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L™ estimates and uniqueness results for nonlinear parabolic
equations with gradient absorption terms

Marie Francoise BIDAUT-VERON* Nguyen Anh DAOf

Abstract

Here we study the nonnegative solutions of the viscous Hamilton-Jacobi problem

up — vAu + [Vul? =0,
u(0) = wo,

in Qo7 = Q x (0,T), where ¢ > 1,v 2 0,T € (0,00], and Q = R or Q is a smooth bounded
domain, and ug € L"(Q),r 2 1, or ug € Mp(Q). We show L™ decay estimates, valid for any
weak solution, without any conditions as |x| — oo, and without uniqueness assumptions. As a
consequence we obtain new uniqueness results, when ug € Mp(Q2) and ¢ < (N + 2)/(N + 1),
or ug € L™(?) and ¢ < (N + 2r)/(N +r). We also extend some decay properties to quasilinear
equations of the model type

up — Apu + ) u|Vul? =0

where p > 1,\ 2 0, and u is a signed solution.

Keywords Viscous Hamilton-Jacobi equation; quasilinear parabolic equations with gradient
terms; regularity; decay estimates; regularizing effects; uniqueness results.

A.M.S. Subject Classification 35K15, 35K55, 35B33, 35B65, 35D30

1 Introduction

Here we study some parabolic equations with eventual gradient absorption terms. We are mainly
concerned by the nonnegative solutions of the well known viscous parabolic Hamilton-Jacobi equa-
tion

up — vAu+ [Vul? =0 (1.1)
in Qor=Qx(0,T), T < oo, where ¢ > 1,v 20, and Q = RY, or  is a smooth bounded domain
of RV and u = 0 on 99 x (0,T). We also consider the (signed) solutions of equations of the type

ur — Apu + [u " uVul? = 0 (1.2)
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where p > 1 and A, is the p-Laplacian, or more generally involving a quasilinear operator, nonnec-
essarily monotone,

up — div(A(z, t,u, Vu)) + g(z,u, Vu) =0 (1.3)

with natural growth conditions on A, and nonnegativity conditions
Al tum)n Z v, gl@unu Zy [Vt 420,020, (1.4)

where A 2 0.

We denote byM,,(Q) the set of bounded Radon measures in Q, and M, (Q) the subset of
nonnegative ones. We set Qq s, = Q2 x (s,7), for any 0 = s < 7 < o0, thus Qo1 = Qo071

We study the Cauchy problem with rough initial data
u(.,0) = up, up € L"(2),r 21, or uy € Mp(Q).

Our purpose is to give some decay estimates, and a regularizing effect L°° estimates, for the
solutions, in terms of initial data wug, and universal estimates when {2 is bounded, under very few
assumptions on the solutions. In this problem two regularizing effects can occur, the first one due
to the gradient term |Vu|?, when v > 0, the second to the operator when v > 0. A part of these
estimates are well known when the solutions can be approximated by smooth solutions, and satisfy
some conditions as |x| — oo when Q = R, of boundedness or integrability, for example semi-group
solutions. Our approach is different: our results are valid for all the solutions of the equation in «
weak sense: in the sense of distributions for the case of the Laplacian, in the renormalized sense in
the case of a general operator; and we make no assumption of existence or uniqueness. Moreover
in the case of the Hamilton-Jacobi equation in R, we make no assumption as |x| — oo, all our
assumptions are local. As a consequence we deduce new uniqueness results for equation (1.1) in
RY or in bounded .

In order to get regularizing properties, we give at Section 2 an iteration lemma based of Moser’s
method, inspired by the results of [39], and we compare it to results of [34] obtained from Stam-
pacchia’s method. The Moser’s method, based on the choice of test functions of the form |u|0‘71 u,
a > 0, appears to be well adapted to equations in a L! context. Since such functions are not always
admissible, we combine the method with a regularization in case of equation (1.1) in RY, and a
truncature in the case of the Dirichlet problem, for the same equation, and for the general equation
(1.3).

In Section 3 we study the case of Hamilton-Jacobi equation (1.1) in RY, for which there is
a huge litterature. Among them we quote only some significative contributions and refer to the
references therein: [1], [11], [6], [14], [37], see also [6], [13], [29]. One of our main results reads as
follows:

Theorem 1.1 Let u € L}, (Qgpn 1), with |[Vu| € L (Qgn 1), be any nonnegative solution of
equation (1.1) in D'(Qgw~ ).

(i) Let ug € L"(RN),r > 1. Assume that u € C([0,T);L; (RN)) and u(.,0) = ug. Then

loc

u € C([0,7); L"(RN)); and for any t € (0,T), u(.,t) € L*RYN) and

lu(s )l myy = lluollor @y, (1.5)



s )l oy < CE7ugl| Ty € = C(N,q,7),

where o,w are given for g < N byo =1/(rq/N +q—1)= Nw/rq; and if v >0, N > 2,
_N
||u(,t)HLoo(RN) é Ct 2r ||u0||LT(]RN)? C = C(N,q,T, V).

(ii) Let ug € My (RY) and assume that u(.,t) converges weakly * to ug as t — 0. Then u €
C((O’T)aLl(RN))’ and fOT any t € (OaT)’ ||u("t)HLT(]RN) § / dan
RN

Dl S CEPa( [ dug)™s, 0= C(V.a),

Dl SCF [ dwo, € =CWNagw), w0

For any ¢ < 2, we deduce estimates of the gradient, obtained from Bernstein technique. As a
consequence we improve some uniqueness results of [11] and [14]:

Theorem 1.2 (i) Let 1 < ¢ < (N +2)/(N + 1), and ug € M, (RY). Then there exists a unique
nonnegative function u € L}, (Qgn 1), such that |Vu| € L] (Qrw 1), solution of equation (1.1) in
D'(Qg~ 1) such that

lim u(., t)de = Pduy, Vip € Co(RYN).
t—=0 JpN RN
(ii) Let ug € L"(RN), r 2 1 and 1 < ¢ < (N + 2r)/(N + r). Then there exists a unique
nonnegative solution u as above, such that u € C ([0,T); L} .(RY)) and u(.,0) = uo.

loc

We also find again the existence result of [14, Theorem 4.1] for any ug € L"(RY), r > 1, see
Proposition 3.28. Finally we improve the estimate (1.5) when ¢ < (N + 2r)/(N +r), see Theorem
3.30.

In Section 4 we study the Dirichlet problem in a bounded domain 2:

u —vAu+ |Vul? =0, in Qor,
u=0, ondQx(0,T), (1.6)
u(z,0) = ug = 0,

Here also the problem is the object of many works, such as [23], [7], [38], [8], [34]. We give decay
properties and regularizing effects valid for any weak solution of the problem, in particular the

universal estimate )
||u("t)HL°° Q é Ct «1 in (O’T) 5
)

where C' = C(N, q), see Theorem 4.12. And we improve the uniqueness results of [7]:



Theorem 1.3 Assume that Q) is bounded.

(i) Let 1 < ¢ < (N +2)/(N + 1), and ug € M; (). Then there exists a unique nonnegative
functionu € C((0,T); L* (2))NLL,.((0,T); I/Vol’1 (Q)), such that |Vu|? € L}, _((0,T); L' (Q)) solution

of equation (1.1) in D'(Qqr) such that

lim u(.,t)wdm = / Pduy, Yy € Cb(Q)
t—=0 Jo Q

(ii) Let ug € L"(2), r 21, and 1 < q¢ < (N +2r)/(N + ). Then there exists a unique nonnegative

solution u as above, such that uw € C ([0,T);L"(2)) and u(.,0) = up.

And we show the existence of solutions for any ug € L"(Q2), r = 1, see Proposition 4.17.

In Section 5 we extend some results of section 4 to the case of the quasilinear equations (1.3),
with initial data ug € L™ (2) or ug measure, and v may be a signed solution. In the case of equation

up — Apu =0,

with rough initial data, several local or global L™ estimates and Harnack properties have been
obtained in the last decades, see for example the pioneer works of [39], [25], [26], [31], and [24], [20]
and references therein. Regularizing properties for equation (1.2) are given in [33] in an hilbertian
context in case g =0 or p = 2.

For this kind of problems, we combine our iteration method of Section 2 with a notion of
renormalized solution, developped by many authors [18], [33],[36], well adapted to our context of
rough initial data: we do not require that u(.,t) € L?(Q), but we only assume that the truncates
Ty (u) of u by k > 0 lie in LP((0,T); WLP(2)). We prove decay and L™ estimates of the following
type: if ¥ > 0, for any = 1, p > 1 and for example ¢ € (1, N), then

1 N

= = —w, 1.7
e (17)

Hu('at)HLo"(Q) é Ct_UHUOHfr(Q),
and we deduce a universal estimate as before. If v > 0, then for any » = 1, and any p € (1, N) such
that p > 2N/(N + 2),

_5 ~ - 1 N _

Such methods can also be extended to porous media equations, and doubly nonlinear equations

involving operators of the form u — —A,(Ju/™ " u).

2 A Moser’s type iteration lemma

We begin by a simple bootstrap property, used for example in [39]: We recall the proof for simplicity:



Lemma 2.1 Let w € (0,1) and 0 > 0, and K > 0. Let y be any positive function on (0,T) such
that for any 0 < s <t <T

y(t) = Kt —s) 7y (s)
and y(t) < Mt~ for some M > 0. Then y satisfies an estimate independent of M : for any
te(0,7T)

1

y(t) < 27077 (K)o
Proof. We get by induction

y(t) = K27t~ 7y~(t/2),
Y (t/2) S Kw20wi—owyw® (1 /92)
ywnfl (t/2n—1) < Kw"*12naw"’1t—aw"’lyw" (t/Qn)
yw" (t72n) g 2now"tfow" Mw".
Then
y(t) < KXhZo @ =030 @ 90 Yo (k+1)w) g ywn t!

n+1

and going to the limit as n — oo, we get the conclusion, since lim M "~ = 1. [

In the sequel we use the following iteration property:

Lemma 2.2 Let m > 1,0 >1 and A € R and Cy > 0. Let v € C([0,T);L},.(Q)) be nonnegative,
and vo = v(z,0) € L"(Q) for some r = 1 such that

N
> —(1—m— M) 2.1
P> (l-m - ) (21)
If r > 1 we assume that for any 0 < s <t <T and any o = r — 1 there holds

1 Co [* 1
a1 0 Bmo = <
a+1/ﬂv (.,t)d:c—l——ﬂq/s(/ﬂv (.,T)d:ﬂ)@)dT:a+1

/ v, s)dr < oo (2.2)
Q

where L
a
B=pB(a)=1+ :
m
If r =1 we make one of the two following assumptions:
(Hi) (2.2) holds for any o 2 0,
(Hz) fQ v(., t)dr < fQ vodzx for any t € (0,T), and vy € LP() for some p > 1, and (2.2) holds
for any a = p — 1.

(i) Then there exists C > 0, depending on N,m,r,\,Cy, and eventually p, such that for any
te(0,7),

[v( L@ = Cfa“m“’e||Uo\|f:(?§’f’0, (2.3)
where . ”
Or,m,\,0 = —TWr,m,\,0- (24)

%—i—)\—i—m—l: r

(ii) Moreover if \+m —1 > 0, and § is bounded, then a universal estimate holds, with a constant
C' depending on N,m,r,\,Co, |Q| and eventually p : for any t € (0,T),

1
[v(;, )| oo () = Ot =153,



Proof. (i) e Case r > 1. Let & 2 r — 1. From (2.2), It implies the decay: [, v*™!(t)dx
is decreasing for ¢ > s. And [ vP™0( . €)dx is finite for almost any & € (s,t). From assumption
(2.1), and a = r — 1, there holds fm# > « + 1. Replacing o by fmf — 1, taking &, — s we have
Jo vPmO(, €)dx < Jo uPm0(., €,)da for any € > &,, then

=& [ et < [ ([ 0 eanha

&n JQ
and also
¢
/UO‘H(.,t)dx—l—M(/ (/ vﬁme(.,g)dx)édté/va+1(.,£n)d:v§/UO‘H(.,s)daz.
Q B € JQ Q Q
thus

a Cola+1), Wm0 e it < [ vt s)da
/Q“ 1, fae + 2L gn)(/ﬂ (.,62)dx) é/ﬂ 1 5)da

Then going to the limit as n — oo, since v € C([0,T]; L}, .(Q)) when &, — s, v(.,&,) — v(.,s) in
L'(Q), and after extraction, a.e. in £2. Then from the Fatou lemma,

ptl x—i—ico( ) —s VPO (s x%_ v 8)dx
/Q (0)d B (t )(/Q (- 5)de) E/Q (- 8)de.
Hence

m 0
L e T LI e (25)

We start from s = 0, we have vg € L"(2).

