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Efficient and Rate-Distortion Optimal
Wavelet Packet Basis Selection in JPEG2000

Thomas Stütz and Andreas Uhl

Abstract—This paper discusses optimal wavelet packet basis
selection within JPEG2000. Algorithms for rate-distortion optimal
wavelet packet basis selection in JPEG2000 are presented and
compared to more efficient wavelet packet basis selection schemes.
Both isotropic and anisotropic wavelet packet bases are consid-
ered. For the first time, computationally efficient heuristics are
compared to the best bases in the standardized coding framework
of JPEG2000. For the first time, the maximum performance gains
of custom wavelet packets in JPEG2000 can be assessed. The
algorithms are evaluated on a wide range of highly textured image
data.

Index Terms—Image compression, JPEG2000, rate-distortion
optimization, wavelet packet bases.

I. INTRODUCTION

W AVELET packet bases (WPBs) [1] offer to adapt the
wavelet transform to the source signal (image) charac-

teristics and thus improve the compression performance. WPBs
are an alternative to the classical dyadic wavelet decomposi-
tion (also referred to as pyramidal) and allow to further decom-
pose all subbands and not just the LL subband, which leads
to an enormous number of possible WPBs. The application of
an adapted wavelet packet basis (WPB) for image compression
purposes has been subject to investigation since the introduc-
tion of the first feasible selection technique called “best basis
algorithm” [1]. A brute-force search for the best WPB is com-
putationally infeasible even for moderate maximum decompo-
sition depths; for 2-D signals and wavelet decomposition depth
5 there are 5.6 possible isotropic WPBs. In Fig. 1 ex-
amples of WPBs (compare to the original images in Fig. 2) are
shown; in Fig. 1(c) the best anisotropic WPB for the artificial
image is illustrated.
The approach of [1] employs a rate-independent but subop-

timal basis selection scheme, which is based on various additive
cost functions which only estimate the actual coding cost. An
extension to this approach employing non-additive cost func-
tions has been developed soon after [2]. Genetic algorithms have
been used [3] to assess the degree of optimality and to further
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Fig. 1. Best WPBs for specific images and the WSQ-WPB. (a) Artificial.
(b) Barbara. (c) Aniso Artificial. (d) Lena. (e) WSQ.

Fig. 2. Selected test images. (a) Artificial. (b) Barbara. (c) Lena. (d) Finger-
print.

optimize the subband structures found by the best basis algo-
rithms proposed in earlier work.
The employment of rate-distortion optimization criteria

for WPB selection has been first demonstrated for classical
wavelet-based compression schemes [4]. For certain compres-
sion schemes, a certain source image, and a specific target
bitrate, the optimal WPB can be computed in feasible time. For
zero-tree-based compression algorithms, a Markov chain-based
cost function estimating the cost of zero tree coding has been
employed to find well suited WPBs [5]. In previous work [6],
a proprietary wavelet block-based compression scheme has
been introduced incorporating the principle of [4] for WPB
selection. Subsequent works of the authors [7], [8] propose
fast and efficient basis selection methods for their proprietary
compression system with a lower computational complexity
connected with a little loss of rate-distortion performance in
comparison with the original work.
In recent work [9], isotropic and anisotropic wavelet packet

decompositions of the dual-tree wavelet transform have been
successfully applied for image coding. The approach [9] outper-
forms JPEG2000 Part 1 (it employs a different entropy coder).
Compared to the approach presented in this paper, a main dif-
ference is the application of a different transform in [9], that
although redundant delivers efficient/sparse representations of
the input signal, that can even outperform the compaction prop-
erties of the best wavelet packets of the classic DWT (discrete
wavelet transform). The approach presented in this paper, how-
ever, has the great advantage that it can be implemented and de-
ployed within an already standardized compression framework,
namely JPEG2000 Part 2.

1520-9210/$26.00 © 2011 IEEE
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The main application field of WPBs in image compression
are textured data, with many contributions devoted to finger-
print images. Fingerprint images exhibit characteristically high
energy in certain high frequency bands resulting from the ridge-
valley patterns. To account for this property, the WSQ standard
for lossy fingerprint compression as adopted by the FBI [10],
[11] uses a specific wavelet packet subband structure which em-
phasizes high frequency bands. Inspired by this algorithm, a few
WP-based fingerprint compression schemes have been devel-
oped (e.g., [12]–[14]).
JPEG2000 Part 1 is currently gaining more and more market

acceptance (DCI, DICOM, digital libraries), research on the ac-
tual capabilities of the extensions of Part 2 are of considerable
practical interest. JPEG2000 Part 2 allows the employment of
custom WPBs [15], [16], but WPBs for JPEG2000 have not
been subject to extensive investigations so far. While wavelet-
packet selection has been investigated for several proprietary
compression systems, a thorough discussion for JPEG2000 is
still missing, which is the only standardized and widely avail-
able compression system that offers the application of custom
wavelet packets in its Part 2.
In [17], the variants of representing WPBs as discussed

during the development of the JPEG2000 Part 2 standard have
been assessed with respect to compression performance. For
image confidentiality, it has been proposed to use secret wavelet
packet bases as a means for compression integrated JPEG2000
encryption [18] (where the impact on compression performance
needs to be controlled). Interestingly, at least to the best of the
authors’ knowledge, optimal wavelet packet basis selection in
a rate-distortion sense [4] has not been discussed for JPEG2000
so far.
In this work we show that efficient, best WPB selection is

possible in JPEG2000 by an extension of the approach of [4].
We define (and develop an algorithm for) the Lagrangian cost
of a subband in JPEG2000, which enables the determination of
the best WPB in a rate-distortion sense. Thus for the first time,
the maximum performance gains achievable by an optimal se-
lection of WPBs in JPEG2000 can be assessed. The influence of
header data on rate-distortion optimal WPB (RDO-WPB) selec-
tion is analyzed and evaluated in-depth. Our focus in this work
is on highly textured image data, especially on fingerprint im-
ages, for which a customWPB has been proposed. Additionally,
the computational complexity of the best WPB selection algo-
rithms for JPEG2000 is discussed and compared to the classical
dyadic decomposition, as mandatory in JPEG2000 Part 1.
There are substantial extensions to own previous work [19],

