
∫ t

0
Ψ(s)dW (s)|2K = E

∫ t

0
|Ψ(s)|2L2(H,K)ds (Itô isometry),

E

∫ t

0
Ψ(s)dW (s) = 0.

A generalization of Itô formula also holds - see [3].
For instance, if v =

∑

k∈N vkqk ∈ H, we can define

< W (t), v >=

∫ t

0
< v, dW (s) >=

∑

k∈N
βk(t)vk;

we then have the following space-time white noise property

E < W (t), v1 >< W (s), v2 >= t ∧ s < v1, v2 > .

Therefore to be able to integrate a process with respect to W requires some strong properties
on the integrand; in our SPDE setting, the Hilbert-Schmidt properties follow from the assumptions
made on the linear coefficients of the equations.

Thanks to Assumption 2.2, it is easy to show that the following stochastic integral is well-defined
in H, for any t ≥ 0:

(5) WB(t) =

∫ t

0
e(t−s)BdW (s).

It is called a stochastic convolution, and it is the unique mild solution of

dZ(t) = BZ(t)dt+ dW (t) with Z(0) = 0.

Under the second condition of Assumption 2.2, there exists δ > 0 such that for any t > 0 we

have
∫ t
0

1
sδ
|esB |2L2(H)ds < +∞; it can then be proved that WB has continuous trajectories - via the

factorization method, see [3] - and that for any 1 ≤ p < +∞
(6) E sup

t≥0
|WB(t)|pH < +∞.

We can now define solutions to Equation (2), thanks to the assumptions made on the coefficients:
the following result is classical - see [3]:

Proposition 2.8. For every T > 0, y ∈ H, the equation (2) admits a unique mild solution Y ∈
L2(Ω, C([0, T ],H)):

(7) Y (t) = etBy +

∫ t

0
e(t−s)BG(Y (s))ds +

∫ t

0
e(t−s)BdW (s).

3. Definition of the numerical scheme

We now define the numerical approximation of Y : denoting by τ the time step, we have

Yk+1(τ, y) = Yk(τ, y) + τBYk+1(τ, y) + τG(Yk(τ, y)) +
√
τχk+1

Y0(τ, y) = y,

where χk+1 =
1√
τ
(W ((k + 1)τ)−W (kτ)).

To simplify the equations, we omit the dependence of Yk on the time-step τ and on the initial
condition y.

7



This expression does not make sense in H. Defining Rτ = (I − τB)−1, this last equation can be
replaced by

(8) Yk+1 = RτYk + τRτG(Yk) +
√
τRτχk+1,

which is valid, since Rτ is a Hilbert-Schmidt operator on H.

Remark 3.1. Later, we often use the following expression for Yk:

(9) Yk = Rk
τy + τ

k−1
∑

l=0

Rk−l
τ G(Yl) +

√
τ
k−1
∑

l=0

Rk−l
τ χl+1.

The following expression is also useful:

(10)
√
τ

k−1
∑

l=0

Rk−l
τ χl+1 =

∫ tk

0
Rk−ls

τ dW (s),

where ls = ⌊ s
τ ⌋ - with the notation ⌊.⌋ for the integer part.

We need the following technical estimate:

Lemma 3.2. For any 0 ≤ κ ≤ 1 and j ≥ 1,

|(−B)1−κRj
τ |L(H) ≤ c

1

(jτ)1−κ

1

(1 + µ0τ)jκ
.

Proof For any z ∈ H,

|(−B)1−κRj
τz|2H =

+∞
∑

i=0

µ
2(1−κ)
i

1

(1 + µiτ)2j
|zi|2

=
1

(jτ)2(1−κ)

+∞
∑

i=0

|zi|2µ2(1−κ)
i (jτ)2(1−κ) 1

(1 + µiτ)2j(1−κ)

1

(1 + µiτ)2jκ

≤ 1

(jτ)2(1−κ)

+∞
∑

i=0

(

µijτ

1 + µijτ

)2(1−κ) 1

(1 + µ0τ)2jκ
|zi|2

≤ c|z|2H
1

(jτ)2(1−κ)

1

(1 + µ0τ)2jκ
. �

4. Preliminary results

We warn the reader that constants may vary from line to line during the proofs, and that in order
to use lighter notations we usually forget to mention dependence on the parameters. We use the
generic notation C for such constants.

We fix the time step τ , as well as m ∈ N; we then introduce the notation T = mτ . We also define
tk = kτ . κ > 0 is a parameter, which is be supposed to be small enough. We also control τ : for
some τ0 > 0, τ ≤ τ0.

4.1. Galerkin approximation. The first step of the proof is to consider finite dimensional approx-
imations of the H-valued processes (Y (t))t∈R+ and (Yk)k∈N: if we fix N ≥ 1, we define (Y (N)(t))t∈R+

and (Y
(N)
k )k∈N by the equations

dY (N)(t) = BY (N)(t)dt+GN (Y (N)(t))dt+ dW (N)(t)

and

Y
(N)
k+1 = Y

(N)
k + τBY

(N)
k+1 + τG(Y

(N)
k ) +

√
τPNχk+1,

8



with the initial conditions Y
(N)
t=0 = Y

(N)
k=0 = PNy.

The projection PN and the nonlinear coefficient GN have been defined above. W (N) = PNW
is a N -dimensional Wiener process on the subspace HN . We remark that the above equations are
well-defined on HN - which is a stable subspace of B.

The important and not difficult to prove result is the following: for any fixed t ∈ R
+ and k ∈ N,

when N → +∞ we have

E|Y (t)− Y (N)(t)|2 → 0 and E|Yk − Y
(N)
k |2 → 0.

We need test functions ΦN adapted to the finite-dimensional approximation: for any N ≥ 1, by
restriction we define ΦN (y) = Φ(y) for any y ∈ HN ; we obtain the following decomposition

EΦ(Y (mτ))− EΦ(Ym) = EΦ(Y (mτ))− EΦ(Y (N)(mτ))

+ EΦN (Y (N)(mτ))− EΦN (Y (N)
m )

+ EΦ(Y (N)
m )− EΦ(Ym);

the first and the third terms converge to 0 when N → +∞. In the sequel, we prove an estimate of
the second term, which is uniform with respect to dimension N ; letting N → +∞ then yields an
estimate on the left hand side.

Hence we work with the finite dimensional approximation, but we omit the parameter N . The
constants appearing below are independent of N .

In Section 4.2, we prove some estimates on Y (t) and Ym, and in Section 4.3 we focus on the
asymptotic behaviour of the processes.

4.2. Some useful estimates. Bounds on moments of Yt and Yk can be proved, uniformly with
respect to time.

Lemma 4.1. For any p ≥ 1, there exists a constant Cp > 0 such that for every t ≥ 0 and y ∈ H

E|Y (t, y)|p ≤ Cp(1 + |y|p).

Proof If we define Z(t) = Y (t)−WB(t), we have Z(0) = Y (0) = y, and

dZ(t)

dt
= BZ(t) +G(Y (t)),

and by Proposition 2.6

1

2

d|Z(t)|2
dt

=< BZ(t) +G(Y (t)), Z(t) >

=< BZ(t) +G(Z(t)), Z(t) > + < G(Y (t))−G(Z(t)), Z(t) >

≤ −c|Z(t)|2 + C + ‖G‖∞|Z(t)|
≤ −c′|Z(t)|2 +C ′,

for some new constants c′, C ′.
Then almost surely we have for any t ≥ 0

|Z(t)| ≤ C(1 + |y|).
Thanks to (6), the conclusion easily follows. �

Lemma 4.2. For any p ≥ 1, τ0 > 0, there exists a constant C > 0 such that for every 0 < τ ≤ τ0,
k ∈ N and y ∈ H

E|Yk|p ≤ C(1 + |y|p).
9



Proof As in the proof of Lemma 4.1 above, we introduce Zm = Ym−wm, where the process (wm)
is the numerical approximation of WB with the numerical scheme (8) - with G = 0; it is defined by

wm+1 = Rτwm +
√
τRτχm+1.

Using Theorem 3.2 of [24], giving the strong order 1/4 for the numerical scheme - when the initial
condition is 0, with no nonlinear coefficient, with a constant diffusion term and under the assump-
tions made here - we obtain the following estimate: for any p ≥ 1, τ0 > 0 and 0 < r < 1/2 there
exists C > 0 such that for any 0 < τ ≤ τ0 and m ≥ 0

(11) E|wm −WB(mτ)|2p ≤ Cτ (1/2−r)p.

