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Higlights  

► Interval analysis is proposed to study error propagation in MAP modelling for 3 fresh produce 

► Results are compared to a probabilistic Monte-Carlo approach 

► Low computational costs to estimate upper and lower O2 and CO2 limits  

► MAP optimisation generates robust solutions for O2 and CO2 permeabilities, expressed as fuzzy sets 

► Experimental efforts should focus on produce physiology for better accuracy of prediction
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Abstract 

Mathematical models are instrumental tools to predict gas (O2 and CO2) evolution in 

headspaces of Modified Atmosphere Packaging (MAP). Such models simplify the package 

design steps as they allow engineers to estimate the optimal values of packaging permeability 

for maintaining the quality and safety of the packed food. However, these models typically 

require specifying several input parameter values (such as maximal respiration rates) that are 

obtained from experimental data and are characterized by high uncertainties due to biological 

variation. Although treating and modelling this uncertainty is essential to ensure the 

robustness of designed MAPs, this subject has seldom been considered in the literature. In 

this work, we describe an optimisation system based on a MAP mathematical model that 

determines optimal permeabilities of packaging, given certain food parameters. To integrate 

uncertainties in the model while keeping the optimisation computational burden relatively 

low, we propose to use an approach based on interval analysis rather than the more classical 

probabilistic approach. The approach has two advantages: it makes a minimal amount of 

unverified assumption concerning uncertainties, and it requires only a few evaluations of the 

model. The results of these uncertainty studies are optimal values of permeabilities described 

by fuzzy sets. This approach was conducted on three case studies: chicory, mushrooms and 

blueberry. Sensitivity analysis on input parameters in the model MAP was also performed in 

order to point out that parameter influences are dependent on the considered fruit or 

vegetable. A comparison of the interval analysis methodology with the probabilistic one 

(known as Monte Carlo) was then performed and discussed. 

Keywords 

MAP modelling, fresh fruits and vegetables, interval analysis, sensitivity analysis, 

biological variability 
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1. Introduction 

The treatment of uncertainties is crucial in food engineering and in mathematical 

modelling of process units. Indeed, in such mathematical models input parameters are 

sometimes physical constants or measurable quantities that are exactly known, but more often 

than not they refer to properties that cannot be directly measured and that are calculated from 

linear or non-linear (multiple) regressions obtained from experimental data. The accuracy of 

calculated parameters then depends on the experimental uncertainty. Accuracy of such 

parameters is crucial, as they are then used in mathematical models to perform simulation or 

even identification of a third parameter (as is the case here). 

Modified atmosphere packaging (MAP) for fresh fruit and vegetables relies on the 

modification of the atmosphere inside the package in order to extend the food shelf life by 

reducing the respiration of the product and consequently its degradation rate. Atmosphere 

composition within the package is the result of both respiration of the commodity and 

diffusion/permeation of gases through the film until a steady modified atmosphere is reached 

(Floros and Matsos, 2005). This steady atmosphere must be quickly reached and as close as 

possible to optimal gas concentrations specific to each product. To do so, gas transfer 

properties of the packaging must correctly match physiological requirements of the product. 

In order to design MAP for fresh fruit and vegetables, mathematical models that simulate the 

evolution of internal gas composition in the packaging as a result of food respiration and mass 

transfer through the packaging material can be used to identify optimal values of gas 

permeabilities that will provide maximal shelf life to a given product (Charles et al., 2003; 

Mahajan et al., 2007). Optimised packaging can then be designed accordingly to these 

identified values. Examples of such mathematical models are available through web-

application (PackInMap (Mahajan et al., 2007) or www.tailorpack.com). These mathematical 

models require specifying a lot of input parameters such as film thickness, area, mass of 

http://www.tailorpack.com/
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packed vegetables, gas permeabilities for the packaging material, etc., and, of course, the 

respiration characteristics of the product, i.e., at least, the maximal respiration rate (or ) and 

the apparent Michaelis-Menten constant () necessary to model the physiology of aerobic 

respiration using a Michaelis-Menten formalism, the most encountered enzymatic kinetic 

mechanism describing respiration (Fonseca et al., 2002). These parameter values are 

estimated from experimental data and are characterised by high uncertainties due to the 

biological variation (Hertog et al., 2004; Hertog et al., 2007a; Hertog et al., 2007b). For 

instance, a search for available data in the literature concerning the maximal respiration rate 

of a same variety of mushrooms (Agaricus biporus L.) gives more than five different 

references that each provide different values of respiration rates and Michaëlis-Menten 

constant (Table 1). It is obvious from Table 1 that a single value of respiration rate cannot 

faithfully represent biological variability, even if products come from a unique plot (same 

climatic exposition, time of harvest, etc.). Also, it would be hazardous to use these data to 

evaluate a probability distribution, as their heterogeneity is high (different batch, location, 

labs, etc.). A more reliable model would be to consider a range of possible values reflecting 

this biological variability. In any case, modelling this variability would increase the reliability 

of simulations used, for instance, to design MAP for mushrooms. 

 

Although uncertainty treatment is an essential part of robust design, this subject has been 

seldom considered in food engineering. We can mention Baudrit et al. (2007, 2009) who 

study the impact of jointly propagating variability and imprecision in models of weight loss 

during cheese ripening process, Hertog et al. (Hertog et al., 2007b; Hertog et al., 2009) who 

evaluate the impact of biological variation on vegetables postharvest behaviour (tomato 

colour or stem length of Belgian endive for example) and Iqbal et al. (2009b) who evaluate 

the impact of mushroom respiration rate () variability on the concentration of oxygen and 
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carbon dioxide in the packaging headspace at equilibrium. All these previous studies mostly 

use classical probabilistic models (Bedford and Cooke, 2001) with Monte Carlo simulations 

(in the case of Baudrit et al. (2009), these methods were mixed with imprecise probabilistic 

models). Such simulations require to (i) know and specify the (possibly imprecise) 

distribution of each input variable, (ii) specify the dependency structures between all input 

variables and (iii) perform (computationally costly) numerical analyses to evaluate the output 

uncertainty. Meeting such requirements necessitates a great amount of information and data 

as well as lengthy computational time. When not enough information is available (a situation 

that often happens), distribution shapes (e.g., normality) and dependence assumptions (e.g., 

independence between all variables) are usually chosen accordingly to some purely practical 

criterion. The validity of such choices, if not confirmed by experiments or available 

knowledge, may be questioned as well as the validity of subsequent analysis results (Ferson 

and Ginzburg, 1996). Indeed, they may provide misleading conclusions, which may in some 

cases lead to unwarranted and non-robust design choices. 

When few data are available, an alternative is to use interval analysis (Jaulin et al., 2001) 

to perform the uncertainty analysis. It comes down to considering that only the bounds in 

which each input variable and parameter may vary are known, or in other words, that (i) input 

variable distributions are unknown (up to their bounds) and (ii) the dependence structure 

between input variables is unknown. Compared to probabilistic analysis, interval analysis can 

therefore be seen as a conservative analysis, in the sense that it does not make any additional 

hypothesis with regard to the available information, and possibly ignores some of the 

available information. It will therefore provide more robust, but less informative, conclusions 

than probabilistic analysis.  

Actually, interval and probabilistic analysis can be seen as two extreme methods of 

uncertainty treatment: the former relies on very few assumptions and provides robust yet 
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poorly informative results, in the sense that only bounds are provided, while the latter requires 

a lot of information but provides very informative results (e.g., in the shape of confidence 

intervals, frequencies) whose reliability is nevertheless questionable if information is missing 

and hypotheses have to be made. Most practical situations are situated between these two 

extremes and the choice between the two methods often depends of the application goals.  

