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UNIQUE CONTINUATION PROPERTY AND CONTROL FOR THE

BENJAMIN-BONA-MAHONY EQUATION ON THE TORUS

LIONEL ROSIER AND BING-YU ZHANG

Abstract. We consider the Benjamin-Bona-Mahony (BBM) equation on the one dimensional
torus T = R/(2πZ). We prove a Unique Continuation Property (UCP) for small data in H1(T)
with nonnegative zero means. Next we extend the UCP to certain BBM-like equations, including
the equal width wave equation and the KdV-BBM equation. Applications to the stabilization
of the above equations are given. In particular, we show that when an internal control acting
on a moving interval is applied in BBM equation, then a semiglobal exponential stabilization
can be derived in Hs(T) for any s ≥ 1. Furthermore, we prove that the BBM equation with a
moving control is also locally exactly controllable in Hs(T) for any s ≥ 0 and globally exactly
controllable in Hs(T) for any s ≥ 1.

1. Introduction

We are concerned here with the Benjamin-Bona-Mahony (BBM) equation

ut − utxx + ux + uux = 0 (1.1)

that was proposed in [3] as an alternative to the Korteweg-de Vries (KdV) equation

ut + uxxx + ux + uux = 0 (1.2)

as a model for the propagation of one-dimensional, unidirectional small amplitude long waves
in nonlinear dispersive media. In the context of shallow-water waves, u = u(x, t) represents the
displacement of the water surface at location x and time t. In this paper, we shall assume that
x ∈ R or x ∈ T = R/(2πZ) (the one-dimensional torus). (1.1) is often obtained from (1.2) in
the derivation of the surface equation by noticing that, in the considered regime, ux ∼ −ut, so
that uxxx ∼ −utxx. The dispersive term −utxx has a strong smoothing effect, thanks to which
the wellposedness theory of (1.1) is dramatically easier than for (1.2) (see [3, 4, 43] and the
references therein). Numerics often involve the BBM equation, or the KdV-BBM equation (see
below), because of the regularization provided by the term −utxx. On the other hand, (1.1) is
not integrable and it has only three invariants of motion [14, 34].

In this paper, we investigate the Unique Continuation Property (UCP) of BBM and its appli-
cations to the Control Theory for (1.1). We say that the UCP holds in some class X of functions
if, given any nonempty open set ω ⊂ T, the only solution u ∈ X of (1.1) fulfilling

u(x, t) = 0 for (x, t) ∈ ω × (0, T ),

Key words and phrases. Unique Continuation Property; Benjamin-Bona-Mahony equation; Korteweg-de Vries
equation; Moving point control; Exact controllability; Stabilization.
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is the trivial one u ≡ 0. Such a property is very important in Control Theory, as it is equivalent
to the approximate controllability for linear PDE, and it is involved in the classical unique-
ness/compactness approach in the proof of the stability for a PDE with a localized damping.
The UCP is usually proved with the aid of some Carleman estimate (see e.g. [46]). The UCP
for KdV was established in [48] by the inverse scattering approach, in [12, 40, 46] by means of
Carleman estimates, and in [5] by a perturbative approach and Fourier analysis. For BBM, the
study of the UCP is only at its early age. The main reason is that both x = const and t = const
are characteristic lines for (1.1). Thus, the Cauchy problem in the UCP (assuming e.g. that
u = 0 for x ≤ 0, and solving BBM for x ≥ 0) is characteristic, which prevents from applying
Holmgren’s theorem, even for the linearized equation. The Carleman approach for the UCP of
BBM was developed in [9] and in [47]. Unfortunately, Theorems 3.1-3.4 in [9] are not correct
without further assumptions, as noticed in [49]. On the other hand, the UCP in [47] for the
BBM-like equation

ux − utxx = p(x, t)ux + q(x, t)u, x ∈ (0, 1), t ∈ (0, T ),

where p ∈ L∞(0, T ;L∞(0, 1)) and q ∈ L∞(0, T ;L2(0, 1)), requires u(1, t) = ux(1, t) = 0 for
t ∈ (0, T ) and

u(x, 0) = 0 for x ∈ (0, 1). (1.3)

(Note, however, that nothing is required for u(0, t).) Because of (1.3), such a UCP cannot be used
for the stabilization problem. More can be said for a linearized BBM equation with potential
functions depending only on x. It was proved in [31] that the only solution u ∈ C([0, T ],H1(0, 1))
of the linearized BBM equation

ut − utxx + ux = 0, x ∈ (0, 1), t ∈ (0, T ), (1.4)

u(0, t) = u(1, t) = 0, t ∈ (0, T ) (1.5)

fulfilling ux(1, t) = 0 for all t ∈ (0, T ) is the trivial one u ≡ 0. It is worth noticing that the proof
of that result strongly used the fact that the solutions of (1.4)-(1.5) are analytic in time. On
the other hand, several difficult UCP results based on spectral analysis are given in [49] for the
system

ut − utxx = [α(x)u]x + β(x)u, x ∈ (0, 1), t ∈ (0, T ), (1.6)

u(0, t) = u(1, t) = 0, t ∈ (0, T ). (1.7)

As noticed in [49], the UCP fails for (1.6)-(1.7) whenever both α and β vanish on some open set
ω ⊂ T, so that the UCP depends not only on the regularity of the functions α and β, but also
on their zero sets. Bourgain’s approach [5] for the UCP of KdV (or NLS) is based on the fact
that the Fourier transform of a compactly supported function extends to an entire function of
exponential type. The proof of the UCP in [5] rests on estimates at high frequencies using the
intuitive property that the nonlinear term in Duhamel formula is perturbative. As noticed in
[30], that argument does not seem to be applicable to BBM. Actually, if we follow Bourgain’s
idea for the linearized BBM equation

ut − utxx + ux = 0 (1.8)
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on R, and assume that some solution u vanishes for |x| > L and t ∈ (0, T ), then its Fourier
transform in x, denoted by û(ξ, t), is readily found to be

û(ξ, t) = exp(
−itξ

ξ2 + 1
)û(ξ, 0), ξ ∈ R, t ∈ (0, T ).

The consideration of high frequencies is useless here. By analytic continuation, the above equa-
tion still holds for all ξ = ξ1 + iξ2 ∈ C \ {±i}. Picking any t > 0, ξ1 = 0 and letting ξ2 → 1−,
we readily infer that ∂nξ û(i, 0) = 0 for all n ≥ 0, so that û(., 0) ≡ 0 and hence u ≡ 0. Note that

∂nξ û(i, t) =

∫ ∞

−∞
u(x, t)(−ix)nexdx, (1.9)

and that it can be shown by induction on n that all the moments Mn(t) =
∫∞
−∞ u(x, t)xnexdx

vanish on (0, T ), so that u ≡ 0. Unfortunately, we cannot modify the above argument to deal
with the UCP for the full BBM equation, as the nonlinear term has no reason to be perturbative
at the “small” frequencies ξ = ±i. We point out that a moment approach, inspired by [8], was
nevertheless applied in [30] to prove the UCP for some KP-BBM-II equation.

In this paper, we shall apply the moment approach to prove the UCP for a generalized BBM
equation

ut − utxx + [f(u)]x = 0,

where f : R → R is smooth and nonnegative. The choice f(u) = u2/2 gives the so-called
Morrison-Meiss-Carey (MMC) equation (also called equal width wave equation, see [14, 33]).
Incorporating a localized damping in the above equation, we obtain the equation

ut − utxx + [f(u)]x + a(x)u = 0, x ∈ T,

whose solutions are proved to tend weakly to 0 in H1(T) as t → ∞. Note that similar results
were proved in [19] with a boundary dissipation.

Bourgain’s approach, in its complex analytic original form, can be used to derive the UCP
for the following BBM-like equation

ut − utxx + ux + (u ∗ u)x = 0

in which the (nonlocal) term (u ∗u)x is substituted to the classical nonlinear term uux in BBM.
For the original BBM equation (1.1), we shall derive a UCP for solutions issuing from initial

data that are small enough in H1(T) and with nonnegative mean values. The proof, which is
very reminiscent of La Salle invariance principle, will combine the analyticity in time of solutions
of BBM, the existence of three invariants of motion, and the use of some appropriate Lyapunov
function.