Thanks to (6) and (11), we get that for any τ0 > 0, there exists C > 0 such that for 0 < τ ≤ τ0 and
m ≥ 0

(12) E|wm|2 ≤ C.

Now Zm defined above satisfies Z0 = Y0 = y and

Zm+1 = RτZm + τRτG(Ym);

since |Rτ |L(H) ≤ 1
1+µ0τ

, we obtain the almost sure estimates

|Zm+1| ≤
1

1 + µ0τ
|Zm|+ Cτ

and

|Zm| ≤ C(1 + |y|).
Thanks to (12), we therefore obtain the result. �

We now introduce the following process: for 0 ≤ k ≤ m− 1 and tk ≤ t ≤ tk+1

(13) Ỹ (t) = Yk +

∫ t

tk

[BτYk +RτG(Yk)]ds+

∫ t

tk

RτdW (s),

where Bτ = BRτ . The process Ỹ is a natural interpolation of the numerical solution (Yk) defined

by (8): Ỹ (tk) = Yk.
Thanks to Lemma 4.2, we get

Lemma 4.3. For any p ≥ 1, τ0 > 0, there exists C > 0 such that for any 0 < τ ≤ τ0, t ≥ 0 and
y ∈ H

E|Ỹ (t)|p ≤ C(1 + |y|p).
In the next Lemma, we give a control on Malliavin derivatives of Yk used in the proof. For an

introduction to Malliavin calculus, see [23], [25]. The notations here are the same as in [6], where
the following useful integration by parts formula is given - see Lemma 2.1 therein:

Lemma 4.4. For any F ∈ D
1,2(H), u ∈ C2

b (H) and Ψ ∈ L2(Ω× [0, T ],L2(H)) an adapted process,

(14) E[Du(F ).

∫ T

0
Ψ(s)dW (s)] = E[

∫ T

0
Tr(Ψ(s)∗D2u(F )DsF )ds],

where DsF : h ∈ H 7→ Dh
sF ∈ H stands for the Malliavin derivative of F , and D

1,2(H) is the set of
H-valued random variables F =

∑

i∈N Fifi, with Fi ∈ D
1,2 the domain of the Malliavin derivative

for R-valued random variables for any i, and
∑

i∈N
∫ T
0 E|DsFi|2ds < +∞.

Without any further dissipativity assumption, we are not able to give a uniform control with
respect to time of the Malliavin derivative of Ỹ . In the proof below, we take care of this problem
by using this derivatives only at times tk = kτ and s such that tk−ls ≤ 1.

10



Lemma 4.5. For any 0 ≤ β < 1 and τ0 > 0, there exists a constant C > 0 such that for every
h ∈ H, k ≥ 1, 0 < τ ≤ τ0 and s ∈ [0, tk]

|Dh
sYk|β ≤ C(1 + LGτ)

k−ls(1 +
1

(1 + µ0τ)(1−β)(k−ls)tβk−ls

)|h|.

Proof For any k ≥ 1, h ∈ H and s ∈ [0, tk], using the chain rule for Malliavin calculus and
expressions (9) and (10), we have

Dh
sYk = Rk−ls

τ h+ τ
k−1
∑

l=ls+1

Rk−l
τ DG(Yl).D

h
sYl.

Indeed, recall that ls denotes the integer part of s
τ , so that when l ≤ ls we have Dh

sYl = 0.
As a consequence, for k ≥ ls + 1

|Dh
sYk| ≤ (1 + LGτ)

k−ls |h|.
Now using Lemma 3.2, we have

|(−B)βDh
sYk| ≤

1

(1 + µ0τ)(1−β)(k−ls)tβk−ls

|h|

+ LGτ

k−1
∑

l=ls+1

(1 + LGτ)
l−ls

(1 + µ0τ)(1−β)(k−l)tβk−l

|h|.

To conclude, we see that

τ

k−1
∑

l=ls+1

1

(1 + µ0τ)(1−β)(k−l)tβk−l

≤ C

∫ +∞

0
t−β 1

(1 + µ0τ)
(1−β) t

τ

dt

≤ C < +∞,

when 0 < τ ≤ τ0. �

4.3. Asymptotic behaviour of the processes. The results of this section are obtained for the
initial H-valued processes, and for their finite dimensional approximations.

First, we focus on the existence of invariant measures for the continuous and discrete time pro-
cesses. We use the well-known Krylov-Bogoliubov criterion - see [4]. Tightness comes from two facts:
D(−B)γ is compactly embedded in H when γ > 0, and when γ < 1/4 we can control moments:

Lemma 4.6. For any 0 < γ < 1/4, τ > 0 and any y ∈ H, there exists C(γ, τ, y), C(γ, y) > 0 such
that for any m ≥ 1 and t ≥ 1

E|Ym(τ, y)|2γ ≤ C(γ, τ, y) and E|Y (t, y)|2γ ≤ C(γ, y)

Uniqueness of the invariant probability measure for the continuous time process (Y (t))t∈R+ can be
deduced from the well-known Doob Theorem - see [4]. Indeed, since in equation (2) noise is additive
and non-degenerate, the Strong Feller property - see also Lemma 5.4 below - and irreducibility can
be easily proved. In the proof of the main Theorem 1.1, we also need speed of convergence, and
thanks to a coupling argument we get the following exponential convergence result - for a proof see
Section 6.1 in [7]:

Proposition 4.7. There exist c > 0, C > 0 such that for any bounded test function φ, any t ≥ 0
and any y1, y2 ∈ H

(15) |Eφ(Y (t, y1))− Eφ(Y (t, y2))| ≤ C‖φ‖∞(1 + |y1|2 + |y2|2)e−ct.
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The idea of coupling relies on the following formula: if ν1 and ν2 are two probability measures
on a state space S, their total variation distance satisfies

dTV (ν1, ν2) = inf {P(X1 6= X2)} ,
which is an infimum over random variables (X1,X2) defined on a same probability space, and such
that X1 ∼ ν1 and X2 ∼ ν2.

Roughly speaking, the principle is to define a coupling (Z1(t, y1, y2), Z2(t, y1, y2))t≥0 for the pro-
cesses (Y (t, y1)t≥0 and Y ((t, y2))t≥0 such that the coupling time T of Z1 and Z2 - i.e. the first time
the processes are equal - has an exponentially decreasing tail.

This technique was first used in the study of the asymptotic behaviour of Markov chains - see
[1], [9], [16], [20] - and was later adapted for SDEs and more recently for SPDEs - see for instance
[15], [18].

In fact, uniqueness of an invariant probability measure µ is an easy consequence of this Proposi-
tion, and moreover we get for any y ∈ H and any t ≥ 0

(16) |Eφ(Y (t, y))−
∫

H
φdµ| ≤ C‖φ‖∞(1 + |y|2)e−ct.

In general, we do not know whether uniqueness also holds for the numerical approximation
(Yk(τ, .))k∈N.

Remark 4.8. A sufficient condition for the uniqueness of the invariant probability measure of the
discrete time process (Yk)k∈N is the strict dissipativity assumption

LG < µ0,

where we recall that LG denotes the Lipschitz constant of G.
Then trajectories of the processes (Yt)t∈R+ and (Yk)k∈N issued from different initial conditions y1

and y2 and driven by the same noise process are exponentially close when time increases: for any
τ0 > 0, there exists c > 0 such that for any 0 < τ ≤ τ0, k ≥ 0 and t ≥ 0 we have almost surely

|Y (t, y1)− Y (t, y2)| ≤ e−(µ0−LG)t|y1 − y2|
|Yk(τ, y1)− Yk(τ, y2)| ≤ e−ckτ |y1 − y2|.

Proof of uniqueness is then straightforward - and we do not need Proposition 4.7 above.

5. Presentation of the proof of the weak approximation result

The proof of Theorem 1.1 is very technical, so for pedagogy we first introduce the decomposition
of the error, and identify the term which we control later in Section 6. Some crucial estimates on
the derivatives of the semi-group with respect to the initial conditions - regularization, long-time
behaviour - are proved below in Sub-Section 5.2.

5.1. Strategy. We define

(17) u(t, y) = E[φ(Y (t, y))],

which is solution of a finite dimensional Kolmogorov equation associated with the finite dimensional
approximation of (2):

du

dt
(t, y) = Lu(t, y) =

1

2
Tr
(

D2u(t, y)
)

+ < By +G(y),Du(t, y) > .