[20] as well: The development, implementation and evaluation
of a concise header cost determination algorithm, the imple-
mentation and evaluation of a lossless coding mode for our
rate-distortion optimal wavelet packet coder, and the improve-
ment of the evaluation framework, which now analyzes the
compression performance with state-of-the-art quality metrics.
A novel packet header cost determination algorithm has been
developed, which allows to assess the actual cost of the packet
header portion of a subband, thus enabling rate-distortion opti-
mization without the imprecisions of the header cost estimation.
Thus our JPEG2000-based WPB coder achieves always better
or equal results compared to the underlying JPEG2000 Part
1 coder. This is further the first contribution that specifically

discusses rate-distortion optimal anisotropic wavelet packet
selection for JPEG2000. The source code of our coder and
evaluations is publicly available.1

Section II gives an overview of JPEG2000, and Section III
discusses algorithms for rate-distortion optimal wavelet packet
basis selection within JPEG2000. Anisotropic wavelet packet
selection is presented in Section III-B and the complexity of
both isotropic and anisotropic rate-distortion optimal WPB se-
lection is analyzed in Section IV. More efficient wavelet packet
basis selection with computationally efficient heuristics is dis-
cussed in Section V. Section VI presents experimental results
on fingerprint databases and other textured data. We draw our
final conclusion in Section VII.

II. OVERVIEW OF JPEG2000

JPEG2000 employs a wavelet transform and uses the
EBCOT-algorithm (embedded block coding with optimized
truncation) to encode the wavelet coefficients. The wavelet
coefficients of a subband are grouped in rectangular blocks
(codeblocks), which are coded independently to separate bit-
streams. JPEG2000 Part 2 [21] allows arbitrary WPBs. The
standard [21, p.54] restricts the set of permissible WPBs,
every high-frequency subband may only be decomposed two
more times (vertically, horizontally or both). In Fig. 1, the
WSQ-WPB is in the set of permissible WPBs, while the best
bases for the Artificial and the Barbara image are not. In this
work we evaluate whether these restrictions of Part 2 have a
negative impact on compression performance.
A JPEG2000 file (codestream) consists of a main header fol-

lowed by several packets. Each packet increases the decoded
image quality. Each packet belongs to a certain quality layer and
resolution. The number of quality layers can be freely chosen
(for the scope of this work we set the number of quality layers
to one). A packet consists of a packet header and a packet body.
The packet body is solely comprised of bitstreams (coded code-
block data). The packet header contains information necessary
for interpreting and decoding packet body data. The following
data is written in the packet header for each codeblock of the
subbands of the packet’s resolution: leading zero bitplanes, the
length of codeblock contribution, the number of coding passes
and the inclusion information. The packet header formation is il-
lustrated in Fig. 3. II denotes inclusion information, i.e., whether
the code block contributes to the packet. LZB denotes leading
zero bitplanes of the coefficients of a codeblock. NCP denotes
the number of contributing coding passes (EBCOT employs
three coding passes for a single bitplane of the coefficients of
a codeblock), and CCPL denotes the length of the coded code
block contribution in the packet body.

A. Rate-Distortion Optimization in JPEG2000

The embedded bitstream of a single codeblock has several
potential truncation points, i.e., each codeblock has a separate
RD function. The goal of an encoder is to arrange the bitstream
data of all codeblocks in an RD optimal manner, i.e., to find the
truncation points that minimize the distortion for a given rate.
The most common algorithm for JPEG2000 is post-compres-
sion-rate-distortion optimization (PCRD-Opt). Fig. 4 illustrates

1http://www.wavelab.at/sources/
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Fig. 3. Packet header formation.

Fig. 4. Rate-distortion statistics of codeblocks and a subband and its children:
the isotropic case.

the basic setup: A subband consists of one to several codeblocks
(illustrated by green squares), each with its own rate-distortion
statistic. An optimally coded JPEG2000 codestream can be ob-
tained by selecting an individual rate for each codeblock. A trun-
cation point of the codeblock is denoted by , all truncation
points by . The embedded bitstream of the codeblock can
be truncated to a rate (for a given truncation point ). The
rate constraint is then

(1)

The distortion of each codeblock for a truncation point is
given by . Given an additive distortion measure, the distor-
tion of the compressed image is derived by

(2)

An optimal solution (minimizing ) of truncation points
for this constrained problem can be found by solving the cor-
responding unconstrained problem (Lagrangian RDO):

(3)

Considering a function of , a solution is obtained by setting
, which yields .

Note that JPEG2000 RDO by PCRD-Opt requires that the
distortion measure is additive across subbands, e.g., the distor-
tion of a subband can be computed by adding the distortion of
its children. This requirement is met only approximately by the
wavelet transforms of JPEG2000 Part 1.
The rates (length) of the codeblock contributions need to

be coded as well, this information is contained in the packet

headers. In the PCRD-Opt algorithm the packet header data is
taken into account after the determination of the rates of the
codeblock contributions, a method shown to perform robustly
in JPEG2000 codestream assembly [15]. Note that packet
headers are always coded for an entire resolution, i.e., for all
codeblocks for all subbands (LL or HL, LH, and HH) of a
resolution.