The second part of this work is concerned with the control of the BBM equation. Consider
first the linearized BBM equation with a control force

ut − utxx + ux = a(x)h(x, t), (1.10)

where a is supported in some subset of T and h stands for the control input. It was proved
in [31, 49] that (1.10) is approximatively controllable in H1(T). It turns out that (1.10) is not
exactly controllable in H1(T) [31]. This is in sharp contrast with the good control properties of
other dispersive equations (on periodic domains, see e.g. [22, 45] for KdV, [10, 20, 21, 41, 42] for
the nonlinear Schrödinger equation, [25, 26] for the Benjamin-Ono equation, [32] for Boussinesq
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system, and [13] for Camassa-Holm equation). The bad control properties of (1.10) come from
the existence of a limit point in the spectrum. Such a phenomenon was noticed in [44] for the
beam equation with internal damping, in [24] for the plate equation with internal damping,
in [31] for the linearized BBM equation, and more recently in [39] for the wave equation with
structural damping.

It is by now classical that an “intermediate” equation between (1.1) and (1.2) can be derived
from (1.1) by working in a moving frame x = −ct with c ∈ R \ {0}. Indeed, letting

v(x, t) = u(x− ct, t) (1.11)

we readily see that (1.1) is transformed into the following KdV-BBM equation

vt + (c+ 1)vx − cvxxx − vtxx + vvx = 0. (1.12)

It is then reasonable to expect the control properties of (1.12) to be better than those of (1.1),
thanks to the KdV term −cvxxx in (1.12). We shall prove that the equation (1.12) with a forcing
term a(x)k(x, t) supported in (any given) subdomain is locally exactly controllable in H1(T) in
time T > (2π)/|c|. Going back to the original variables, it means that the equation

ut + ux − utxx + uux = a(x+ ct)h(x, t) (1.13)

with a moving distributed control is exactly controllable in H1(T) in (sufficiently) large time.
Actually, the control time is chosen in such a way that the support of the control, which is
moving at the constant velocity c, can visit all the domain T. Using the same idea, it has been
proved recently in [29] that the wave equation with structural damping is null controllable in
large time when controlled with a moving distributed control.

The concept of moving point control was introduced by J. L. Lions in [27] for the wave
equation. One important motivation for this kind of control is that the exact controllability of
the wave equation with a pointwise control and Dirichlet boundary conditions fails if the point is
a zero of some eigenfunction of the Dirichlet Laplacian, while it holds when the point is moving
under some conditions easy to check (see e.g. [6]). The controllability of the wave equation
(resp. of the heat equation) with a moving point control was investigated in [6, 17, 27] (resp. in
[7, 18]).

Thus, the appearance of the KdV term −cvxxx in (1.12) results in much better control prop-
erties. We shall see that

(i) there is no limit point in the spectrum of the linearized KdV-BBM equation, which is of
“hyperbolic” type;

(ii) a UCP for the full KdV-BBM equation can be derived from Carleman estimates for a
system of coupled elliptic-hyperbolic equations.

It follows that one can expect a semiglobal exponential stability when applying a localized
damping with a moving support. We will see that this is indeed the case. Combining the
local exact controllability to the semiglobal exponential stability result, we obtain the following
theorem which is the main result of the paper.

Theorem 1.1. Assume given a ∈ C∞(T) with a 6= 0 and c ∈ R \ {0}. Let s ≥ 1 and R > 0 be
given. Then there exists a time T = T (s,R) > 2π/|c| such that for any u0, uT ∈ Hs(T) with

||u0||Hs ≤ R, ||uT ||Hs ≤ R, (1.14)
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there exists a control h ∈ L2(0, T ;Hs−2(T)) such that the solution u ∈ C([0, T ];Hs(T)) of

ut − utxx + ux + uux = a(x+ ct)h(x, t), x ∈ T, t ∈ (0, T )

u(x, 0) = u0(x), x ∈ T

satisfies
u(x, T ) = uT (x), x ∈ T.

The paper is scheduled as follows. In Section 2 we recall some useful facts (global well-
posedness, invariants of motion, time analyticity) about BBM. In Section 3 we establish the
UCP for BBM. In Section 4 we prove the UCP for other BBM-like equations, including the
MMC equation and the BBM equation with a nonlocal term. Section 5 is concerned with the
UCP for the KdV-BBM equation. The KdV-BBM equation is first split into a coupled system of
an elliptic equation and a transport equation. Next, we prove some Carleman estimates with the
same singular weights for both the elliptic and the hyperbolic equations, and we derive the UCP
for KdV-BBM by combining these Carleman estimates with a regularization process. Those
results are used in Section 6 to prove the exact controllability of KdV-BBM and the semiglobal
exponential stability of the same equation with a localized damping term.

2. Wellposedness, analyticity in time and invariants of motion

Throughout the paper, for any s ≥ 0, Hs(T) denotes the Sobolev space

Hs(T) = {u : T → R; ||u||Hs := ||(1 − ∂2x)
s
2u||L2(T) <∞}.

Its dual is denoted H−s(T).
Let us consider the initial value problem (IVP)

ut − utxx + ux + uux = 0, x ∈ T, t ∈ R (2.1)

u(x, 0) = u0(x). (2.2)

Let A = −(1 − ∂2x)
−1∂x ∈ L(Hs(T),Hs+1(T)) (for any s ∈ R) and W (t) = etA for t ∈ R. We

put (2.1)-(2.2) in its integral form

u(t) =W (t)u0 +

∫ t

0
W (t− s)A(u2/2)(s)ds. (2.3)

For s ≥ 0 and T > 0, let
Xs
T = C([−T, T ];Hs(T)).

Note that for u ∈ Xs
T , u solves (2.1) in D′(−T, T ;Hs−2(T)) and (2.2) if, and only if, it fulfills

(2.3) for all t ∈ [−T, T ]. The following result will be used thereafter.

Theorem 2.1. ([4, 43]) Let s ≥ 0, u0 ∈ Hs(T) and T > 0. Then there exists a unique solution
u ∈ Xs

T of (2.1)-(2.2) (or, alternatively, (2.3)). Furthermore, for any R > 0, the map u0 7→ u
is real analytic from BR(H

s(T)) into Xs
T .

Some additional properties are collected in the following

Proposition 2.2. For u0 ∈ H1(T), the solution u(t) of the IVP (2.1)-(2.2) satisfies u ∈
Cω(R;H1(T)). Moreover the three integral terms

∫
T
u dx,

∫
T
(u2+u2x)dx and

∫
T (u

3+3u2)dx are
invariants of motion (i.e., they remain constant over time).
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Proof. Let us begin with the invariants of motion. For u0 ∈ H1(T), u ∈ X1
T for all T > 0, hence

ut = −(1− ∂2x)
−1∂x(u+

u2

2
) ∈ X2

T .

Therefore, all the terms in (2.1) belong to X0
T . Scaling in (2.1) by 1 (resp. by u) yields after

some integrations by parts

d

dt

∫

T

u dx = 0 (resp.
d

dt

∫

T

(u2 + u2x)dx = 0.)

For the last invariant of motion, we notice (following [34]) that

(
1

3
(u+ 1)3)t − (u2t − u2xt + (u+ 1)2uxt −

1

4
(u+ 1)4)x = 0.

Integrating on T yields (d/dt)
∫
T (u+ 1)3dx = 0. Since (d/dt)

∫
T
(3u+ 1)dx = 0, we infer that

d

dt

∫

T

(u3 + 3u2)dx = 0.

Let us now prove that u ∈ Cω(R;H1(T)). Since u ∈ C1(R;H1(T)), it is sufficient to check that
for any u0 ∈ H1(T) there are some numbers b > 0, M > 0, and some sequence (un)n≥1 in H1(T)
with

||un||H1 ≤
M

bn
, n ≥ 0, (2.4)

such that

u(t) =
∑

n≥0

tnun, t ∈ (−b, b). (2.5)

Note that the convergence of the series in (2.5) holds in H1(T) uniformly on [−rb, rb] for each
r < 1. Actually, we prove that u can be extended as an analytic function from Db := {z ∈
C; |z| < b} into the space H1

C
(T) := H1(T;C), endowed with the Euclidean norm

||
∑

k∈Z

ûke
ikx||H1 = (

∑

k∈Z

(1 + |k|2)|ûk|
2)

1
2 .

