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Testing the mechanism of missing data

Denys Pommeret (pommeret@amu-univ.fr)
Institute of Mathematics, Aix Marseille University

Abstract

We consider the problem of missing data when the mechanism of

missingness is not at random and when the partially observed vari-

able has known or observed moments. A nonparametric estimator of

the probability of missingness is proposed. A data driven statistic is

constructed to test the missingness mechanism. Illustrations through

univariate logistic regressions are presented: the method permits to

estimate regression coe�cients when the covariate is completely miss-

ing for one response category. A test of signi�cance is proposed for

the coe�cients. The performance of the method is investigated in a

simulation study. An illustration is considered using a real data set.

1 INTRODUCTION

Missing data are frequently encountered in data analysis and the missingness
may sometimes depend on the unobserved value. For example if variables
are connected to personal information as the income, the quality of life, or
the political opinion. In this case the mechanism is classi�ed as Missing
Not At Random, according to Rubin (1987). We study this mechanism
when the moments of the missing variable are known or estimated. This
knowledge is realistic when the distribution of the variable is known in the
entire population or observed independently. We will denote by Y a non null
univariate random variable and by W a missing indicator taking value 0 if
Y is missing and 1 otherwise. We consider the case where the probability
that W = 0 depends of Y and we write

W |Y =

{
1 with probability p(Y ) = P(W = 1|Y ),
0 with probability 1− p(Y ) = P(W = 0|Y ).

It is assumed that X = WY is observed. We propose an estimator of the
probability of W = 1. The main idea is that the probability is a bounded
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function of Y that can be expressed in an orthonormal basis B. Moreover,
the basic property E(Xn) = E(WY n) = E(p(Y )Y n) orients the choice of B
to a basis of orthonormal polynomials. This expansion of p is then used to
construct a test to determine the randomness of the missing data mechanism;
that is, to test if W and Y are independent. The test statistic is inspired by
the work of Neyman (1937) (see more recently Rayner and Best, 1989, 2001)
and can be constructed in the same spirit of Ignaccolo (2004).

As an application, we consider the univariate logistic regression model
with two coe�cients a and b and with covariate Y observed only when the
response W = 1 and such that

logit
(
P(W = 1|Y ))

)
= aY + b.

This situation may correspond to the case where we obtain information on
the consumers of a product, as the age of an insurant, or as the income of
a customer of a bank, being customer corresponding to W = 1 here. The
previous approach can be adapted with two objectives: to estimate the re-
gression coe�cients by using the estimator of p, and to test their signi�cant
by testing the mechanism of missingness. We develop this model in a simu-
lation study. We also illustrate this situation through a survey collected for
the French National Institute of Statistics and Economic Studies (INSEE).

The rest of the paper is organized as follows. In Section 2 we develop
the construction of an estimator of missingness probabilities. In Section 3
we proceed with the construction of the test. Section 4 is devoted to the
simulation and Section 5 presents a real case study.

2 ESTIMATING THEMISSINGNESS PROBABIL-

ITIES

2.1 The case where the distribution of Y is known

Let X1, · · · , Xn be i.i.d. univariate random variables such that

Xi = YiWi,

where Yi are i.i.d. non null random variables and where Wi|Yi = 1 with
probability p(Yi) and 0 with probability 1− p(Yi)

Remark 1. If Y is a discrete random variable on N we can adapt our model,

obtaining Y > 0 by translation.
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The data are missing not at random except when the probability p is con-
stant. We assume �rst that the random variables Yi have known probability
measure µ on a support S. We denote by B = {Qn;n = 0, 1, · · · } an associ-
ated basis of dense orthonormal polynomials with respect to µ; that is, each
Qj is of degree j and ∫

S
Qi(x)Qj(x)µ(dx) = δij ,

where δij = 1 if i = j and 0 otherwise. We put Q0 = 1.