III. BEST WAVELET PACKET BASES

For compression, the best WPB is the one that minimizes the
size of the compressed image at a given level of distortion (best
WPB in a rate-distortion sense). Thus finding the best solution in
a rate-distortion sense depends on the underlying coding mech-
anisms and might be computationally complex and complex to
integrate in a compression framework such as JPEG2000.
Testing every possible WPB soon becomes infeasible, as the

number of possible WPBs grows tremendously with the decom-
position depth . The following recursion [22] calculates ,
the number of possible isotropic WPBs at depth :

(4)

where . At depth two we have 17 possible WPBs,
at depth three 83 522, at depth four 4.9 , at depth five
5.6 , at depth six 9.9 , and at depth seven 9.6

.
There is a more efficient algorithm for the determination of

the “best” WPB (best in the restricted sense of the employed
cost function only): the best basis algorithm (BBA) [1]. The
BBA first generates the full wavelet packet decomposition tree
at maximum decomposition depth and starts from the leaves,
i.e., the subbands at the deepest decomposition depth. The root
node of the wavelet packet decomposition tree corresponds to
the entire image and each tree node (except the leaves at max-
imum decomposition depth) has four children (the LL, HL, LH,
HH subbands). Fig. 4 illustrates a root subband (with its own
rate-distortion statistic) and its four children (with their own
rate-distortion statistics). An encoding of a wavelet packet de-
composition tree visits the tree in a depth first scan, emitting a
“1” if subband is further decomposed and a “0” otherwise. The
BBA merges the children subbands of a parent subband if the
sum of the costs of its children is higher than the parent’s cost.
A prerequisite for the BBA is that the cost function is additive,
i.e., let denote a wavelet decomposition tree and denote its
terminal nodes (subbands that are actually coded). Then a cost
function is called additive if

A. Best WPBs in a Rate-Distortion Sense

The best solution for an actual compression framework in an
RD sense is obtained if the coding costs are not estimated, but
actually determined. Prerequisites for the RD-optimal wavelet
packet selection algorithm are that the nodes are coded inde-
pendently and that the distortion measure is additive. If these
prerequisites hold, then the Lagrangian cost function is addi-
tive and the BBA algorithm is guaranteed to find the best basis
in terms of compression performance, i.e., the WPB with the
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lowest distortion for a certain target rate. The cost of a subband
is calculated by the Lagrangian cost function which is defined

as

(5)

Children subbands are not merged if the following split condi-
tion holds:

(6)

In order to obtain a solution for a target bitrate, an efficient bi-
section search on the parameter can be conducted [4].
1) Lagrangian Cost of a Subband for JPEG2000: The essen-

tial part of integrating the algorithm for finding the best WPB
in a rate-distortion sense into JPEG2000 is to appropriately de-
termine the Lagrangian cost of a subband.
RDOWPB selection requires that the subbands are coded in-

dependently: this requirement is met by the coding framework
of JPEG2000 as we will subsequently show in greater detail.
Additionally, RDO WPB selection requires that the distortion
measure is additive, i.e., the distortion of a wavelet decom-
position tree can be computed by adding the distortion of its
terminal nodes (subbands). The distortion of a wavelet trans-
form is additive if the transform is orthonormal or the quanti-
zation errors are uncorrelated [15]. Although JPEG2000 Part 2
allows the application of custom wavelet transforms, including
orthonormal wavelets, the 9–7 and 5–3 wavelet transforms of
Part 1 are “only” biorthogonal, which does not strictly guar-
antee additive distortion computation. However, distortion ad-
ditivity is also prerequisite for JPEG2000 RDO [15] with the
PCRD-Opt algorithm, i.e., the entire JPEG2000 Part 1 distortion
optimization works on the basis of the approximate distortion
additivity. The approximate distortion additivity is argued to be
sufficient for practical RDO [15]. In the following, we will treat
the distortion as additive, an approach further justified as or-
thonormal wavelets, e.g., the Haar wavelet, can be employed in
Part 2 and in our custom implementation as well. However, the
Haar wavelet performs substantially worse than the irreversible
9–7 transform in terms of compression performance, which is
also the case for wavelet packet bases.
A subband consists of several codeblocks, each with a

bitstream with its own rate-distortion statistics, i.e., truncation
points and associated distortions. These data has to be used
to compute the optimal rate-distortion function for a subband,
i.e., the operation points with the least distortion for a rate. The
rate-distortion function of subband is derived by Lagrangian
optimization as well.
Given the rate-distortion statistics of the codeblocks of a sub-

band, an optimal solution is found for a certain value of the pa-
rameter by selecting all the truncation points for which the
absolute slope of the rate-distortion function is larger than or
equal to the rate-distortion threshold (see Algorithm 1). As
the codeblocks only have a discrete number of truncation points
and associated slopes it is sufficient to consider these slopes
in the rate-distortion optimization. This Lagrangian optimiza-
tion calculates the rate-distortion function of a subband; how-
ever, this optimization ignores the signalling overhead neces-
sary to code the length information of the truncation points.

This length information is contained in the JPEG2000 packet
headers, which are coded for each resolution, i.e., commonly
multiple subbands. Thus this optimizationminimizes the overall
packet body size, and only minimizes the overall file size if the
cost of coding the headers is not influenced by the selection of
the WPB (we refer to this algorithm as RDO-WPB).
The Lagrangian cost of a subband can be computed as the

sum of the Lagrangian costs of its codeblocks:

(7)

The actual algorithm to determine the Lagrangian cost of a sub-
band is given in pseudo-code (see Algorithm 1).