In this paper, we use interval analysis to study the impact of parameter uncertainties in a 

MAP model describing the gas composition evolution inside the package, and presented in 

Section 2. We propose in Section 3 a method relying on interval analysis to perform 

uncertainty analysis (propagation and sensitivity analysis) and to determine (in a reverse 

optimisation step) optimal values of packaging oxygen and carbon dioxide permeabilities. 

This approach is tested in Section 4 on three case studies covering various scenarios: chicory, 

mushrooms and blueberry. Indeed, they span high (mushrooms) and low (endive and 

blueberry) respiration rates, important CO2 inhibition (blueberries) or not (mushrooms and 

chicory), great O2 sensitivity (chicory) or not (mushrooms and blueberry). Collected 

information also presents significant differences: higher (mushrooms and blueberry) and 

lower variability (chicory), data from a single reference (chicory and blueberry) or a set of 

references (mushrooms). Finally, in section 5 we discuss the whole method and make some 

comparisons with a probabilistic approach, emphasizing their differences as well as their 

complementarities.  

 

Table 1.  
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2. Modelling modified atmosphere packaging (MAP) 

In MAP, oxygen and carbon dioxide partial pressures in packaging headspace evolve and 

settle to steady values after a transient phase until a deviation phase occurs, which marks a 

microbial growth or a change in the metabolic pathway of the product (close to end-life). This 

evolution in the internal gases partial pressures is due to the mass balance between oxygen 

and carbon dioxide flux through the packaging material on one hand and to the O2 and CO2 

consumption/ production of the product respiration on the other hand (Figure 1). Here, gas 

evolution is modelled as follows: 

  Equation 1 

  Equation 2 

With 

  Equation 3 

or 

  Equation 4 

or  

  Equation 5 

 

where the first part of the right-hand side of f1 and f2 describes gas flux per time unit through 

the packaging material, while the second part describes gas consumption (and emission) by 

the vegetable or fruit modelled using a Michaelis-Menten-type equation, considering no 

inhibition, non-competitive CO2 inhibition or uncompetitive inhibition (eq. 3, 4 or 5, 

respectively), that have been extensively studied (Fonseca et al., 2002). When CO2 influence 

is investigated on respiration, the non-competitive inhibition is preferred among the three 
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equations due to its simplicity of use and good fit with most existing data concerning common 

products (Fishman et al., 1995; Peppelenbos and Van't Leven, 1996), nevertheless 

uncompetitive inhibition might be more accurate in some cases (Fonseca et al., 2002). It 

should be noted that for higher flexibility in MAP modelling, the combined types of inhibition 

might be applied as a single equation that includes all Michaelis-Menten types of inhibition as 

well as no inhibition (Hertog et al., 1998; Peppelenbos and Van't Leven, 1996). Table 2 

summarises the different parameters, their names and units used in Eq. (1) to (5). 

For a given fruit or vegetable, it is possible to experimentally determine (up to some 

uncertainties) oxygen and carbon dioxide partial pressures that will result in an optimal 

preservation. It is then possible to find optimal packaging permeabilities by using the 

mathematical model of eq. (1) and (2) (Charles et al., 2003) with an optimisation procedure 

(e.g., Levenberg-Marquard) to fit predicted partial pressures to optimal ones. Several input 

parameters are required for this model such as respiration rate, respiratory quotient, packaging 

geometry, or environment variables such as temperature. Determining exactly the values of 

the various parameters (S, e, , etc) involved in Eq. (1) to (5) is a difficult task. In practice, 

only a handful of measurements are performed and parameter values are imprecisely known, 

and an uncertainty analysis is necessary to ensure design robustness.  Unfortunately, it is not 

routinely done. In the next section, we introduce an interval analysis method to do so easily 

on the model given by eq. (1) and (2), before presenting some case studies.  

 

Table 2. 
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3. Interval analysis and design optimisation  

Performing a probabilistic analysis on Eq. (1) and (2) and on similar dynamical models is a 

computationally heavy task requiring a lot of information (or making many assumptions). In 

contrast, interval analysis requires a minimal amount of information and, in some specific 

cases - such as in Eq. (1) and (2) - it may be computationally far easier to perform than 

probabilistic analysis. 

3.1. Basics of interval analysis 

In computational literature, interval analysis was first developed to account for numerical 

errors (Moore, 1979). However, interval analysis is now mostly used to perform robust 

analysis in applications (robotics (Jaulin et al., 2002), chemistry, biology, etc.) where the 

variable value is imprecisely known (Jaulin et al., 2001). In interval analysis, precise numbers 

are replaced by intervals, i.e. variable x is described no longer by a precise number but by an 

interval , with x− and x+ the lowest and highest possible values of variable x.  describes our 

uncertainty about the true value of x about which we only known that it lies between x− and 

x+. The classical problem of interval analysis consists in replacing, in a function , the variables 

by intervals  and to compute bounds f x[ ]( )  of the function such that 

. That is, the output is not a precise value but a set including all 

outputs obtained by choosing a precise x Î x[ ]. 

For example, if  (here, n = 2 and m = 1) and ]5,2[x , , then . The two bounds 5 and 12 

are obtained for , y=3 and ,  y=7, and all other possible values of x, y give an answer between 

5 and 12. We can see that, in this case, to obtain the bounds of     

  

f ([x],[ y]), we have to 

consider only two extreme combinations of values of x and y and no others (the single 

computation of the precise case is then replaced by two computations). 
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In general, it will not be possible to retrieve the exact bounds of  given interval uncertainty, 

but it may be easy to get outer approximation, and we will then speak of inclusion functions 

    

   

[ f ] when considering such approximations. In the previous example,  is an illustrative 

example of inclusion function (there may be different inclusion functions, depending on the 

approximation method used). Among possible techniques to compute such bounds is interval 

arithmetic, where classical arithmetic operations {+,*,/,-} are replaced by their interval 

equivalent. The quality of approximation     

  

[ f ]([x]) and the time to compute it both depend on 

the technique used and of the characteristics of the model. In our particular case, the model 

makes it possible to have exact bounds and efficient computations, as we shall see.  

3.2. Interval analysis to propagate uncertainties in dynamical systems  

In this paper, we are concerned with the problem of evaluating the solution of the 

dynamical system given by Eq. (1) and (2) combined with either Eq. (3) or Eq. (4) when 

parameters become interval. The computational aspect of this case has already been 

extensively studied in another paper (Destercke et al., 2011), and only the main assumptions 

are recalled here. Eq. (1) and (2) are particular instances of general systems  where function  

describes the evolution of  state variables  by m ordinary differential equations 

(ODE‟s) . Here, we have two equations f1  and f2
 describing the evolution of partial O2 

( ) and CO2  ( ) partial pressures, respectively.  

For a given time t, the solutions of such systems are here m values xi(t). The evolutions of 

state variables are then obtained by solving the equations for each (discretised) time step. In 

the following, we denote by  the time domain of the model and assume that it is discretized in 

a finite number of time steps. In our case, the time domain will be the life-span of the product. 

As in the previous section, if parameter p values become interval, the outputs xi(t) at each 

time step become two intervals, hence the evolutions of each variable become two 
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(discretized) functions of time, a lower and an upper one, that have to be estimated. In our 

case, the problem is to compute the evolution of gas partial pressures, given intervals of some 

of the parameters given in Table 2. 

We will call a function fi dynamically increasing w.r.t. a parameter p or a variable x if it 

satisfies the following inequalities: 

 

or 

 

 

fi is dynamically decreasing if the inequalities are reversed (i.e., lower than or equal to 

zero). Normally, estimating lower and upper bounds  for each variable xi and each discretized 

time-step t, i.e., to determine the lower and upper envelopes of  is a difficult problem. 

However, if every function fi of  is either dynamically increasing or decreasing w.r.t. each of 

its parameters and variables, one can concentrate only on specific extreme combinations of 

the interval-valued parameters and variables (initial conditions) to compute lower and upper 

envelopes (Delanoue, 2009; Ramdani et al., 2010; Singer and Barton, 2006), thus reducing 

the computations to find extrema. In such cases, one only needs to solve the system twice 

with usual methods (one for the upper envelope, one for the lower) for each variable. 