Proposition 1. For all y ∈ S, we have:

p(y) = E(W ) +
∑
k>0

{
E(Qk(X)) +Qk(0)(E(W )− 1)

}
Qk(y).

Proof Since p is bounded it satis�es the following expansion

p(y) =
∑
k∈N

∫
S
p(t)Qk(t)µ(dt)Qk(y)

=
∑
k∈N

E
(
Qk(Y )p(Y )

)
Qk(y).

Using the equalities E(Xk) = E(Y kW ) = E(Y kp(Y )), for all k ∈ N∗, we get

E
(
Qk(X)

)
= E

{
Qk(X)−Qk(0)

}
+Qk(0)

= E
{
(Qk(Y )−Qk(0))p(Y )

}
+Qk(0),

and observing that E(p(Y )) = E(W ) we deduce the result.
�

Then, for a given integer K > 0, a Kth order estimator of the probability
p(y) is given by

p̂K(y) =
∑
k≤K

{
Ek +Qk(0)(C − 1)

}
Qk(y),

where

Ek =
1

n

n∑
i=1

Qk(Xi), and C =
1

n

n∑
i=1

Wi.

3



We consider the MISE (Mean Integrated Square Error) criterion to evaluate
the behavior of this estimator. Write

pK(y) =
∑
k≤K

{
E(Qk(X)) +Qk(0)(E(W )− 1)

}
Qk(y),

∥p∥2µ =

∫
S
p(y)2µ(dy).

Proposition 2. We have

E
(
∥p− p̂K∥2µ

)
≤ ∥p− pK∥2µ +

K + 1

n
.

Proof From the orthogonality of the polynomials we have

E
(
∥p− p̂K∥2µ

)
= ∥p− pK∥2µ + E

(
∥pK − p̂K∥2µ

)
= ∥p− pK∥2µ +

1

n

∑
i≤K

V(Qi(X) +Qi(0)(W − 1))

= ∥p− pK∥2µ +
1

n

∑
i≤K

V(Qi(Y )W ),

and we use the inequality V(Qi(Y )W ) ≤ 1 to conclude.
�

2.2 The case where the distribution of Y is estimated

Here we assume that only S, the support of µ, is known and we denote
by f its density with respect to a given measure ν. We consider a basis
{Pi, i = 0, 1, 2, · · · } of ν orthonormal polynomials. We obtain the following
adaptation of Proposition 1.

Proposition 3. Assume that f > 0 and that
∫
S f(x)2ν(dx) < ∞. Then we

have for all y ∈ S

p(y) =
1

f(y)

∑
k≥0

(
E(Pk(X)) + Pk(0)(E(W )− 1)

)
Pk(y).

Proof The proof is similar to the Proposition 1.
�
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If Y is observed through another independent sample of size N , say
U1, · · · , UN , we can estimate f via a kernel K(·) and use Proposition 3 to
construct an estimator of p. De�ne

p̂
K,f̂

(y) =
1

f̂(y)

∑
k≤K

(
Ẽk + Pk(0)(C − 1)

)
Pk(y),

where

Ẽk =
1

n

n∑
i=1

Pk(Xi), C =
1

n

n∑
i=1

Wi,

and f̂(y) = min
(
eN ,

1

NhN

N∑
i=1

K
(
Ui − y

hN

))
,

with an appropriate bandwidth hN and a trimming eN → 0 as N → ∞.
Under basic assumptions we have the following extension of Proposition 2.

Proposition 4. Assume that f > 0 and f is Cd, for some positive integer

d. If hN ≃ N−c1 , eN ≃ N−c2 for some positive constants c1 and c2 such

that 2c2
d < c1 < 1− 4c2, and if N = o(n1/2c2), then under H0 we have

E
(
∥p− p̂

K,f̂
∥2µ

)
= ∥p− pK,f∥2µ + o(1).