We take ag =7 — 1, thus [, v*"!(¢)dz is finite, and set Sy = 1+ (r — 1 + A) /m. We define
increasing sequences (ty,), (an), (1), (Bn), by to =0, 79 = r and for any n = 1,
1 oy + A

129 (1_2_n) rn:an"i_la /Bn:1+ m

Tpg1 = Pomb = (rp + X+ m — 1)6.

In (2.5), we replace s,t,a, fmb, by tn, tnt17n, Tnt1, and get

[

o(tns) e (o LN (2.)
v - < v " )
VLT = A Co(mb)™ 1y toir — te Lm(@
It follows that
6n+1
lv(tnt1)lprnsr (@) = Indnln HUOHLTZZBI (2.7)
where
n+1 T]::n gn+2—k n+1 1 % . Z+11 gn+2—k
I, = —f ) Tnt1 J, = S L, = (C 0 =l g1
RS =TT (=) T e oty

k=1
Since 7, = 0™"(r + (A+m —1)0'(1 —6~™)), it is clear that

n+1 n+1
grtly

= Wrmag,  lim 0" = oy MY kOTF =07 (2.8)
Tn+1 Tn+1 el

lim



Thus, it follows
@r.m, /\ 0 0/2

lim J, =2~ ) lim L,, = (Cp(m@)?)"rmre (2.9)
And I, has a finite limit £ = ¢(N, m,r, \) as n — oo. Indeed,

n+1 n+1

ZG"+2 Flnry, — ZG"H Flnry, = mGZH klnrk—ZH Inr)

and the sum S = > 7_ 0 *Inry is finite, since 7, < 6%(r + |\ +m — 1/0’). Then I, has a finite
limit £ = (N, m,7,\,0) = exp(r L@, mr((mf — 1)S — mlnr)). Thus we can go to the limit in
(2.7), and the conclusion follows.

Inl, =

Tn+1 Tn+1 Tn+1

e Case r = 1. If (H;) holds we can take ag = r — 1 = 0 and the proof is done. Next assume
(Hz) Then we obtain, for any 0 < s <t < T, and a constant C' as before,

[, B)llzee @) = C(t = )=l )75

s m, 1 Wp,m,
< C(t—s)"%mA (., )HL;(Q;W) )/pHU( )H p AG/P

s —o @p,m, 1
< Cllvoll .17 Q)A 9/p(t—s) pm v (., 8)|| T4 Ae(P )/p

Let y(t) = [[v(.,t)|| o (). We can apply Lemma 2.1 to y, with

Wp,m,\,0 Wp,m, m,
0= opmae  w=TEAL K = Clul o M= Clull "
Indeed w < 1 from assumption (2.1) with 7 = 1. Then there holds
(., )”LOO(Q < 9o (1-w)™~ (tha)(lfwfl - 20(17w)720(17w) p—o(l-w) ” Hflp ?2;\ o/p((1— W)).

And we observe that o(1 —w)™! = 07,10 and @pm20/P((1 —w)) = @imre, then with a new
constant C, now depending on p,

[0 8) (@) S Ot 1A g T (2.10)

(ii) Assume that Q is bounded, thus L" () C L' (Q). We use the result with » = 1 and obtain
(2.10), and, for any 0 < s <t < T,

lo(®)llree(@) S Ct = 5)~ 7m0 u(s) |G S C = 8)70m> QT Jlu(s) |7

where C' = C(N,m, \,Cy) (or C = C(N,m,\,Cop,p). And wy ;e < 1, because A +m —1 > 0.
Then we can apply Lemma 2.1, and we get

[0(7)| oo () < 20'1,m,>\(17w1,m,>\,9)72(c |Q[Frme tfol,m,x,e)(lfwl,m,x,e)’l = MT—m%m’vT c (0,7).

with M = M(N,m,\,Co,|Q) (or M = M(N,m,\,Co, |2, p)). .



Remark 2.3 This lemma can be compared with the result of [34, Theorem 2.1] obtained by the
Stampacchia’s method. In order to obtain decay estimates for the solutions u of a parabolic equation
such as (1.1) or (3.18), the Moser’s method consists to take as test functions powers |u|* " u of u;
the Stampacchia’s method uses test functions of the form (u—k)Tsignu. If one applies to sufficiently
smooth solutions, both techniques leed to decay estimates of the same type. In the case of weaker
solutions, the second method supposes that the functions (u — k)™ are admissible in the equation,
which leads to assume that u(.,t) € WH2(Q), see [34]. In the sequel we combine Moser’s method
with reqularization or truncature of u, in order to admit powers as test functions.

3 The Hamilton-Jacobi equation in RY

3.1 Different notions of solution

The Hamilton-Jacobi equation was first studied with smooth initial data. Let us recall the main
results:
e For any nonnegative ug € C¢ (R”) , from [1] there a unique global solution in C%!(R" x [0, 00))
such that
(s )l oo mry = ol poo@ny, VUl E)l poomay = VU0l oo vy -
Some estimates of the gradient, independant of v, have been obtained for this solution, by using

the Bersnstein technique, which consists in derivating the equation, and computing the equation
satisfied by |Vu|? : first from [32]

N0l vy

q
Ve )l ey S B
then from [11],
1 - -1
IV (@) (D)l oo @y < Cat™lluoll o ) (3.1)
(4-1)/q H <e-1 1 : g < u(,1t) BN
HV(u (,,t) Loy S g A equivalently |Vu(.,t)]? < " a.e.in R" (3.2)

e For any nonnegative ug € Cj (RN ), from [30] there exists a unique solution such that u €
C*H(Qpv o) and u € C(RY x [0,00) N L®(RY x (0,00)), and from [6] estimates (3.1) and (3.2) are
still valid.

In case of rough initial data uy € My(RY) or u € L"(RY), r» > 1, existence results have been
obtained in [11], [14] at section by using different formulations involving the semi-group of heat
equation. Here we consider the solutions in a weaker sense, which does not use this formulation.

Definition 3.1 We say that a nonnegative function u is a weak solution (resp. subsolution) of
equation of (1.1) in Qry 1, ifu € L}OC(QRN,T), and |Vul| € L?OC(QRNT), and

T
| [uei-uso s [Vupr)dndt =0, (resp. ), Vo e DY Quv)  (33)
0 Q



Remark 3.2 Recall that from [16], any weak solution satisfies

AS Lloc?c(Q]RN,T)a Vu € L?OC(Q]RN,T)7 ue C((0,T); Ly, (RN)) Vp2 1. (3.4)

loc

Hence (3.3) is equivalent to:

T
/ / (—upy + Vu.Vo + |Vullp)dzdt = 0,Ye € D(Qgy 1), (3.5)
0o Jo

and we have and there holds for any s, € (0,T),

/RN u(., 7)e(.,0)dr — /RN u(., s)p(., s)dx —i—/s /RN(—ugot + Vu.Ve + |Vu|lp)dzdt =0  (3.6)

and then for any ¢ € 002 (RN) )

/]RN u(., 7)dr — /RN u(., s)pdr + /ST /RN(VU.V¢ + |Vu|%dxdt =0 (3.7)

In this section we study the Cauchy problem

ug — Au+ [Vul? =0, in Qgn 7, (3.8)
u(z,0) =uy =0 in RV, '

Definition 3.3 Let ug € L] (RN) ,7 > 1.

loc

We say that u is a weak Lj,. solution if u is a weak solution of (1.1) and the extension of u

by ug at time 0 satisfies uw € C ([0, T); Ly (RY)).

loc
We say that u is a weak r solution of problem (3.8) if it is a weak solution of equation (1.1)
such that

lim u" (., t)de = /

upapdz, Vi € C,(RY). (3.9)
t—0 JrN RN

Definition 3.4 Let ug be any nonnegative Radon measure in RN, we say that u is a weak My
solution of problem (3.8) if it is a weak solution of (1.1) such that

lim u(., t)dr = /

pdug, Vi € Co(RY), (3.10)
t—=0 JrN RN

Remark 3.5 Obviously, any weak Ly, solution is a weak r solution. When r = 1, the notions of
weak 1-solution and weak M, solution coincide. When r > 1, uw is a weak Lj . solution if and
only if it is a weak v solution and

lim u(., t)dr = /

uppdr, Vi € C,(RYN). (3.11)
t—=0 JpN RN

Indeed if u(.,t) converges toug in Lj, (RN) ast — 0, then it satisfies (5.9) and (3.11). The converse
is true: let u satisfying (3.9) and (3.11), then u(.,t) is bounded in Lj, ., there exists t, — 0 such
that u(.,t) — v in D'(RN) with v € L} . And u(.,t,) — ug in D'(RY), then v = ug, hence it is
true for any t — 0. Then for any nonnegative ¢ € C.(RY), u(.,t)y — ugtp weakly and in norm,

thus strongly in L"(R™N), thus u(.,t) converges to ug in Lj (RN).

loc



Other types of solutions using the semigroup of the heat equation have been introduced in

([14]):

Definition 3.6 Let ug € L” (RN) . A function u is called mild L" solution of problem (3.8) if
ue C([0,T);L" (RY)), and |Vu|? € L}, ([0,T);L" (RY)) and

loc
t

u(.,t) = e®ug — / IR \Vu(., s)|%ds  in LT(RY).
0

Here et is the semi-group of the heat equation acting on L" (RN) .

Definition 3.7 Let ug € .MBL(RN). A function u is called mild M solution of (3.8) if u €
Cy((0,7); L* (RY)) and |Vul|? € L},.([0,T); L' (RY)) and for any 0 <t < T,

loc
t
u(.,t):emuo(.)—/ B\ Vu(., s)|9%ds  in LY(RY), (3.12)
0

where e® is defined on M;(RN) as the adjoint of the operator ™ on Co(RYN), the space of
continuous functions on RN which tend to 0 as |z| — oo.

Remark 3.8 FEvery mild L™ solution is a weak L] . solution.

loc

Remark 3.9 Any mild M solution is a weak M, solution. Indeed for any 0 < e <t < T, we
find
t
u(.,t) = ety e) — / =AWy, s)|%ds in LY(RY),

and u(.,€) € LY(RN), then u is a weak solution on (e,T), then on (0,T). Ast — 0, u(.,t)—e®ug(.)
converges to 0 in LY(RYN), then weakly *, and e ug(.) — ug weakly *, then (3.10) holds.

Another definition of solution with initial data measure was given in ([11]):

Definition 3.10 Let ug € MZF(RN). A function u is called weak semi-group solution if u €
C((0,T); L' (RY)) and |Vu|? € L}, ([0,T); L* (RY)) and for any 0 < e <t < T,

loc
t
u(.,t) = e® 9By e) — / e IA (., 8)|%s  in LYRY), (3.13)
lim u(.,t)apdx:/ eduyg, Vo € Cy(RY), (3.14a)
t—0 RN RN

We first prove that the two definitions coincide:
Lemma 3.11 Let ug € M (RY). Then

u is a mild M solution of (3.8) <= u is a weak semi-group solution of (3.8).

10



Proof. (i) Let u be a mild M solution. Then clearly (3.13) holds. Moreover for any ¢ €
Co (RN ) , from the assumption on the gradient,

t
<t >=< iy >= [ Spdpo = [ (ult)+ [ IVl 9)rds) s
RN 0

n

By approximation the relation extends to any ¢ € Cj, (RN ) :
t
/ e pdpg = / u(., t)pdr + / (/ et =B |Vu(., s)|9ds) pda
RN RN RN
t

0
:/ u(.,t)god:v—l—// |Vu|?pdrds
RN o JRN

since the measure is bounded. And from the integrability of the gradient and the Lebesgue theorem
in LY(RY, duyp), we deduce

t
lim/ / |Vu|lpdxds = 0, lim et odug :/ wdjg,
t—0 0 JRN t—=0 JpN RN

since HemgoHLoo(RN) < llell oo mavy and et® ¢ converges to ¢ everywhere as t — 0; thus (3.14a) holds.