Compared to probabilistic methods, this is indeed very efficient. 

Under fair assumptions (positivity of parameters of Table 2 and of , 

negativity of , constant values of external gas partial pressures
  

   

pi

ext
), it can be 

shown that Eq. (1) and (2) are dynamically monotonic. Table 3 summarises those 

monotonicities with respect to (w.r.t.) each input parameters for function f1 and f2.  
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Table 3. 

3.3. Parameters optimisation 

Parameter optimisation consists in searching parameters value that satisfies some 

objectives, i.e. to find values of some parameters p such that if they are used in function fi
 to 

predict xi
(the values of the other parameters remaining the same), the prediction     

   

[xi (t)] will 

be within or close to some specified goal  )(ˆ tx
i

 on xi
. Here, we consider that the goal is 

specified as an interval over some time-domain T̂ Í T  that is a subset of the whole domain. 

Goals are then specified as intervals   Ttx
i

ˆ:)(ˆ , as even optimal goals may be 

imprecisely known (or multiple optimal values are possible).  

In our problem, the parameters to optimise are the packaging permeabilities PeO2
 to O2 

and 
    

   

PeCO2
 to CO2. The goals  )(ˆ tx

i
 will be gas partial pressures [ p̂pkg

O2(t)]  and [ p̂pkg

CO2(t)] 

known to provide longer shelf-life to the product. The time domain T̂ will be restricted to the 

steady phase. 

Note that this way of formulating an optimisation problem is not usual, even in interval 

analysis literature (Raïssi et al., 2004), where the goals and objective functions are usually 

precisely valued (e.g., correspond to precisely observed outputs). Again, such problems are in 

general difficult to solve, however we propose here an easy solution that again uses the 

monotonic properties of the system.  

Consider a particular point value 
D

p̂ of a design parameter pD
.  is said to be a guaranteed 

(resp. possible) solution if  (resp.  ) for every   , given interval uncertainty on other parameters 

p and initial conditions x(0). A guaranteed solution is such that, despite interval uncertainties, 

we are certain that with the given design parameter values, the true answer lies within the goal 

bounds, while a possible solution is such that, with the given design parameter values, the true 



 
 

 13 

answer may or may not lie within the goal bounds. Solutions that are totally outside goal 

bounds are said to be non-admissible. In practice, estimating sets of guaranteed and 

admissible solutions can be difficult (as they are usually multivariate sets of design parameter 

values with complex shapes). However, it is possible with a simple procedure to provide for 

each design parameter p approximated evaluations of guaranteed and admissible solutions in 

the form of intervals [Gp] and [Sp], with Gp
éë ùûÍ Sp

éë ùû. An empty set  means that there is 

currently no solution (no values of ) that could satisfy the goals. Roughly speaking, the 

algorithm detailed in Destercke and Guillard (2011) takes advantage of the known monotonic 

properties of the model to compute boundary values of [Gp] and [Sp]. In our problem the 

algorithm will result in four intervals  and  proposing 

optimal values for the permeabilities of O2 and CO2, respectively.  

The obtained sets [Gp] and [Sp] for each design parameter p can then be transformed into 

fuzzy sets (Zadeh, 1975). Indeed, while guaranteed solutions all provide the same satisfaction 

to the designer (they all insure that the true solution is within the goal boundaries), possible 

solution can be seen as having gradual satisfaction degrees for the designer, as some of them 

will have a more significant overlap with the goal bounds than others. First recall that a fuzzy 

set  is a mapping from a space  to the unit interval, where  is the membership degree of 

element x. A trapezoidal fuzzy number  is defined by a tuple  of four numbers and is such that  

   Equation 6 

In our case, the fuzzy set degree expresses some satisfaction degree (Dubois and Prade, 

1997) provided by a parameter value w.r.t. an interval-valued objective . We propose, for , to 

build the trapezoidal fuzzy number  such that  if  and  otherwise. Figure 2 (see Section 4) 

illustrates the concept of fuzzy set.  
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3.4. Sensitivity analysis 

An uncertainty analysis usually comes with a sensitivity analysis (Helton et al., 2006) that 

consists in quantifying the contribution of each input parameter and variable uncertainty to 

the output uncertainty. It shows where uncertainty reduction would be the most beneficial to 

reduce output uncertainty, hence where experimental efforts should be focused. In contrast 

with probabilistic approaches, there are only very few works dealing with interval sensitivity 

analysis (Moens and Vandepitte, 2007).  

In this paper, we propose to use a very simple means to perform this sensitivity analysis for 

a given function fi. The details of the methodology are given in (Destercke and Guillard, 

2011) and are just briefly given in the following. Let  be the interval-valued output resulting 

from initial interval uncertainty. Then, if we denote by  the length of , we define the overall 

imprecision  of 
ix  as  

   Equation 8 

that is, the sum of interval lengths obtained at each time step. Now, to quantify the impact 

of each parameter and variable uncertainty on the output imprecision, we propose the 

following procedure (similar to some existing propositions in imprecise probability literature 

(Ferson and Tucker, 2006)): reduce, for each parameter and variable, its uncertainty by a 

given fraction , such a reduction coming down to transform an interval [a,b] into an interval 

[a’,b’] such that  

   Equation 9 

with  the middle and length of the interval, respectively.  

Such a reduction gives a new interval-valued solution  included in the previous one, and 

with an overall imprecision  . If  is the output obtained after reducing the 

imprecision of parameter p by r%, the gain in the output precision generated by this reduction 

can then be defined as  
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  Equation 10 

In our problem, the result of this sensitivity analysis for a particular product can be used to 

detect which parameters are the most responsible for the uncertainty in the gas partial 

pressures, eventually deciding that further experiments (or the use of more precise 

measurement devices) should be done on it.  

4. Application 

In this section, we apply the above framework to design Modified Atmosphere Packaging 

(MAP) for some fresh fruits and vegetables: chicory, mushrooms, and blueberry. The system 

given by Eq. (1) and (2) with either Eq. (3) to Eq. (5) are considered for modelling the 

respiration of produce. Numerical solving of the nonlinear ODE system (Eq. 1 to 5) was 

carried out using the ode45 solver of Matlab software (The Mathworks Inc., Natick, MA, 

USA). This routine adjusts the size of the step of time for calculations according to the 

importance of partial pressure variations. As f1 and f2 are dynamically monotonic w.r.t. each 

of their parameters and variables (cf. Table 3), this means that one can concentrate only on 

specific extreme combinations to compute lower and upper envelopes (cf. Section 3). Values 

of each input parameter are extracted from various references and indicated for each case 

study with their uncertainty. When it was not specified in literature, an uncertainty of 10% 

was applied on the value (it is the case for instance for the surface and the volume of the 

pouches, the mass of chicory, etc). Note that, in all applications, initial conditions (initial 

values of the two variables  and ) are considered as perfectly known (e.g. initial partial 

pressures are the same as in air: 21.27 kPa for oxygen and 0 kPa for carbon dioxide) but they 

also may vary (20.62 ± 1.21kPa and 0.80 ± 0.69 kPa; Fonseca et al., 2000). Interval analysis 

was computed using Matlab software. 
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4.1. Case study 1: chicory  

The considered food is chicory, which has been previously studied, but without any proper 

uncertainty analysis (Charles et al., 2005). Chicory is usually packed in consumer-size 

flexible pouches (polyethylene, PE, or polypropylene, PP) containing between 0.5 and 2.0 kg 

of produce (Moras and Vernin, 2005). In this case study, 0.5 kg of chicory is considered 

packed in a 2L low density PE (LDPE) pouch with an average film thickness equal to 50 μm 

and a total surface of 1400 cm
2
. Considering the dimension of packaging and the product 

mass, LDPE has been selected on the basis of its mass transfer properties (i.e. gas 

permeabilities) that should correctly match the respiration requirements of the commodity1  

(Charles et al., 2005). Storage temperature is fixed at 20°C and all input parameters are 

considered at this temperature. According to Charles et al. (2005), respiration of chicory could 

be modelled using Eq. 4. In Equations (1) and (2), environmental parameters subject to 

uncertainties are  and design parameters are . Note 

that, when the probabilistic approach is used, no less than 9 probability distributions must be 

specified, and independence between variables must be consequently assumed, with some of 

the parameters sometimes measured only 3 times (see section 5). Note that to reach a 

reasonable numerical accuracy, Monte-Carlo propagation usually needs at least 100 samples, 

while estimating boundaries by interval analysis for  and  requires only 4 simulations in 

this case. 