Proof Let us evaluate

E
(
∥p̂

K,f̂
− p∥2µ

)
= E

(
∥p̂

K,f̂
− p̂K,f∥2µ

)
+ E

(
∥p̂K,f − p∥2µ

)
−2E

(
⟨p̂

K,f̂
− p , p̂

K,f̂
− p̂K,f ⟩

)
= (A) + (B)− (C).

Write γk = Ẽk + Pk(0)(C − 1) and gk = E(γk). It is clear that E(γ2k) < ∞
and that E(γk − gk)

2 = O(1/n). By a �rst order expansion in (C) we get

|(C)| ≤ 2 sup |f̂ − f | 1
e2N

k∑
i,j=1

E(|γiγj |)
∫

|Pi(y)Pj(y)|ν(dy)

+2 sup |f̂ − f | 1
e2N

k∑
i=1

E(|γi|)
∫

|Pi(y)|p(y)µ(dy).

Combining the fact that
∫
|Pi(y)|p(y)µ(dy) ≤

∫
f2(y)ν(dy) < ∞ and that∫

|Pi(y)Pj(y)|ν(dy) ≤ 1 with the following fundamental property (see for
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instance Härdle, 1992): sup |f̂ − f | = O
(
hdN +

√
logN/NhN

)
, we obtain

|(C)| = o(1). We now examine (B):

(B) = E
(
∥pK,f − p∥2µ

)
+ E

(
∥p̂K,f − pK,f∥2µ

)
− 2E

(
⟨p

K,f̂
− p , p̂K,f − pK,f ⟩

)
= E

(
∥pK,f − p∥2µ

)
+B2 +B3.

We continue in this fashion obtaining

|B3| ≤ 2
K∑

i,j=1

E|γi(γj − gj)|
1

eN
+ 2

K∑
j=1

E|γj − gj |
1

eN

= o(1).

|B2| ≤
K∑

i,j=1

E|(γi − gi)(γj − gj)|
1

eN

= o(1).

|(A)| ≤ sup |f̂ − f | 1
e2N

K∑
j=1

E|γj |
∫

f2(y)ν(dy)

= o(1).

�

3 TESTING THE MISSING MECHANISM

3.1 The case where the distribution of Y is known

We assume that the distribution of Y is known, with �nite moments of all
orders, and that E(W ) > 0. We consider the following hypotheses

H0 : Y and W are independent

H1 : Y and W are dependent.

The null hypothesis corresponds to a Missing At Random mechanism. With
the notation w = E(W ), testing H0 is equivalent to test p(y) = w for all
y ∈ S. From Proposition 1 it is equivalent to test the equalities E(Qk(X)) =
Qk(0)(1−w), for k = 1, 2, · · · . Thus, under the null hypothesis our method
consists in comparing the estimators associated to E(Qk(X)) with the esti-
mators associated to Qk(0)(1− w). Write

αk = 1/
√
n

n∑
i=1

Qk(Xi), βk = 1/
√
n

n∑
i=1

Qk(0)(1−Wi),

and Uk = (α1 − β1, · · · , αk − βk).
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By the Central Limit Theorem we have the following convergence in law
under H0:

Uk −→L N(0,Σk),

where Σk is the k × k covariance matrix of Uk. Is is easily seen that its
(i, j)th element is

Σk(i, j) = V
(
Qi(X)Qj(X)

)
,

and combining the decomposition Qi(X) = (Qi(Y )−Qi(0))W +Qi(0) with
the orthogonality of the polynomials we �nally obtain under H0 that

Σk = wI,

where I denotes the identity matrix. Then under H0 the statistic Tk =
∥Uk∥2 converges to w{V1+ · · ·+Vk}, where V1, · · · , Vk are independent Chi-
square random variables of degree 1. Such a decomposition has previously
been used in Ignaccolo (2004). To select the number k of components in
the test statistic we follow the work of Kallenberg and Ledwina (1995) (see
also Ledwina, 1994) and we consider an increasing sequence of number of
components k(n) such that limn→∞ k(n) = ∞. The selection rule is based
on the following Schwarz's criteria (1978)

Sn = min
{
argmax
1≤k≤k(n)

(Tk − k log(n))
}
,

and the associated data driven test statistic is TSn . We will need the following
assumption:

(A1) k(n) = o(
√

log(n)).