As explained in the introduction, this is one of the essential tools in the proof of the weak approxi-
mation result.

12



The weak error at time T = mτ can be decomposed with a telescoping sum - where to simplify
the dependence of the numerical approximation in τ and y is not written:

(18)

E[φ(Y (T, y))]− E[φ(Ym(τ, y))] = u(T, y)− E[u(0, Ym(τ, y))]

=

m−1
∑

k=0

(E[u(T − tk, Yk)]− E[u(T − tk+1, Yk+1)])

= u(T, y)− E[u(T − τ, Y1(τ, y))] +
m−1
∑

k=1

(ak + bk + ck),

where for 1 ≤ k ≤ m− 1

(19)

ak = E

∫ tk+1

tk

< BỸ (t)−BτYk,Du(T − t, Ỹ (t)) > dt,

bk = E

∫ tk+1

tk

< G(Ỹ (t))−RτG(Yk),Du(T − t, Ỹ (t)) > dt,

ck =
1

2
E

∫ tk+1

tk

Tr((I −RτR
∗
τ )D

2u(T − t, Ỹ (t)))dt.

This follows from the use of the Kolmogorov equation and of the Itô formula.

5.2. Bounds on the derivatives of the transition semi-group. By (17), u(t, y) = E[φ(Y (t, y))];
since φ is of class C2, bounded and with bounded derivatives, we are able to prove that with respect
to y the function u is twice differentiable, and that the derivatives can be calculated in the following
way:

• For any h ∈ H, we have

(20) Du(t, y).h = E[Dφ(Y (t, y)).ηh,y(t)],

where ηh,y is the solution of

dηh,y(t)

dt
= Bηh,y(t) +DG(Y (t, y)).ηh,y(t),

ηh,y(0) = h.

• For any h, k ∈ H, we have

(21) D2u(t, y).(h, k) = E[D2φ(Y (t, y)).(ηh,y(t), ηk,y(t)) +Dφ(Y (t, y)).ζh,k,y(t)],

where ζh,k,y is the solution of

dζh,k,y(t)

dt
= Bζh,k,y(t) +DG(Y (t, y)).ζh,k,y(t) +D2G(Y (t, y)).(ηh,y(t), ηk,y(t)),

ζh,k,y(0) = 0.

In [6], the key point for obtaining the weak order 1/2 is to control the derivatives |Du(t, y)|β and

|(−B)βD2u(t, y)(−B)γ |L(H), with β < 1/2 and γ < 1/2 - with the identification of Remark 2.1.
Moreover, to obtain a long-time weak estimate we need to prove some exponential decreasing of
such quantities when time t goes to infinity. The two Propositions below are the essential results
we thus need.

Proposition 5.1. There exists a constant µ̃ > 0 such that for any 0 ≤ β < 1/2, for any t > 0 and
y ∈ H

(22) |Du(t, y)|β ≤ Cβ(1 +
1

tβ
)e−µ̃t(1 + |y|2).

13



Proposition 5.2. There exists a constant µ̃ > 0 such that for any 0 ≤ β, γ < 1/2, for any t > 0
and y ∈ H

(23) |(−B)βD2u(t, y)(−B)γ |L(H) ≤ Cβ,γ(1 +
1

tη
+

1

tβ+γ
)e−µ̃t(1 + |y|2).

The singularity t−η in (23) is a consequence of the regularity properties satisfied by G. Since in
general during the proof of Theorem 1.1, we need β+ γ to be close to 1, and therefore greater than
η, only the second singularity t−β−γ plays a role.

The proofs require several steps. First in Lemma 5.3 below we prove estimates for a finite horizon
and general 0 ≤ β, γ < 1/2; then in Lemma 5.4 we study the long-time behaviour in the particular
case β = γ = 0; we finally conclude with the proofs of Propositions 5.1 and 5.2.

First, we prove estimates of these quantities for 0 < t ≤ 1 - see Lemmas 4.4 and 4.5 in [6], with
a difference coming from the assumptions made on the nonlinear coefficient G:

Lemma 5.3. For any 0 ≤ β < 1/2, 0 ≤ γ < 1/2, there exist constants Cβ and Cβ,γ such that for
any y ∈ H and any 0 < t ≤ 1

|Du(t, y)|β ≤ Cβ

tβ

|(−B)βD2u(t, y)(−B)γ |L(H) ≤ Cβ,γ(
1

tη
+

1

tβ+γ
).

If we take another time interval ]0, Tmax] instead of ]0, 1], the constants Cβ and Cβ,γ are a priori
exponentially increasing in Tmax.

Proof Owing to (20) and (21), we only need to prove the following almost sure estimates, for
some constants Cβ and Cβ,γ - which may vary from line to line below: for any 0 < t ≤ 1

(24)
|ηh,y(t)| ≤ Cβ

tβ
|h|−β

|ζh,k,y(t)| ≤ Cβ,γ

tη
|h|−β |k|−γ ,

where the parameter η is defined in Assumption 2.5.
We use mild formulations, and the regularization properties of the semi-group given in Proposition

2.4:

|ηh,y(t)| = |etBh+

∫ t

0
e(t−s)BDG(Y (s, y)).ηh,y(s)ds|

≤ Cβ

tβ
|h|−β + C

∫ t

0
|ηh,y(s)|ds,

and by the Gronwall Lemma we get the result.
For the second-order derivative, we moreover use the properties of G in Assumption 2.5 to get

|ζh,k,y(t)| = |
∫ t

0
e(t−s)BDG(Y (s, y)).ζh,k,y(s)ds

+

∫ t

0
e(t−s)BD2G(Y (s, y)).(ηh,y(s), ηk,y(s))ds|

≤ C

∫ t

0
|ζh,k,y(s)|ds+

∫ t

0

Cβ,γ

(t− s)η
|ηh,y(s)||ηk,y(s)|ds

≤ C

∫ t

0
|ζh,k,y(s)|ds+ Cβ,γ |h|−β |k|−βt

1−η−β−γ

∫ 1

0

1

(1− s)ηsβ+γ
ds.

To conclude, it remains to use the Gronwall Lemma. �

14



Thanks to the dissipativity property expressed in Proposition 2.6, we can prove the result in the
case β = γ = 0. We notice that the proof would be straightforward under a strict dissipativity
assumption - since then ηh,y(t) and ζh,k,y(t) would decrease exponentially in t; in the general case
ηh,y(t) and ζh,k,y(t) are exponentially increasing in time so that we can not work directly. Here the
result comes from the estimate (15) of Proposition 4.7.

Lemma 5.4. There exist constants C and c > 0 such that for any t ≥ 0 and any y ∈ H

(25) |Du(t, y)| ≤ Ce−ct(1 + |y|2) and |D2u(t, y)|L(H) ≤ Ce−ct(1 +
1

tη
)(1 + |y|2).

Proof The Bismut-Elworthy-Li formula states that if Φ : H → R is a function of class C2 with
bounded derivatives and with at most quadratic growth - i.e. there exists M(Φ) > 0 such that for
any y ∈ H we have |Φ(y)| ≤ M(Φ)(1 + |y|2) - then we can calculate the first and the second order
derivatives of (t, y) 7→ v(t, y) := EΦ(Y (t, y)) with respect to y. First, we have for any y ∈ H and
h ∈ H

(26)

Dv(t, y).h =
1

t
E[

∫ t

0
< ηh,y(s), dW (s) > Φ(Y (t, y))]

=
2

t
E[

∫ t/2

0
< ηh,y(s), dW (s) > v(t/2, Y (t/2, y))];

the second equality is a consequence of the identity v(t, y) = Ev(t/2, Y (t/2, y)), thanks to the
Markov property. Using the second formula of (26), we obtain a formula for the second order
derivative: for any y ∈ H and h, k ∈ H,

(27)

D2v(t, y).(h, k) =
2

t
E[

∫ t/2

0
< ζh,k,y(s), dW (s) > v(t/2, Y (T/2, y))]

+
2

t
E[

∫ t/2

0
< ηh,y(s), dW (s) > Dv(t/2, Y (t/2)).ηk,y(t/2)].