(ii) Let u be a weak semi-group solution. Then obviously u € Cy((0,7); L* (RY)). As e — 0,
we have

¢ t
lim [ e®92|Vu(.,s)|9ds = / =92 Tu(., s)|9ds in LY(RY).

e—0 € 0

Then

e—0

t
lim e*=9%u(., €) = u(., 1) —i—/ =B V(. 5)|9ds in L*(RM).
0
Moreover (3.14a) entails that that u(.,e) — ug in S’(RY) and

lim e®=9%u(., €) = e ug in S'(RY); (3.15)

e—0

indeed for any ¢ € S(RY),

< ey e) — ePug, >‘ << e (u(.,€) —ug(.), >|+ '/RN(U(.%',E)((G(t_E)A — o) (z)dx
<< e (u(., €) —ug(.), ¢ >|
+ s ll py [[ (4792 = )

)

Loo(RN

and e'®is continuous on S(RY). Then for any ¢ € S(RY), we have

< etAUQ,gO >= /

which extends to any ¢ € Co(RY) by density. Thus (3.12) follows. ]

¢
(/ et =I)B | Vu(., 5)|%ds)pdx
nJo

u(., t)pdx +/

n

Let us recall the main existence results using semi-groups:
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eIf 1 <q< (N+2)/(N+1), for any ug € My(RY), from [11], there exists a weak semi-group
solution u of problem (3.8), obtained by approximation, and u € 02’1(QRN,OO). The existence of
a mild M solution is also proved in [14] from the Banach fixed point theorem, and the notions
are equivalent from Lemma 3.11. In any case uniqueness results are obtained under additional
conditions of punctual or integral conditions on the gradient.

o Ifug € L"(RY), r 21, and r > N(q — 1)/(2 — ¢), which means ¢ < (N + 2r)/(N +r), there
exists a mild L" solution of (3.8), and uniqueness holds in the class of pointwise mild solutions
such that u € C([0,T);L" (RY)) N C((0,T); Wh4" (RY)), from [14, Theorem 2.1]. Moreover if
q < 2, there exists a pointwise mildsolution of (3.8) for any = 1 but uniqueness is not known for
q < 2, see [14, Theorem 4.1]. For ¢ > 2, existence holds under the restriction that wug is a limit of
a monotone sequence of continuous functions, and is not known in the general case.

Remark 3.12 All the definitions of semi-group solutions assume an integrability property of |Vu|?,
global in space. Observe also that (3.14a) is assumed for any ¢ € Cy(RYN). On the contrary, our
definitions of weak solutions are local in space, they do not require such global properties.

Finally we mention another weaker form of semi-group solutions, given in ([14]), which will be
used in the sequel:

Definition 3.13 Letuy € My (RY). Then u is a pointwise mild solution of (3.8) if u € L}OC(Qwa),
and |Vul|? € Lj, (Qgw~ 1), and

loc

t
u(z,t) = ("®ug)(x) —/ / g(x —y,t —s)|Vu(y, s)|%dyds for a.e. (z,t) € Qgn 1,
0 JRN
where g is the heat kernel.

Remark 3.14 For r 2 1, it is clear that every mild L solution is a pointwise mild solution. If
ug € L1 (RN) every pointwise mild solution is a mild L' solution; if ug € M;(RN), every pointwise
mild solution, is a mild M solution. see [14, Proposition 1.1 and Remark 1.2].

3.2 Decay of the norms

Next we show a decay result for the solutions of Hamilton Jacobi equations, which is valid for any
q > 1, and for all the weak solutions, with no condition of boundedness at infinity.

When ¢ < 2, any weak solution u of equation (1.1) is smooth: v € C*! (QRNJ'*), from [16,
Theorem 2.15]. Since it may be false for ¢ > 2, we regularize u by convolution, setting

Ue = U * Qg,

where (0:)e>0 is a sequence of mollifiers. We recall that for given 0 < s < 7 < T, and ¢ small
enough, u. is a subsolution of equation (1.1), see [16]:

(ue)y — vAue + |Vue |7 £ 0, in Qgw 5., (3.16)

12



Theorem 3.15 Assume q > 1. Let r > 1. Let ug € L"(RY) be nonnegative. Let u be any non-

negative weak r solution of problem (3.8).
(i) Then u(.,t) € L™ (RY) for any t € (0,T), and

/ur(.,t)dx§/ ugdx. (3.17)
RN RN

(it) Moreover u"'|Vu|? € L} .([0,T);L" (RY)); and u"~2|Vu|? € L}, ([0,T);L* (RY)) if r > 1

loc loc

and v > 0; and for any t € (0,T),

t t
/ ur(.,t)dx—i—r/ / ur1|Vu|qudt+r(r—1)l// / u"? | Vul2dxdt :/ upde, if r> 1,
RN 0 JRN 0 JRN RN

(3.18)
t
/ u(.,t)dm+// |Vu|qudt:/ uodz, if r =1, (3.19)
RN o JRN RN
lim ur(.,t)dx:/ upde. (3.20)
t—0 JpN RN

loc loc

(iv) If u is a weak L} . solution, then u € C([0,T); L™ (RN)).

loc

(iii) w1 e LE (([0,T); WEE (RN)), and if v > 0, then u™/? € L2 ([0,T); W2 (RV)).

Proof. (i) First step: case ¢ > N/r. That means r = N or ¢ is small enough: 1 < ¢ <
N/(N —r).

Let 0 < s <7 < T be fixed and € > 0 small enough. Let § > 0, and u. 5 = u. + 6. For any
R > 0, we consider {(z) = &r(z) = ¥(x/R),where ¢(z) € [0,1] ,¢(z) = 1 for |z| < 1,9 (x) = 0 for
|z| 2 2. Then multiplying (3.16) by u£;51£>‘ where A > 0, we get

d (1 _ _
T <; /RN Ug,sf%ﬁ) +(r— 1)V/RN uls? V. 5> dz + /RN Vg 5|%ul 5 ¢ d
<A / N ul 5 V. 5. Véda,

R
and from the Holder inequality

o 1 - N
A [ e Vsl Vel de £ 5 [ Vusll e+ Cla) [ a5 Vel da,

) , 1/r’ ) , 1/r
/ ul M|V da < ( / uz,(;@dm) ( / &9 |vel dm) :
RN RN RN

Choosing A = rq¢’ we deduce

d 1/r , 1/r N
4 (/ uzgskdm> < ClgN) (/ e dx) < CRY
dt ]RN ) ]RN

where C' = C(N, ¢, o, 7). By integration, for any 0 < s S o <t < 7,

1/r 1/r )
(/RN ug,a(-,t)@diﬂ> = </RN U?,s(-,U)EAC&) +COrRY 7.

13



with a new constant C as above. Let Ry > 0 be fixed and take R > Ry, thus

1/r 1r
(/ Ug,s(-,t)dl“> = (/ Ug,a(-,0)§Ad$> L CrRY 7
Br Bar

Then we make successively § — 0, and then € — 0. From (3.9), we deduce that

1/r 1/r
</ u(.,t)rdx> < </ u(.,a)rfAdaﬂ> +CrRY (3.21)
Br, RN

and then from (3.9) we can make 0 — 0 and obtain

v 1/r 1/r
(/ u("t)rdx> = </ u(.,a)”g}‘dw> +COrRY 7 < </ ugdx> +CrRT 7
Bry RN RN

and finally we make R — oo and then Ry — oo.

Second step: case ¢ < N/r. Then r < N and ¢ =2 N/(N —r) > 1. Then we fix some
ke (1,N/(N —r)). For any n € (0,1), we have n|Vu|* <+ [Vu|?, hence the function

wy =/ (w — )
satisfies
(wn)e — Awy + |Vw,7|k =0
in the weak sense. Thanks to Kato’s inequality, see [21, Lemma 1], [4], we deduce that

(wh)e — Awt + [V, |F <0, (3.22)

in D' (QRN’T). And w;r has the same regularity as u, and moreover it satisfies an analogous property
to (3.9):

lim [ (w,)"(.,t)¢de = / (Y *E Dy pde, Vi € Co(RY), (3.23)

t—0 JrN RN

Indeed

/ (= nt) ") — ur (. 6))peda
RN

{uz=nt}
< Tnt/ " pdr + CtT
RN
< it / ) ([ grde) T+ o
RN RN
then
lim (u—nt)") —u" (., t))pdz =0

t—0 RN

and (3.23) follows from (3.9) applied to '/*~Vy. From the first step we deduce that w,(t) €

L™ (RY) and
wH) (L t)de < o/ k1) updx.
n n 0
RN RN

14



Then ||(u — 77t)+HLr(RN) < |luoll - (ravy - Then for any R > 0, since u < nt + (u — nt)t,

[uCo )l gy = llwollr @y + nt [ Br["

Going to the limit as 7 — 0 for fixed R, we get [[u(.,?)[|;r(p,) = lluoll1-(ryy, then going to the
limit as R — oo we deduce that u(.,t) € L™ (R") and (3.17) holds.

(ii) Considering again u. 5 as above, and setting Fr = |Vu|? * g, there holds
(ua,é)t - VAUE,5 +F. =0,

then

d
— / ul &z | +r(r — v / u® S Vg o) €+ / Foul s
dt RN ’ RN & ’ RN ’

=—r /]RN ug’gqu&g.V({A)dx = /RN ug(;A(f)‘)dx

then for any 0 < o <t < T,

t
/ ul 5(, ) dw + 7 / / ul sF.&  dadt
RN o JRN
t
srlr— v [ s VP e = [ o [ e
RN RN o JRN 7
First we can go to the limit as e — 0, because u € Lj;.(Qg~ 1), and Vul* e L},.(Qg~ 1), and

F. — |Vu|? in L, (Qgn~ 7). Setting vs = u + 0, we obtain for almost any o,¢, and in fact for any
o,t by the continuity,

t
/ vg(.,t)g)‘dx—i-r/ / v§ |Vul? pdxdt
RN o JRN
t
—1—7’(7"—1)1// vg‘_l\VuP{)‘dx:/ vg(.,a)§)‘dx+/ / UEA(SA)CM
RN RN o JRN

Next we go to the limit as 6 — 0 : from the Fatou Lemma we deduce that f; Jan u" | V| pdadt
and (r — 1)y fpn u®™? |Vu|? € dzx are finite, and then from Lebesgue we obtain the equality

t
[otogds e [ [ u e
RN o JRN
t
—i—r(r—l)u/ ual\Vu’2§)‘dx:/ ur(-ag)fAdﬂf‘i‘/ / u"A(&)da.
RN RN g RN

Next we go to the limit as o — 0, from (3.9). In the same way we deduce that

t
/ ur(.,t)fAdx—{—r/ / u® |Vul? X dadt
RN o JRY
t ¢
+OH’/ / uo‘_1|Vu|2£)‘dx:/ uS(.,U){Adx—i—/ / u"A(EN)da
0o JRN RN o JRN
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Now u(.,t) € L" (RY) for any t € [s,7], and

/Jt /RN u" A(EN)dx < %T /RN u"(o)dx

and we can make R — co. We get that

/ / u" "V ultdadt + (r — 1)y/ / u" 2| VulAdzdt < oo
0 JRN 0 JRN

and, from the Lebesque theorem, we deduce

¢ t
/ u" (., t)dx + r/ / u|Vulldzdt + r(r — 1)y/ / w1 V| de = / updr  (3.26)
RN 0o JRN 0 JRN RN

Hence (3.18) follows, which implies directly (3.20).

(iii) Setting v = u™ with m = (¢ — 1+ r)/q < r, we have |[Vv|? € L}, .([0,T); L*(RY)), and
ve L®((0,T); Lm (RY)). From the Gagliardo-Nirenberg inequality, we deduce that

_ 1
[0 Dl Laqravy < Hv(-,t)HlL%k(RN) Vo Ol aery . 5 =1+ 5 (3.27)

Then by integration, for any 0 < 7 < T, using Holder inequality,

// t)dwdt = // wI=H( )d:cdt<C()||vH1k // (Vo|? dadt)*
RN RN Lo ((0,7) Lm(RN) RN

Then u € LY (Qpw ), and v? = w4~ 17 € LY((0,7); WH (RY)), v € LI((0,7); Wh4 (RN)). If
v > 0, we also have v =2 |Vul* = ‘V(UT/Z){Q € LY(Qg~ ;), and u? € L*(Qgw ), then ul? €
L2((0,7); W2 (RY)).