Algorithm 1: Lagrangian cost function of a subband

Param:

for - do

for
do

if then

break;

end if

end for

end for

return costs

2) Considering the Packet Header in the Lagrangian Cost
of a Subband: In Fig. 5(a) the packet header cost for the LL
subband is analyzed in detail, the cost of the packet headers is
plotted for increasing decomposition depths and varying rate.
The LL suband’s packet header cost is compared to the other
subbands in Fig. 5(b). The packet header cost increases mono-
tonically (almost linear) with the overall target bitrate in these
examples. In the RDO-WPB algorithm the (packet) header data
cost is considered constant and independent of the decompo-
sition, i.e., the packet header cost of a subband and a further
decomposed subband (the sum of the packet header costs of its
children) are assumed to be equal: A simplification with unpre-
dictable and potentially disastrous consequences for the perfor-
mance of RDO wavelet packet selection.
Although packets and thus packet headers are written per

resolution, i.e., for several subbands, the packet header data
is coded per subband, each subband maintains its own coding
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Fig. 5. Packet header data for different decomposition depths and subbands.
(a) Splitting the LL subband. (b) Comparison of the costs of different subbands.

states, e.g., in the form of associated tag trees. This indepen-
dent per subband coding of the packet header portion is a
prerequisite for RDO wavelet packet selection [4]. An optimal
rate-distortion function for the packet body data of a subband,
i.e., the arithmetically coded coefficient data of the codeblocks,
can be obtained by Lagrangian optimization on the basis of its
codeblocks rate-distortion statistics. The optimal rate-distortion
performance points for a subband can be efficiently obtained
by the Lagrangian rate-distortion optimization of the subband’s
packet body data, by simply adding the packet header rate to
the rate of the packet body data, which will result in an optimal
result if the packet header size behaves “reasonably” as func-
tion of the packet body size. Although packet header coding
is quite a complex context adaptive procedure, our empirical
results clearly indicate an approximately linear growth [see
Fig. 5(a) and (b)].
Thus the most concise RDOWPB selection algorithm builds

individual rate-distortion statistics for each subband in which
the subband’s packet header data is included. The subband’s RD
slopes are computed after the Lagrangian rate-distortion opti-
mization of its packet body data and the simulated coding of
the corresponding packet header portion. These RD statistics of
the subbands are then employed for the RDO basis selection al-
gorithm. This entire wavelet packet basis selection algorithm is
referred to as RDOH WPB. If the assumptions distortion addi-
tivity and monotonicity of the packet header data are met this
algorithm provably selects the best wavelet packet basis.

For each subband and lambda the optimal truncation points
for the coded code block data are determined and afterwards
the packet header portion of the subband is determined by sim-
ulating the coding in dependency of the packet body RDO, i.e.,
the obtained truncation points. Thus we propose to employ the
following Lagrangian cost of a subband in dependency of
the Lagrangian parameter which determines the rate-distor-
tion points of a subband in dependency of the newly computed
slope (with inclusion of the packet header data):

(8)

The header cost has to be integrated in the Lagrangian cost
of a subband in order to reflect the increased coding cost for a
further decomposition of a subband. In [19] it is proposed to
estimate the actual header cost of a subband. The Lagrangian
cost of a subband at depth is computed as follows in [19]:

(9)

We refer to this extended algorithm by RDOE WPB and em-
ploy a very simple packet header cost estimation, i.e., a fixed
cost for coding a single codeblock and a single subband. Among
others, the packet header cost for subbands and further decom-
posed subbands depends on the triple: size of the image ,
code-block size , and wavelet decomposition depth of
the subband under investigation . If or

, the subband is decomposed into subbands smaller than
the codeblock size and additional entries for the new codeblocks
have to be added to the packet header, and the packet header
length is increased. E.g., for 512 512 images, and , fur-
ther decomposing the subbands at depth 3 becomes more expen-
sive in terms of the number code blocks. We assign a fixed cost
for codeblocks that result from too deep decompositions that re-
sult in smaller subbands than codeblocks. Additionally we con-
sider the quantization type which impacts the header as well,
i.e., the signalling cost of quantization type specific is added
to the subband cost. For quantization type expounded the sig-
nalling cost is 16 (2 bytes in the main header) and for quantiza-
tion type reversible the extra cost is 8 (1 byte in the main header)
[23].
The simplification of RDO-WPB has to be paid by sub-op-

timal compression performance, as can be seen in Fig. 6, where
RDO-WPB is clearly outperformed by the algorithm RDOH
WPB, which takes header data into account. Considering only
the packet body size, RDO-WPB is optimal (see Fig. 7). The
performance gains for RDOH WPB for the “Artificial” image
are enormous, and considerable for the “Barbara” image as well
(see Figs. 8 and 9). For both RDOH and RDOE outperform
RDO-WPB.
3) Bitrate Adjustment: A Bisection Search for the Lagrangian
: The actual bitrate of the best basis algorithms in a JPEG2000
rate-distortion sense is determined by the parameter . Thus in
order to achieve a certain target bitrate the appropriate value of
has to be determined. Our implementation employs a classic

bisection method [4], [24]. Starting from a lower and
an upper bound for , i.e., (10) has to be satisfied, a
bisection search is performed, as outlined in algorithm 2:

(10)



STÜTZ AND UHL: EFFICIENT AND RATE-DISTORTION OPTIMAL WAVELET PACKET BASIS SELECTION IN JPEG2000 269

Fig. 6. Artificial image: file size.

Fig. 7. Artificial image: body size.

Fig. 8. Barbara image: file size.