We then see, using Lemmas 4.1 and 5.3 - with β = γ = 0 - that there exists C > 0 such that for
any 0 < t ≤ 1, y ∈ H, h, k ∈ H

(28)
|Dv(t, y).h| ≤ C√

t
M(Φ)(1 + |y|2)|h|,

|D2v(t, y).(h, k)| ≤ C

t
M(Φ)(1 + |y|2)|h||k|.

Now when t ≥ 1 the Markov property implies that u(t, y) = Eu(t− 1, Y (1, y)), and by (16) we have

|u(t− 1, y) −
∫

H
φdµ| ≤ Ce−c(t−1)(1 + |y|2).

If we choose Φt(y) = u(t− 1, y)−
∫

H φdµ, we have u(t, y) = EΦt(Y (1, y)) +
∫

H φdµ, with M(Φt) ≤
Ce−c(t−1). With (28) at time 1, we obtain for t ≥ 1

|Du(t, y).h| ≤ Ce−c(t−1)(1 + |y|2)|h|
|D2u(t, y).(h, k)| ≤ Ce−c(t−1)(1 + |y|2)|h||k|.

Moreover by Lemma 5.3 we have a control when 0 ≤ t ≤ 1, so that with a change of constants we
get the result. �

We can finally prove the Propositions 5.1 and 5.2. The key tool is the Markov property of the
process Y which yields the following formula: for any t ≥ 1

(29) u(t, y) = E[u(t− 1, Y1(y))].
15



To get the exponential decreasing, we use Lemma 5.4 at time t − 1 when t ≥ 1, while |h|−β

appears from ηh,y(1), and with estimates coming from Lemma 5.3.

Proof of Propositions 5.1 and 5.2 Using equation (29) and Lemma 5.4, for any t ≥ 1 we have

|Du(t, y).h| ≤ Ce−c(t−1)
E[(1 + |Y (1, Y )|2)|ηh,y(1)|] ≤ Ce−c(t−1)(1 + |y|2)|h|−β ,

where the last estimate comes from Lemmas 4.1 and 5.3. Combining this estimate with the result
of Lemma 5.3, which gives an estimate for t ≤ 1, we obtain (22). For the second order derivatives,
Lemma 5.3 gives an estimate for t ≤ 1, and for t ≥ 1 we use (29) to see that

D2u(t, y).(h, k) = E[D2[u(t− 1, Y (1, y))].(h, k)]

= ED2u(t− 1, Y (1, y)).(ηh,y(1), ηk,y(1)) + EDu(t− 1, Y (1, y)).ζh,k,y(1).

Using Lemma 5.4, we get an exponential decreasing; thanks to Lemma 4.1 and to the estimates in
the proof of Lemma 5.3 at time 1, we obtain

|D2u(t, y).(h, k)| ≤ Ce−c(t−1)(1 + |y|2)|h|−β |k|−γ .

Then (23) easily follows. �

5.3. Proof of Corollary 1.2. The first estimate is a simple consequence of the Theorem, and of
the exponential convergence to equilibrium of the continuous-time process - see (16). We then get

|E[φ(Ym(τ, y))]−
∫

H
φdµ| ≤ C(1 + |y|3)( 1

m1/2−κ
+ τ1/2−κ) + C(1 + |y|2)e−cmτ .

If µτ is an ergodic invariant probability measure of (Ym(τ, .))m, then since φ is bounded for
µτ -almost any y ∈ H we have by the ergodic Theorem the following convergence when M → +∞:

1

M

M
∑

m=1

E[φ(Ym(τ, y))] →
∫

H
φ(y)µτ (dy).

To conclude, it remains to choose a initial condition y in this non-empty set, and to use Cesaro
Lemma on the right-hand side of the estimate.

We notice that if µτ is an invariant probability measure, not necessarily ergodic, having a finite
moment of order 3, then it is enough to integrate the inequality above with respect to µτ .

6. Proof of the estimates

We need to control the terms given in (19), according to the decomposition (18). We recall that
constants C must be independent from the dimension N and the final time T = mτ .

6.1. Estimate of u(T, x)− E[u(T − τ, Y1)]. The Markov property gives

u(T, y) = E[φ(Y (T, y))] = E[u(T − τ, Y (τ, y))].

If 0 < κ < 1/2, using Lemma 4.2 and Proposition 5.1 we get

|u(T, y)− E[u(T − τ, Y1)]| ≤ C(1 + (T − τ)−1/2+κ)e−µ̃(T−τ)(E|Y (τ, y)− Y1|2−1/2+κ)
1/2(1 + |y|2).

We can write

Y (τ, y)− Y1 = (eτB −Rτ )y +

∫ τ

0
e(τ−s)BG(Y (s, y))ds − τRτG(y)

+

∫ τ

0
e(τ−s)BdW (s)−

√
τRτχ1.
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We use the following properties to estimate the first line in this equality:

|(−B)−1/2+κ(eτB −Rτ )|L(H) ≤ cτ1/2−κ,

|esB |L(H) ≤ 1 for s ≥ 0,

|Rτ |L(H) ≤ 1,

|(−B)−1/2+κ.| ≤ c|.|;

therefore the first line in the last expression is almost surely bounded by C(τ1/2−κ + τ)(1 + |y|).
For the second line, we have

E|(−B)−1/2+κ

∫ τ

0
e(τ−s)BdW (s)|2 = E

∫ τ

0
|(−B)−1/2+κe(τ−s)B |2L2(H)ds

≤ τ |(−B)−1/2+κ|2L2(H)

≤ cτ ;

the last term is controlled in the same way: E|(−B)−1/2+κ√τRτχ1|2 ≤ cτ . Therefore we have

(30) |u(T, x) − E[u(T − τ, Y1)]| ≤ C(1 + |y|3)(1 + (T − τ)−1/2+κ)e−µ̃(T−τ)τ1/2−κ.

We thus understand that to obtain weak order 1/2 requires to be careful in the estimate. Here
we used Lemma 4.2 instead of Lemma 5.4; otherwise looking at E|Y (τ, y) − Y1|2 would have not
been sufficient. The control of the other terms must be done in the same spirit.

6.2. Estimate of ak. We have

ak = E

∫ tk+1

tk

< BỸ (t)−BτYk,Du(T − t, Ỹ (t)) > dt

= E

∫ tk+1

tk

< (B −Bτ )Yk,Du(T − t, Ỹ (t)) > dt

+ E

∫ tk+1

tk

< B(Ỹ (t)− Yk),Du(T − t, Ỹ (t)) > dt

:= a1k + a2k.

6.2.1. Estimate of a1k. We use the equality Bτ−B = τRτB
2. We also decompose a1k using expression

(9):

a1,1k = −τE

∫ tk+1

tk

< RτB
2Rk

τy,Du(T − t, Ỹ (t)) > dt

a1,2k = −τE

∫ tk+1

tk

< RτB
2τ

k−1
∑

l=0

Rk−l
τ G(Yl),Du(T − t, Ỹ (t)) > dt

a1,3k = −τE

∫ tk+1

tk

< RτB
2√τ

k−1
∑

l=0

Rk−l
τ χl+1,Du(T − t, Ỹ (t)) > dt;

then a1k = a1,1k + a1,2k + a1,3k .

(1) Estimate of a1,1k

The idea is to “share” B2 between different factors - thanks to regularization properties of
the semi-group (Rk

τ )k∈N and to Lemma 4.2 - in order to increase the order of convergence.
17



|a1,1k | ≤ τE

∫ tk+1

tk

|Rτ (−B)1/2+2κ|L(H)|(−B)1−κRk
τ |L(H)|y|H |(−B)1/2−κDu(T − t, Ỹ (t))|dt

≤ C|y|ττ−1/2−2κt−1+κ
k

∫ tk+1

tk

(1 + (T − t)−1/2+κ)e−µ̃(T−t)
E(1 + |Ỹ (t)|2)dt,

thanks to Lemma 3.2 and Proposition 5.1.
By taking expectation, thanks to Lemma 4.3 we have

m−1
∑

k=1

|a1,1k | ≤ C|y|τ1/2−2κ
m−1
∑

k=1

1

t1−κ
k

∫ tk+1

tk

(1 +
1

(T − t)1/2−κ
)e−µ̃(T−t)(1 + |y|2)dt

≤ Cκ(1 + |y|3)τ1/2−2κ

∫ T

0

1

t1−κ(T − t)1/2−κ
dt

≤ T−(1/2−2κ)Cκ(1 + |y|3)τ1/2−2κ

∫ 1

0

1

s1−κ(1− s)1/2−κ
ds,

and we obtain

(31)

m−1
∑

k=1

|a1,1k | ≤ C(1 + |y|3)T−(1/2−2κ)τ1/2−2κ.