 

Uncertainty propagation. Knowing the permeability of the packaging material classically 

used to pack chicory, the mathematical model described by Eq (1), (2), and (4) was used to 

simulate the evolution with time of the internal O2 and CO2 partial pressures at 20°C. 

                                                 
1
 Note that optimal internal gas partial pressures are goals, and are not part of the models per se. They will be 

considered during the optimisation step 
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Parameters with their interval uncertainty are summarised in Table 4. Maximal shelf life at 

20°C is estimated to be 7 days (i.e. around 170 hours), therefore the simulation time domain is 

T=[0, 170].  

 

Table 4. 

 

The results of interval analysis are displayed in Figure 1, and at the steady states, 

 and . This means that, given the specified uncertainties in Table 4, the O2 

and CO2 levels in the packaging can vary between their respective lower and upper curves. 

These curves include simulated curves obtained by Charles et al. (2005) in the same 

conditions without considering uncertainties (not shown in Figure 1 to preserve the 

readability of the graph). In the MAP experiment using the same conditions as in this 

simulation, and if the uncertainties were well estimated, the experimental O2 and CO2 

measurements at the steady state could potentially vary between 1.6 and 8.1 kPa, and 1.9 and 

5.3, respectively. Note that, due to the conservativeness of interval analysis, these ranges may 

be over-estimated. However, with this methodology, only four simulations where needed (two 

for each gas) to estimate the bounds, and no unverified assumption (e.g., independence of all 

variables) has been made. It also provides worst cases referring to the lowest O2 and highest 

CO2 contents that are determinant to anticipate risks of anoxia and CO2 phytotoxicity, 

respectively. Those two critical points are main causes of failure in MAP design marked by 

the development of off-flavour and off-odour as well as discoloration of the commodity. In 

the case of chicory, the interval analysis ensures that the recommended storage atmosphere is 

within the modelled interval during a shelf life of 7 days (3-4% O2 and 4-5% CO2 according 

to Mannapperuma et al. (1989), and that neither anoxia (O2 lower than 1%) nor excessive CO2 

content (higher than 10%) would occur even during the transient period (Van de Velde and 
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Hendrickx, 2001; Vanstreels et al., 2002). This kind of certainty is very helpful to guarantee 

no detrimental deviation in produce quality.  

  

 Figure 1. 

 

Optimisation step. When the best oxygen and carbon dioxide permeabilities suiting a 

particular fruit or vegetable are not known a priori, the MAP model, Eq. (1), (2), and (4), is 

used to perform a reverse engineering task. In this case, optimal oxygen and carbon dioxide 

concentrations in the modified atmosphere packaging have to be known and specified. Then, 

an identification step of the optimal permeabilities can be run by taking into account the 

parameters uncertainty (specified in Table 4) of every environmental parameter. To ensure 

that optimal O2 and CO2 concentrations (the goals) were considered for the steady state and 

not for the transient phase, we have taken  and the time domain was 

maintained at around 7 days T=[0, 170] . The optimal concentrations at the steady state were 

fixed as  and   for every , according to previous work (Charles et al. 2005) since 

oxygen partial pressure has to be between 2 and 10 % and carbon dioxide partial pressure 

between 2 and 5 % at the steady state. Levenberg-Marquardt Algorithm (Nocedal and Wright, 

1999) was used to identify the optimal permeabilities. Figures 2A & 2B show the range of O2 

and CO2 permeabilities obtained. There are some guaranteed solutions, that all provide the 

same satisfaction degree to the designer (reaching the maximal value 1 in Figures 2A & 2B). 

These solutions will all insure that the true solution is within the goal boundaries, 
pkg

o
p

2

ˆ  and . 

There are some possible solutions that can be seen as having gradual satisfaction degrees 

(between 0 and 1 on the fuzzy set in Figures 2A & 2B) for the designer, as some of them will 

have a more significant overlap with the goal bounds than others. According to Figures 2A & 

2B, guaranteed solutions,  ranged from 1.04 to 1.59×10
-15

 mol.m
-1

.s
-1

.Pa
-1

 and 4.39 to 
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6.28×10
-15

 mol.m
-1

.s
-1

.Pa
-1

 for respectively O2 and CO2 permeability. Possible, but not 

guaranteed solutions, , ranged from 0.27 to 5.11×10
-15

 mol.m
-1

.s
-1

.Pa
-1

 and 1.09 to 

23.68×10
-15

 mol.m-
1
.s

-1
.Pa

-1
. Figure 3 shows the result of the interval analysis done with 

optimal parameters belonging to  and the resulting oxygen and carbon dioxide partial 

pressures lie well within the objectives. It is obvious from the fuzzy sets of Figures 2A & 2B 

that, with a 10% variation, the O2 and CO2 permeabilities of LDPE chosen for generating 

uncertainty propagation does not fully meet the guaranteed solution. With a higher precision 

during assessment of mass transfer properties, this material could be part of guaranteed 

solution. 

 

Figure 2. 

Figure 3. 

 

Sensitivity analysis. Table 5 summarises the sensitivity analysis performed according to 

the method previously presented. For each variable  and , we have evaluated the gain in 

uncertainty after an imprecision reduction of 50% of each (environmental and design) 

parameter. The last row (All) indicates the gain in the output precision when all parameters 

uncertainty is reduced by 50 %.  

The results indicate, among other things, that uncertainties of packaging permeabilities 

have the highest impact on gas internal partial pressure: while O2 permeability uncertainty has 

an important impact on both O2 and CO2 internal partial pressure (the reduction resulting in a 

gain of about 10% for each), CO2 permeability uncertainty only impacts the CO2 internal 

pressure, and has almost no effects on O2 internal pressure. The great influence of surface and 

thickness uncertainties on gas internal partial pressures was not surprising since they are part 

of the equation of gas permeation through the packaging material, with permeability values. 
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The effect of was more important on O2 content than CO2. As expected, the uncertainty of the 

respiration quotient (RQ) only impact on the CO2 internal pressure, while  uncertainty, due to 

the large value of , has no impact on the resulting uncertainty for both variables. It is worth 

noting that cumulating all the gains obtained following a reduction of 50% on all input 

parameters uncertainty, more than 50% of precision could be gained on O2 and CO2 internal 

partial pressure! 

 

Table 5. 

4.2. Case study 2: mushrooms  

Contrary to the previous case study (chicory) where all the parameters and their 

uncertainty came from a single work, the case of mushrooms is a bit more complicated since 

several scientific publications dealing with respiration parameters of mushrooms are 

available. While its respiration pathway can be considered in its simple formalism (Mickaëlis-

Menten type with no CO2 inhibition), various values of respiration parameters for common 

mushrooms (Agaricus biporus L) are provided, as shown in Table 1. The large difference in 

respiration rate is mainly due to the considered strain, flush and stage of maturity, but also to 

the method of determination used. In order to take into account this physiological variability 

in the prediction of O2 and CO2 partial pressure (  and ) at equilibrium in the packaging of 

mushrooms, these multiple sources were taken into account to define a range of probable  for 

mushrooms. This range was considered as input parameters in the model (Eq. (1), (2) and (3)) 

(Table 6). Mushrooms are usually placed in punnets, which are then wrapped into plastic 

pouches. A possible packaging material commercially available is, for example, stretchable 

PVC film (Guillaume et al., 2010; Lopez Briones et al., 1993). The system considered in this 

study was a mass of 250 g of mushrooms wrapped with a stretchable PVC film of 11 microns 

of thickness (Guillaume et al., 2010), considering a total volume of 1.0 L and 676 cm
2
 of total 
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surface area (http://www.champignons-paris.com/). All the characteristics of the mushrooms / 

packaging system used in the simulation are described in Table 6 and considered at 20°C.  