(iv) Here we assume that u € C([0,T);Lj,. (RY)). First assume 7 > 1. Then from a diag-

onal procedure, there exists ¢, — 0 such that u(.,t,) — ug a.e. in RV, and [l to)ll pr gy =
[woll @y, and u(.,tn) — uo weakly in L” (RY). Then it holds from any sequence, and u €
C([0,T);L" (RY)). Next assume r = 1; let t, — t € [0,T") . We have for any p > 0,

/ |u(ty) — ug| doe < /
RN By
< / lu(tn) — up| dox + / u(ty)dx + / uodx
BP ]RN\BP RN\BP
:/ lu(ty) — uo\dm—i-/ u(ty)dz —/ updx +/ (u(t) — uo)dm—i-/ uodx
B RN B B RN\B,

P P P

< 2/ lu(ty) —u0|dx—|—/ u(ty)dx —/ uod:v—l—Q/ updx
B RN RN RN\B,

P

utn) = woldo+ [ Jutn) = woldo
RN\B,

And the result follows because fRN\ B, updx — 0 as p — 00, since ug € L (RN ) . [

The decay result is also available for initial data measures, where we do not assume that

< (N+2)/(N+1):

16



Theorem 3.16 Assume q > 1. Let ug € MEL(]RN) and u be any non-negative weak Mj,. solution
of equation (3.8) in Qgn 1. Then u(.,t) € L' (RY) for any t >0, and

/RN (o t)dz < /RNduo. (3.28)

Moreover u € C((0,T); L* (RY)), |[Vu|? € L}, ([0, T); L* (RY)) and

t
/ u(.,t)dx—l—// |Vu|qd:vdt:/ duy, (3.29)
RN o JRN RN

lim u(., t)pdr = / wduy, Yo € Cy(RY) (3.30)
RN

t—0 RN

and

Proof. We obtain in the same way, as in (3.21),

/ u(.,t)dmé/ u(.,t)g)‘dx§/ u(., o) dx + CTRN =7
Br, RN RN

and we can go to the limit as ¢ — 0 from (3.10), then
/ u(.,t)dr < dug + CTRN7 < / dug + CTRN-7
B, RN RN

Then going to the limit as R — oo, and then as Ry — oo, we deduce that (3.28) holds, and
we still obtain (3.29) holds. And w € C((0,T); L' (RY)), from the Lebesgue theorem, because
ue C((0,T); L, (RY)), and uw € L>=((0,T); L* (RY))

loc
Let us show (3.30): let ¢ € Cy(RY) be nonnegative, we can assume that ¢ takes its values in

[0,1] . Let t,, — 0. We know that lim [pn u(.,t,)dz = / dug. Let 1, € D(RY) with values in [0, 1],
RN

Vp(x) = 1if [2] < p, 0if |2 = 2p. Then for fixed p, lim [pn u(., tn)pthpde = / eYpdug. Let n > 0.
RN

/ n)pdr — / pdug
RN

= ( n)ppdr — /R N ppdug

+ [ o=t [ ultn)olt = i)

and / (1 —4p)duy — 0 as p — oo from the Lebesgue Theorem, then for some p, we have
RN

(1 —p)dug = n. As n — oo,
RN

/ u(.stn)(1 =y, Jdo — dug — / Py, dug = / (1 —1p, )dug
RN RN RN RN

Then [pn u(.,tn)e(l — Yy, )dx < 2p, for large n, and |:fRN u(., tn)othp, dz — / cpwpnduo} < py for
RN

large n, hence we majorizate by 47, hence the result. [
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3.3 Regularizing effects

Here we deduce of the decay estimates a regularizing effect without any condition at oo, achieving
the proof of Theorem 1.1.

Theorem 3.17 Let ¢ > 1. Let r =2 1 and ug € L"(RY). Let u be any non-negative weak L} .
solution of problem (3.8) in Qgn 7 (3.9). Then u(.,t) € L®(RY) for any t € (0,T) and

e )l oo vy < CE N a8 (3.31)

where C = C(N,q,r) and 0,4 N, @y q N are given by

1 rq

OrgN = 7———>  WrgN = —0pg,  if q<N, 3.32
r,q T—]\?—i—q—l 7,q qu ( )

and
N .
”u(,t)HLoo(RN) § CtiEHUOHLT(RN), ’lfl/ > O, 2 < N. (333)

where C' = C(N,q,r,v).

Proof. Since u is a weak L . solution, then u € C([0,T);L" (RY)), from Theorem 3.15, thus
for any 0 = s < T, u is a weak r solution in Qpn 7; and Jen v (s)dx < oo with r = 1; for any
s St < T, and for any a 2 0 such that [px u*™(s)dz < oo, applying Theorem 3.15 to u starting
at point s, denoting § = 1+ a/q, we have

1 1
/ u* T, t)dx +/ / A dadt < —— u (., s)dx (3.34)
RN a+1

Oé+1 RN

and u?(.,t) € LY(Qgx 4) for a.e.t.

(i) Proof of (3.31). First suppose ¢ < N. Then from the Sobolev injection of W4 (R) into
L7 (RY),

: ot Cn t Ba* qi* 1 a+1
a—l—l/Rwu (- t)de + ﬁq /8(/RNU (-, t)dz) ™ )dt Soé—l-l/RNu (.,8)dx

so that we can apply Lemma 2.2 with m = g and § = N/(N —q) and deduce (3.31). If ¢ = N we still
obtain (3.31), with o, g v = 1/(¢+7—1) = wrgn/rif ¢g> N,and o, gn =1/(N(1 =6)+r—1) =
@rqnN/T(1 = 68) if ¢ = N, where § € (0,1) is arbitrary. Indeed, if ¢ = N,then W14 (RN) -
L0 (RN) for any # > 0, and Lemma 2.2 applies. If ¢ > N, W4 (RN) C L™ (RN), and then

t—|u(., )||Loo ®RN) = = ||u(., )Hng(RlN is nonincreasing, thus for any r = 1, from (3.34),

r g+r—1 T
[t e+ Cort - O < [ wida.

(ii) Proof of (3.33). Assume v >0, N > 2. For any a > 0 such that [py u®™!(s)dz < oo

1 +1 o t/ ‘ 5‘2 1 / 1
“Hl(t)de + = de < “(o)d
a+1/RNu ()x—i—ﬂQV/o o V(u”) TS RNu (0)dx
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where § = (a +1)/2; and WP e LZ.((0,7); Wh2 (RY)). From the Sobolev injection of Wh? (RV)
into L% (RN), we get

1 a+1 aCn ! B2%\2% /2 1 a+1
u* ™ (t)de + ——v [ ( u?? ) M edr < u® (s)dx.
o+ 1 RN 52 s RN o+ 1 RN

First suppose r > 1. Then we can apply Lemma 2.2 with Cy = (r—1)Cpyv, g = 2,0 = N/(N —2) and
A= —1,since § = 1+ (a—1)/2, and r > N(1—2+41)/2, and obtain (3.33). Next assume 7 = 1. Then
uw € C([0,T); LYRN)) N L ((0,T); L (RY)) because of estimate (3.31), then C([0,T); LP(RY))
for any p > 1, for example with p = 2, and [[u(.,)||;1(r~) is nonincreasing, from Theorem 3.15,

hence we can still apply Lemma 2.2 on (e,t) for 0 <e <t <T

_N _N
[u(, )l Lo @iy = C(E =€) 2 flu(, €)@y = C(E =€) 2 |Juoll 1 re)
Then we still obtain (3.33) with C' = C(N,q,r,v). ]

Remark 3.18 If N = 2 we obtain similarly that [lu(.,t)||pe@ny = Ct_5||u0\|i“'r(RN) with & =
1/r=w/rif N=1, and 6 =1/(r —2§)=cw/r(l —0) if N = 2.

Remark 3.19 As a consequence, for any k =2 1,q < N,

_org Zrayl
Hu('at)HL’"(RN) g Ct™ % HUOHLI:(RN;C7 (335)
__N_ .
Hu(.,t)”Lkr(RN) § Ct™ 2w’ ||u0HL’"(RN)’ ’Lfl/ > 0. (336)

Indeed it follows from (3.17) and (3.31), (3.33) by interpolation

/ 1/k
s Ol eny S lal OILE L Ol .

Remark 3.20 If ¢ < 2, then u € C>! (QRNJ'*) , from the reqularity result of [16, Theorem 2.12].
In this case we do not need to introduce the regularization by u.; we only need to introduce
u + 0, when r > 1 and make 6 — 0.

In case of initial data measures, we obtain in the same way:

Theorem 3.21 Assume g > 1. Let ug € M;L(IR{N) and u be any non-negative weak My, solution
of equation (3.8) in Qg 1.Then

(s £) | oo vy < CEb( / duug)™1,
RN

where 01 4,14 are given at (3.32), and C = C(N,q). Moreover if v > 0, with C = C(N,q,v),
N
sy < O % [ duo (337)

RN
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Proof. Taking € > 0, we have for any ¢ = ¢,

[[us D)l oo @y = O =€) lu( D177 gy = C(F = 6)_”1(/RNduO)”2

and then we make ¢ — 0 and deduce the estimate. If v > 0, we also obtain for ¢t > s > 0
_N
Dl S CE =97 [ utoo

and going to the limit as s — 0, we deduce (3.37). |

Remark 3.22 Up to now, the decay estimate (3.17) and the L estimate (3.31) of u were proved
in case ug € Cp (RN) nL" (RN) and for the unique bounded solution u of problem (3.8), and based
on the estimate (3.2) given in [14, Theorem 5.6]; indeed (3.31) follows from the Gagliardo-Nirenberg
estimate:

[ues )l o ry = IVl )Hﬁi{RN)HU( )Hffﬁw < Clg;r)|lul, )HEEJZ&Q% luoll figr)-

3.4 Further estimates and convergence results for ¢ < 2.

Here we consider the case 1 < ¢ < 2. From the L* estimates above, and the interior regularity of
u, we deduce new local estimates and convergence results:

Corollary 3.23 Assume 1 < q < 2.

(i) Any nonnegative weak Lj, . solution (resp. Mioe solution) u of problem (3.8) with initial
data ug € L"(RN), r 2 1 (resp. ug € M (RY)) satisfies u € C**(Qgn ) N LS. ((0,T) ; Cy(RY)).

(ii) Let (uon) be any bounded sequence in L™(RYN), r =1 (resp. in M (RN)). For any n € N,

let u, be any nonnegative weak Lj . solution (resp. M. solutz’on) of problem (3.8) with initial

data ug . Then one can extract a subsequence converging in Cl (QRN ) to a weak solution u of
(1 1) m QRN,T

Proof. From [16, Theorem 2.16] there there exists v € (0,1) such that for any nonnegative
weak solution of equation (1.1) v in Qgw~ 7 and any ball B CRY, and 0 < s <7 < T,

ellez iz (@pp,sm) = OOl 0@y o)

where C' = C(N, q, R, s,7) and ® is a continuous increasing function. From estimates (3.31), (3.37),
we deduce that u € L*((0,7T) ; Cy(RY)) and

lulloserorsap, oy S CBluollrny).  (esp. [[ullaimiesrogy, ) < O /R dug) (3.38)
and the conclusions follow. ]

We also deduce global gradient estimates in RY :
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Corollary 3.24 Assume 1 < q <2 (i) Let ug € L"(RN), r 2 1. Then any weak L}, . solution u of
problem (3.8) satisfies

IVales )l ey S O fluo | 7fn (3.39)
9. — N+r . - T
" g+ N(g—1) " rg4 N(g—1)
and |vu|q 6 LlOC((O’T)’LT‘(RN))? a’nd
/RN (Va0 do < Cqt ™" EFonala=i) o | (eI (3.40)
And for v > 0,
_1(N 4 1
IVa( Dl @y < CE3 5 Do 7, v (3.41)
/RN VUl )7 do < Cyt TR @D ygor (3.42)

moreover if ¢ < 2, u is a pointwise mild solution.

(ii) Let ug € My (RYN). Then any weak M,. solution of (3.8) satisfies

IVu(, )|y S CE0( / duug) 1

RN

and |Vu| € L2 ((0,T); LY(RN); and for v > 0,

loc

Vu(.,t)||peomny < Ct é(g b dug 1,
Lo(RN) =
RN

As a consequence, in any case u is defined on (0,00).