We adapt the classical proof of the analyticity of the flow for an ODE with an analytic vector field
(see e.g. [15]) to our infinite dimensional framework. For u ∈ H1

C
(T), let Au = −(1− ∂2x)

−1∂xu
and f(u) = A(u+ u2). Since |k| ≤ (k2 + 1)/2 for all k ∈ Z, ||A||L(H1

C
(T)) ≤ 1/2. Pick a positive

constant C1 such that

||u2||H1 ≤ C1||u||
2
H1 for all u ∈ H1

C(T).

We define by induction on q a sequence (uq) of analytic functions from C to H1
C
(T) which will

converge uniformly on DT , for T > 0 small enough, to a solution of the integral equation

u(z) = u0 +

∫

[0,z]
f(u(ζ))dζ = u0 +

∫ 1

0
f(u(sz))zds.



UCP AND CONTROL FOR BBM 7

Let

u0(z) = u0, for z ∈ C

uq+1(z) = u0 +

∫

[0,z]
f(uq(ζ))dζ, for q ≥ 0, z ∈ C.

Claim 1. uq(z) =
∑

n≥0 z
nvqn for all z ∈ C and some sequence (vqn) in H1

C
(T) with

||vqn||H1 ≤
M(q, b)

bn
for all q, n ∈ N, b > 0.

The proof of Claim 1 is done by induction on q ≥ 0. The result is clear for q = 0 with
M(0, b) = ||u0||H1 , since v00 = u0 and v0n = 0 for n ≥ 1. Assume Claim 1 proved for some q ≥ 0.
Then, for any r ∈ (0, 1) and any b > 0

||znvqn||H1 ≤M(q, b)rn for |z| ≤ rb,

so that the series
∑

n≥0 z
nvqn converges absolutely in H1

C
(T) uniformly for z ∈ Drb. The same

holds true for the series
∑

n≥0 z
n(
∑

0≤l≤n v
q
l v
q
n−l). It follows that

f(uq(ζ)) = A


∑

n≥0

ζnvqn +
∑

n≥0

ζn(
∑

0≤l≤n

vql v
q
n−l)




converges uniformly for ζ ∈ Drb. Thus

uq+1(z) = u0 +

∫

[0,z]

∑

n≥0

ζnA(vqn +
∑

0≤l≤n

vql v
q
n−l)dζ

=
∑

n≥0

znvq+1
n

where

vq+1
0 = u0,

vq+1
n =

1

n
A(vqn−1 +

∑

0≤l≤n−1

vql v
q
n−1−l) for n ≥ 1.

It follows that for n ≥ 1

||vq+1
n ||H1 ≤

||A||

n
(
M(q, b)

bn−1
+ nC1

M2(q, b)

bn−1
) ≤

M(q + 1, b)

bn

with

M(q + 1, b) := sup{||u0||H1 , b||A||(M(q, b) + C1M
2(q, b)}.

Claim 1 is proved.
Claim 2. Let T := (2||A||(1 + 4C1||u0||H1))−1. Then ||uq − u||L∞(DT ;H1

C
(T)) → 0 as q → ∞ for

some u ∈ C(DT ;H
1
C
(T)).
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Let ZT = C(DT ;H
1
C
(T)) be endowed with the norm |||v||| = sup|z|≤T ||v(z)||H1 . Let R > 0, and

for v ∈ BR := {v ∈ ZT ; |||v||| ≤ R}, let

(Γv)(z) = u0 +

∫

[0,z]
f(v(ζ)) dζ.

Then

|||Γv||| ≤ ||u0||H1 + T ||A||(|||v||| + C1|||v|||
2) ≤ ||u0||H1 + T ||A||(R + C1R

2),

||Γv1 − Γv2||| ≤ T ||A||(|||v1 − v2|||+ |||v21 − v22 |||) ≤ T ||A||(1 + 2C1R)|||v1 − v2|||.

Pick R = 2||u0||H1 and T = (2||A||(1 + 2C1R))
−1. Then Γ contracts in BR. The sequence (uq),

which is given by Picard iteration scheme, has a limit u in ZT which fulfills

u(z) = u0 +

∫

[0,z]
f(u(ζ))dζ, |z| ≤ T.

In particular, u ∈ C1([−T, T ];H1(T)) (the uq(z) being real-valued for z ∈ R) and it satis-
fies ut = f(u) on [−T, T ] together with u(0) = u0; that is, u solves (2.1)-(2.2) in the class
C1([−T, T ];H1(T)) ⊂ X1

T .
Claim 3. u(z) =

∑
n≥0 z

nvn for |z| < T , where vn = limq→∞ vqn for each n ≥ 0.
From Claim 1, we infer that for all n ≥ 1

vqn =
1

2πi

∫

|z|=T
z−n−1uq(z) dz,

hence

||vpn − vqn||H1 ≤ T−n|||up − uq|||.

From Claim 2, we infer that (vqn) is a Cauchy sequence in H1
C
(T). Let vn denote its limit in

H1
C
(T). Note that

||vn − vqn||H1 ≤ T−n|||u− uq|||,

and hence the series
∑

n≥0 z
nvn is convergent for |z| < T . Therefore, for |z| ≤ rT with r < 1,

||
∑

n≥0

zn(vn − vqn)||H1 ≤ (1− r)−1|||u− uq|||,

and hence uq(z) =
∑

n≥0 z
nvqn →

∑
n≥0 z

nvn in ZrT as q → ∞. It follows that

u(z) =
∑

n≥0

znvn for |z| < T.

The proof of Proposition 2.2 is complete. �

3. Unique Continuation Property for BBM

In this section we prove a UCP for the BBM equation for small solutions with nonnegative
mean values.
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Theorem 3.1. Let u0 ∈ H1(T) be such that
∫

T

u0(x)dx ≥ 0, (3.1)

and ||u0||L∞(T) < 3. (3.2)

Assume that the solution u of (2.1)-(2.2) satisfies

u(x, t) = 0 for all (x, t) ∈ ω × (0, T ), (3.3)

where ω ⊂ T is a nonempty open set and T > 0. Then u0 = 0, and hence u ≡ 0.

Proof. We identify T to (0, 2π) in such a way that ω ⊃ (0, ε)∪ (2π− ε, 2π) for some ε > 0. Since
u ∈ Cω(R;H1(T)) by Proposition 2.2, we have that u(x, .) ∈ Cω(R) for all x ∈ T. (3.3) gives
then that

u(x, t) = 0 for (x, t) ∈ ω ×R. (3.4)

Introduce the function

v(x, t) =

∫ x

0
u(y, t)dy.

Then v ∈ Cω(R;H2(0, 2π)) and v satisfies

vt − vtxx + vx +
u2

2
= 0, x ∈ (0, 2π), (3.5)

as it may be seen by integrating (2.1) on (0, x). Let

I(t) =

∫ 2π

0
v(x, t)dx.

Note that I ∈ Cω(R). Integrating (3.5) on (0, 2π) gives with (3.1)

It = −

∫ 2π

0
u0(x)dx−

1

2

∫ 2π

0
|u(x, t)|2dx ≤ 0.

Since ||u(t)||H1 = ||u0||H1 for all t ∈ R, v ∈ L∞(R,H2(0, 2π)) and I ∈ L∞(R). It follows that
the function I has a finite limit as t → ∞, that we denote by l. From the boundedness of
||u(t)||H1(T) for t ∈ R, we infer the existence of a sequence tn ր +∞ such that

u(tn)⇀ ũ0 in H1(T) (3.6)

for some ũ0 ∈ H
1(T). Let ũ denote the solution of the IVP for BBM corresponding to the initial

data ũ0; that is, ũ solves

ũt − ũtxx + ũx + ũũx = 0, x ∈ T, t ∈ R,

ũ(x, 0) = ũ0(x).

Pick any s ∈ (1/2, 1). As u(tn) → ũ0 strongly in Hs(T), we infer from Theorem 2.1 that

u(tn + ·) → ũ in C([0, 1];Hs(T)). (3.7)

It follows from (3.4), (3.7) and the fact that ũ ∈ Cω(R,H1(T)) that

ũ(x, t) = 0 for (x, t) ∈ ω × R.
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On the other hand,
∫ 2π
0 ũ0(x)dx =

∫ 2π
0 u0(x)dx from (3.6) and the invariance of

∫ 2π
0 u(x, t)dx.