 

Table 6. 

 

Uncertainty propagation. Knowing the O2 and CO2 permeabilities of the stretchable PVC 

film (Table 6), the mathematical model (Eq. (1), (2) and (3)) was used to simulate the 

evolution with time of O2 and CO2 internal partial pressure. An interval analysis was used to 

assess the impact of input parameters uncertainty on the prediction. The targeted shelf life of 

fresh mushrooms at 20°C is 5 days at the very most; the time domain for simulation was then  

h. The results of interval analysis are displayed in Figure 4. At the steady states the O2 and 

CO2 partial pressure ranges are  and . Using this classical PVC film for 

packing mushrooms, anoxia is reached in the packaging in less than 10h when considering all 

uncertainties on input parameters and the largest upper and lower limit for maximal 

respiration rate () taken from the different sources found on this food product.  This might 

induce a turn into fermentative catabolism responsible for off-flavours and off-odours in most 

fresh produce; but the case of mushrooms is quite peculiar. Some authors demonstrated that 

their respiration rate remained constant whatever the O2 level, even around 0.2 kPa, with a 

respiratory quotient equal to unit (Lopez Briones et al., 1992; Varoquaux et al., 1999). They 

also determined a negligible value (<0.1 kPa) that has been considered in the present 

work for modelling purpose. Considering this literature, mushroom catabolism is supposed to 

be aerobic until 0.2 kPa. Then the anoxic condition of 0.2 - 0.3 kPa, identified upon 

modelling, would not be detrimental to this fresh commodity. However, it may cause safety 

issues by favouring growth of Clostridium botulinum, moreover when it is combined with 

high CO2 content (Gonzalez-Fandos et al., 2000). While the lowest limit for maximal 
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respiration rate led to CO2 partial pressures equal to or lower than 5 kPa within the time 

domain defined, the highest limit for maximal respiration rate displayed CO2 partial pressures 

higher than 5 kPa and even more than 10kPa during the transient period. The threshold value 

of 5kPa has been previously determined at 10°C as an initiator of mushroom discolouration 

such as yellowing (Lopez Briones et al., 1992). Based on these simulations and interval 

analysis, this packaging material did not match the gas permeabilities requirement necessary 

for mushrooms. Hopefully, in real conditions of use, mechanical stretching of PVC may alter 

its barrier properties by increasing both O2 and CO2 permeabilities (Guillaume et al., 2010; 

Trommer and Morgenstern, 2009).   

 

Figure 4. 

 

Optimisation step. The next step was to identify the O2 and CO2 permeabilities that are 

best suited to the packing of mushrooms and to evaluate the impact of parameters uncertainty 

on the reliability of the prediction using interval analysis. Eq (1), (2) and (3) were used to 

perform a reverse engineering task as described for chicory. For mushrooms, literature gave 

some optimal O2 and CO2 concentrations for the storage of mushrooms at 20°C which are 

respectively  and 
 
for the steady state period (Lopez Briones et al., 1992). 

Identification of  and 
 
that best suit mushrooms was then performed by taking into account 

uncertainties on input parameters reported in Table 6. In this condition, no guaranteed 

packaging solutions could be found that best suited the requirements of mushrooms as 

illustrated in Figures 5A & 5B. Figure 6 illustrates well that the upper and lower envelops for 

the O2 and CO2 internal partial pressures lay beyond the targeted ranges for these two gases 

following the uncertainty propagation during the optimisation step.  
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Figure 5. 

Figure 6. 

 

Sensitivity analysis. In order to identify the parameter(s) and its(their) uncertainty(ies) 

that impact the prediction the most, a sensitivity analysis was performed. As for case 1, the 

gain in uncertainty was evaluated after applying an imprecision reduction of 50% for each 

variable successively. The results are given in Table 7. The results of Table 7 indicated that 

among all parameters  uncertainty has the most important impact on O2 internal partial 

pressure (the reduction of 50% applied on uncertainty resulted in a gain of more than 50% on 

the precision of O2 partial pressure prediction) while packaging permeabilities,and , have the 

greatest impact on CO2 partial pressure prediction (reduction of uncertainty of around 20%) 

followed by RQ (reduction of uncertainty of around 10%). This result was expected. Indeed, 

mushrooms are characterized by a high biological variability and then the reproducibility of 

the measure of respiration parameters is touchy. That‟s why a large range of variations was 

noticed for  between the different sources (Table 6). This sensitivity analysis illustrated well 

that an accurate experimental determination of the respiration parameters (especially  when  is 

not influent as we considered herein) could be crucial to provide reliable predictions of 

internal gas partial pressure. Contrary to O2 partial pressure, CO2 partial pressure was more 

dependent on RQ which appears logical because in Eq. (2),  was directly calculated from  and 

RQ. It is worth noticing that, as for chicory, cumulating all the gains obtained following a 

reduction of 50% on all input parameters uncertainty, more than 50% of precision could be 

gained on O2 and CO2 internal partial pressure (even more than 60% for O2)! 

Both the optimisation step and sensitivity analysis clearly demonstrate the importance of 

having a good knowledge on physiological behaviour and precise input parameters with low 

uncertainty for prediction concerns. Up to now the state of the art on common white 

mushroom respiration and storage is still too controversial to foresee accurate prediction and 
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guaranteed packaging solutions. For instance respiration of mushrooms might be considered 

following a Michaëlis-Menten-type equation with no inhibition (Cliffe-Byrnes and O' Beirne, 

2007; Varoquaux et al., 1999) or uncompetitive (Cliffe-Byrnes and O' Beirne, 2007; Iqbal et 

al., 2009b), and the Michaëlis-Menten constant, , as negligible (Cliffe-Byrnes and O' 

Beirne, 2007; Varoquaux et al., 1999) or not (Iqbal et al., 2009). While the effect of a high 

amount of CO2 seems to be detrimental to their whiteness whatever the source, the decrease in 

O2 content might exhibit almost no effect either on their respiration (Varoquaux et al., 1999) 

or quality attributes (Lopez Briones et al., 1992; Lopez Briones et al., 1993), or it might slow 

down their respiration (Iqbal et al., 2009) as well as delay their development as cap opening, 

veil breaking, stem elongating (Roy et al., 1995). Such differences are mainly attributed to the 

material used. Most often, the complete identification of common white mushrooms is not 

mentioned but it is obvious that strain, number of flush and development stage should be 

considered to improve the knowledge on their physiological behaviour and reduce 

uncertainties on physiological parameters. This would lead to more reliable simulations and 

maybe possible guaranteed packaging solutions. 

 

Table 7. 

4.3. Case study 3: blueberry 

A third vegetal product was chosen, „Duke‟ blueberry, which is characterized in the model 

by a significant uncompetitive CO2 inhibition (significant value of ). Small berries such as 

blueberries are commonly packaged and sold to consumers in vented petroleum-based 

clamshell containers or pouches. In this study, 200g of blueberries were considered packed in 

a 0.6 L LDPE pouch with a surface area of 690 cm
2
 as in the study of Song, Vorsa et al 

(2002). According to Song et al. (2002), respiration of blueberries could be modelled using 
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Eq. 5 describing uncompetitive inhibition. All input parameters required in Eqs. (1), (2) and 

(5) are given in Table 8 and considered at 25°C.  