Algorithm 2: Bisection search for

Param:

While do

If then

break;

end if

if then

if then

end if

if then

break;

end if

else if then

if then

break;

end if

end if

end while

return

The initial values of and can be set to the min-
imum and maximum slope of the rate-distortion functions of all
codeblocks; suitable initial values have been found experimen-
tally to be 0 and 10.
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Fig. 9. Barbara image: body size.

Fig. 10. Rate-distortion statistics of codeblocks a subband and its potential
children: the anisotropic case.

B. Best Anisotropic Wavelet Packet Bases

Anisotropic wavelet packet bases allow to decompose a
subband horizontally or vertically, while isotropic wavelet
packet bases only allow a decomposition in both direction, i.e.,
horizontally and vertically simultaneously. Fig. 10 illustrates
a subband and its two possible decompositions (vertical and
horizontal). Isotropic wavelet packets can be modelled as an
ensemble of unique wavelet packet trees, i.e., there is exactly
on decomposition tree for each decomposition structure/WPB,
which is not the case for anisotropic WPBs. The root of an
anisotropic wavelet packet decomposition tree represents
the image, i.e., the root subband. A subband has either no
or two horizontal children or two vertical children, which
are derived by horizontal or vertical wavelet decomposition.
For anisotropic WPB the ensemble of (decomposition) trees
is not unique, i.e., several decomposition trees describe the
same wavelet packet basis. E.g., vertical decomposition and
horizontal decomposition of the two children is equivalent to

horizontal decomposition and vertical decomposition of the
two children, which corresponds to a single decomposition in
the isotropic case. Note that the anisotropic decomposition tree
of an isotropic WPB has twice the depth of the corresponding
isotropic decomposition tree, i.e., the anisotropic depth is twice
the isotropic depth. An encoding of an anisotropic wavelet
packet tree visits the tree in a depth first scan (visiting first
nodes corresponding to the low pass subbands) and emitting a
“1” if a subband is decomposed (a “0” otherwise), followed by
a “1” if the subband is decomposed horizontally and a “0” if
the subband is decomposed vertically. There are substantially
more anisotropic decomposition trees than anisotropic wavelet
packet bases. The number of anisotropic wavelet packet bases
is given by the following recursion :

At an anisotropic depth of 1 there are 3 possible anisotropic
WPB (no decomposition, vertical horizontal), at an anisotropic
depth of 2 there are already 18 bases (for the comparable
isotropic depth of 1 we have only 2 possible isotropic WPB),
at an anisotropic depth of 4 there are 540 273 anisotropic WPB
(compared to 17 isotropic WPB for the comparable isotropic
depth of 2), at an anisotropic depth of 6 there are
bases (isotropic: 83 522), and at an anisotropic depth of 8 there
are (isotropic: ). Thus there are
substantially more anisotropic WPB than isotropic WPB for a
comparable decomposition depth.
For the RDO anisotropic WPB selection we need to clarify

the parent child relationship. A subband can be decomposed ei-
ther horizontally or vertically, thus has two types of children.
Thus in contrast to isotropic WPB selection, where only one
decision had to be made (merge or split the subband), in the
anisotropic case there are three options: merge, split horizon-
tally or split vertically. Apart from this distinction the basic tree
pruning algorithm works similar as for the isotropic case.
The major difference is in terms of complexity (which is dis-

cussed in detail in Section IV), the anisotropic RDO-WPB selec-
tion is substantially more complex compared to isotropic WPB
selection. This is reflected in its computational complexity esti-
mate which is in (even the most efficient implemen-
tation), while isotropic WPB selection is in . Fig. 11
illustrates the necessary subbands for best basis selection for
a isotropic decomposition depth of 3 which corresponds to an
anisotropic decomposition depth of 6.
Anisotropic wavelet packet basis can be restricted by the de-

composition depth which we perform jointly, i.e., the number of
horizontal plus the number of vertical decompositions must not
be in excess of the maximum decomposition depth.

IV. COMPLEXITY OF RATE-DISTORTION
OPTIMAL WPB SELECTION

The asymptotic complexity of isotropic RDOWPB selection
for a maximum decomposition depth and an -element signal
is in and also in , because is bounded
by , which is the maximal decomposition depth. The
asymptotic complexity of anisotropic RDO WPB selection
for a maximum decomposition depth and an -element
signal is in and also in . Specifically,
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Fig. 11. Necessary subbands of isotropic (red) versus anisotropic best basis
selection.

for isotropic RDO WPB selection JPEG2000 images
have to be generated, while for anisotropic RDO WPB selec-
tion JPEG2000 images have to be generated
(referred to as full JPEG2000 compressions). Fig. 11 illustrates
the WPBs that have to be fully JPEG2000 compressed in order
to obtain all subbands, e.g., the complexity of RDO WPB
selection with is roughly the same as the complexity of
anisotropic RDO WPB selection with . The complexity
of anisotropic RDOWPB selection with already costs 10
full JPEG2000 compressions, and 1.66 times the complexity of
isotropic RDO WPB selection with .
In order to assess the concrete complexity of isotropic RDO

WPB we consider the computationally complex parts of the
JPEG2000 compression pipeline: DWT (and quantization),
coding of codeblocks (and RDO), as well as file I/O (including
final bitstream formation). Depending on the implementation,
the compression settings and source data the shares vary; for
JPEG2000 Part 1, overall 0.8 s are needed for a 512 512
image with JJ2000 default settings (all evaluations are per-
formed on an Intel Core2 6700@2.66GHz). For the isotropic
RDO WPB with a maximum decomposition depth a full
wavelet decomposition for every depth has to be
performed. The coefficients of a full decomposition at depth
can be used to compute the coefficients of the next depth .
In terms of a DWT at depth 1, , the cost of all decompositions
is at least . However, in practice the runtime complexity
is tremendously increased for decomposition depths greater 5
(see Table II). Coding and RDO has to be done at every depth
and for no decomposition as well, which adds up to ,
where is the cost of coding all coefficients. As long as the
subbands are larger than the codeblocks, their coding and RDO
cost remain approximately constant for all depths.
If the subbands become smaller than the codeblocks, the run-

time performance decreases; however, this effect is implemen-
tation-specific (see Table I for JJ2000’s behavior).