Proof. (i) Let ug € L"(R™), r = 1. Then for any € > 0, u(.,e) € Cp(RY), from Corollary
3.23. From [30], u is the unique solution v such that v € C*! (RN x (¢,T)) N C, (RN x [¢,T)),
and v(.,€) = u(.,€); since v € CF (RN x (¢,T)), we deduce that u € CZ (RY x (0,T)); and for any
eSt<T,

[u( Dl oo @y = llus Ollpee@ny, VUl Ol o @ry = VUl €)ll ooy,

and

Vu(., 1)) < 0,40

T ae in RY. (3.43)
— €

From the decay estimates, we also have [[u(., €)||r@yy = [luol[zr @y And u(.,€) € L7(RY) for any
7€ [r,00], and u € C([e,T); L"(RY)). Going to the limit in (3.43) as € — 0, we deduce (3.39) from
(3.31), and (3.41) from (3.33). Moreover |Vu|? € L ((0,T); L"(RY)), since

1
IV, 8)| ar vy S CE | g
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More precisely we get from estimate (3.1),

=1 < ~1/2 o
[V (w & (D)oo @y = Cot — €)™ /#[lul., € )HLOO (&N)
then from estimate (3.33), for any t € (0,7"), with other constants Cj,

q—1

a-1 ,
19005 () ey < Cat ™2, Dl e

IVul )7 < Cot™ 2 ful, )4 oyl 1),

then from estimate (3.31) we get

[ IVt do < Clunl gty e o) [ g oy
RN RN

then (3.40) follows.

Assume that v > 0; then (3.42) follows from (3.33). Moreover, from [30, Theorem 6], u(.,t) €
CZ(RN) for any t € (¢, T), in particular u(.,2¢) € CZ(RY), then for any ¢ = ¢, and any z € RV,

t
u(z, t) = 292y (z, 2¢) — / / g(x —y,t — s)|Vu(y, s)|%dyds, (3.44)
2¢ JRN

see for example [6, Proposition 4.2 |. But u(z, 2¢€) converges to ug in L"(RY), and then e(*=29% (., €)
converges to e®ug in L"(RN). Then we can go to the limit as € — 0 in (3.44), for a.e. 2 € RV :
the integral is convergent, then u is a pointwise mild solution.

(ii) For Theorem 3.16, we have u(.,t) € L'(R") for t = € > 0, which gives from (i)
()l poe vy = CE = &)™ [lul., )l fony = CE = 6)_01"1(/Ndu0)w1’q

R

and then we go to the limit as e — 0. And |Vu| € L ((0,T); LY(RY), since

IVl gaqamy = Y[ dug)h,
R

And the estimates (3.40) and (3.42) hold with r =1 and [Jug|| ;1 &~ replaced by / dug. ]
RN

3.5 Existence and uniqueness results for ¢ < 2

Let ug € L"(RN), » > 1. We first consider the subcritical case ¢ < (N 4 2r)/(N +r), equivalently
g<2andr>N(¢g—1)/(2—q).

Theorem 3.25 Let ug € L"(RY), r > 1. Suppose 1 < g < (N +2r)/(N + 7). Then any weak L]
solution u of problem (3.8) satisfies

loc

[Vul? € Lio([0,T); L (RY)). (3.45)

And
u is a weak Ly, solution <= w is a mild L" solution.
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Proof. Let u be any weak Lj . solution. Then from (3.40),
L ITu 0yt = [ ([ a0 s € [T et
0 0 RN 0

with C' = Cq\|u0||(Ll:(_§]f,’5](q_l))r, and ¢/2 + o, 4(q — 1) < 1 is equivalent to ¢ < (N + 2r)/(N +r);
if v > 0, the estimate (3.42) leads to the same conclusion, since q/2 + (¢ — 1)N/2r < 1 is still
equivalent to ¢ < (N + 2r)/(N 4+ r). Then (3.45) holds. Moreover from Corollary 3.24, u is a mild

pointwise solution:

u(.,t) = ePug(.) — t T — — 8)|Vu(y, s)|?dyds; .
(0= 2ul) = [ [ o=t =) Tuly.o)lrdyds (3.46)

and v € C([0,T);L" (RY)) from Theorem 3.15, and f = |Vu|?! € L} ([0,T);L"(RY)), thus the
relation (3.46) holds in L"(RY),

u(.,t) = (ePug) — / =92 V(. 5)|? (s)ds in L"(RY), (3.47)
0

that means u is a mild L"solution. Conversely it is clear that any mild L"solution is a weak Lj .

solution. -

Next we deduce the uniqueness results of Theorem 1.2.

Theorem 3.26 Let ug € L"(RY). Assume 1 < q < (N +2r)/(N +7r), or ¢ = 2. Then there exists
a unique weak LY = solution u of problem (3.8). In the first case, u € C((0,T); WL (RY)).

Proof. (i) Case 1 < ¢ < (N + 2r)/(N + r). From [14, Theorem 2.1], there exists a mild
L" solution, then it is a L . solution. Let us show the uniqueness. Let u be any weak Lj
solution, thus u is a mild L" solution, from Theorem 3.25. And u € L°((0,T); L"(R")) from
Theorem 3.15, and u € L{S,((0,T); Wh4™ (RY)), since |Vu| € Li2.((0,T); L9" (RY)) from Theorem

3.25 and u € L2 ((0,T); L% (RY)) by interpolation. . Then we enter in the class of uniqueness

loc

u € L2 ((0,T); Wha™ (RY)) required in [14, Lemma 2.2 and Remark 2.5]. Thus u is unique, and

loc

satisfies u € C((0,T); WL (RY)), from [14, Theorem 2.1].

(ii) Case ¢ = 2. From [14, Theorem 4.2] there exists a unique solution w such that u €
C([0,T); L™ (RN)) Nu € C*((Qrw o) solution of (1.1) at cach point. Then it is a weak L]

loc
solution. Reciprocally any weak Lj . solution u satisfies the conditions above, from Theorem 3.15

and [16, Theorem 2.16]. |

Theorem 3.27 Assume that 1 < ¢ < (N +2)/(N +1). Let ug € M} (RN). Then there exists a
unique weak Mo solution of problem (3.8).

Proof. The existence of a weak semi-group solution was obtained in [11] by approximation.
The existence of a mild M solution was proved in [14, Theorem 2.2], and the two notions are
equivalent from Lemma 3.11. In any case the solution is a weak M, solution. Next consider
any solution M., solution u. Then u(.,t) € L*®(RY) for any ¢t € (¢,T) by applying theorem
3.17 from ¢/2. Then again we deduce u(.,e) € Cy(RY), then (3.43). From Theorem 3.15 we
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obtain again that u € L2 ((0,7); W (R")). And moreover from the uniqueness after e, we have
u € C((e,T); WH? (RY)) from Theorem 3.26. Then u € C((0,T); W' (RV)). And u satisfies
(3.30) from Theorem 3.16. Then wu is a weak semi-group solution, then a mild M solution from
Lemma 3.11. Then we enter the class of uniqueness of [14, Theorem 2.2]. We can also prove the
uniqueness directly: if uq,us are two solutions, since they are mild M solutions, we have

(up —u2)(,,t) = /0 e(t_S)A(\Vul(.,s)]q — |Vua(., s)|?)ds

and we know that |Vu;|? € C((0,T); L"(RY)), hence

t
IV = ) el o < Hwe“—S)A)\ 1701 ()17 = [Ttz (e 8) ) ar v,

L1(RV)
<c / 2 [Tt ) ) 1901 = 02) (0 9)] v s
<c / V2510 19 (g = 05) -, 8)l| v B
and we can apply the singular Gronwall lemma when 2 < (¢ — 1)¥1 4, which means precisely
q< %i% Then V(uy — u2)(.,t) = 0 in L% (RY) , hence u; = us. ]

Finally we give a short proof of the existence result of [14, Theorem 4.1].

Proposition 3.28 Let 1 < q < 2. For any nonnegative ug € L"(RY),r > 1, there exists a mild
pointwise solution u of problem (3.8), and w € C([0,T);L" (RY)).

Proof. Let ug, = min(ug,n). Then ug,, € LP(RY) for any p > r. Choosing p > N(¢—1)/(2—q),
that means ¢ < g, from [14, Theorem 2.1], there exists a mild L? solution u, with initial data
Uon, and u, € C((0,T); CZ(RYN)) N C*(Qg~ 7). Then (uy) is nondecreasing from the comparison
principle, and u,(.,t) < ePuy < Ct= N/ HUOHLT(RN)- From Corollary 3.23, (u,) converges in
Cl%)cl(QRN 1) to a weak solution u of (1.1) in Qgn r, and u(.,t) < e®ug. Moreoever (|Vuy,|?) is
bounded in L, ([0,T);L},.(RY)) : indeed for any £ € DH(RY), with values in [0,1], and any
0<s<t<T,

t t
/ un(t,.)gqldx—i—/ / |V, |79 dz < —q’/ / {1/(q1)Vun.V§dx+/ Un(s,.)€7 dx
RN s JRN s JRN RN
t
gl// \vun\ng’derCt/ yvg\q’dwr/ Un(s,.)€7 dz
2 /s Jry RN RN

and u,, € C([0,T); L” (RY)), thus we can go to the limit as s — 0 :

, 1t , , ,
[ wteagtder s [ wupetarsor [ veans [ ugt s
RN 2 S RN RN RN

Thus |[Vu|? € L}, ([0,T); L} (RY)), hence, from [16, Proposition 2.11], u admits a trace as
t — 0 : there exists a Radon measure po in RY, such that u(.,t) converges weakly* to po. And

e®ug converges to ug in L"(RN), thus pg € LlOC(RN) and 0 < pg < wo; and u, < u, thus
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uon < fio, hence pg = up. Also there exists a function g € L"(RY) such that u(.,t) < g for small
t. Then the nonnegative function e'®ug — u(.,t) converges weakly* to 0, and then in L} (R"V).
Hence u(.,t) converges to ug in L}, (RY), then in L"(Q) from the Lebesgue theorem. Thus u €
C([0,T);L" (RY)). In particular u is a weak L] . solution, then a pointwise mild solution, from
Corollary 3.24. n

Remark 3.29 The uniqueness of the solution is still an open problem when ug € L"(RY) and
qg= (N+2r)/(N+r).

3.6 More decay estimates for ¢ < (N +2r)/(N +r)

Here, we exploit theorem 3.15 to obtain a better decay estimate of the L™ norm when ug € L"(IR{N )
and ¢ < (N + 2r)/(N + r), which appears to be new for r > 1. In case r = 1 we find again the
result of [2], proved under the assumption that the energy relation (3.29) holds.

Theorem 3.30 Letr =1 and1 < g < (N+2r)/(N+r). Let u be any non-negative weak r solution
of problem (3.8) with ug € L"(RY). Then there exists C = C(N,q,r) such that for any t € (0,T)

/ u" (., t)dz < Of W(z)de + T, a= 274 (3.48)
RN {lz|>vE} qg—1

As a consequence, im0 |[u(t)|| r(mry = 0 and

r/ / uT_HVu\qudt—i—r(r—l)u/ / ur_Q\Vudedt:/ upde.
0o JrN 0 JrN N

Proof. We still consider v = u™ with m = (¢ —1+r)/q < r. Let E(s) = [pn u"(.,s)dz, thus
from the energy relation (3.18) of theorem 3.15, E € W11((0,T)) and for almost any s 6 0,7,

E'(s)=—r(r—1) /RN |Vul>u"2(., s)dz — /]RN |Vu|fu" (., s)dz < 0.

Next, we set E = Ey + Ey with Ey(s) = [(|,| o) t" (@, 8)dz, Ex(s) = [1,50py v (¥, s)dz. From the
Gagliardo-Nirenberg inequality (3. 27) we obtain successively

T

mgq
Eq(s) = / v (3, 8)ds < </ vq(:v,s)dx> (2R)' " ma
{lz|<2R} {lz|<2R}

(1—k)r

kr Q-kr .
< OV | g 100 oo oy B 770

[IA

L W pRa-E)
5“”( )HLT/m(RN) +C(N7Q7T)va(s)HLq(RN)Rk mas,

thus

E(s) < C(IVu(s)|T, on BRF 770 + 25(s)). (3.49)

1
Consider two smooth cut-off functions ¢, n with values in [0, 1], such that ¢ = 1 in Bj, with support
in By, and n =1 — ¢, and put ¢;(z) = ¢(%), nr(x) = n(%). As in the first step of theorem 3.15,
we obtain for any 0 < o < s <t <T, andl>2R,

1 1
(/N u (. s)gpfngdx) < </N e g)gpfngd:c> +C(s— a)(zﬁ—q/ i l%q/)’ (3.50)
R R
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with A = r¢/ Noting that our assumption on ¢ implies N < rq’. As ¢ — 0 and [ — oco. we deduce

1 1
(/ u'(z, S)URd€U> < </ u6(:ﬂ)7mdm> Ty CsR»~9,
RN RN

hence, taking R = v/t, and setting

N—-r¢d (N+2r)—q(N+r) ar—N

p=rt—3 20— 1) 2

we find
Ey(s) < A(t)y=C </ ug(x)dx + tp> ,
{|z|>Vt}

where with a new constant C. Next, we set F'(s) = E(s) — 2A(t). Either there exists ¢ty € (0,1)
such that F'(tp) < 0, then F(s) < 0, Vs € (to,t), thus by continuity, E(t) < 2A(t), hence (3.48)
holds. Or F(s) >0, Vs e (0,t). Since

—F'(s) > /]RN V|, s)de = /]RN |Vo(z,s)|%dx (3.51)

T

it follows from (3.49) that F'(s) < C(—F’(s))_qt%(l_m%z). Thus by integration

a— q—1

" - F(s)"T.