 

Table 8.  

 

Uncertainty propagation. To perform the simulation, the shelf life of blueberries was 

considered as 5 days at 25°C. The simulated curves (not shown) obtained taking into account 

uncertainty propagation during MAP simulation are in agreement with the experimental and 

predicted ones determined by Song et al. (2002) at two temperatures (15 and 25 degrees C). 

However, these authors did not study the effect of error propagation in their simulation 

studies. By considering the uncertainties of all input parameters, the O2 partial pressure at 

equilibrium may potentially vary between 0.3 and 10%, , and CO2 between 3 

and 6%, . These upper and lower bounds for O2 and CO2 are equivalent to a 

10°C variation (from 25 to 15 degrees C) as observed by Song et al. (2002)!  

According to Beaudry et al. (1992), who worked on MAP of „Highbush‟ blueberries at 

various temperatures, minimal O2 partial pressure at equilibrium should be at 4kPa at 25 °C to 

avoid a turn into fermentative metabolism. Assuming that „Duke‟ blueberries may tolerate the 

same level of O2 and considering the uncertainty propagation, the chosen LDPE package 

could induce off-flavours and off-odours, since the lower O2 limit was found at 0.2 kPa. 

 

Optimisation step. Results previously obtained point out the fact that by using an LDPE 

pouch, if O2 partial pressure is significantly reduced in the packaging (below 10%), CO2 is 

moderately increased (the upper limit for CO2 is only 5%). In general, berries have prolonged 

postharvest shelf life when exposed to levels of CO2 above 15% (Almenar et al., 2007; 

Beaudry, 1993; Beaudry et al., 1992) (Beaudry, Cameron et al. 1992; Beaudry 1993; 
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Almenar, Del-Valle et al. 2007). The packaging material commercially used for blueberries is 

thus not satisfactory. An identification of the packaging permeabilities suitable to reach 

optimal O2 and CO2 concentration favourable to the conservation of blueberries was then 

performed. For this purpose, it is necessary to first define the range of targeted O2 and CO2 

concentrations suitable for MAP of blueberries. For O2, several authors (Kim et al., 1995; 

Rosenfeld et al., 1999) claim less-than-or-equals 9% O2 as the optimum amount. We can thus 

consider that 
 
has to be focused on 9% with a reasonable range of variation between 8 and 

10%.  

Different CO2 optimal concentrations have been reported to prolong blueberry shelf life. 

While several authors (Kim et al., 1995; Rosenfeld et al., 1999) claim between 15% and 18% 

CO2 as the optimum amount, Harb and Streif (2004) reported that „Duke‟ blueberries react to 

increased CO2 amounts (>12%) with loss of firmness and acidity content and a negative 

impact on flavour. CO2 is not only a respiration inhibitor but also an antifungal compound. Its 

effect is dependent on concentration, exposure time and application time following fruit 

harvest. Therefore high levels of CO2 are usually required in MAP of blueberries to delay 

fungi growth and prolong shelf life. As regards this antifungal effect, Harb and Streif (2004) 

also reports that a minimal amount of 6% CO2 is needed to retard B. cinerea (one of the main 

spoilage moulds) growth in blueberries stored near 0 degree C. In absence of a clear 

consensus for optimal CO2 concentration in MAP of blueberries, we will thus consider in this 

study that  may vary between 6 and 15% at equilibrium.  

By using these optimal partial pressures and the parameters listed in Table 8, the window 

of optimal permeabilities suitable for maintaining blueberry quality at 25°C during 5 days 

were identified. While no guaranteed solutions were found for O2 permeability, a range of 

guaranteed solutions was identified for CO2 (between 1.20 to 1.59×10
-15

 mol.m
-1

.s
-1

.Pa
-1

). 

That means that by using a packaging material having a CO2 permeability in this range, and in 
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the conditions used for this simulation (geometry, mass of blueberries, uncertainty on input 

parameters given in Table 8, etc.), we are sure, even in the worst case, to reach the targeted 

CO2 range of 6-15% at equilibrium in the packaging (upper and lower CO2 simulated curves 

lay between 7 and 14%). On the contrary, O2 curves lay between 4 and 13% (curves not 

shown). In this case, only possible solutions  could have been identified, ranging from 0.76 to 

2.89×10
-15

 mol.m
-1

.s
-1

.Pa
-1

. It is important to point out that even if these solutions are only 

possible but not guaranteed solutions, the O2 concentrations reached in the headspace at 

equilibrium will never drop below 4kPa, which is satisfactory from the vegetable/fruit point 

of view. This impossibility to identify a set of guaranteed solutions for O2 permeabilities 

could be explained by the fact that the targeted O2 range is narrow, and given the uncertainties 

of input parameters and the conservative interval analysis used here, the possible range of O2 

concentrations at equilibrium is large. 

 

Sensitivity analysis. Table 9 summarises the sensitivity analysis performed on the 

blueberry case study. The results indicate that both packaging and respiration parameters 

impact the precision on  and . The 
 
uncertainty has the most important impact on O2 and 

CO2 internal partial pressures uncertainty (50% reduction on 
 
uncertainty results in a gain of 

around 10% on  and ), followed by  and  uncertainties, which impact in the same manner 

(around 8-9%) O2 and CO2 internal pressures. Surprisingly,  uncertainty has a very low 

impact on  and  precisions. Indeed, it was expected that this parameter uncertainty could 

significantly impact the prediction because of its importance in the modelling of blueberries 

respiration (uncompetitive inhibition). It seems that  uncertainty is more impacting than that 

of  or even . 

 

Table 9. 
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5. Discussion 

In this paper we propose interval analysis as a useful alternative to probabilistic analysis 

that requires far less information in order to give reliable results. Interval analysis results are 

easy to compute when functions satisfy certain monotonicity properties, as is the case for 

functions used in MAP modelling. We have used this method for two purposes: (1) classical 

uncertainty analysis during MAP modelling, including propagation (prediction of O2 and CO2 

internal partial pressures) and sensitivity analysis (quantification of input uncertainty impact 

on output uncertainty), and (2) robust design under uncertainties (identification of O2 and CO2 

permeabilities that are best suited to a targeted product). The approach is applied to three case 

studies: chicory, mushrooms and blueberries, chosen for their differences. Chicory displays 

moderate maximal respiration rate , while mushrooms are characterised by a high respiration 

rate. Blueberries display moderate maximal respiration rate and a significant CO2 inhibition 

whereas this inhibition is negligible for chicory and mushrooms. For chicory and blueberries, 

uncertainties indicated in the reference where used in the interval analysis (or, if it is not 

precise, an uncertainty of 10% was applied). For mushrooms, respiration parameters come 

from different references that yield to a larger variation range for those parameters 

(especially). It was thus interesting to study this case. 

 

Biological variability and interval analysis 

A first remark is that guaranteed solutions for permeabilities seldom occur (for which we 

are sure that the O2 and CO2 internal pressures will lay in optimal range of the product). This 

is due to the combination of interval analysis conservativeness and of the important biological 

variability of fresh fruits and vegetables. Multiplicity of references (such as for mushroom 
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respiration parameters) makes the problem even worse. Also, optimal ranges may be too 

narrow to find guaranteed solutions (blueberry case). However, interval analysis is able to 

handle all these cases (even when dealing with very heterogeneous sources, as was the case 

for mushrooms) in a straightforward but conservative way. It is also important to recall that 

guaranteed solutions are very robust solutions, and that possible solutions that were obtained 

in all cases may be sufficient for a given application. The analysis has also stressed some 

important facts, such as the need to clearly identify the upper and lower bounds of the 

equilibrium atmosphere for the product concerned and to deepen the knowledge of the 

behaviour of fresh fruits and vegetables at those bounds. 