Let ṽ(x, t) =
∫ x
0 ũ(y, t)dy and Ĩ(t) =

∫ 2π
0 ṽ(x, t)dx. Then we still have that

Ĩt = −

∫ 2π

0
u0(x)dx−

1

2

∫ 2π

0
|ũ(x, t)|2dx ≤ 0. (3.8)

But we infer from (3.7) that

I(tn) → Ĩ(0), I(tn + 1) → Ĩ(1).

Since

lim
n→∞

I(tn) = lim
n→∞

I(tn + 1) = l,

we have that Ĩ(0) = Ĩ(1). Combined to (3.8), this yields

ũ(x, t) = 0 (x, t) ∈ T× [0, 1].

In particular, ũ0 = 0. From (3.6), we infer that
∫ 2π

0
(u3(x, tn) + 3u2(x, tn))dx→ 0 as n→ ∞.

As
∫ 2π
0 (u3 + 3u2)dx is a conserved quantity, we infer that

∫ 2π

0
(3 + u0(x)) |u0(x)|

2dx = 0,

which, combined to (3.2), yields u0 = 0. �

Remark 3.2. Note that Theorem 3.1 is false if the assumptions u0 ∈ H1(T) and (3.1) are
removed. Indeed, if u ∈ C(R;L2(T)) is defined for x ∈ T ∼ (0, 2π) and t ∈ R by

u(x, t) = u0(x) =

{
−2 if |x− π| ≤ π

2 ,
0 if π

2 < |x− π| < π,

then (2.1) and (2.2) are satisfied, although u 6≡ 0.

4. Unique Continuation Property for BBM-like equations

We shall consider BBM-like equations with different nonlinear terms. We first consider a
generalized BBM equation without drift term, and next a BBM-like equation with a nonlocal
bilinear term.

4.1. Generalized BBM equation without drift term. We consider the following general-
ized BBM equation

ut − utxx + [f(u)]x = 0, x ∈ T, t ∈ R (4.1)

u(x, 0) = u0(x), (4.2)

where f ∈ C1(R), f(u) ≥ 0 for all u ∈ R, and the only solution u ∈ (−δ, δ) of f(u) = 0 is u = 0,
for some number δ > 0. That class of BBM-like equations includes the Morrison-Meiss-Carey
equation

ut − utxx + uux = 0
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for f(u) = u2/2. Note that the global wellposedness of (4.1)-(4.2) in H1(T) can easily be derived
from the contraction mapping theorem and the conservation of the H1-norm. It turns out that
the UCP can be derived in a straight way and without any additional assumption on the initial
data.

Theorem 4.1. Let f be as above, and let ω be a nonempty open set in T. Let u0 ∈ H1(T) be
such that the solution u of (4.1)-(4.2) satisfies u(x, t) = 0 for (x, t) ∈ ω× (0, T ) for some T > 0.
Then u0 = 0.

Proof. Once again, we can assume without loss of generality that ω = (0, ε) ∪ (2π − ε, 2π). The
prolongation of u by 0 on (R \ (0, 2π)) × (0, T ), still denoted by u, satisfies

ut − utxx + [f(u)]x = 0, x ∈ R, t ∈ (0, T ) (4.3)

u(x, t) = 0, x 6∈ (ε, 2π − ε), t ∈ (0, T ) (4.4)

u ∈ C([0, T ];H1(R)), ut ∈ C([0, T ];H2(R)). (4.5)

Scaling in (4.3) by ex yields for t ∈ (0, T )
∫ ∞

−∞
f(u(x, t))exdx = 0,

for
∫∞
−∞ utxxe

xdx =
∫∞
−∞ ute

xdx by two integrations by parts. Since f is nonnegative, this yields

f(u(x, t)) = 0 for (x, t) ∈ R× (0, T ).

Since u is continuous and it vanishes for x 6∈ (ε, 2π − ε), we infer from the assumptions about f
that u ≡ 0. �

Pick any nonnegative function a ∈ C∞(T) with ω := {x ∈ T; a(x) > 0} nonempty. We are
interested in the stability properties of the system

ut − utxx + [f(u)]x + a(x)u = 0, x ∈ T, t ≥ 0 (4.6)

u(x, 0) = u0(x), (4.7)

where f is as above. The following weak stability result holds.

Corollary 4.2. Let u0 ∈ H1(T). Then (4.6)-(4.7) admits a unique solution u ∈ C([0, T ];H1(T))
for all T > 0. Furthermore, u(t) → 0 weakly in H1(T), hence strongly in Hs(T) for s < 1, as
t→ +∞.

Proof. The local wellposedness inHs(T) for any s > 1/2 is derived from the contraction mapping
theorem in much the same way as for Theorem 2.1. The global wellposedness in H1(T) follows
at once from the energy identity

||u(T )||2H1 − ||u0||
2
H1 + 2

∫ T

0

∫

T

a(x)|u(x, t)|2dxdt = 0. (4.8)

obtained by scaling each term in (4.6) by u. On the other hand, still from the application of
the contraction mapping theorem, given any s > 1/2, any ρ > 0 and any u0, v0 ∈ Hs(T) with
||u0||Hs(T) ≤ ρ, ||v0||Hs(T) ≤ ρ, there is some time T = T (s, ρ) > 0 such that the solutions u and
v of (4.6)-(4.7) corresponding to the initial data u0 and v0, respectively, fulfill

||u− v||C([0,T ];Hs(T)) ≤ 2||u0 − v0||Hs(T). (4.9)
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Pick any initial data u0 ∈ H1(T), any s ∈ (1/2, 1), and let ρ = ||u0||H1(T) and T = T (s, ρ). Note
that ||u(t)||H1 is nonincreasing by (4.8), hence it has a nonnegative limit l as t → ∞. Let v0
be in the ω−limit set of (u(t))t≥0 in H1(T) for the weak topology; that is, for some sequence
tn → ∞ we have u(tn) → v0 weakly in H1(T). Extracting a subsequence if needed, we may
assume that tn+1 − tn ≥ T for all n. From (4.8) we infer that

lim
n→∞

∫ tn+1

tn

∫

T

a(x)|u(x, t)|2dxdt = 0. (4.10)

Since u(tn) → v0 (strongly) in Hs(T), and ||u(tn)||Hs(T) ≤ ||u(tn)||H1(T) ≤ ρ, we have from (4.9)
that

u(tn + ·) → v in C([0, T ];Hs(T)) as n→ ∞, (4.11)

where v = v(x, t) denotes the solution of

vt − vtxx + [f(v)]x + a(x)v = 0, x ∈ T, t ≥ 0,

v(x, 0) = v0(x).

Note that v ∈ C([0, T ];H1(T)) for v0 ∈ H1(T)). (4.10) combined to (4.11) yields
∫ T

0

∫

T

a(x)|v(x, t)|2dxdt = 0,

so that av ≡ 0. By Theorem 4.1, v0 = 0 and hence, as t→ ∞,

u(t) → 0 weakly in H1(T),

u(t) → 0 strongly in Hs(T) for s < 1.

�

4.2. A BBM-like equation with a nonlocal bilinear term. Here, we consider a BBM-type
equation with the drift term, but with a nonlocal bilinear term given by a convolution, namely

ut − utxx + ux + λ(u ∗ u)x = 0, x ∈ R, (4.12)

where λ ∈ R is a constant and

(u ∗ v)(x) =

∫ ∞

−∞
u(x− y)v(y)dy for x ∈ R.

A UCP can be derived without any restriction on the initial data.

Theorem 4.3. Assume that λ 6= 0. Let u ∈ C1([0, T ];H1(R)) be a solution of (4.12) such that

u(x, t) = 0 for |x| > L, t ∈ (0, T ). (4.13)

Then u ≡ 0.