Ot — syt %) < Ft)-
Then as s — 0 we get F(t) < Ct~ ", since p=1/(q¢ — 1) — N/2k, and (3.48) still holds. |

Remark 3.31 The case 7 = 1 has been the object of many works, assuming that ug € L'(RN) N
WL(RN). There holds limy_ o0 w1 myy = 0 if and only if ¢ < (N +2)/(N +1), see [1], [11],
[3], [29]. When q < (N +2)/(N + 1), the absorption plays a role in the asymptotics. From [9], if
limyz|—o0 [2|* uo(x) = 0, then u(.,t) converges ast — oo to the very singular solution constructed
in [35], [12]. In that case [pn u(.,t)dz behaves like t=(@=N)/2 for large t, and estimate (3.48) is
sharp. If ¢ > (N +2)/(N + 1), and ug € L*(RY), then u(.,t) behaves as the fundamental solution
of heat equation, see [9].

Our result is new when ug € L"(RN), r > 1 and ug ¢ L*(RY). When ¢ > (N + 2)/(N + 1),
and ug is bounded and behaves like |z| ™" as |z| — oo with b € (a, N), it has been shown that u(.,t)
behaves as the selfsimilar solution of the heat equation with initial data |z|™", see [17]. In that case
up € L"(RN) for any r > N/b and [on u"(.,t)dz behaves like t="=N)/2. Thus (3.48) is sharp as
b— a.

4 The Dirichlet problem in Qqr

Here we study equation (1.1) in case of a regular bounded domain €, with Dirichlet conditions on
00 x (0,T), with v =1

u — Au+ [Vul?=0, in Qqr,

(Da,r) { u=0 ondQx(0,T), (4.1)
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Let us recall some well-known results in case of smooth initial data. For any nonnegative
ug € C} (Q), there exists a unique solution v € C%! (9 x (0,00))N C (2 x [0,00)) , such that
|Vu| € C (Q x [0,00)) . Universal a priori estimates are given in [23]: there exists a constant C' > 0
and a function D € C((0,00) such that

u(.,t) £ CA+t Y d(z, 00),  |Vu(,t)] < D). (4.2)

The estimate on u is based on the construction of supersolutions, and the estimate of the gradient
is deduced from the first one by the Bernstein technique.

As in section 3, we study the problem with rough initial data, and introduce different notions
of solutions.

4.1 Solutions of the heat equation with L' data

In the following, since the regularization used at Section does not provide estimates up to the
boundary, thus we use another argument: the notion of entropy solution, introduce din [36], for
the problem

Ut — Au = fa in QQ,S,Ta

u=0 ondQx (s,71), (4.3)

u(.,8) =us =0

when f and u, are integrable, that we recall now. For any k& > 0 and 6 € R, we define as usual the
trucation fonction T}, and a primitive © by

To(6) = max(—k, min(k, 0)),  Op(s) = /0 " T(0)d6. (4.4)

Definition 4.1 Let s,7 € R with s < 7, and f € LY (Qqysr) and us € LY(). A function
u € O([s,7]; LY(Q)) is an entropy solution of the problem (4.3) if and for any k > 0,Ty(u) €
L2((s,7); Wy *(Q) and

Jo Or(u— @) (., T)dx — [, Or(us — (., s)dx + fST(cpt,Tk(u — p))dt

+ T [ (VuVTi(u — ¢) — fTi(u — p)dadt < 0 (4.5)

for any p € L?((s,7); WH2(Q)) N L™ (Qq.r) such that o, € L?((s,7); W12(Q)).

Other notions of solutions have been used for this problem, see [7], recalled below. In fact
they are equivalent: here ' denotes the semi-group of the heat equation with Dirichlet conditions
acting on L' (),

Lemma 4.2 Let 0o < s < 7 < o0, f € LYQqs+), us € LYQ) and u € C([s,7]; L}(Q)),
u(.,s) = us. Then denoting the three properties are equivalent:

(i) u is a weak solution of problem (4.3) in Qq.s.r, that means u € L} ((s,T); VVOI’1 (Q)) and

loc

u—Au=f, inD(Qasr); (4.6)
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(i) w is a mild solution of (4.3), that means, for any t € [s, 7],
t
u(.,t) = et 8y, 4 / DA f(0)do  in L (Q); (4.7)
S
(#ii) u is an entropy solution of (4.3).
Such a solution exists, is unique, and will be called weak solution of (4.3).
Proof. It follows from the existence and uniqueness of the solutions of (i) from [4, Lemma 3.4],
as noticed in [7], and of the entropy solutions, see [18]. |

As a consequence, when u is bounded, we can admit test functions of the form u®

Lemma 4.3 Lets, 7 € R with s <7, and f € Ll(QQS,T) and u be any nonnegative bounded weak
solution in Qq.s+ of (4.3).

Then for any o > 0, we have u®~" |Vul> € LY(Qq.s.,) and

1
/ atl( d:v—{—oz// w1 | Vu|? dedt = —/ atl( dm—l—/ /fuo‘d:vdt
a+1 QQST

(4.8)

Proof. There holds u € L2((s,7); Wy 2()) N L™ (Qq.s+), and u; € L2((s,7); W 12(Q)) +
LY (Qq,s.r) , then any function ¢ € L?((s,T); W&Q(Q)) NL*® (Qq,s,-) is admissible in equation (4.6).
In particular for any a > 0, we can take ¢ = M, 5(u) = (u+6)* — %, with § > 0. Integrating on
[s, 7] we deduce that

/ < U, p > —i—a// (u+0)2~1 | Vul® dedt = / / [ M, 5(u)dxdt.
s QQ,S,T S Q

Let k > 0 such that supg,, ~u <k, thus u = Tj(u). Moreover the function 6 — M(0) = (T)(0) +
§)® — 6% is continuous on R*and piecewise C! such that M (0) = 0 and M’ has a compact support.
Denoting Mg, 5(r) = (u+ 8)*"/(a + 1) — 6%u, we can integrate by parts from [28, Lemma 7.1],
and deduce that

/Q Mas (), 7))d— /Q Mas(u)(.,8))da+a / /Q Q,S,T(UM)M Vol dedt = / ' /Q M 5 (u)davdt

and then we go to the limit as § — 0 from the Fatou Lemma and then from the Lebesgue theorem.
Thus (4.8) holds for o > 0. ]

Remark 4.4 From [28], the notion of entropy solution of (4.3) is also equivalent to the notion of

renormalized solution, that we develop in Section 5. Lemma 4.3 is a special case of a much more
general property of the truncates when u is not necessarily bounded, see Lemma 5.4.
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4.2 Different notions of solutions of problem (Dg r)

Definition 4.5 We say thay u is a weak solution of the problem (Dq.r) ifu € C((0,T); L' (£2))N
L} ((0,7); I/Vol’1 (Q)), such that |Vul? € L} _((0,T); L' (Q)) and u satisfies

u — Au+|Vul? =0, in D' (Qar). (4.9)
Next we study the Cauchy problem

u —Au+ [Vul? =0, inQar,
u=0 ondQx(0,7), (4.10)
u(z,0) =up =20

with ug € L™ (), 7 = 1, or only up € M, (Q2). Here in any case ug € M;" ().

Definition 4.6 Ifuy € L"(Q2),r = 1, we say that u is a weak L" solution of problem (4.10) if it is
a weak solution of (Do), such that the extension of u by ug at time 0 satisfiesuw € C ([0,T) ; L"(Q)).

Definition 4.7 For any ug € M; (2), we say that u is a weak M solution of problem (4.10) if it
is a weak solution of (Dq,r), such that

lim [ u(., t)dx = / Pdug, Vip € Cy(9). (4.11)
Q Q

t—0

Some semi-group notions of solutions have been introduced in [7], for any nonnegative uy €
M (Q). Here e'®ug = [, ga(.,y, t)duo(y), where gq is the heat kernel with Dirichlet conditions on
o0.

Definition 4.8 For any ug € M; (), a function u is a mild solution of problem (4.10) if
we C((0,T); L' (), and |Vu|? € L}, ([0,T); L' (?)) and

u(.,t) = ePug() — /t =2 Tu(., s)|9ds in L' (Q), (4.12)
0

Remark 4.9 As it was shown in [7, p.1420], from Lemma 4.2, u is a mild solution if and only if
u is a weak M solution such that |Vul|? € L} ([0,T); L' (Q)); and then u € L} ([0,T); I/Vol’1 (Q)).
Remark 4.10 As in Remark 3.12, the definition of mild solution requires an integrability property
of the gradient up to time 0, namely |Vul|? € L} ([0,T); L' (). The definition of weak solution

loc

only assumes that |Vul|? € L} ((0,T); L' (2)).

loc

4.3 Decay and regularizing effect

Here € is bounded, then the situation is simpler than in RY, because we take benefit of the
regularizing effect of the semi-group e'® associated with the first eigenvalue \; of the Laplacian,
and also since L"(Q2) C LY(Q).
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Lemma 4.11 Let ¢ > 1, and ug € L™(Q), r 2 1. 1) Let u be any non-negative weak L -solution
of problem (4.10).

(i) Then u(.,t) € L>(Q) for any t > 0, and
_ N
[u(- )|z () < Ce M luol| (@), (-, )| e ) S Ct 27 e M Jug|| (). (4.13)

(ii) Moreover |Vul? € Li ([0,T);L'()), and

loc
t
/u(.,t)dx—i—/ /|Vu|qdﬂ:dt§/uodx. (4.14)
Q 0 JQ Q

Ifr > 1, then v ~YVul? € L} ([0,T); L' (Q)); we have u"~2|Vu|? € L} ([0,T); L' (Q)) and

loc loc

1 ! ! 1
—/ur(.,t)d:v—l—/ /ur1|Vu|qudt—|—(r—1)/ /ur2|Vu|2dxdt: —/ugdaz, (4.15)
rJa 0 Ja 0 JO rJa

As a consequence, ui—1" e L1 (([0,T); Wol’1 (€)).

loc

2) Let ug € M (Q) and u be any non-negative weak M solution of problem (4.10). Then (4.13)
and (4.14) still hold as in case ug € L'(Q), where the norm |luo|l11(q) s replaced by /duo. In
Q

particular u is a mild solution.

Proof. 1) (i) Let 0 < e < 7 < T. Since u is a weak solution of (Dq 1), we can apply Lemma 4.2
with f = —|Vul|? in Qq,¢ . Thus u is a mild solution of the problem in Qq . : for any ¢ € [e, 7],

t
u(.,t) = ety e) — / =B |\ Vu|ldo in L' (Q).

€

thus u(.,t) < e=9%y(., €). From our assumptions u € C ([0,T); L"(2)), thus we deduce u(.,t) <
e*Aug as € — 0. Then (4.13) follows.

(ii) The function u is bounded in Qgq s -, thus from Lemma 4.3, for any p > 1,

1 ¢ ¢ 1
—/up(.,t)dx—i—/ /up_llvquxdt—i—(p—l)/ /up_QIVu\dedt: —/up(.,e)dx. (4.16)
PJa e JQ e JQ PJa

and we make p — 1. From Fatou Lemma we deduce that |Vu|? € L' (Qq, ) and

t
/u(.,t)dm—i—/ /]Vu\qudt§/u(.,e)dx.
Q e Ja Q

As € — 0 we deduce that [Vu|? € L (Qq,;) and (4.14) holds. If r > 1, we can take p = r in (4.16)
and obtain (4.15) as € — 0. Then w9~ € L} (([0,T); I/Vol’1 (€2)) as in the case of RY.

2) The same estimates hold because limq |[u(.,€)|[1() = | duo. |
Q
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Theorem 4.12 Let ¢ > 1 and ug € L"(2), r =2 1. 1) Let u be any non-negative weak L -solution
of problem (4.10). Then
lul, )0y = Ct7 |luollLrG), (4.17)
where 0,4,y g are given at (3.32).
2) Any non-negative weak solution u of (Dq 1) satisfies the universal estimate, where C = C(N, q) >
0,
(s ) oo (0 < CF 71, (4.18)

Proof. 1) For any a > 0, setting p =1+ a, and 0 < e < s < t < T, setting 5 = 1+ a/q, we
have from (4.16),

1 a+1 t/‘ B‘q < 1/0‘“
a+1/ﬂu (.,t)daz+/s ; V(u?)| dzdt < o Qu (.,s)dzx.