Theorem 1. Let assumption (A1) holds. Then, under H0, TSn/C converges

in distribution to a Chi-squared random variable with degree 1.

Proof Under H0, T1 converges to a scaled Chi-squared random variable with
one degree of freedom and with scale parameter w. As w > 0, for n large
enough C > 0 almost surely and T1/C converges to the expected distribution.
The procedure is then to show that P(Sn ≥ 2) tends to zero. Since (Uk = k)
implies (Tk − k log(n) ≥ T (1) − log(n)) we have P(Uk = k) ≤ P(Tk >
(k − 1) log(n)) and we obtain

P(Sn ≥ 2) =

k(n)∑
k=2

P(Sn = k) ≤
k(n)∑
k=2

P
(
T
1/2
k ≥

√
(k − 1) log(n)

)
.
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From Markov's inequality we get

P
(
T
1/2
k ≥

√
(k − 1) log(n)

)
≤

(
E
(
∥Uk∥2

))1/2

(
(k − 1) log(n)

)1/2 .
Using the independence of the pairs (Xs, Ys)1≤s≤n, we have

E
(
∥Uk∥2

)
= k

(
1

k

k∑
i=1

V
(
Zi

))
,

where Zi = Qi(X)−Qi(0)(1−W ). An easy computation shows that under
H0, V(Zi) = 1 +Qi(0)

2E(1−W )2 and then

1

k

k∑
i=1

V
(
Zi

)
≤ 1

k

k∑
i=1

(1 +Qi(0)
2) < M,

where M is a constant determined by the choice of the basis B. Finally, we
have

P(Sn ≥ 2) ≤
√
2Mk(n)√
log(n)

,

which gives the result.
�

3.2 The case where the moments of Y are known or esti-

mated

We �rst assume that the moments of Y are known and that w = E(W ) > 0.
We use the same notation as in Section 2.2. From Proposition 3,

p(y) = w, ∀y ∈ S ⇔ wf(y) =
∑
k≥

ckPk(y),∀y ∈ S,

with ck = E(Pk(X)) + Pk(0)(E(W )− 1). This can be rewritten as

p(y) = w, ∀y ∈ S ⇔ w
∑
k≥

E(Pk(Y ))Pk(y) =
∑
k≥

ckPk(y),∀y ∈ S,

and then H0 is equivalent to the following equalities

w
(
E(Pk(Y ))− Pk(0)

)
= E(Pk(X))− Pk(0), ∀k > 0.
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Writing

α̃k = 1/
√
n

n∑
i=1

WiE(Pk(Y )) and β̃k = 1/
√
n

n∑
i=1

(
Pk(Xi) + Pk(0)(Wi − 1),

we can proceed analogously to the previous case, replacing α and β by α̃ and
β̃, respectively. We consider Ũk = (α̃1 − β̃1, · · · , α̃k − β̃k), T̃k = ∥Ũk∥2, and
S̃n = min

{
argmax1≤k≤k(n)(T̃k − k log(n))

}
. The test statistic is now T̃S̃n

.
We assume that there exists a convergent estimator of V(U1) > 0, denoted
by V > 0. We can now rephrase Theorem 1 as follows.

Theorem 2. Let Assumptions (A1) holds. Then, under H0, T̃S̃n
/V con-

verges in distribution to a Chi-squared random variable with degree 1.

Eventually, if the moments of µ are unknown, but estimated through
another independent sample of size N , say U1, · · · , UN , where Ui are i.i.d.
random variables with distribution µ, we can generalize the previous result.
For k = 1, 2, · · · , we denote by ek,N a convergent estimator of E(Pk(Y ))
based on the sample of size N and we write

α′
k = 1/

√
n

n∑
i=1

Wiek,N , with ek,N = 1/N

N∑
i=1

E(Pk(Ui)).