TABLE I
RUNTIME PERFORMANCE IN SECONDS DEPENDING ON CODEBLOCK

SIZE FOR 512 512 IMAGES AND NO DWT

TABLE II
RUNTIME PERFORMANCE IN SECONDS DEPENDING ON

DECOMPOSITION DEPTH OF FULL DECOMPOSITION (FD)
AND RDO[H]-WPB (WPB) FOR 512 512 IMAGES

The overall cost for isotropic RDOWPB at depth , , in
terms of a compression at depth 1, , is approximately

, where represents fixed time, e.g., for
the actual JJ2000 implementation: Java start up time, image IO,
and bitstream IO (approx. 0.3s).
In conclusion, for a reasonable wavelet decomposition depth

of 4 our isotropic RDO WPB implementation only takes less
than twice the default JJ2000 compression time, which is in-line
with our theoretical analysis, which predicts

.
The complexity of RDOH is increased by the coding of the

packet header portions of a subband, which becomes significant
for higher decomposition depths as the number of subbands
grows exponentially with the decomposition depth of a full
wavelet packet decomposition . At a decomposition
depth of 5 a single RDOH compression takes about double the
time of the RDOE version with the packet header estimate. Thus
for higher decomposition depths the estimation of the packet
header cost is the method of choice.

V. MORE EFFICIENT WAVELET PACKET BASIS SELECTION

For practical application efficient wavelet packet basis selec-
tion is fundamental. An approach towards cutting the cost of
basis selection is to refrain from using the actual coding costs
(as done in RDO WPB selection) and employ computationally
more efficient cost functions. If these cost functions are addi-
tive then the determined basis is optimal in the sense of the cost
function. However, this optimality in terms of a cost function
does not necessarily go hand in hand with optimality in terms
of RD performance, our main goal in the scope of this work.
The BBA with cost functions still is computationally complex,
especially for anisotropic WPBs, as all the subbands have to be
computed, i.e., the full decomposition tree has to be computed,
which is then visited in a bottom up fashion. The computational
complexity of the anisotropic BBA is in , while the
isotropic BBA is in . For the BBA a cost for every
possible subband has to be computed, the number of subbands
is far more in the anisotropic case than in the isotropic case (see
Fig. 11).
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Computational complexity is significantly reduced if the de-
composition tree is visited in a top-down fashion and if the sub-
bands are only computed if necessary. This algorithm is briefly
sketched:
• Decompose a subband (in case of anisotropic WPBs hori-
zontally and vertically).

• Compute costs of the subband and its children.
• If subbands cost is minimal, stop; else evaluate each child
of the minimum branch.

This top-down algorithm does not guarantee finding an optimal
basis for an additive cost function, however, the optimality in
terms of a cost function does not imply optimality in a rate-
distortion sense anyway.

A. Cost Functions

Alternatively to the optimal wavelet packet basis in a rate-dis-
tortion sense with the actual coding bitrate as cost function it has
often been proposed to employ simpler cost functions for best
basis selection (although these may not result in best bases in
a rate-distortion sense). In this section we will present common
cost functions. Let represent the value of the coefficients of a
subband. The following additive cost functions are calculated:
• L1-norm:
• L2-norm:
• LogE-log energy metric: .
• EIC—entropy information cost or Shannon metric [1]):

Furthermore, we employ an entropy based cost function,
which basically computes an entropy estimate for the quantized
coefficients of a subband. The coefficients are quantized, i.e.,
divided by and rounded to the next integer, their distribution
statistics are calculated and these data is used to compute an
entropy estimate. This entropy estimate is weighted with/mul-
tiplied by the number of coefficients in the subband. We refer
to this cost function as weighed entropy estimate, , where
indicates the divisor in the quantization process. We have

extended the basic entropy cost by a penalty for subbands that
become smaller than the codeblock size (a constant is
added for every codeblock contained in the subband, which
can be interpreted as two bit extra coding cost). Additionally
we consider the JPEG2000 specific cost of signalling the
quantization information for a subband, i.e., the signalling cost
is added to the subband cost. For quantization type expounded
the signalling cost is 16 (2 bytes in the main header) and for
quantization type reversible the extra cost is 8 (1 byte in the
main header) [23]. These simple and computationally inexpen-
sive extensions model JPEG2000 coding specifics quite well.
Overall, our entropy based cost function is computed very
efficiently using hash tables.

B. Complexity

Complexity is reduced to for both anisotropic and
isotropic WPB selection, where denotes the average decom-
position depth of a subband, which corresponds to the average
number of filter operations necessary to obtain a coefficient (two
filter operations in the isotropic case and one filter operation in
the anisotropic case). It can be obtained by the following algo-
rithm (see Algorithm 3), that takes the encoding of an isotropic

wavelet packet tree and computes its average decomposition
depth. The algorithm for anisotropic wavelet packet trees is sim-
ilar (see Algorithm 4).