Proof. Taking the Fourier transform of each term in (4.12) yields

(1 + ξ2)ût = −iξ(û+ λû2), ξ ∈ R, t ∈ (0, T ). (4.14)

Note that, for each t ∈ (0, T ), û(., t) and ût(., t) may be extended to C as entire functions of
exponential type at most L. Furthermore, (4.14) is still true for ξ ∈ C and t ∈ (0, T ) by analytic
continuation. To prove that u ≡ 0, it is sufficient to check that

∂kξ û(i, t) = 0 ∀k ∈ N, ∀t ∈ (0, T ). (4.15)
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Let us prove (4.15) by induction on k. First, we see that (4.14) gives that either

û(i, t) = 0 ∀t ∈ (0, T ), (4.16)

or

û(i, t) = −λ−1 ∀t ∈ (0, T ). (4.17)

Derivating with respect to ξ in (4.14) yields (the upperscript denoting the order of derivation in
ξ)

2ξût(ξ, t) + (1 + ξ2)û
(1)
t (ξ, t) = −iû(ξ, t)(1 + λû(ξ, t)) − iξû(1)(ξ, t)(1 + 2λû(ξ, t)). (4.18)

Note that ût(i, t) = 0 if either (4.16) or (4.17) hold. Combined with (4.18), this gives

û(1)(i, t) = 0, t ∈ (0, T ).

Assume now that, for some k ≥ 2,

û(l)(i, t) = 0 for t ∈ (0, T ) and any l ∈ {1, ..., k − 1}. (4.19)

Derivating k times with respect to ξ in (4.14) yields

(1 + ξ2)û
(k)
t + 2kξû

(k−1)
t + k(k − 1)û

(k−2)
t = −iξ

(
û(k) + λ

k∑

l=0

C lkû
(l)û(k−l)

)

− ik
(
û(k−1) + λ

k−1∑

l=0

C lk−1û
(l)û(k−1−l)

)
. (4.20)

From (4.19) and (4.20) we infer that

û(k)(i, t)(1 + 2λû(i, t)) = 0.

Combined to (4.16) and (4.17), this yields

û(k)(i, t) = 0.

Thus

û(k)(i, t) = 0 ∀k ≥ 1. (4.21)

(4.17) and (4.21) would imply

û(ξ, t) = −λ−1 ∀ξ ∈ C,

which contradicts the fact that û(., t) ∈ L2(R). Thus (4.16) holds and u ≡ 0. �

5. Unique continuation property for the KdV-BBM equation

In this section we prove some UCP for the following KdV-BBM equation

ut − utxx − cuxxx + qux = 0, x ∈ T, t ∈ (0, T ), (5.1)

where q ∈ L∞(0, T ;L∞(T)) is a given potential function and c 6= 0 is a given real constant.
The UCP obtained here will be used in the next section to obtain a semiglobal exponential
stabilization result for BBM with a moving damping.
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Theorem 5.1. Let c ∈ R\{0}, T > 2π/|c|, and q ∈ L∞(0, T ;L∞(T)). Let ω ⊂ T be a nonempty
open set. Assume that u ∈ L2(0, T ;H2(T)) satisfies (5.1) and

u(x, t) = 0 for a.e. (x, t) ∈ ω × (0, T ). (5.2)

Then u ≡ 0.

Proof. Let w = u− uxx ∈ L2(0, T ;L2(T)). Then (u,w) solves the following system

u− uxx = w, (5.3)

wt + cwx = (c− q)ux. (5.4)

Note that, by (5.2),

u = w = 0 a.e. on ω × (0, T ). (5.5)

Inspired in part by [1] (which was concerned with a heat-wave system1), we shall establish some
Carleman estimates for the elliptic equation (5.3) and the transport equation (5.4) with the
same singular weight. Introduce a few notations. We identify T with (0, 2π). Without loss of
generality, we can assume that c > 0 (the case c < 0 being similar), and that ω = (2π−2η, 2π+η)
for some η > 0. Let ω0 = (2π − η, 2π) ⊂ ω. Pick a time T > 2π/c, and some positive numbers
δ, ε and ρ < 1 such that

ρTc− 2ρδc − 2π + η − ε > 0. (5.6)

Pick finally a function g ∈ C∞(0, T ) such that

g(t) =





1
t for 0 < t < δ/2,
strictly decreasing for 0 < t ≤ δ,
1 for δ ≤ t < T.

Let ψ ∈ C∞(T × [0, T ]) (i.e. ψ is C∞ smooth in (x, t) and ψ(., t) is 2π-periodic in x for all
t ∈ [0, T ]) with

ψ(x, t) = (x+ ε)2 − ρc2(t− 2δ)2 for x ∈ [0, 2π − η], t ∈ [0, T ].

Let finally

ϕ(x, t) = g(t)(2e||ψ||L∞ − eψ(x,t)), (x, t) ∈ T× (0, T ],

θ(x, t) = g(t)eψ(x,t), (x, t) ∈ T× (0, T ],

where ||ψ||L∞ = ||ψ||L∞(T×(0,T )). The proof of Theorem 5.1 is outlined as follows. In the first
step, we prove a Carleman estimate for the elliptic equation (5.3) with the time-varying weight
ϕ. In the second step, we prove a Carleman estimate for the transport equation (5.4) with the
same weight. In the last step, we combine the two above Carleman estimates into a single one
for (5.1) and derive the UCP.

Step 1. Carleman estimate for the elliptic equation.

1See also [11] for some Carleman estimates for a coupled system of parabolic-hyperbolic equations.
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Lemma 5.2. There exist s0 ≥ 1 and C0 > 0 such that for all s ≥ s0 and all u ∈ L2(0, T ;H2(T)),
the following holds

∫ T

0

∫

T

[(sθ)|ux|
2 + (sθ)3|u|2]e−2sϕdxdt

≤ C0

(∫ T

0

∫

T

|uxx|
2e−2sϕdxdt+

∫ T

0

∫

ω
(sθ)3|u|2e−2sϕdxdt

)
. (5.7)

Remark 5.3. The same Carleman estimate as above with terms integrated over T only is also
valid, but with some constants C0 and s0 that could a priori depend on t. The above formulation
was preferred for the sake of clarity.

Proof of Lemma 5.2: Let v = e−sϕu and P = ∂2x. Then

e−sϕPu = e−sϕP (esϕv) = Psv + Pav

where

Psv = (sϕx)
2v + vxx, (5.8)

Pav = 2sϕxvx + sϕxxv (5.9)

denote the (formal) selfadjoint and skeweadjoint parts of e−sϕP (esϕ·). It follows that

||e−sϕPu||2 = ||Psv||
2 + ||Pav||

2 + 2(Psv, Pav)

where (f, g) =
∫ T
0

∫
T
fgdxdt, ||f ||2 = (f, f). In the sequel,

∫ T
0

∫
T
f(x, t)dxdt is denoted

∫∫
f , for

the sake of shortness. Then

(Psv, Pav) =
(
(sϕx)

2v, 2sϕxvx
)
+
(
(sϕx)

2v, sϕxxv
)

+
(
vxx, 2sϕxvx

)
+ (vxx, sϕxxv) =: I1 + I2 + I3 + I4.

After some integrations by parts in x, we obtain that

I1 = −3

∫∫
(sϕx)

2sϕxxv
2

I3 = −

∫∫
sϕxxv

2
x

I4 = −

∫∫
vx(sϕxxxv + sϕxxvx) =

∫∫
sϕxxxx

v2

2
−

∫∫
sϕxxv

2
x.

Therefore

||e−sϕPu||2 = ||Psv||
2 + ||Pav||

2 +

∫∫
[−4(sϕx)

2sϕxx + sϕxxxx]v
2 +

∫∫
(−4sϕxx)v

2
x.

We notice that
ϕx = −gψxe

ψ, ϕxx = −g[(ψx)
2 + ψxx]e

ψ,

hence there exist some numbers s0 ≥ 1, C > 0 and C ′ > 0 such that for all s ≥ s0

−4(sϕx)
2sϕxx + sϕxxxx ≥ C(sg)3 for (x, t) ∈ (0, 2π − η)× (0, T ),

−4sϕxx ≥ Csg for (x, t) ∈ (0, 2π − η)× (0, T ),
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while

| − 4(sϕx)
2sϕxx + sϕxxxx| ≤ C ′(sg)3 for (x, t) ∈ (2π − η, 2π) × (0, T ),

|4sϕxx| ≤ C ′sg for (x, t) ∈ (2π − η, 2π) × (0, T ).