(2) Estimate of a1,2k
First we write

|a1,2k | ≤ CτE

∫ tk+1

tk

|Rτ (−B)1/2+2κ|L(H)|τ(−B)1−κ
k−1
∑

l=0

Rk−l
τ G(Yl)||(−B)1/2−κDu(T − t, Ỹ (t))|dt.

Using Lemma 3.2, we can prove the following useful inequality: for τ ≤ τ0 and any k ≥ 1

(32) τ
k
∑

l=1

1

(lτ)1−κ

1

(1 + µ0τ)lκ
≤ Cκ.

Indeed,

τ

k
∑

l=1

1

(lτ)1−κ

1

(1 + µ0τ)lκ
≤ C

∫ tk

0

1

t1−κ

1

(1 + µ0τ)
κ t

τ

dt

≤
∫ ∞

0

1

t1−κ
e−tκ

τ
log(1+µ0τ)dt

≤
∫ ∞

0

1

s1−κ
e−sds

(

τ

κ log(1 + µ0τ)

)κ

≤ Cκ.

Since G is supposed to be bounded, the estimate (32) yields

|τ(−B)1−κ
k−1
∑

l=0

Rk−l
τ G(Yl)| ≤ C‖G‖∞τ

k
∑

l=1

1

(lτ)1−κ

1

(1 + µ0τ)lκ
≤ Cκ.

With Lemma 4.3 and Proposition 5.2, we can now write

|a1,2k | ≤ C(1 + |y|2)τ1/2−2κ

∫ tk+1

tk

(1 +
1

(T − t)1/2−κ
)e−µ̃(T−t)dt,

18



and we get

(33)

m−1
∑

k=1

|a1,2k | ≤ C(1 + |y|2)τ1/2−2κ.

(3) Estimate of a1,3k
The analysis of this term is more complicated. We recall that since noise is white in space,

for any t > 0, E|(−B)γWB(t)|2 < +∞ if and only if γ < 1/4; as a consequence, the strategy

used above to control a1,1k can not be used directly - otherwise we could only obtain order
1/4.

In [6], an integration by parts formula is used to deal with the lack of regularity of the

stochastic integral appearing in the definition of a1,3k . An additionnal difficulty arises in
our situation because the estimate given in Lemma 4.5 is not uniform with respect to time.
Instead, we remark that the two problems - lack of regularity and bad time dependence - do
not occur at the same time; therefore a decomposition of the interval [0, tk] into [0, tk − 1]
and [tk − 1, tk] - for k large enough - can help to treat the problems separately.

Let us explain more concretely the situation at the continuous time level: we have to treat -
at the finite dimensional approximation level, but with a bound independent from dimension
- an expression involving B2

∫ t
0 e

(t−s)BdW (s). The idea to get rid of this expression is to
use an integration by parts formula on the whole interval. We can also see that we can do
this integration by parts only on a subinterval of size independent from t: indeed if t ≥ 1

∫ t

0
e(t−s)BdW (s) =

∫ t−1

0
e(t−s)BdW (s) +

∫ t

t−1
e(t−s)BdW (s).

The first term is equal to eB
∫ t−1
0 e(t−1−s)BdW (s), so that thanks to regularization properties

of the semi-group (etB) - see Proposition 2.4 - multiplication by B2 is possible - in other
words we do not require an integration by parts to get a bound independent from the
dimension; to treat the second term, the lack of regularity remains but can still be treated
by the integration by parts, with the advantage of involving a smaller interval, where at the
discrete time level below we can use a uniform control of all quantities, thanks to Lemma
4.5. Then the same idea of “sharing” B2 can be used again to get order 1/2.

Let us now explain develop this program for the discrete time situation: by using (10),
we make the decomposition

a1,3k = −τE

∫ tk+1

tk

< RτB
2√τ

k−1
∑

l=0

Rk−l
τ χl+1,Du(T − t, Ỹ (t)) > dt

= −τE

∫ tk+1

tk

<

∫ tk

0
RτB

2Rk−ls
τ dW (s),Du(T − t, Ỹ (t)) > dt

= −τE

∫ tk+1

tk

<

∫ (tk−1)∨0

0
RτB

2Rk−ls
τ dW (s),Du(T − t, Ỹ (t)) > dt

− τE

∫ tk+1

tk

<

∫ tk

(tk−1)∨0
RτB

2Rk−ls
τ dW (s),Du(T − t, Ỹ (t)) > dt.

19



For the first term - which is equal to 0 when tk < 1 - we use the Cauchy-Schwarz inequality
and we directly get

|E <

∫ (tk−1)∨0

0
RτB

2Rk−ls
τ dW (s),Du(T − t, Ỹ (t)) > |

≤ (E|
∫ (tk−1)∨0

0
RτB

2Rk−ls
τ dW (s)|2)1/2(E|Du(T − t, Ỹ (t))|2)1/2

≤ C(1 + |y|2)e−c(T−t),

thanks to Lemmas 5.4 and 4.3, and to the following inequality - we remark that in the
integral below tk−ls ≥ 1:

E|
∫ (tk−1)∨0

0
RτB

2Rk−ls
τ dW (s)|2 =

∫ (tk−1)∨0

0
|RτB

2Rk−ls
τ |2L2(H)ds

=

∫ (tk−1)∨0

0
Tr(R2

τB
4R2(k−ls)

τ )ds

≤
∫ (tk−1)∨0

0
|(R2

τB
4+1/2+κR2(k−ls)

τ |L(H)dsTr((−B)−1/2−κ)

≤ C

∫ (tk−1)∨0

0

1

(1 + µ0τ)k−lst
4+1/2+κ
k−ls

ds

≤ C

∫ (tk−1)∨0

0

1

(1 + µ0τ)k−ls
ds

≤ C

∫ +∞

0

1

(1 + µ0τ)s/τ
ds

≤ C,

when τ ≤ τ0. Then

|τE
∫ tk+1

tk

<

∫ (tk−1)∨0

0
RτB

2Rk−ls
τ dW (s),Du(T − t, Ỹ (t)) > dt| ≤ C

∫ tk+1

tk

e−µ̃(T−t)dt(1 + |y|2)τ.

For the second term, we use the integration by parts formula of Lemma 4.4 to get

τE

∫ tk+1

tk

<

∫ tk

(tk−1)∨0
RτB

2Rk−ls
τ dW (s),Du(T − t, Ỹ (t)) > dt

= −τE

∫ tk+1

tk

∫ tk

(tk−1)∨0
Tr
(

Rk−ls
τ B2RτD

2u(T − t, Ỹ (t))DsỸ (t)
)

dsdt.

If h ∈ H, (tk − 1) ∨ 0 ≤ s ≤ tk ≤ t < tk+1, with (13) we see that

Dh
s Ỹ (t) = Dh

sYk +

∫ t

tk

(BτD
h
sYk +RτG(Yk)D

h
sYk)dλ

+RτD
h
s (W (t)−W (tk))

= Dh
sYk + (t− tk)(BτD

h
sYk +RτG(Yk)D

h
sYk).

Therefore, since |τBτ |L(H) ≤ C

|Dh
s Ỹ (t)|β ≤ c|Dh

sYk|β ,
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and taking supremum over h with |h| ≤ 1 we get

(34) |(−B)βDsỸ (t)|L(H) ≤ c|(−B)βDsYk|L(H).

The last quantity is estimated thanks to Lemma 4.5:

|Dh
sYk|β ≤ C(1 + LGτ)

k−ls(1 +
1

(1 + µ0τ)(1−β)(k−ls)tβk−ls

)|h|.