Algorithm 3: Average decomposition depth of an isotropic
wavelet packet tree

function D(s)

.

if ` ' then

return 0

else if ` ' then

return

end if

end function

Algorithm 4: Average decomposition depth of an anisotropic
wavelet packet tree

function A(s)

if ` ' then

return 0

else if ` ' then

s.pop_front()

return

end if

end function

The main impact on the complexity of all top-down ap-
proaches is the average decomposition depth, , of the selected
WPB, which is highly source image dependent (see Fig. 1),
e.g., for the Lena image. JPEG2000 Part 2 imposes
an upper bound for of . The mean average decomposition
depth for the bases selected by RDOH on the Brodatz
database is remarkably low, on average . An upper
bound of the complexity of a top-down approach for an image
with a WPB with is ,
where is the cost of JPEG2000 coding the image with one
level wavelet decomposition and represents the fixed time,
e.g., Java start-up time and file IO (timing measurements are
given in Section IV). is mainly comprised of the wavelet
transform cost, , the coefficient coding, , and . denotes
the cost of evaluating the cost function on all coefficients. The
performance improvements of a top-down approach rely on

and .
In our implementation top-down best basis search com-

plexity is almost the same as a single full JPEG2000 compres-
sion (efficient).
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Fig. 12. Brodatz: PSNR evaluation.

VI. EXPERIMENTAL RESULTS

The results have been produced with a custom implementa-
tion, which is based on the JJ2000 reference implementation.
The correctness of our implementation of RDOH, RDOE and
RDO-WPB has been experimentally verified for depth 2 and
depth 3 by testing every possible WPB (for test images from the
FVC04 database). For lossy compression the 9–7 irreversible
filter with quantization type expounded has been employed and
lossless compression the 5–3 reversible filter with quantization
type reversible. A maximum decomposition depth of 5 (if not
explicitly stated otherwise), one quality layer, and 64 64 code-
blocks have been employed. Additionally to the well-known
PSNR we have assessed the image quality with state-of-the-art
metrics, such as the VIF, MSSIM, and SSIM [25]. The Matlab
package metrix_mux has been employed.
We present results for highly textured data (Brodatz database)

and for fingerprint data (FVC2004 database).

A. Comparison of RDOH, RDOE, and RDO-WPB

At higher decomposition depths RDOH is superior to
RDO-WPB, i.e., the consideration of header data leads to
performance improvements. For the Artificial image concise
PSNR and VIF results are summarized in Figs. 6 and 7 for
a maximum decomposition depth of 7. Enormous PSNR im-
provements are achieved for RDO, RDOE and RDOH (over
7dB), the RDOH and RDOE algorithms work reliable for all
quality ranges and outperform RDO significantly, especially in
lower quality range. The VIF results report a similar objective
quality behavior. For the Barbara image improvements of about
1dB are achieved with RDOH and RDOE, which outperform
RDO (see Fig. 8). The VIF shows a similar behavior, although
smaller PSNR differences are no longer distinguishable. Thus at
higher maximum decomposition depths the consideration of the
header data is recommended, the estimation with RDOE works
well and is negligible in terms of computational complexity.
On the Brodatz database and with a decomposition depth of

5, RDOH, RDOE, and RDO-WPB perform well (see Fig. 12),

Fig. 13. A 20% subset of the Brodatz database: PSNR evaluation.

Fig. 14. FVC2004 DB4B: PSNR evaluation.

especially on a subset consisting of 20% of the Brodatz images
(see Fig. 13). Thus for textured data, best basis selection in a
JPEG2000 RDO sense can be recommended.
On fingerprint data RDOH, RDOE, and RDO-WPB selection

also achieve a significantly improved performance; interest-
ingly, the performance gains are more significant in the higher
quality region starting a PSNR of 34 dB (see Fig. 14). The VIF
evaluation supports the good performance for fingerprint data.
The best basis algorithm with our entropy based cost function

(with quantization parameter ) works very well on the
Brodatz database (“E16” in Fig. 12). While the consideration
of header data yields improvement for higher decomposition
depths, the improvements are at a decomposition depth of 5 very
small in average.
1) Lossless Compression: In Tables III–V the results for the

test images, Artificial, Barbara, and Lena are given. In the first
column the achieved size of the dyadic wavelet decomposition
is given, the next column gives the reduction of the compressed
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TABLE III
SELECTED TEST IMAGES WITH . DECOMP. 5

TABLE IV
SELECTED TEST IMAGES WITH . DECOMP. 6

TABLE V
SELECTED TEST IMAGES WITH . DECOMP. 7

size compared to the dyadic decomposition for RDO, the next
column the further reduction for RDOE and the next column
the further reduction of RDOH (compared to RDOE). For a de-
composition depth of 5 compression efficiency is already im-
proved for RDOH, RDOE, and RDO-WPB. Further increasing
the decomposition depth reveals the difference between RDO
and RDOH, the compression efficiency of RDO is decreased
with increasing depth (as trend also followed by the dyadic de-
composition) while RDOH can still remain its compression ef-
ficiency and even improve it. The improvement of compression
efficiency is most pronounced for the Artificial and least signif-
icant for the Lena image.
Considering texture data, especially a well-performing

subset of the Brodatz database, we see that highly textured
data is well-suited for wavelet packet compression, almost
7KB are saved compared to the dyadic decomposition (see
Tables VI–VIII). For lower decomposition depths RDO-WPB
performs quite well, only at higher decomposition depths
RDOE and RDOH can achieve performance improvements.
The difference between RDOE and RDOH is small, thus the
application of the proposed efficient header cost estimation
(RDOE) is recommended.