And WP(.,t) € L®(Qqs-) for ae. t > 0, then wf(.,t) € WH1(Q); and u(.,t) € I/Vol’1 (©)) hence
uP(.,t) € Wol’q (€2), then from the Sobolev injection of Wol’q (Q) into L4 (), for any s < t,

1 a+l Cnyg ! Bq* &< 1 a+1
a+1/ﬂu (.,t)dm—i—W/s(/Qu (.,o)dz)a"dt < o Qu (.,8)dz.

Then we can apply Lemma 2.2 on [¢,T"), and deduce estimates for e < ¢t < T,

[ul, )=y < Ct =)~ flul, )l o)

1

[u(st) o) = Ot —€) o 1.
and we deduce (4.17) and (4.18) as € — 0.

2) Let u be any weak solution of (Dqr). Let € > 0. Since u € C([e, T); L*(Q)) we find, for any
tele,T),

1

[u(st) o) = C(t —€) a7
with C' = C(N, ¢q), and deduce (4.18) for any t € (0,7) by letting € tend to 0. |
Remark 4.13 The same decay estimates where shown in [34] in case q < 2, for any weak L"
solution u such that u € C((0,T);L?(2)) N LQ((O,T);VVOI’2 (Q)), and (u — k)T is admissible as

a test function in the equation; this implies integrability properties of u|Vu|?. Our result is valid
without any of these conditions.

4.4 Existence and uniqueness results for ¢ < 2

Here we consider the case 1 < ¢ < 2. From the universal a priori estimate (4.18), we deduce new
convergence results:

Corollary 4.14 Assume 1 < ¢ < 2. Then
(i) any weak solution u of problem (Dg,r) satisfies u € C** (Qgn ) NC' (2 x (0,T)) ;
(i) for any sequence of weak solutions (uy,) of (DqT), one can extract a subsequence converging

in C?O’;(QRNJ“) NCY (2% (0,T)) to a weak solution u of (Do,r).
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Proof. (i) From [16, Theorem 2.17], any weak solution u of (Dgq,r) such that u € Li ((0,7") ; L*°(£2))

satisfies u € C*! (Qpwv ) NCT (2 % (0,7)) . And any weak solution u € L3 ((0,T) ; L=(Q2)), from
Theorem 4.12,3.

loc

(ii) Moreover (uy,) is uniformly bounded in L;< (0,7); L> (§2)). From [16, Theorem 2.13], there

exists v € (0,1) such that, for any 0 < s <7 < T,

unllc@xgs,r) + 1IVUnllgowrz@usgy S CPUunll Lo (g, 0.)) (4.19)

where C' = C((N,q,9,s,7,v), and ® is an increasing function. The conclusion follows. [

Theorem 4.15 Suppose 1 < g < (N +2)/(N +1). For any ug € M; (Q), problem (4.10) admits
a unique weak M solution.

Proof. From Theorem 4.12, u is a mild M solution, and then it is the unique mild M solution,

from [7, Theorem 3.2]. ]

there exists a weak L" solution such that u € LY

Next assume that ug € L"(2) and ¢ < (N 4 2r)/(N +r). In [7, Theorem 3.3, it is proved that
([0,T); Wol’qr (Q)), and it is unique in this space.

loc

The local existence in an interval (0,77) is obtained by the Banach fixed point theorem in a ball of

radius K4 of the space

T 1
Xk, (Th) = {U € C((0, 1] , Wy () : (SOutp] t0(|’u(-7t)HLqr(Q) + 12 [Vul(, )] Lar ) < OO}
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where § = r/2N¢’, under the condition

[woll oy + KIT! < CKjy, where y=1—-¢(0+1/2) and C =C(N,q,7,Q). (4.20)

We prove the uniqueness with no condition of integrability:

Theorem 4.16 Assume that ug € L"(2) and 1 < g < (N + 2r)/(N + 7). Then problem (4.10)
admits a unique weak L" solution.

Proof. Let ¢ > 0. From Theorem 4.12, u is bounded on (¢,T") for any ¢ € (0,7). Then

u € C?HQar)NCHO(Q x (0,T)) because ¢ < 2, from [16, Theorem 2.16]. From (4.2), there exists
a function D € C((0,00) such that for any € > 0 and for ¢ = €

[Vu(.,t)|| L) < D(t — ¢).

Then |Vu| is bounded in Q.1 for any € > 0. Thus u € C((O,T),Wol’qr (€2)). The problem with
initial data u(.,€) at time 0 has a unique solution v, such that v, € C((0,T — e), Wol’qr (), then
Ve(-,t) = u(.,t +¢). Let Ky and T such that (4.20) holds. Since [u(., €)[| ) = [[uollr(q), We also
have [[ve(0)| () + Ki{T) < CKjy, thus for any t € (0,7})

1
t(loe, )l ar @y + t2 V0l D)l par () S K

Going to the limit as € — 0 from the Fatou Lemma, we obtain

1
t([uls )l par ey + 2 V(s )| ooy S Ka
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Hence we enter the class of uniqueness. Then w is the unique solution constructed in [7]. ]

Finally we give existence results for any ug € L"(Q2),r > 1, extending the results of [7, Theorem
3.4] for ug € LY(Q), also proved for more general operators in [33]. We proceed as in Proposition
3.28.

Proposition 4.17 Let 1 < q < 2. For any nonnegative ug € L"(Q),r > 1, there exists a weak L"
solution of problem (4.10). And it is unique if ¢ = 2.

Proof. (i) Case ¢ < 2. Let ug, = min(up,n). Then for p > N(¢ —1)/(2 — q), from [7,
Theorem 3.3], there exists a mild solution u, with initial data wug ., and u, € C([0,T);L(€2)) N
L1((0,T); Wol’qp(Q) NC% (Qar) . Then u,(.,t) < e'®ug, and (u,) is nondecreasing and |Vu,|? is
bounded in L, ([0,T); L'(Q)) from (4.14). From Corollary 3.23, (u,) converges in C’lzo’;(QQT) to

loc
a weak solution u of (1.1) in Qo r, and then u(.,t) < e"®ug and |Vu|? € L} ([0,T); L1(2)) . Thus
from [16, Proposition 2.11], u(.,t) converges weakly* to some Radon measure zig on . And e*®uq
converges to ug in L" (), thus pg € L}OC(Q) and 0 < pg < up. Since u, < u, there holds wug,, < po,
hence pp = ug € L"(§2). Also there exists a function g € L"(€2) such that u(.,t) < ¢ for small ¢. Then
the nonnegative function e'®ug — u(.,t) converges weakly* to 0, and then in L}, (€). Hence uf(.,t)

converges to ug in Li. (), then in L"(Q) from the Lebesgue theorem. Thus u € C([0,7); L" (Q)).

loc
(ii) Case ¢ = 2. As in [14, Theorem 4.2], using the classical transformation v = 1 —e™, it
can be shown that there exists a unique solution u such that u € C([0,T); L" (2)) N C*! (Qa.r) N
ct (ﬁ X (O,T)). Then it is a weak L" solution. Reciprocally any weak L™ solution u satisfies the
conditions above, from Corollary 4.14 and [16, Theorem 2.17]. |

5 Regularizing effects for quasilinear Dirichlet problems

Next we extend some results of section 4 to a general quasilinear problem, where u may be a signed
solution. In this section, we suppose  is a smooth bounded domain in RY. Let p, ¢ > 1. Let A be a
Caratheodory function on Qg « x R x RY such that for any (u,n) € RxRY, and a.e. (z,t) € Qq,00,

Az, tu,n)] £ C(InP~ +b(x,t),  C>0, be L’ (Qaw), (5.1)
and A is nonnegative operator:
Az, t,u,m)n 2vinf” v 20, (5.2)
with no monotonicity assumption.
Let g be a Caratheodory function on Qg x Rt x RY, such that

gl t,u,myu =y [uM |, AZ0, v=20. (5.3)

Definition 5.1 We say that A is coercive if (5.2) holds with v > 0, and g is coercive if (5.3) holds
with v > 0.
We consider the solutions of the Dirichlet problem

up — div(A(z,t,u, Vu)) + g(z,t,u,Vu) =0, in Qar,
(Por){ u=0, onddx(0,T), (5.4)
u(z,0) = ug

where ug € L™ (), 7 2 1 or only uy € My(£2).
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5.1 Solutions of quasilinear heat equation with L' data

Here we consider the problem in Qq s

- diV(A(x’ t,u, Vu)) =f, in Qﬂ,s,n
u=0, ondQx(s,T1), (5.5)

u(zx,s) = usg
First we recall the notion of renormalized solution introduced in [18] for this problem with L! data:

Definition 5.2 Let s,7 € R with s < 7, and f € L' (Qqs-) and us € LY(Q). A function u €
L>®((s,7); LY (2)) is a renormalized solution in Qqsr of (5.5) if Ty(u) € Lp((s,T);Wol’p(Q)) for
any k = 0, and for any S € W*>®(R) such that S’ has a compact support,

(S(u))e — div(A(x, t,u, Vu)S'(u)) + 5" (u)(A(z, t,u, Vu).Vu — S'"(u) f =0 inD'(Qasr), (5.6)

and u(s) = us, and

lim // \VulPdzdt = 0, (5.7)
oo QQ,s,rm{n§u§n+1}

Remark 5.3 The initial condition takes sense from [18], because S(u) lies in the set
E = {o e (0, Ty WaP (@) s ¢ € L ((0,T); W (@) + L' (Qor) } (5.8)

and E C C([0,T]; LY(Q)); and any function ¢ € LP((0,T); Wol’p(Q)) N L>® (Qa,1) is admissible in
equation (5.6). Moreover from [28, Lemma 7.1], v = S(u) satisfies for any 1 € C*([s, 7] x Q) the
integration formula

/s < v, M(v)yp >= //\/l .,T)da:—/QM(U(.,s))Q,Z)(.,s)dx—/ST/QQ,Z)tM(v)dxdt, (5.9)

for any function M contz’nuous and piecewise C* such that M(0) = 0 and M’ has a compact support,

where M(r fo

A main point in the sequel is the choice of test functions: here we approximate |u|0‘_1 u for
« > 0 by truncation. In the following lemma, we solve some technical difficulties arising because
the truncates are not smooth enough to apply the integration formula, and moreover we do not
assume a = 1.

Lemma 5.4 Let s,7 € R with s < 7, and f € LY(Qqs-) and u € C([s,7]; L*(Q)) be any non-
negative renormalized solution in Qq.s+ of (5.5), with us = u(.,s). For any a > 0 and k > 0, we
set

Tralr /yT |2~ T3,(0)d6.

Then | Ty (u)|* ™ A(x, t,u, Vu). V(T (u)) € L' (Qq.s-) and
/ﬂw dm+a//QQ”|Tk( w)|* Az, by u, V).V (Ty (w))dadt

/TM dx+/ /f|Tk ()| Ty () dadlt. (5.10)
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Proof. Let o > 0,k > 0 be fixed, and for any n 2 2, and 6 € R,

6
Sn(0) = / (1 =T (s — Tn(s)|)ds, n = 2.
0
This function, introduced in [18], is a smoothing of the truncate 7)1, such that 0 < S,(0)0 <

Tr+1(0)0, supp S/, C [—(n+1),n+ 1], and S,,(0) = S, (Tk(0)) for any n > k. Let § € (0,k), and
n > k. Setting

Tyia(6) = ((Tx(10]) + 6)° — 6%)signd,  Topalr) = /O Ty 0(0)d6

Then we can take in (5.6) S =S, and ¢ = Tk o(u) = Ts5,a(Sn(w)). We obtain

t t
/ < (Sp(w)t, o > —|—/ / S (w)A(x,t,u, Vu).Vodrdt
s s JQ

- / t / S (u) fodzdt — / t /Q S (u)(A(z, t, u, V). V) pdadt.

then from (5.9), we deduce

/%ka n( ))dw—i—a//@ (Tr(Jul) + 6)* TA(x, t,u, Vu). V(T (u))dzdt

_ /Q Tiea(Sn(w)(., 8))dz + / ' /Q S (u) fodwdt — / t /Q S"(u)(A(z, b, u, V). Vu)pdzdt

First we make § — 0. We have |75 q(0)| < k% |0] for any 0 € R, and S,,(u) € C([0,T]; L}(Q2)), and
S/ is bounded, thus we can go to the limit in the right hand side. In the left hand side, From the
positivity of A, and the Fatou Lemma we deduce that Ty (|u|)* tA(x,u, Vu).VTi(u) € LY(Qqs.)-
Then we can apply Lebesgue theorem: indeed A(z,u, Vu).VT)(u) € L'(Qq.s,-) from (5.1), since
Ti(u) € Lp((s,T);WOl’p(Q)), and (Tx(Jul) + 8)*~! < max(TP (Jul), (k + 1)*~1). Then the same
relation holds with 6 = 0, with Tp (1) = To‘_l(]u])Tk(u) :

/QT’“’“(S"( dx_/T’W )df“ra/ /Ta (lu) A, u, V).V (Ty (u))dzdt
= /s T /Qsé(u)f To ko (w)ddt — /s /Q S (w) (A, t,u, V). Vu)To g, o (w)dadt.