We conclude that for s ≥ s0 and some constant C0 > 0

||Psv||
2 +

∫∫
[sg|vx|

2 + (sg)3|v|2] ≤ C0

(
||e−sϕPu||2 +

∫ T

0

∫

ω0

[sg|vx|
2 + (sg)3|v|2]

)
. (5.10)

Next we show that
∫∫

(sg)−1|vxx|
2 is also less than the r.h.s. of (5.10). We have

∫∫
(sg)−1|vxx|

2 ≤

∫∫
(sg)−1|Psv − (sϕx)

2v|2

≤ 2

∫∫
(sg)−1

(
|Psv|

2 + |sϕx|
4|v|2

)

≤ C

(
s−1||Psv||

2 +

∫∫
(sg)3|v|2

)
.

Combined to (5.10), this gives
∫∫

{(sg)−1|vxx|
2 + (sg)|vx|

2 + (sg)3|v|2}

≤ C

(
||e−sϕPu||2 +

∫ T

0

∫

ω0

(sg)3|v|2 +

∫ T

0

∫

ω0

sg|vx|
2

)
(5.11)

where C does not depend on s and v. Finally, we show that we can drop the last term in the
r.h.s. of (5.11). Let ξ ∈ C∞

0 (ω) with 0 ≤ ξ ≤ 1 and ξ(x) = 1 for x ∈ ω0. Then
∫ T

0

∫

ω0

g|vx|
2 ≤

∫ T

0

∫

ω
gξ|vx|

2

≤ −

∫ T

0

∫

ω
g(ξxvx + ξvxx)v

≤
1

2

∫ T

0

∫

ω
gξxxv

2 −

∫ T

0

∫

ω
gξvxxv

so that

2

∫ T

0

∫

ω0

sg|vx|
2 ≤ ||ξxx||L∞(T)

∫ T

0

∫

ω
(sg)|v|2 + κ

∫ T

0

∫

ω
(sg)−1|vxx|

2 + κ−1

∫ T

0

∫

ω
(sg)3|v|2 (5.12)

where κ > 0 is a constant that can be chosen as small as desired. Combining (5.11) and (5.12)
with κ small enough gives for s ≥ s0 (with a possibly increased value of s0) and some constant
C (that does not depend on s and v)

∫∫
{(sg)−1|vxx|

2 + (sg)|vx|
2 + (sg)3|v|2} ≤ C

(
||e−sϕPu||2 +

∫ T

0

∫

ω
(sg)3|v|2

)
. (5.13)

Replacing v by e−sϕu in (5.13) gives at once (5.7). The proof of Lemma 5.2 is complete. �
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Step 2. Carleman estimate for the transport equation.
The functions g, ψ, ϕ and θ are the same as those in Lemma 5.2.

Lemma 5.4. There exist s1 ≥ s0 and C1 > 0 such that for all s ≥ s1 and all w ∈ H1(T×(0, T )),
the following holds

∫ T

0

∫

T

(sθ)|w|2e−2sϕdxdt ≤ C1

(∫ T

0

∫

T

|wt + cwx|
2e−2sϕdxdt+

∫ T

0

∫

ω
(sθ)2|w|2e−2sϕdxdt

)
.

(5.14)

Proof of Lemma 5.4: The proof is divided into two parts corresponding to the estimates for
t ∈ [0, δ] and for t ∈ [δ, T ]. The main result in each part is stated in a claim. Let v = e−sϕw
and P = ∂t + c∂x. Then

e−sϕPw = e−sϕP (esϕv)

= (sϕtv + csϕxv) + (vt + cvx)

=: Psv + Pav.

Claim 4.
∫ δ

0

∫

T

(sθ)2|v|2dxdt

≤ C

(∫ δ

0

∫

T

|e−sϕPw|2dxdt+

∫

T

(1− ξ)2(sθ)|v|2|t=δdx+

∫ δ

0

∫

ω
(sθ)2|v|2dxdt

)
. (5.15)

To prove the claim, we compute in several ways

I =

∫ δ

0

∫

T

(e−sϕPw)(1 − ξ)2sθv dxdt.

We split I into

I =

∫ δ

0

∫

T

(Psv)(1− ξ)2sθv dxdt+

∫ δ

0

∫

T

(Pav)(1− ξ)2sθv dxdt =: I1 + I2.

Then

I1 =

∫ δ

0

∫

T

(ϕt + cϕx)(1 − ξ)2s2θv2 dxdt

=

∫ δ

0

∫

T

[g′(2e||ψ||L∞ − eψ)− g(ψt + cψx)e
ψ](1− ξ)2s2geψv2 dxdt.

On the other hand

I2 =

∫ δ

0

∫

T

(vt + cvx)(1 − ξ)2(sgeψv) dxdt

= −

∫ δ

0

∫

T

s[g′eψ + g(ψt + cψx)e
ψ](1 − ξ)2

v2

2
dxdt

+
1

2

∫

T

(1− ξ)2sgeψ|v|2|t=δdx+

∫ δ

0

∫

T

csξx(1− ξ)geψv2dxdt
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where we used the fact that e−sϕ = O(e−C/t) as t→ 0+ for some constant C > 0. Note that for
x ∈ [0, 2π − η] and t ∈ (0, δ)

ψt + cψx = 2c(x+ ε)− 2ρc2(t− 2δ) > 2c(ε+ ρcδ) > 0

while
g′(t) ≤ 0 and g(t) ≥ 1.

Thus, for s ≥ s1 ≥ s0,

g(ψt + cψx)e
ψ(s2geψ +

s

2
) ≥ 2c(ε + ρcδ)(sg)2e2ψ, x ∈ T \ ω, t ∈ (0, δ)

−g′(t)
(
(2e‖ψ‖L∞ − eψ)s2geψ −

s

2
eψ

)
≥ 0 x ∈ T, t ∈ (0, δ).

It follows that for some positive constants C,C ′

C

∫ δ

0

∫

T

(sθ)2|v|2dxdt ≤ −I +
1

2

∫

T

(1− ξ)2sgeψ|v|2|t=δdx+ C ′

∫ δ

0

∫

ω
(sθ)2|v|2dxdt. (5.16)

On the other hand, by Cauchy-Schwarz inequality, we have for any κ > 0

|I| ≤ κ−1

∫ δ

0

∫

T

|e−sϕPw|2dxdt+ κ

∫ δ

0

∫

T

(sθ)2|v|2dxdt. (5.17)

Combining (5.16) with (5.17) gives (5.15) for κ > 0 small enough. Claim 4 is proved.
Claim 5.

∫ T

δ

∫

T

(sθ)|v|2dxdt+

∫

T

(1− ξ)2(sθ)|v|2|t=δdx+

∫

T

(1− ξ)2(sθ)|v|2|t=Tdx

≤ C

(∫ T

δ

∫

T

|e−sϕPw|2dxdt+

∫ T

δ

∫

ω
(sθ)|v|2dxdt

)
. (5.18)

‖ · ‖ and (., .) denoting here the Euclidean norm and scalar product in L2(T × (δ, T )), we have
that

||e−sϕPw||2 ≥ ||Psv + Pav||
2 ≥ ||(1 − ξ)(Psv + Pav)||

2 ≥ 2((1 − ξ)Psv, (1 − ξ)Pav). (5.19)

Next we compute

((1− ξ)Psv, (1 − ξ)Pav) =

∫ T

δ

∫

T

(1− ξ)2s(ϕt + cϕx)v(vt + cvx) dxdt

= −
s

2

∫ T

δ

∫

T

(1− ξ)2(ϕtt + 2cϕxt + c2ϕxx)v
2dxdt

+

∫

T

(1− ξ)2s(ϕt + cϕx)
v2

2
dx

∣∣∣∣
T

δ

+

∫ T

δ

∫

T

cξx(1− ξ)s(ϕt + cϕx)v
2dxdt. (5.20)

Recall that ξ ∈ C∞
0 (ω) with 0 ≤ ξ ≤ 1 and ξ(x) = 1 for x ∈ ω0, and that g(t) = 1 for δ ≤ t ≤ T ,

so that
ϕ(x, t) = 2e||ψ||L∞ − eψ(x,t) for x ∈ T, t ∈ [δ, T ].

We have that

ϕt + cϕx = −(ψt + cψx)e
ψ = −2c(x+ ε− ρc(t− 2δ))eψ for x ∈ [0, 2π − η], t ∈ [δ, T ].
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For t = δ

−s(ϕt + cϕx)(x, δ) > 2c(ε + ρcδ)seψ > 0 for x ∈ (0, 2π − η),

while for t = T , by (5.6),

s(ϕt + cϕx)(x, T ) > 2c(ρTc− 2ρδc − 2π + η − ε)seψ > 0 for x ∈ (0, 2π − η).