When τ ≤ τ0 and (tk − 1)∨ 0 ≤ s ≤ tk ≤ t < tk+1, we see that (1+LGτ)
k−ls is bounded by

a constant.
We can then control the second term of a1,3k with

τE

∫ tk+1

tk

∫ tk

(tk−1)∨0
|Rτ (−B)1/2+2κ|L(H)|(−B)1−3κ

2Rk−ls
τ |L(H)Tr((−B)−1/2−κ

2 )

× |(−B)1/2−κ/2D2u(T − t, Ỹ (t))(−B)1/2−κ/2|L(H)|(−B)κDsỸ (t)|L(H)dsdt

≤ Cτ1/2−2κ

∫ tk+1

tk

∫ tk

(tk−1)∨0
t
−1+3κ

2

k−ls

1

(1 + µ0τ)
(k−ls)3

κ
2

(1 + t−κ
k−ls

1

(1 + µ0τ)(k−ls)(1−κ)
)ds

× (1 +
1

(T − t)η
+

1

(T − t)1−κ
)e−µ̃(T−t)(1 + |y|2)dt,

using Proposition 5.2 and Lemmas 4.5 and 3.2.
On the one hand, we have

∫ tk

(tk−1)∨0
t
−1+3κ

2

k−ls

1

(1 + µ0τ)
(k−ls)3

κ
2

ds ≤
∫ tk

0

1

s1−3κ
2

1

(1 + µ0τ)
3κ
2
s/τ

ds ≤ C < +∞,

for τ ≤ τ0, thanks to (32).
On the other hand,

m−1
∑

k=1

∫ tk+1

tk

(1 +
1

(T − t)η
+

1

(T − t)1−κ
)e−µ̃(T−t)dt ≤

∫ +∞

0
(1 +

1

tη
+

1

t1−κ
)e−µ̃tdt < +∞.

Therefore

(35)

m−1
∑

k=1

|a1,3k | ≤ C(1 + |y|2)τ1/2−2κ.

6.2.2. Estimate of a2k. We decompose a2k using the definition of Ỹ - see (13):

a2,1k = E

∫ tk+1

tk

(t− tk) < BBτYk,Du(T − t, Ỹ (t)) > dt

a2,2k = E

∫ tk+1

tk

(t− tk) < BRτG(Yk),Du(T − t, Ỹ (t)) > dt

a2,3k = E

∫ tk+1

tk

<

∫ t

tk

BRτdW (s),Du(T − t, Ỹ (t)) > dt;

then a2k = a2,1k + a2,2k + a2,3k .

(1) Estimate of a2,1k
21



Since BBτ = RτB
2, a2,1k is bounded by the same expression as a1k: by (31), (33), (35) we

have

(36)

m−1
∑

k=1

|a2,1k | ≤ C(1 + |y|3)(1 + T−(1/2−2κ))τ1/2−2κ.

(2) Estimate of a2,2k
We have

|a2,2k | ≤ τE

∫ tk+1

tk

|(−B)1/2+κRτ |L(H)|G(Yk)||(−B)1/2−κDu(T − t, Ỹ (t))|dt

≤ ‖G‖∞τ1/2−κ

∫ tk+1

tk

(1 +
1

(T − t)1/2−κ
)e−µ̃(T−t)dt.

We then have

(37)

m−1
∑

k=1

|a2,2k | ≤ Cτ1/2−κ.

(3) Estimate of a2,3k

We again use the integration by parts formula to rewrite a2,3k :

a2,3k = E

∫ tk+1

tk

<

∫ t

tk

BRτdW (s),Du(T − t, Ỹ (t)) > dt

= E

∫ tk+1

tk

∫ t

tk

Tr(RτBD2u(T − t, Ỹ (t))DsỸ (t))dsdt.

From (13), for tk ≤ s ≤ t ≤ tk+1 we have Dh
s Ỹ (t) = Rτh; as a consequence, we do not need

to use the same trick as in the control of a1,3k .
Then we have

|a2,3k | ≤ E

∫ tk+1

tk

(t− tk)Tr(RτBD2u(T − t, Ỹ (t))Rτ )dt

≤ cτ

∫ tk+1

tk

|Rτ (−B)1/2+κ/2|L(H)Tr((−B)−1/2−κ/2)|(−B)κRτ |L(H)

|(−B)1/2−κ/2D2u(T − t, Ỹ (t))(−B)1/2−κ/2|L(H)dt

≤ c(1 + |y|2)τ1/2−3κ/2

∫ tk+1

tk

(1 +
1

(T − t)η
+

1

(T − t)1−κ
)e−µ̃(T−t)dt.

Therefore

(38)

m−1
∑

k=1

|a2,3k | ≤ C(1 + |y|2)τ1/2−3κ/2.

With the previous estimates on a1 and a2, we get

(39)

m−1
∑

k=1

|ak| ≤ C(1 + |y|3)(1 + T−(1/2−2κ))τ1/2−2κ.
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6.3. Estimate of bk. We have

bk = E

∫ tk+1

tk

< G(Ỹ (t))−RτG(Yk),Du(T − t, Ỹ (t)) > dt

= E

∫ tk+1

tk

< (I −Rτ )G(Yk),Du(T − t, Ỹ (t)) > dt

+ E

∫ tk+1

tk

< G(Ỹ (t))−G(Yk),Du(T − t, Ỹ (t)) > dt

:= b1k + b2k.

6.3.1. Estimate of b1k. This term is easy to treat: we have

|b1k| ≤ E

∫ tk+1

tk

|(−B)−1/2+κ(I −Rτ )|L(H)|G(Yk)||(−B)1/2−κDu(T − t, Ỹ (t))|dt

≤ Cτ1/2−κ

∫ tk+1

tk

(1 +
1

(T − t)1/2−κ
)e−µ̃(T−t)dt,

where we have used Proposition 5.1, and the following inequality for 0 ≤ β ≤ 1:

(40) |(−B)−β(I −Rτ )|L(H) ≤ Cβτ
β.

Then we see that

(41)

m−1
∑

k=1

|b1k| ≤ Cτ1/2−κ.

6.3.2. Estimate of b2k. To estimate |b2k|, we write the scalar product in coordinates with respect to
the orthonormal basis (fi), and then we expand the terms thanks to the Itô formula.

If we note Gi =< G, fi > and ∂i =< D., fi >, we have

< G(Ỹ (t))−G(Yk),Du(T − t, Ỹ (t)) >=
∑

i

(Gi(Ỹ (t))−Gi(Yk))∂iu(T − t, Ỹ (t)).

The above sum is finite, because we work with finite dimensional approximations.
Itô formula gives for tk ≤ t < tk+1

Gi(Ỹ (t))−Gi(Yk) =
1

2

∫ t

tk

Tr(RτR
∗
τD

2Gi(Ỹ (s)))ds

+

∫ t

tk

< BτYk,DGi(Ỹ (s)) > ds

+

∫ t

tk

< RτG(Yk),DGi(Ỹ (s)) > ds

+

∫ t

tk

< DGi(Ỹ (s)), RτdW (s) > .

We naturally define b2,jk , for j ∈ {1, 2, 3, 4}, and we now control each term.

(1) Estimate of b2,1k
By definition, we have

b2,1k =

∫ tk+1

tk

E
1

2

∫ t

tk

∑

i

Tr(RτR
∗
τD

2Gi(Ỹ (s)))ds∂iu(T − t, Ỹ (t))dt.
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Using the orthonormal basis (fk)k given by assumption 2.2, and recalling that the sums are
finite, we can calculate:

∑

i

Tr(RτR
∗
τD

2Gi(Ỹ (s)))∂iu(T − t, Ỹ (t)) =
∑

i

Tr(D2Gi(Ỹ (s))RτR
∗
τ )∂iu(T − t, Ỹ (t))

=
∑

i

∑

j

< D2Gi(Ỹ (s))
1

(1 + µjτ)2
fj, fj > ∂iu(T − t, Ỹ (t))

=
∑

i

∑

j

1

(1 + µjτ)2
D2Gi(Ỹ (s)).(fj , fj)∂iu(T − t, Ỹ (t)).

Using the Cauchy-Schwarz inequality (where j is fixed), we get

|
∑

i

D2Gi(Ỹ (s)).(fj , fj)∂iu(T − t, Ỹ (t))|

≤
(

∑

i

|D2Gi(Ỹ (s)).(fj , fj)|2

µ2η
i

)1/2(
∑

i

µ2η
i |∂iu(T − t, Ỹ (t))|2

)1/2

.