Then we make n — oo. Since u € C([0,T]; LY(Q)), for any ¢ € [s, 7]

lim [ Tga(Sn( ))dz = / Tr.a(u
n—oo Q
moreover .
li_)m / /SZ(U)(A(m,t,u, Vu).Vu) Ty i o(w)dzdt =0
n—0o0 s o)
from (5.7), (5.1), since S}, = =1 1) + L[—n,—n—1]- Moreover
lim / / Sh(w) fTo g, o(u)dedt = / / ITo i, o(uw)dzdt
n—=oo Js  JQ s JQ
since S} (u) — 1 a.e. and is uniformly bounded. Then (5.10) follows. ]
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5.2 Notion of solutions of problem (FPy 1)
Definition 5.5 We say that u is a renormalized solution of problem (Por) if:

(i) u € C(0,7); LY(Q)), T(u) € LlOc((O,T);WOl’p(Q)) for any k = 0, and g(x,u,Vu) €

L ((0,T); LH(€)),

loc

(i) for any 0 < s <1 < T, u is a renormalized solution of problem

up — div(A(z, t,u, Vu)) + g(x, t,u, Vu) =0, in Qqs.r,
UZO, on 8QX (O,T),
with initial data u(.,s);

(i) for ug € L"(Q2), the extension of u by ug at time O belongs to C([0,T);L"(2)); for up €
My(Q), there holds

lim [ u(., t)dx = / Pdug, Vi € Cp(Q). (5.11)
Q

t—=0 Jo

Remark 5.6 Recall that Vu is defined by Vu = V(T (u)) on the set |u| < k. The assumption on
g means that, for any 0 < s <71 < T,

/ l9(.,u, V)| dedt = Z/ 19(.,u, V(T (w))] dzdt < oo.
QQ,S,T QQ s ‘rm{k‘_lé‘u‘ék}

We first prove decay properties of the solutions.

Theorem 5.7 Let p,q > 1, and Q be a regular bounded domain of RY. Let A and g satisfy (5.1)
(5.2) and (5.3).

1) Let ug € L"(Q2),r 2 1 and u be any renormalized solution of (Por). Then for anyt € [0,T),

/Q|u|r(.,t)d:r3§/ﬂ|u0|rdx. (5.12)

Moreover if r > 1, or if g is coercive, then ~ |u[*" 1 |Vul? + v |u]" "2 |[VulP € LL ([0,T); L' (Q)),

loc

U t)ydx +r u ML Vul|ldzdt + r(r — 1)v ur 2\ VulPdzdt < uo "dx.
\ " ( gt ! \

(5.13)
2) Let ug € M;(Q) and u be any nonnegative renormalized solution of (Po 1) of problem (4.10).
Then the same conclusions hold as in case ug € L*(), where the norm |uollL1 () is replaced by

/duo.
Q
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Proof. ) Let 0 < s <t < T, then we have for any o > 0, any k > 0, from Lemma 5.4,

/ﬁm dx—i—a/ /yT |2t Az, t,u, V).V (T (u) ) dadt
:/527;7a(u)(.,s))dm—/s /Q]Tk(u)\o‘_lTk(u)g(.,u,Vu)dxdt

And |T;,(w)]* ™ Ti(w)g (., u, Vi) > [T (w)|*™ VT3 (w)]? from (5.3). Then Jo Tra(w)(., 1)) is de-
creasing for any k,«a > 0, and

QnamuﬂMw+¢lA}mwwﬂﬁnumwmw+aglA}mwwlnnuwwmw

< Q723704(21)(.,3))(% (5.14)

If r > 1, we can take a =7 —1 > 0 in (5.14) and get

/77” ) )dm+7/ / | T (w) "~ [V T (u )|qdazdt+au/ /|T "2 |V T (u)|P dadt

§/Q7}€7r1(u)(.,s))dx < ;/Q\u]r(.,s)dx (5.15)

Since w € C([0,7);L"(2)) we can go to the limit as k& — oo, and s — 0, and deduce that
~ |u|" A | Vul? and aw [u|" "2 [VulP belong to L} ([0,T); L (2)) and for any ¢ € (0,T),

loc

/|u| dx—l—rw/ /|u|r 2 Wl dadt + r(r — 1)v / /|u|r 2|Vu|pdxdt</|uo| dx.

If r =1, we take any o > 0 in (5.14) and observe that for any 6 > 0,

T3.(0))
O < a0 < 8o (5.16)

Then

/Q]Tk(u)\o‘H(.,t))dx—l—(04—1—1)7/:/9\Tk(u)]aJ“)‘]VTk(u)\qdmdt§ (a+1)ka/ﬂyuy(.,s)dx

Then we go to the limit as @ — 0, we deduce

/|Tk da:—l—w/ /|Tk |VTk(u)|qudt§/|u| (.,s)dx (5.17)
Q
and then as s — 0 we find
/ (1) dx—i—’y/ /\Tk NV Te(u )chzxdtg/ o da (5.18)
Q

and finally k — oo, and deduce that [, |u| (.,t)dz < [, |uo| dz. Moreover if v > 0, we find

t
[l tdo sy [l (vaptdsdr < [ ol
Q 0 JQ Q

37



thus (5.13) still holds with r = 1.
2) We still find (5.17). And lims_0 [, u(., s)dz = /duo from (5.11), hence the conclusion. ]
Q
Next we deduce L™ estimates, in particular a universal one.

Theorem 5.8 Let p > 1,1 < ¢ < N, and Q be a regular bounded domain of RY. Assume (5.1)
(5.2) and (5.8). Let ug € L"(Q),r 2 1, and u be any renormalized solution of (Po,r).

(i) If g is coercive, there exists C = C(N,q, \,7y, Q) independent of A, such that

[uls )l oo (@) S CETmaMfuol[ 1176 (5.19)
where
1 rq
O N e —— TWrg A = 770rg\
r,q % +)\+q_ 1 r,q N r,q

and there exists C' = C(N,q, \,|Q?|) such that
(s )l oo (0 € CF T3 (5.20)

(i) If A is coercive and r > (2 — p)N/p, (in particular if p > 2N/(N + 1)), and p < N, then

lu(., )l ooy < CE7 = luol Iy (5.21)
where
1 1
Orp,—1 = 7p ;, o Wrp,—1 = N,
rt+p—2 1+ &(p—2)

and if p > 2, there exists C = C'(N,p, |Q|) such that
_1
[u(., )L ) S Ct 72, (5.22)

(iii) The same conclusions hold if u is nonnegative and ug € M; (), as in case ug € L*(2), where

the norm |luol|z1(q) is replaced by /duo.
Q

Proof. (i) Let 0 < s <t < T. Since g is coercive, from Theorem 5.7, for any a = 0 such that
lu|*T (., s) € L}(2), we get from (5.13)

t
/|u|°‘+1 (.,t)da:+(a+1)7/ /|u|)‘+a|Vu|qudt§/ lul*T (., s)dz,
Q s JQ Q

and in particular

L@ de + @+ 0y [ [ @) 9T @ deat < [ ol e

1. Then |V((Jul’ " u)(.,t))|, and

And [u | Vul? = |V(jul" "t u)|e with 8 = 1+ (a + )\)/
0. Since |Tj(w)|> ! Tp(u)(.,t) €

>
also |V((|Th(w)|? 1 Th,(u)) (., t))| belong to LI(Q) for ae. t >
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L>=(Q) it follows that [Ty (u)|® ! Tp(uw)(., ) € W (Q). Moreover Tj(u)(.,t) € Wol’p (©)), hence
Ty (W)~ T () (., t) € Wol’q (€2) . Then from the Sobolev injection of Wol’q (Q) into L™ (£2),

[T e + Y / ([ B oyde)Fdo < [ ju (e
Q Q

Going to the limit as k — oo, we find

1)
/\uy““ t)dx 4~ CO‘” //y P9 (., 0)dz) " do <

Then we can apply Lemma 2.2 on [¢,T), with m = g and § = N/(N — q); we deduce the estimate
for [¢,T),

ul T (., s)d.

lu( )z @) = C(¢ = )~ Jul, )l G)

with C' = C(N, g, \,7,Q). Finally we go to the limit as e — 0, and get (5.19) for up € L"(f2), and
the analogous when u is nonnegative and ug € M, (Q), and also (5.20).

(ii) Assume that A is coercive. Then for any « > 0,

/7;M dx—i—ow/ /!T 7V Tk (u )\pdxdt</77m )(-r5))dz

from (5.14). From the Sobolev injection of WO P (Q) into LP" (Q), since p < N, we deduce

1 C . a 1
a+1 0 kp * < a+1
] /Qu (., )d:c+oz—kp (/Qu (.,0)dz)a" dt < ] /Qu (.,s)dz.

with k =1+ (e —1)/p.

e First suppose r > 1; then we start from ag = r — 1 > 0, and we can apply Lemma 2.2 with
m=p, 0 = N/(N —q) and A = —1. The condition (2.1) is satisfied, since r > N (2 — p)/p.

e Next suppose r = 1. Then 1 > (2 — p)N/p, thus p — 1 + p/N > 1. For any a > 0,

/|T,€(u)|a+1 t))dx + a(a + 1)v //|T 1271 |V T ()P dadt < (o + 1)k /|u|

Taking o = 1, we get from (5.12),

//\VTk \pdmdt<k/\ul dx<k/]u0\dx

And from (5.12), u € L* ((s,T); L* (©2)) , then from standard estimates, there holds u € L*(Qq,s )
for any p € (1,p — 1+ p/N), see [19]. Then |u|”(.,t) € L' (Q2) for almost any t € (0,T), hence we
can apply Lemma 2.2 on [¢,T) for € > 0, with the same parameters, after fixing such a p = p,
We obtain that

[u( Ol ) = CE =€)~ ul, Ol G)
where C' = C(N,p,\,ppn) = C(N,p,\); finally we go to the limit as e — 0 because u €
C([0,T); L*()). Estimate (5.22) follows, since —1+p —1 > 0.

(iif) Similarly, if ug € M; (€2) and u is nonnegative, we are lead to the same conclusions, where
[[wol[1(q) 1s replaced by Jo dug. In particular (5.21) holds for p > 2N/(N +1), and (5.22) for p > 2.
n
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Remark 5.9 As at Remark 3.18, we still obtain L°° estimates for ¢ > N orp > N. If g is coercive,
we get (5.19) with oy qn = 1/(q+1r —1+X) = wrgn/r if ¢ > N, and o yn = 1/(N(1 =) +
r—14+X) = w,nnN/r(l — ) where 6 € (0,1) is arbitrary. If A is coercive we get (5.21) with
Orp—1=1/(r+p—2)=w,p_1/rifp>N,andopny_—1=1/(N(1-0)+p—2) = w, n_1/7(1=9).

Remark 5.10 Our results apply in particular to the problem

up — div(A(z,t,u, Vu)) =0, inQaor,
u=0, ondQx(0,T),
u(z,0) = ug

Thus we find again the estimates of [34, Theorem 5.3], with less regularity on the solutions: those
estimates were proved for solutions v € C([0,T);L"(2)) such that u € Lp((O,T);WOl’p(Q)) N
C([0,T); L%()). The notion of renormalized solutions, equivalent to the notion of entropy solutions
of [36] (see [28]), is weaker.

Remark 5.11 The extension of results of section 3 to the case of equation of type (1.2) in the case
Q = RN will be treated a further article.

Acknowledgement 5.12 We thank Professor F. Weissler for helpfull discussions during the prepa-
ration of this article.
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