Therefore

∫

T

(1− ξ)2s(ϕt + cϕx)
v2

2

∣∣∣∣
T

δ

≥ C

(∫

T

(1− ξ)2sθ|v|2|t=δdx+

∫

T

(1− ξ)2sθ|v|2|t=Tdx

)
. (5.21)

Next we compute

ϕtt + 2cϕxt + c2ϕxx = −{(ψt + cψx)
2 + (ψtt + c2ψxx)}e

ψ

≤ 2(ρ− 1)c2eψ for x ∈ (0, 2π − η),

which yields

−
s

2

∫ T

δ

∫

T

(1− ξ)2(ϕtt + 2cϕxt + c2ϕxx)|v|
2dxdt ≥ |1− ρ|c2

∫ T

δ

∫

T

(1− ξ)2sθ|v|2dxdt. (5.22)

Claim 5 follows from (5.19)-(5.22).
We infer from Claim 4 and Claim 5 that for some constants s1 ≥ s0 and C1 > 0 we have for

all s ≥ s1
∫ T

0

∫

T

(sθ)|v|2dxdt ≤ C1

(∫ T

0

∫

T

|e−sϕPw|2dxdt+

∫ T

0

∫

ω
(sθ)2|v|2dxdt

)
. (5.23)

Replacing v by e−sϕw in (5.23) gives at once (5.14). The proof of Lemma 5.4 is complete.

Step 3. We would like to apply Lemma 5.2 to u and Lemma 5.4 to w = u−uxx ∈ L2(0, T ;L2(T)),
which has not the regularity required. Note, however, that (5.14) is still true when w and
f := wt + cwx are in L2(0, T ;L2(T)). Indeed, in that case w ∈ C([0, T ];L2(T)), and if (wn0 ) and
(fn) are two sequences in H1(T) and L2(0, T ;H1(T)) respectively, such that

wn0 → w(0) in L2(T),

fn → f in L2(0, T ;L2(T)),

then the solution wn ∈ C([0, T ];H1(T)) of

wnt + cwnx = fn,

wn(0) = wn0

satisfies wn ∈ H1(T × (0, T )) and wn → w in C([0, T ];L2(T)), so that we can apply (5.14) to
wn and next pass to the limit n→ ∞ in (5.14).
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Here, u ∈ L2(0, T ;H2(T)), w ∈ L2(0, T ;L2(T)) and wt + cwx = (c − q)ux ∈ L2(0, T ;L2(T)).
Combining (5.3), (5.4), (5.5), (5.7), and (5.14), we obtain for s ≥ s1 that

∫ T

0

∫

T

[(sθ)|ux|
2 + (sθ)3|u|2 + (sθ)|w|2]e−2sϕdxdt

≤ C

∫ T

0

∫

T

[|u|2 + |w|2 + |(c− q)ux|
2]e−2sϕdxdt. (5.24)

We conclude that u = w = 0 on T× (0, T ) by choosing s ≥ s1 large enough. �

Corollary 5.5. The same conclusion as in Theorem 5.1 holds when u ∈ L2(0, T ;H2(T)) is
replaced by u ∈ L∞(0, T ;H1(T)).

Proof. We proceed as in [40]. Since u and w := u−uxx are not regular enough to apply Lemmas
5.2 and 5.4, we smooth them by using some convolution in time. For any function v = v(x, t)
and any number h > 0, we set

v[h](x, t) =
1

h

∫ t+h

t
v(x, s) ds.

Recall that if v ∈ Lp(0, T ;V ), where 1 ≤ p ≤ +∞ and V denotes any Banach space, then

v[h] ∈W 1,p(0, T − h;V ), ||v[h]||Lp(0,T−h;V ) ≤ ||v||Lp(0,T ;V ), and for p <∞ and T ′ < T

v[h] → v in Lp(0, T ′;V ) as h→ 0.

In the sequel, v
[h]
t denotes (v[h])t, v

[h]
x denotes (v[h])x, etc. Pick any T ′ ∈ (2π|c| , T ) such that (5.6)

still holds with T replaced by T ′, and define the functions g, ψ, ϕ, and θ as above, but with T
replaced by T ′. Then for any positive number h < h0 = T − T ′, u[h] ∈W 1,∞(0, T ′;H1(T)), and
it solves

u
[h]
t − u

[h]
txx − cu[h]xxx + (qux)

[h] = 0 in D′(0, T ′;H−2(T)), (5.25)

u[h](x, t) = 0 (x, t) ∈ ω × (0, T ′). (5.26)

From (5.25), we infer that

u[h]xxx = c−1
(
u
[h]
t − u

[h]
txx + (qux)

[h]
)
∈ L∞(0, T ′;H−1(T)),

hence

u[h] ∈ L∞(0, T ′;H2(T)). (5.27)

This yields, with (5.3)-(5.4),

w[h] = u[h] − u[h]xx ∈ L∞(0, T ′;L2(T)), (5.28)

w
[h]
t + cw[h]

x =
(
(c− q)ux

)[h]
∈W 1,∞(0, T ;L2(T)). (5.29)
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From (5.27), (5.28), (5.29) and Lemmas 5.2 and 5.4, we infer that there exist some constants
s1 > 0 and C1 > 0 such that for all s ≥ s1 and all h ∈ (0, h0), we have

∫ T ′

0

∫

T

(
(sθ)|u[h]x |2 + (sθ)3|u[h]|2 + (sθ)|w[h]|2

)
e−2sϕdxdt

≤ C1

∫ T ′

0

∫

T

(
|u[h]|2 + |w[h]|2 + |((c − q)ux)

[h]|2
)
e−2sϕdxdt

≤ C1

∫ T ′

0

∫

T

(
|u[h]|2 + |w[h]|2 + 2|(c − q)u[h]x |2 + 2|((c − q)ux)

[h] − (c− q)u[h]x |2
)
e−2sϕdxdt. (5.30)

Comparing the powers of s in (5.30), we obtain that for s ≥ s2 > s1, h ∈ (0, h0) and some
constant C2 > C1 (that does not depend on s, h)

∫ T ′

0

∫

T

(
(sθ)|u[h]x |2 + (sθ)3|u[h]|2 + (sθ)|w[h]|2

)
e−2sϕdxdt

≤ C2

∫ T ′

0

∫

T

|((c − q)ux)
[h] − (c− q)u[h]x |2e−2sϕdxdt.

Fix s to the value s2, and let h→ 0. We claim that
∫ T ′

0

∫

T

|((c − q)ux)
[h] − (c− q)u[h]x |2e−2s2ϕ → 0 as h→ 0.

Indeed, as h→ 0,

((c − q)ux)
[h] → (c− q)ux in L2(0, T ′;L2(T)),

(c− q)u[h]x → (c− q)ux in L2(0, T ′;L2(T)),

while e−2s2ϕ ≤ 1. Therefore,
∫ T ′

0

∫

T

θ3|u[h]|2e−2s2ϕdxdt → 0 as h→ 0.

On the other hand, u[h] → u in L2(0, T ′;L2(T)) and θ3e−2s2ϕ is bounded on T× (0, T ′), so that
∫ T ′

0

∫

T

θ3|u[h]|2e−2s2ϕdxdt →

∫ T ′

0

∫

T

θ3|u|2e−2s2ϕdxdt

as h→ 0. We conclude that u ≡ 0 in T× (0, T ′). As T ′ may be taken arbitrarily close to T , we
infer that u ≡ 0 in T× (0, T ), as desired. �

6. Control and Stabilization of the KdV-BBM equation

In this section we are concerned with the control properties of the system

ut − utxx − cuxxx + (c+ 1)ux + uux = a(x)h, x ∈ T, t ≥ 0, (6.1)

u(x, 0) = u0(x), (6.2)

where c ∈ R \ {0} and a ∈ C∞(T) is a given nonnul function. Let

ω = {x ∈ T; a(x) 6= 0} 6= ∅. (6.3)
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6.1. Exact controllability. The first result is a local controllability result in large time.