B. Efficient Basis Selection

This section is dedicated to the analysis of more efficient
wavelet packet basis selection than those based on actual rate-
distortion optimization (RDOH, RDOE, and RDO-WPB). As

TABLE VI
SELECTED IMAGES FROM THE BRODATZ DATABASE WITH . DECOMP. 5

discussed in Section V-B a top-down basis search is more ef-
ficient than a bottom-up best basis search, but may not lead to
the best basis (optimal in the sense of an additive cost func-
tion). A top-down search with the Lagrangian rate has been
conducted, the results are summarized in Figs. 15 and 16 in
the graphs labelled “Top-down RDOH”. Most interestingly a
top-down search leads to almost the same results as the more
correct bottom-up solution for the FVC2004 database, while the
performance is only slightly worse on the Brodatz database.
Entropy based basis selection works very well, but relies on

the appropriate choice of the quantization parameter for a given
image and rate, which is highlighted by the following results.
The best performance of entropy based cost functions is sum-
marized in the graphs with labels that contain “EX”; for this
graph the best result of one of the quantization parameters 8,
16, 32, 48, and 64 has been chosen for every single image and
rate (before averaging). These results can be compared to the
performance of entropy based basis selection with a fixed quan-
tization parameter . The best results (EX) are very
close to the actual optimum. E16 applied in bottom-up search
performs very well on the Brodatz database, and at least signifi-
cantly better than the dyadic basis on the FVC2004 database.
The difference between a bottom-up search and a top-down
search is almost negligible for EX (there are values of for
which a top-down search performs almost equally well than a
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TABLE VII
SELECTED IMAGES FROM THE BRODATZ DATABASE WITH . DECOMP. 6

Fig. 15. Brodatz: Efficient basis selection.

bottom up search), but for a fixed parameter (E16) the differ-
ence is more pronounced.
Entropy based basis selection performs significantly better

than the standard dyadic wavelet packet basis and has been
found to be superior to other cost functions such as the L2 norm
(see Section V-A).

TABLE VIII
SELECTED IMAGES FROM THE BRODATZ DATABASE WITH . DECOMP. 7

Fig. 16. FVC2004 DB4B: Efficient basis selection.

C. Anisotropic Wavelet Packet Bases

Anisotropic wavelet packet bases allow to adapt the WPB
even closer to signal characteristics. However, as discussed
in Section V-B, the complexity of rate-distortion optimal
anisotropic WPB selection is tremendously higher than in the
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Fig. 17. Brodatz: PSNR evaluation.

Fig. 18. Brodatz: VIF evaluation.

isotropic case ( compared to ). There are two ways
to compare anisotropic WPB to isotropic WPB, based on the
complexity to determine the basis or based on the complexity
to compress the image with the given basis. If we follow the
first approach (same selection complexity), we have to compare
isotropic RDO WPB selection to anisotropic wavelet packet
selection with a joint decomposition depth of 2, as in both
cases the complexity is roughly equal (about six full JPEG2000
compressions).
If we choose the second approach, i.e., equal complexity in

terms of compression with the computed optimal WPB, the
equivalent anisotropic WPB has a maximum joint decomposi-
tion depth of 10 (for the isotropic decomposition depth 5). The
complexity of anisotropic RDO WPB selection would roughly
correspond to 66 full JPEG2000 compressions. Thus the com-
plexity is too high for practical application and even straight
forward computation. In order to estimate the performance of
such deep decompositions we give the best performance of all

Fig. 19. FVC2004 DB4B: PSNR evaluation.

Fig. 20. FVC2004 DB4B: VIF evaluation.

results, i.e., from cost functions in the anisotropic case and the
isotropic RDOH. Given the results of the best performance of
cost functions in the isotropic case this approach seems well
justified (see Figs. 15 and 16).
At the same complexity anisotropic WPB selection does not

lead to competitive results at all (see Figs. 17 and 19), while at
the same depth slight performance improvements are achiev-
able. However, the increased complexity does not justify the
achieved performance.
Additionally to our best WPB selection algorithms for

JPEG2000 we evaluated the compression performance of the
WSQ WPB, which led to even worse results than the standard
dyadic decomposition on the Brodatz database (all bitrates)
and for lower bitrates on the FVC2004 database. It is notable
that the VIF quality metric reports higher quality scores for the
WSQWPB (see Figs. 18 and 20), which justifies the application
of the WSQ from a more human perception oriented point of
view.
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Our results have also revealed that even when the restric-
tions of permissible WPB in JPEG2000 Part 2 are applied the
excellent compression performance of rate-distortion optimal
wavelet packet basis selection is preserved.

VII. CONCLUSION

Rate-distortion optimal (RDO) wavelet packet basis (WPB)
selection for JPEG2000 has been presented and discussed.
Our algorithms enable the selection of the best WPB in the

JPEG2000 coding framework. Thus we are are able to report
the upper bound of performance improvements achievable with
custom wavelet packet bases in JPEG2000 and the performance
impairment of more efficient heuristics.We could also show that
the restrictions on the set of permissible WPB as standardized
in JPEG2000 Part 2 preserve the excellent compression perfor-
mance of rate-distortion optimal wavelet packet selection.
In terms of compression performance our results show that

for highly textured data, RDOwavelet packet bases perform sig-
nificantly better than the dyadic decomposition. Compression
performance improvements can be reported even for the loss-
less case. For higher decomposition depths the consideration of
the header cost in JPEG2000 WPB optimization is favorable.
We have presented an efficient algorithm for packet header es-
timation (RDOE) that performs almost equal to actual header
cost computation (by simulating compression). The improved
PSNR performance of RDO WPB also leads to improvements
in terms of state-of-the-art objective image quality assessment.
For highly textured image data significant compression perfor-
mance improvements are shown.
The isotropic RDOE algorithm offers a computationally rea-

sonable way to improve compression performance. It takes the
header data into account and thus efficiently prevents inferior
compression results at greater decomposition depths.
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