Then replacing α̃ by α′ in the statistic T̃S̃n
we can state the analogue of

Theorem 2. We consider U ′
k = (α′

1 − β̃1, · · · , α′
k − β̃k), T

′
k = ∥U ′

k∥2, and
S′
n = min

{
argmax1≤k≤k(n)(T

′
k − k log(n))

}
. The test statistic is now T ′

S′
n
.

Theorem 3. Let Assumptions (A1) holds and assume that N = O(n).
Then, under H0, T

′
S′
n
/V converges in distribution to a Chi-squared random

variable with degree 1.

4 SIMULATIONS THROUGH A LOGISTIC RE-

GRESSION

4.1 Estimation of the missing probability

We simulated n i.i.d. random variables Y1, · · · , Yn with standard normal
distribution N (0, 1). We constructed (X1, · · · , Xn) such that Xi = YiWi,
where

p(y) = P(Wi = 1|Yi = y) = exp{ay + b}/(1 + exp{ay + b}). (1)
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Figure 1: Probability p and its estimates of �rst, second and third order for
the logistic model with coe�cients a = −1, b = 1 and for two samples of size
n = 50 (left) and n = 100 (right) respectively.

For simulations we chose a = −1, 0, 1, b = 1, and n = 50, 100. Since µ
is the normal distribution, the associated orthonormal polynomials are the
Hermite ones (see for instance Abramowitz and Stegun, 1972). The three
�rst terms are P0 = 1, P1(x) = x and P2(x) = x2 − 1.

Figures 1-3 show the probability p and its estimates of �rst, second and
third order. For small sample size (n = 50) the estimates were unstable.
This instability is illustrated on the left of both Figures 1 and 2, although
Figure 3 shows a case with good estimates. In the case of small sample size
it may be preferable to retain the �rst approximation often more stable.

For a larger sample size (n = 100) we got better estimates, close to the
probability p, except for the values of y close to -3 or 3 which are rarely
observed since Y is N (0, 1) distributed.
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Figure 2: Probability p and its estimates of �rst, second and third order for
the logistic model with coe�cients a = 0, b = 1 and for two samples of size
n = 50 (left) and n = 100 (right) respectively.
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Figure 3: Probability p and its estimates of �rst, second and third order for
the logistic model with coe�cients a = 1, b = 1 and for two samples of size
n = 50 (left) and n = 100 (right) respectively.

12



Remark 2. Several methods can be used to estimate the regression coe�-

cients. For instance, we can simply use central values for b and slopes for a
as follows

b̃ = logit(p̂(0)), ã = logit(p̂(1))− logit(p̂(−1)).

We can also use the relation

logit
(
p(y)

)
= b+ ay,

to estimate the coe�cients by ordinary least squares, say â and b̂. Table 1

contains these estimates obtained from �rst and second approximations based

on 1000 samples of size n = 100.

(a, b) b̂ b̃ â ã

First order (−1, 1) 0.43 (0.32) 0.82 (0.21) -0.76 (0.35) -1.76 (0.87)
Second order (−1, 1) 0.25 (0.61) 0.96 (0.39) -0.81 (0.34) -1.51 (0.76)
First order (1, 1) 0.43 (0.32) 0.81 (0.20) 0.77 (0.38) 1.76 (0.87)
Second order (1, 1) 0.12 (0.63) 0.94 (0.36) 0.78 (0.33) 1.54 (0.78)

Table 1: Estimates and their standard errors (in brackets) based on 1000
samples of size n = 100.

4.2 Test procedure

We now proceed with the study of the random character of the missing-
ness mechanism. We consider the model given by (1) where Y is N (0, 1)
distributed. We want to test the independence between Y and W . The
hypotheses can be reformulated as

H0 : p = w (= E(W )), H1 : p ̸= w.

or equivalently,

H0 : a = 0, H1 : a ̸= 0.