The second factor of this expression is |(−B)ηDu(T − t, Ỹ (t))|H ; we control it thanks to
Proposition 5.1. The first factor is controlled thanks to Assumption 2.5:

(

∑

i

|D2Gi(Ỹ (s)).(fj , fj)|2

µ2η
i

)1/2

= |(−B)−ηD2G(Ỹ (s)).(fj , fj)|

≤ C|fj|H |fj|H ≤ C,

since (fj)j is an orthonormal system.
Therefore

|
∑

i

Tr(RτR
∗
τD

2Gi(Ỹ (s)))∂iu(T − t, Ỹ (t))|

≤ C(1 + |y|2)(1 + 1

(T − t)η
)e−µ̃(T−t)

∞
∑

j=0

1

(1 + µjτ)2

≤ C(1 + |y|2)(1 + 1

(T − t)η
)e−µ̃(T−t)τ−1/2−κ

∞
∑

j=0

(µjτ)
1/2+κ

(1 + µjτ)2
1

µ
1/2+κ
j

≤ C(1 + |y|2)(1 + 1

(T − t)η
)e−µ̃(T−t)τ−1/2−κ.

Then

|b2,1k | ≤ C(1 + |y|2)τ1/2−κ

∫ tk+1

tk

(1 +
1

(T − t)η
)e−µ̃(T−t)dt,

and

(42)

m−1
∑

k=1

|b2,1k | ≤ C(1 + |y|2)τ1/2−κ.

(2) Estimate of b2,2k
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Thanks to (9) and (10), we have

b2,2k = E

∫ tk+1

tk

∫ t

tk

∑

i

< BτR
k
τy +Bττ

k−1
∑

l=0

Rk−l
τ G(Yl),DGi(Ỹ (s)) > ∂iu(T − t, Ỹ (t))dsdt

+ E

∫ tk+1

tk

∫ t

tk

∑

i

< Bτ

∫ tk

0
Rk−lr

τ dW (r),DGi(Ỹ (s)) > ∂iu(T − t, Ỹ (t))dsdt

:= b2,2,1k + b2,2,2k .

(i) For the first term, recalling that Bτ = BRτ and that G is bounded, we have

|b2,2,1k | = |E
∫ tk+1

tk

∫ t

tk

< DG(Ỹ (s)).(BτR
k
τy +Bττ

k−1
∑

l=0

Rk−l
τ G(Yl)),Du(T − t, Ỹ (t)) > dsdt|

≤ E

∫ tk+1

tk

∫ t

tk

|(−B)κRτ |L(H)(|(−B)1−κRk
τy|+ τ

k−1
∑

l=0

|(−B)1−κRk−l
τ |L(H)|G(Yl)|)

× |Du(T − t, Ỹ (t))|dsdt

≤ Cτ1−κ

∫ tk+1

tk

(1 + |y|2)e−µ̃(T−t)dt(t−1+κ
k |y|+ τ

k−1
∑

l=0

t
(1−κ)
k−l

1

(1 + µ0τ)(k−l)κ
)

≤ Cτ1−κ(1 + |y|3) 1

t1−κ
k

∫ tk+1

tk

e−µ̃(T−t)dt,

if τ ≤ τ0 - see (32).
Therefore

m−1
∑

k=1

|b2,2,1k | ≤ Cτ1−κ(|y|+ 1)
m−1
∑

k=1

1

t1−κ
k

∫ tk+1

tk

e−µ̃(T−t)dt

≤ Cτ1−κ(1 + |y|3)
∫ T

0

1

t1−κ
e−µ̃(T−t)dt

≤ Cτ1−κ(1 + |y|3)
∫ T

0

1

t1−κ

C

(T − t)1/2−κ
dt

≤ Cτ1−κ(1 + |y|3)T−(1/2−2κ)

∫ 1

0

1

s1−κ

C

(1− s)1/2−κ
dt

≤ Cτ1−κ(1 + |y|3)T−(1/2−2κ).

(ii) For the second term, we again use an integration by parts, after a decomposition of

the time interval - as in the estimates for a1,3k . First,

b2,2,2k = E

∫ tk+1

tk

∫ t

tk

∑

i

< Bτ

∫ tk

0
Rk−lr

τ dW (r),DGi(Ỹ (s)) > ∂iu(T − t, Ỹ (t))dsdt

= E

∫ tk+1

tk

∫ t

tk

∑

i

< Bτ

∫ (tk−1)∨0

0
Rk−lr

τ dW (r),DGi(Ỹ (s)) > ∂iu(T − t, Ỹ (t))dsdt

+ E

∫ tk+1

tk

∫ t

tk

∑

i,j,m

< Bτ

∫ tk

(tk−1)∨0
Rk−lr

τ fm, fj > dβm(r)∂jGi(Ỹ (s))∂iu(T − t, Ỹ (t))dsdt

=: b2,2,2,1k + b2,2,2,2k .
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For b2,2,2,1k , we can work directly and see that

|b2,2,2,1k | ≤ |E
∫ tk+1

tk

∫ t

tk

∑

i

< Bτ

∫ (tk−1)∨0

0
Rk−lr

τ dW (r),DGi(Ỹ (s)) > ∂iu(T − t, Ỹ (t))dsdt|

≤
∫ tk+1

tk

∫ t

tk

E| < DG(Ỹ (s)).Bτ

∫ (tk−1)∨0

0
Rk−lr

τ dW (r),Du(T − t, Ỹ (t)) > |dsdt

≤
∫ tk+1

tk

∫ t

tk

(E|Bτ

∫ (tk−1)∨0

0
Rk−lr

τ dW (r)|2)1/2(E|Du(T − t, Ỹ (t)) > |2)1/2dsdt

≤ Cτ

∫ tk+1

tk

e−µ̃(T−t)(1 + |y|2),

thanks to Lemmas 4.3, 5.4 and to the following estimate for τ ≤ τ0

E|Bτ

∫ (tk−1)∨0

0
Rk−lr

τ dW (r)|2 ≤ E|B2Rτ

∫ (tk−1)∨0

0
Rk−lr

τ dW (r)|2 ≤ C,

thanks to the estimate proved to control a1,3k .

For b2,2,2,2k , we can write thanks to a Malliavin integration by parts and with the chain
rule

b2,2,2,2k = E

∫ tk+1

tk

∫ t

tk

∑

i,j,m

< Bτ

∫ tk

(tk−1)∨0
Rk−lr

τ fm, fj > dβm(r)∂jGi(Ỹ (s))∂iu(T − t, Ỹ (t))dsdt

= E

∫ tk+1

tk

∫ t

tk

∫ tk

(tk−1)∨0

∑

i,j,m,n

< BτR
k−lr
τ fm, fj > ∂2

j,nGi(Ỹ (s)) < Dm
r Ỹ (s), fn > ∂iu(T − t, Ỹ (t))drdsdt

+ E

∫ tk+1

tk

∫ t

tk

∫ tk

(tk−1)∨0

∑

i,j,m,n

< BτR
k−lr
τ fm, fj > ∂jGi(Ỹ (s))∂2

i,nu(T − t, Ỹ (t)) < Dm
r Ỹ (t), fn > drdsdt

= E

∫ tk+1

tk

∫ t

tk

∫ tk

(tk−1)∨0

∑

i,m

D2Gi(Ỹ (s))(BτR
k−lr
τ fm,Dm

r Ỹ (s))∂iu(T − t, Ỹ (t))drdsdt

+ E

∫ tk+1

tk

∫ t

tk

∫ tk

(tk−1)∨0

∑

i,m

< Bi(s, t)BτR
k−lr
τ fm,Dm

r Ỹ (t) > drdsdt

= E

∫ tk+1

tk

∫ t

tk

∫ tk

(tk−1)∨0

∑

i

Tr
(

(DrỸ (s))∗D2Gi(Ỹ (s))BτR
k−lr
τ

)

∂iu(T − t, Ỹ (t))drdsdt

+ E

∫ tk+1

tk

∫ t

tk

∫ tk

(tk−1)∨0

∑

i

Tr
(

(DrỸ (t)∗Bi(s, t)BτR
k−lr
τ

)

drdsdt,

where we define a linear operator on H by

< Bi(s, t)h, k > =< DGi(Ỹ (s)), h >

+∞
∑

n=0

∂2
i,nu(T − t, Ỹ (t)) < k, fn >

=< DGi(Ỹ (s)), h >< D2u(T − t, Ỹ (t)).fi, k > .