 Sensitivity analysis has shown in all cases that a reduction of 50% on each parameter 

uncertainty enables to gain a precision on the predicted O2/CO2 internal partial pressure of 

around 50% and even more than 60% for mushrooms (for ). Results have shown that  

uncertainty has an important impact if its value is high (mushrooms and blueberries), while its 

impact is lower if value is low (chicory), and in this case the uncertainty on packaging 

parameters (permeabilities, thickness, surface, etc.)  impact more on  and  

uncertainties. Surprisingly, even if a CO2 inhibition is significant and cannot be neglected in 

respiration modelling (case of blueberries),  has a low impact on  and  precision. The 

final conclusion from these first studies is that experimental efforts must be carried out on the 

determination of accurate  values, and then, on packaging characteristics ( , , S, e). 

However, it should be kept in mind that the performed sensitivity analysis of this paper, apart 

from the conclusions mentioned above, are largely illustrative. Indeed, sensitivity analysis is a 

useful tool to detect which parameters have the most impact on the output precision of a 

mathematical model, but it makes sense only if it is performed to achieve certain goals (i.e. to 

know on what parameter experiments or technological innovation should focus, given certain 

time, technical or cost constraints). For instance, in MAP modelling for chicory, it appears 
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difficult to gain precision on the thickness since it is inherent to the constraints of shaping 

processes. Conversely, in the case of mushrooms, uncertainties on respiration rate could be 

reduced by focusing on specific strains (limiting the population of interest) or by improving 

and standardizing the methods used to assess this parameter since each of the methods used 

had some limitations (Fonseca et al., 2002).  

 

Interval analysis versus Monte Carlo probabilistic method 

We now compare interval analysis to Monte Carlo probabilistic method for the three cases. 

To perform Monte Carlo simulation and ensure sufficient accuracy, m = 2000 data were 

randomly drawn between the bounds of their respective uncertainty (see Tables 4, 6 and 8) 

using a procedure already used by Pénicaud et al. (2010). As the distribution of each input 

variable is not known a priori and could not be experimentally determined (less than 5 

determinations for each parameter), a uniform distribution was considered. The generation of 

these virtual parameters was carried out on Matlab software (The Mathworks, Inc., Natick, 

MA, USA) using a routine function (rand.m). For each set of virtual parameters generated, 

either a MAP modelling or an optimisation step was performed.  

Considering uncertainty propagation by using MC simulations during the simulation of 

internal O2 and CO2 partial pressures, intervals of possible values (with bounds taken as the 

95% confidence interval) at the steady state are, for the three cases, narrower than those 

obtained with interval analysis, which is in agreement with the theory (i.e., that all MC 

simulations are within the interval analysis bounds). For example, O2 may vary between 

 for chicory (vs.  with interval analysis),  for mushrooms (vs. 

 with interval analysis) and  for blueberries (vs.  with 

interval analysis). Indeed, Monte-Carlo analysis corresponds to choosing a particular 

distribution within the bounds, as well as independence between the variables, while interval 
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analysis corresponds to a “worst” and “best” case analysis (for instance, there are no 

averaging or counterbalancing effects with interval analysis, as can happen with MC 

analysis).   

Concerning the optimisation steps, MC simulations provided distributions of optimal 

values for and . We represented these results as histograms, probability densities and 

fuzzy sets assuming value 1 for the mean optimal value and bounded by the 95% confidence 

interval of the MC simulation (see Figures 2C & 2D and Figures 5C & 5D for chicory and 

mushrooms respectively). Two facts can be noticed: MC analysis usually provide sharper and 

more informative distributions (allowing one to build confidence intervals), and although the 

two analyses roughly agree on the range of optimal values, they sometimes point to different 

best options. Indeed, while for chicory interval analysis proposes a best O2 permeability 

between 1 and 1.5 ×10
-15

 mol.m
-1

.s
-1

.Pa
-1

, probabilistic analysis recommends a value around 

2.5 mol.m
-1

.s
-1

.Pa
-1

. In this case, guaranteed solutions of interval analysis should be preferred, 

as they do not make any unsupported hypothesis. The same happens for mushrooms and CO2 

permeability, however in this case interval analysis is unable to provide guaranteed solutions, 

and “best” solutions proposed by the probabilistic analysis (around 11×10
-15

 mol.m
-1

.s
-1

.Pa
-1

) 

are not discarded by interval analysis, and could be considered as a potential alternative.  

In practice, industry may be satisfied with designs that prolong the shelf life of a given 

percentage of products (for instance, 95% or 99% of the products remaining edible may be 

enough), particularly if it saves important costs. It should be noted that interval analysis does 

not provide such information (only providing bounds and no statistical information), while 

probabilistic analysis does. However the reliability of the more detailed information provided 

by a probabilistic analysis may be questioned when only little data or information is available. 

In practice, the two methods can be seen as two extreme solutions to handle uncertainty: 

interval analysis needs a minimal amount of information and gives a poorly informative but 
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robust result, while proper probabilistic analysis requires a great amount of information and 

gives a very informative result whose reliability may be questioned if unverified assumptions 

had to be made. In practice, the real state of available information will be in the middle: more 

than simple bounds, but not enough to estimate reliable probability distributions.  

Hence, rather than being opposed, the two methods should be seen as complementary: 

interval analysis can be performed as a first quick and robust analysis, and a subsequent 

probabilistic analysis can be used to refine prediction. Any disagreement between their 

conclusions (such as O2 permeability for chicory) can then be detected and investigated more 

closely. Another solution is to consider imprecise probabilistic theories. Indeed, such theories 

are more flexible and can model information states that cannot be adequately handled by 

intervals or probability distributions. However while such models combine the advantages of 

each method (robustness and statistical estimation), they also (partially) share their respective 

drawbacks (higher computational cost and tendency to give large uncertainty bounds).    

6. Conclusion 

In this paper, we have used interval analysis to study the impact of uncertainty propagation 

during MAP modelling and during a design optimisation step (using MAP models in a reverse 

manner) to quickly produces optimal values for O2 and CO2 permeabilities. This design 

optimisation step takes account of interval uncertainty and can cope with imprecisely 

specified goals (range of targeted O2 and CO2 internal partial pressure), distinguishing 

between possible solutions (potentially satisfying the targeted O2/CO2 concentrations) and 

guaranteed solutions (certainly satisfying the goal). The difference between the two kinds of 

solutions is represented by the means of fuzzy sets describing optimal solutions. We have also 

proposed an easy method to perform some first sensitivity analyses.  
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Methodological perspectives to this work include the development of more precise 

methods, eventually ending up with more accurate and multi-dimensional approximations of 

the sets [G] and [S] of guaranteed and possible answers. Also, it may be desirable to extend 

the current approach to hybrid uncertainty models mixing interval and probabilistic 

uncertainty, as information concerning different parameters may vary in quantity and quality. 

However, these two perspectives would involve more computationally demanding 

procedures, thus reducing the number of models one could work with. More applied 

perspectives include the combination of the optimisation system with a decision support 

system where a user can search a database for optimal packaging (fuzzy sets describing sets 

of optimal solutions would then be used as user preferences). 
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Figures captions 

Figure 1: Uncertainty propagation during the modelling of modified atmosphere packaging 

in the case of chicory (case I) packed in LDPE pouches (simulation carried out at 20°C with 

parameters listed in Table 4) 

Figure 2: Optimal O2 (A and C) and CO2 (B and D) permeability range for case I: chicory. 