We chose b = −1, 0, 1 and we considered alternatives with a = −10,−1, 1, 10.
We assume that the distribution of Y is known to compare the proposed data
driven statistic to the Kolmogorov-Smirnov (KS) one. KS statistic is based
on the observed Y (whenW = 1) which follow the normal distribution under
H0. According to Assumption (A1), we �xed k(n) = 2 for n = 30, 50 and
k(n) = 3 for n = 100. We chose a theoretical level α = 5%. Empirical levels
were very close to the asymptotic 5% and we omitted their values.

Figures 4-7 show the empirical powers equal to the number of rejects of
H0 divided by 1000 (the number of replications).
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Figure 4: Empirical powers when H0 coincides with logistic coe�cient a = 0
and b = −1, 0, 1, and when alternatives coincide with a = −10. In the legend
KS denotes the Kolmogorov-Smirnov statistic and T denotes our data driven
statistic. Sample sizes are n = 30, 50, 100. The theoretical level is α = 5%.
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Figure 5: Empirical powers when H0 coincides with logistic coe�cient a = 0
and b = −1, 0, 1, and when alternatives coincide with a = −1. In the legend
KS denotes the Kolmogorov-Smirnov statistic and T denotes our data driven
statistic. Sample sizes are n = 30, 50, 100. The theoretical level is α = 5%.
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Figure 6: Empirical powers when H0 coincides with logistic coe�cient a = 0
and b = −1, 0, 1, and when alternatives coincide with a = 1. In the legend
KS denotes the Kolmogorov-Smirnov statistic and T denotes our data driven
statistic. Sample sizes are n = 30, 50, 100. The theoretical level is α = 5%.
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Figure 7: Empirical powers when H0 coincides with logistic coe�cient a = 0
and b = −1, 0, 1, and when alternatives coincide with a = 10. In the legend
KS denotes the Kolmogorov-Smirnov statistic and T denotes our data driven
statistic. Sample sizes are n = 30, 50, 100. The theoretical level is α = 5%.
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It can be observed that the Kolmogorov-Smirnov statistic gave slightly
better results for large values of |a| and for small sample size. In these cases
the missing probability increase or decrease very quickly. Conversely, the
data driven statistic provided better results for |a| = 1, when missing values
are less asymmetric, that is not concentrated on a region of the support
S. The case a = 0.1 gave empirical powers less than 10 percents for both
statistics and we omitted this graph.

Remark 3. As pointed out in § 3.2 we do not need the full knowledge of the

distribution Y but only the k(n) �rst moments. Under these assumptions we
obtained similar empirical powers than those presented in Figures 4-7 where

the distribution of Y is known. This illustrates the advantage of the method

and the good behavior of the test when the information on Y is partial.

5 A REAL DATA

The French National Institute of Statistics and Economic Studies (INSEE)
provides general information on the population, and in particular on the total
incomes (per year) of people in France, including parameters such as mean,
standard deviation, median. The IRIS data set contains such indicators on
the incomes in 2003. In particular, the mean estimated from this survey was
m = 12713.5 euros and the standard deviation was s = 13931. We are then
in position to apply the test statistic with two known moments of the income
Y .

We consider the following data: From February to April 2003, the INSEE
conducted a survey on the identities of the population. Roughly speaking,
identity refers to the way to build a place in the French society. The income
Y is one of the variables in this survey. We are interested in the probability
of missing values concerning Y . There were 380 missing values over 8403
observations. The value 0 here corresponds to people answering they do
not known their income. The test can be applied to decide if the missing
depends of the income. Despite the large sample size n = 8403 the data
driven statistic is used with k(n) = 2 since it cannot exceed the number of
known moments. Applying our test procedure we obtained a p-value less
than 10−16. Returning to the data it seems that low incomes are more
often missing leading to a greater mean and, by asymmetry of the income
distribution, a greater variance.
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