We have
∑

i < Bi(s, t)h, k >= D2u(T − t, Ỹ (t)).(DG(Ỹ (s)).h, k), and

|
∑

i

Bi(s, t)|L(H) ≤ |DG(Ỹ (s))|L(H)|D2u(T − t, Ỹ (t))|L(H);
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so we can write, for (tk − 1) ∨ 0 ≤ r ≤ tk

|
∑

i

Tr
(

(DrỸ (t)∗Bi(s, t)BτR
k−lr
τ

)

|

≤ |DrỸ (t)|L(H)|
∑

i

Bi(s, t)|L(H)|(−B)1−3κ/2Rk−lr
τ |L(H)|Rτ (−B)1/2+2κ|L(H)Tr((−B)−1/2−κ/2)

≤ Cτ−1/2−2κt
−1+3κ/2
k−lr

1

(1 + µ0τ)(k−lr)3κ/2
e−µ̃(T−t),

using Proposition 5.2, Lemma 4.5 - since (1+LGτ)
k−lr ≤ C - Lemma 3.2 and estimate (34).

The other term is a little more complicated, because we are not able to control D2G(Ỹ (s))

in H. We proceed as in the estimate of b2,1k , and we directly calculate the trace.

|
∑

i

Tr
(

(DrỸ (s))∗D2Gi(Ỹ (s))BτR
k−lr
τ

)

∂iu(T − t, Ỹ (t))|

≤ |DrỸ (s)|L(H)|
∑

i

Tr
(

D2Gi(Ỹ (s))BτR
k−lr
τ

)

∂iu(T − t, Ỹ (t))|

≤ |DrỸ (s)|L(H)

∑

i,j

|D2Gi(Ỹ (s)).(fj , fj)|
µη
i

µj

(1 + µjτ)1+k−lr
µη
i |∂iu(T − t, Ỹ (t))|

≤ |DrỸ (s)|L(H)|(−B)ηDu(T − t, Ỹ (t))|H
∑

j

|(−B)−ηD2G(Ỹ (s)).(fj , fj)|
µj

(1 + µjτ)1+k−lr
,

thanks to the Cauchy-Schwarz inequality.
By using the same analysis as in the estimation of b2,1k , we see that the above expression

is bounded by

C|DrỸ (s)|L(H)|(−B)ηDu(T − t, Ỹ (t))|H
∑

j

µj

(1 + µjτ)1+k−lr
;

but the last sum is equal to Tr(BτR
k−lr
τ ), so that we see that indeed the two expressions in

b2,2,2k are bounded by the same expression.
Therefore

|b2,2,2,2k |

≤ E

∫ tk+1

tk

∫ t

tk

∫ tk

(tk−1)∨0
Cτ−1/2−2κt

−1+3κ/2
k−lr

e−µ̃(T−t)

(1 + µ0τ)(k−lr)3κ/2
(1 +

1

(T − t)η
)(1 + |y|2)drdsdt

≤ C(1 + |y|2)τ1/2−2κ

∫ tk+1

tk

(1 +
1

(T − t)η
)e−µ̃(T−t)dt

∫ tk

0
t
−1+3κ/2
k−lr

1

(1 + µ0τ)(k−lr)3κ/2
dr

≤ C(1 + |y|2)τ1/2−2κ

∫ tk+1

tk

(1 +
1

(T − t)η
)e−µ̃(T−t)dt,

as already proved - see (32).

Now gathering estimates for b2,2,2,1k and b2,2,2,2k , we obtain

(43)

m−1
∑

k=1

|b2,2,2k | ≤ C(1 + |y|2)τ1/2−2κ.
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(3) Estimate of b2,3k We have

b2,3k = E

∫ tk+1

tk

∫ t

tk

∑

i

< RτG(Yk),DGi(Ỹ (s)) > ∂iu(T − t, Ỹ (t))dsdt

= E

∫ tk+1

tk

∫ t

tk

< Du(T − t, Ỹ (t)),DG(Ỹ (s)).(RτG(Yk)) > dsdt.

Using that G and DG are bounded, we easily see that

|b2,3k | ≤ C(1 + |y|2)τ
∫ tk+1

tk

e−µ̃(T−t)dt,

and that

(44)
m−1
∑

k=1

|b2,3k | ≤ C(1 + |y|2)τ.

(4) Estimate of b2,4k
We use the integration by parts formula of Proposition 4.4 to get

b2,4k =

∫ tk+1

tk

∫ t

tk

∑

i

< DGi(Ỹ (s)), RτdW (s) > ∂iu(T − t, Ỹ (t))dt

= E

∫ tk+1

tk

∫ t

tk

Tr
(

(DsỸ (t))∗D2u(T − t, Ỹ (t))DG(Ỹ (s))Rτ

)

dsdt

= E

∫ tk+1

tk

∫ t

tk

Tr
(

RτD
2u(T − t, Ỹ (t))DG(Ỹ (s))Rτ

)

dsdt,

using the identity Dh
s Ỹ (t) = Rτh when tk ≤ s ≤ t ≤ tk+1, as in the estimate of a2,3k .

Now

|b2,4k | ≤ E

∫ tk+1

tk

∫ t

tk

|(Rτ (−B)1/2+κ|L(H)|DG(Ỹ (s))|L(H)|Rτ |L(H)

× |D2u(T − t, Ỹ (t))|L(H)Tr((−B)−1/2−κ)dsdt

≤ C(1 + |y|2)τ1/2−κ

∫ tk+1

tk

(1 +
1

(T − t)η
)e−µ̃(T−t)dt,

and

(45)

m−1
∑

k=1

|b2,4k | ≤ C(1 + |y|2)τ1/2−κ.

6.3.3. Estimate of bk: conclusion. With (41), (42), (43), (44) and (45), we get

(46)

m−1
∑

k=1

|bk| ≤ Cτ1/2−2κ.

6.4. Estimate of ck. We have, using the symmetry of Rτ ,

1

2
I − 1

2
RτR

∗
τ = Rτ (I −Rτ )

∗ +
1

2
(I −Rτ )(I −Rτ )

∗,
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and

ck =
1

2
E

∫ tk+1

tk

Tr((I −RτR
∗
τ )D

2u(T − t, Ỹ (t)))dt

=
1

2
E

∫ tk+1

tk

Tr((I −Rτ )(I −Rτ )
∗D2u(T − t, Ỹ (t)))dt

+ E

∫ tk+1

tk

Tr(Rτ (I −Rτ )
∗D2u(T − t, Ỹ (t)))dt

:= c1k + c2k.

6.4.1. Estimate of c1k. We have, using inequality (40)

|c1k| ≤
1

2
E

∫ tk+1

tk

Tr((−B)−1/2+κ(I −Rτ )
2(−B)−1/2+κ)

× |(−B)1/2−κD2u(T − t, Ỹ (t))(−B)1/2−κ|L(H)dt

≤ C(1 + |y|2)
∫ tk+1

tk

|(−B)−1/2+3κ(I −Rτ )|L(H)|I −Rτ |L(H)Tr((−B)−1/2−κ)

× (1 +
1

(T − t)η
+

1

(T − t)1−κ
)e−µ̃(T−t)dt

≤ C(1 + |y|2)τ1/2−3κ

∫ tk+1

tk

(1 +
1

(T − t)η
+

1

(T − t)1−κ
)e−µ̃(T−t)dt.

Then

(47)

m−1
∑

k=1

|c1k| ≤ C(1 + |y|2)τ1/2−3κ.

6.4.2. Estimate of c2k. We have, using inequality (40)

|c2k| ≤ E

∫ tk+1

tk

Tr((−B)−1/2+κRτ (I −Rτ )(−B)−1/2+κ)

× |(−B)1/2−κD2u(T − t, Ỹ (t))(−B)1/2−κ|L(H)dt

≤ C(1 + |y|2)
∫ tk+1

tk

|(−B)−1/2+κ(I −Rτ )(−B)2κ|L(H)Tr((−B)−1/2−κ)

× (1 +
1

(T − t)η
+

1

(T − t)1−κ
)e−µ̃(T−t)dt

≤ C(1 + |y|2)τ1/2−3κ

∫ tk+1

tk

(1 +
1

(T − t)η
+

1

(T − t)1−κ
)e−µ̃(T−t)dt.

Then

(48)

m−1
∑

k=1

|c2k| ≤ C(1 + |y|2)τ1/2−3κ.

6.4.3. Estimate of ck: conclusion. With (47) and (48), we get

(49)

m−1
∑

k=1

|ck| ≤ C(1 + |y|2)τ1/2−3κ.
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6.5. Conclusion. We put together estimates (39), (46), (49) and (30); then passing to the limit
with respect to dimension, we get the result.
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