Results of interval analysis (guaranteed and possible solutions) are on the left and of Monte 

Carlo simulation on the right (histograms, densities and fuzzy sets centred on mean value and 

with support equal to 95% confidence interval) 

Figure 3: Uncertainty propagation during identification step of optimal O2 and CO2 

permeabilities in the case of chicory (case I) 

Figure 4: Uncertainty propagation during the modelling of modified atmosphere packaging 

in the case of mushrooms (case II) packed in plastic tray (simulation carried out at 20°C with 

parameters listed in Table 6) 

Figure 5: Optimal O2 (A and C) and CO2 (B and D) permeability range for case II: 

mushrooms.  Results of interval analysis (guaranteed and possible solutions) are on the left and 

of Monte Carlo simulation on the right (histograms, densities and fuzzy sets centred on mean 

value and with support equal to 95% confidence interval) 

Figure 6: Uncertainty propagation during identification step of optimal O2 and CO2 

permeabilities in the case of mushrooms (case II) 
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Figure 1. 

 

Figure 1: Uncertainty propagation during the modelling of modified atmosphere packaging 

in the case of chicory (case I) packed in LDPE pouches (simulation carried out at 20°C with 

parameters listed in Table 4) 
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Figure 2. 
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Figure 2: Optimal O2 (A and C) and CO2 (B and D) permeability range for case I: chicory. 

Results of interval analysis (guaranteed and possible solutions) are on the left and of Monte 

Carlo simulation on the right (histograms, densities and fuzzy sets centred on mean value and 

with support equal to 95% confidence interval) 
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Figure 3. 

 

Figure 3: Uncertainty propagation during identification step of optimal O2 and CO2 

permeabilities in the case of chicory (case I) 
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Figure 4. 

 

Figure 4: Uncertainty propagation during the modelling of modified atmosphere packaging 

in the case of mushrooms (case II) packed in plastic tray (simulation carried out at 20°C with 

parameters listed in Table 6) 
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Figure 5. 

(A) 
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(B) 

 

(D) 

 

Figure 5: Optimal O2 (A and C) and CO2 (B and D) permeability range for case II: 

mushrooms.  Results of interval analysis (guaranteed and possible solutions) are on the left and 

of Monte Carlo simulation on the right (histograms, densities and fuzzy sets centred on mean 

value and with support equal to 95% confidence interval). 
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Figure 6. 

 

Figure 6: Uncertainty propagation during identification step of optimal O2 and CO2 

permeabilities in the case of mushrooms (case II) 
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Table 1: Range of values for respiration parameters of Agaricus biporus L. found in the 

scientific literature  

 

Reference Type of model 
Temperature 

(°C) 
 

mmol O2.kg-1.h-1 
kPa 

 
kPa 

RQ 
(-) 

(Lopez Briones et al., 
1992) 

No inhibition 10 2.34 (-) (-) (-) (-) 

 (Varoquaux et al., 
1999) 

No inhibition 
10 1.82 

< 0.1 (-) 0.78 
20 5.27 

 (Barron et al., 2002) No inhibition 
10 2.0 (-) (-) 

(-) (-) 
20 6.0 (-) (-) 

(Cliffe-Byrnes and O' 
Beirne, 2007) 

No inhibition 
10 1.50 (-) 1.03 

(-) 
0.76 

16 2.90  (-) 0.93 0.81 

(Iqbal et al., 2009a) No inhibition 
12 3.05±0.14 

(-) (-) 0.89±0.19 
20 6.04±0.34 

(Iqbal et al., 2009b) 
Uncompetitive 

inhibition 
10 2.84±0.05 4.1±0.3 39.1±5.1 0.86 (-) 
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Table 2: Parameters of food/packaging system 

 

Parameter Name Units 

 O2 permeability mol.m-1.s-1.Pa-1 

 CO2 permeability mol.m-1.s-1.Pa-1 

S Packaging surface m2 

e Packaging thickness m 

 Partial pressure of j in i kPa 

 O2 respiration rate mmol.kg-1.h-1 

 Max. O2 respiration rate mmol.kg-1.h-1 

 Mickaëlis-Menten constant kPa 

 

 

CO2 non-comp. inhibition 
constant 
CO2 uncomp. inhibition 
constant 

kPa 
 
kPa 

m Mass of food kg 

RQ Respiration quotient (-) 
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Table 3: Monotonicity of each function f1 and f2 with respect to input parameters 

 
Parameter f1 f2 

  N.A. 

 N.A. 

S  

e  

  

  

  

  

  

m  

RQ N.A. 
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Table 4: Values of input parameters (at 20°C) and their respective uncertainty for the 
uncertainty propagation step (case 1: chicory) from Charles et al. (2005) 

Parameter Uncertainty 

 [878–1278] ×10-18 

 [3614–4634]×10-18 

S [12–16]×10-2 

V [0.0018 - 0.0022] 

e  [4–6]×10-5 

 [1.3–1.5] 

 [8.26–10.26]  

 [1025–2025] ×103 

m [0.45–0.55] 

RQ [0.67–0.81] 
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Table 5: Results of sensitivity analysis after a reduction r=50% (case I: chicory)  

Parameter Decrease of uncertainty 

   

 9.68 8.62 

 0.03 11.90 

S 7.48 6.25 

e  12.01 8.25 

 5.93 2.10 

 4.61 1.95 

 0.09 0.02 

m 9.30 2.51 

RQ 0.02 9.40 

all 49.98 50.58 
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Table 6: Values of input parameters (at 20°C) and their respective uncertainty for the 
case of mushrooms  

Parameter Uncertainty Reference  

 [740 – 904] ×10-18 (Guillaume et al. 2010) 

 [2938 - 3590]×10-18 (Guillaume et al. 2010) 

S [0.061 – 0.074] http://www.champignons-paris.com/ 

V [9.50– 11.6]×10-4 http://www.champignons-paris.com/ 

e  [10.9 – 11.1]×10-6 (Guillaume et al. 2010) 

 [2.90 – 6.04] (Varoquaux et al. 1999; Barron et al. 2002; 
Cliffe-Byrnes and O' Beirne 2007) 

 [0.1] * (Varoquaux et al. 1999) 

m  [0.240 – 0.275] http://www.champignons-paris.com/ 

RQ [0.78 – 0.89] (Cliffe-Byrnes and O' Beirne 2007; Iqbal et al. 
2009b) 

 

*from Varoquaux et al. 1999,< 0.1 and due to sensitivity of experimental devices, this 

parameter cannot be determined more precisely and was considered as a fixed value. 
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Table 7: Effect of 50% of decrease on input parameter uncertainty on the reliability of 

internal partial pressure obtained at equilibrium in the case of mushrooms  

Parameter Decrease of uncertainty 

   

 6.77 15.07 

 0.57 17.92 

S 6.15 2.11 

e  0.68 0.20 

 50.10 3.35 

 0 0 

m 11.51 0.34 

RQ 0.47 11.90 

all 63.07 50.77 
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Table 8: Values of input parameters (at 25°C) and their respective uncertainty for the 
uncertainty propagation step (case 3: blueberry) from (Song et al. 2002) 

Parameter Uncertainty 

 [1395 – 1481]×10-18 

 [4284 – 4529]×10-18 

S [0.0621 - 0.0759] 

V [622.8 – 761.2]×10-6 

e  [29.70 – 37.29]×10-6 

    

  

RRO2 max
 [1.134 – 1.386] 

    

   

KmappO2
 [0.109 – 0.133] 

    

  

Kiu
co2

 [15.18 – 18.55] 

m [0.19 – 0.21] 

RQ [0.67 – 0.82] 
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Table 9: Effect of 50% of decrease on input parameter uncertainty on the reliability of 

internal partial pressure obtained at equilibrium in the case of blueberries  

Parameter Decrease of uncertainty 

 
    

   

po2

pkg
  

 2.34 1.16 

 0.37 3.12 

S 6.61 7.94 

e  7.97 8.84 

    

  

RRO2 max
 9.43 8.11 

    

   

KmappO2
 0.24 0.24 

    

  

Kiu
co2

 1.55 1.40 

m 5.06 4.00 

RQ 1.51 11.50 

all 43.30 48.49 

 

 

 

 

 

 