Theorem 6.1. Let a ∈ C∞(T) with a 6= 0, s ≥ 0 and T > 2π/|c|. Then there exists a δ > 0
such that for any u0, uT ∈ Hs(T) with

||u0||Hs + ||uT ||Hs < δ,

one can find a control input h ∈ L2(0, T ;Hs−2(T)) such that the system (6.1)-(6.2) admits a
unique solution u ∈ C([0, T ],Hs(T)) satisfying u(·, T ) = uT .

Proof. The result is first proved for the linearized equation, and next extended to the nonlinear
one by a fixed-point argument.
Step 1. Exact controllability of the linearized system

We first consider the exact controllability of the linearized system

ut − utxx − cuxxx + (c+ 1)ux = a(x)h, (6.4)

u(x, 0) = u0(x), (6.5)

in Hs(T) for any s ∈ R. Let A = (1− ∂2x)
−1(c∂3x − (c+ 1)∂x) with domain D(A) = Hs+1(T) ⊂

Hs(T). The operator A generates a group of isometries {W (t)}t∈R in Hs(T), with

W (t)v =

∞∑

k=−∞

e
−it

ck3+(c+1)k

k2+1 v̂ke
ikx

for any

v =

∞∑

k=−∞

v̂ke
ikx ∈ Hs(T).

The system (6.4)-(6.5) may be cast into the following integral form

u(t) =W (t)u0 +

∫ t

0
W (t− τ)(1− ∂2x)

−1[a(x)h(τ)]dτ.

We proceed as in [32]. Take h(x, t) in (6.4) to have the following form

h(x, t) = a(x)

∞∑

j=−∞

fjqj(t)e
ijx (6.6)

where fj and qj(t) are to be determined later. Then the solution u of the equation (6.4) can be
written as

u(x, t) =
∞∑

k=−∞

ûk(t)e
ikx

with ûk(t) solves

d

dt
ûk(t) + ikσ(k)ûk(t) =

1

1 + k2

∞∑

j=−∞

fjqj(t)mj,k (6.7)

where σ(k) = ck2+c+1
1+k2

, and

mj,k =
1

2π

∫

T

a2(x)ei(j−k)xdx.
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Thus

ûk(T )− e−ikσ(k)T ûk(0) =
1

1 + k2

∞∑

j=−∞

fjmj,k

∫ T

0
e−ikσ(k)(T−τ)qj(τ)dτ

or

ûk(T )e
ikσ(k)T − ûk(0) =

1

1 + k2

∞∑

j=−∞

fjmj,k

∫ T

0
eikσ(k)τ qj(τ)dτ.

It may occur that the eigenvalues

λk = ikσ(k), k ∈ Z

are not all different. If we count only the distinct values, we obtain the sequence (λk)k∈I, where
I ⊂ Z has the property that λk1 6= λk2 for any k1, k2 ∈ I with k1 6= k2. For each k1 ∈ Z set

I(k1) = {k ∈ Z; kσ(k) = k1σ(k1)}

and m(k1) = |I(k1)| (the number of elements in I(k1)). Clearly, there exists some integer k∗

such that k ∈ I if |k| > k∗. Thus there are only finite many integers in I, say kj , j = 1, ..., n,
such that one can find another integer k 6= kj with λk = λkj . Let

Ij = {k ∈ Z; k 6= kj , λk = λkj}, j = 1, 2, ..., n.

Then

Z = I ∪ I1 ∪ ... ∪ In.

Note that Ij contains at most two integers, for m(kj) ≤ 3. We write

Ij = {kj,1, kj,m(kj)−1} j = 1, 2, ..., n

and rewrite kj as kj,0. Let

pk(t) := e−ikσ(k)t, k = 0,±1,±2, ...

Then the set

P := {pk(t); k ∈ I}

forms a Riesz basis for its closed span, PT , in L
2(0, T ) if

T >
2π

|c|
·

Let L := {qj(t); j ∈ I} be the unique dual Riesz basis for P in PT ; that is, the functions in L

are the unique elements of PT such that
∫ T

0
qj(t)pk(t)dt = δkj, j, k ∈ I.

In addition, we choose

qk = qkj if k ∈ Ij .

For such choice of qj(t), we have then, for any k ∈ Z,

ûk(T )e
ikσ(k)T − ûk(0) =

1

1 + k2
fkmk,k if k ∈ I \ {k1, ..., kn}; (6.8)
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ûkj,q(T )e
ikjσ(kj )T−ûkj,q(0) =

1

1 + k2j,q

m(kj)−1∑

l=0

fkj,lmkj,l,kj,q if k = kj,q, j = 1, ..., n, q = 0, ...,m(kj)−1.

(6.9)
It is well known that for any finite set J ⊂ Z, the Gram matrix AJ = (mp,q)p,q∈J is defi-
nite positive, hence invertible. It follows that the system (6.8)-(6.9) admits a unique solution
~f(..., f−2, f−1, f0, f1, f2, ...). Since

mk,k =
1

2π

∫

T

a2(x)dx =: µ 6= 0,

we have that

fk =
1 + k2

µ

(
ûk(T )e

ikσ(k)T − ûk(0)
)

for |k| > k∗

Note that

||h||2L2(0,T ;Hs−2(T)) =

∫ T

0
||a(x)

∞∑

j=−∞

fjqj(t)e
ijx||2Hs−2dt

≤ C

∫ T

0

∞∑

j=−∞

(1 + j2)s−2|fjqj(t)|
2

≤ C

∞∑

j=−∞

(1 + j2)s−2|fj|
2

≤ C
(
||u(0)||2Hs + ||u(T )||2Hs

)
.

This analysis leads us to the following controllability result for the linear system (6.4)-(6.5).

Proposition 6.2. Let s ∈ R and T > 2π
|c| be given. For any u0, uT ∈ Hs(T), there exists a

control h ∈ L2(0, T ;Hs−2(T)) such that the system (6.4)-(6.5) admits a unique solution u ∈
C([0, T ];Hs(T)) satisfying

u(x, T ) = uT (x).

Moreover, there exists a constant C > 0 depending only on s and T such that

‖h‖L2(0,T ;Hs−2(T)) ≤ C (‖u0‖Hs + ‖uT ‖Hs) .

Introduce the (bounded) operator Φ : Hs(T)×Hs(T) → L2(0, T ;Hs−2(T)) defined by

Φ(u0, uT )(t) = h(t),

where h is given by (6.6) and ~f is the solution of (6.8)-(6.9) with (û0)k and (ûT )k substitued to
ûk(0) and ûk(T ), respectively.

Then h = Φ(u0, uT ) is a control driving the solution u of (6.4)-(6.5) from u0 at t = 0 to uT
at t = T .

Step 2. Local exact controllability of the BBM equation.
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We proceed as in [37]. Pick any time T > 2π/|c|, and any u0, uT ∈ Hs(T) (s ≥ 0) satisfying

‖u0‖Hs ≤ δ, ‖uT ‖Hs ≤ δ

with δ to be determined. For any u ∈ C([0, T ];Hs(T)), we set

ω(u) = −

∫ T

0
W (T − τ)(1 − ∂2x)

−1(uux)(τ) dτ.

Then

||ω(u)− ω(v)||Hs ≤ CT ||u+ v||L∞(0,T ;Hs(T))||u− v||L∞(0,T ;Hs(T)).

Furthermore,

W (t)u0 +

∫ t

0
W (t− τ)(1− ∂2x)

−1[a(x)Φ(u0, uT − ω(u))− uux](τ)dτ

=

{
u0 if t = 0,
ω(u) + (uT − ω(u)) = uT if t = T.

We are led to consider the nonlinear map

Γ(u) =W (t)u0 +

∫ t

0
W (t− τ)(1− ∂2x)

−1[a(x)Φ(u0, uT − ω(u)) − uux](τ) dτ.

The proof of Theorem 6.1 will be complete if we can show that the map Γ has a fixed point in
some closed ball of the space C([0, T ];Hs(T)). For any R > 0, let

BR = {u ∈ C([0, T ];Hs(T)); ||u||C([0,T ];Hs(T)) ≤ R}.

From the above calculations, we see that there exist two positive constants C1, C2 (depending
on s and T , but not on R, ||u0||Hs or ||uT ||Hs) such that for all u, v ∈ BR

||Γ(u)||C([0,T ];Hs(T)) ≤ C1

(
||u0||Hs + ||uT ||Hs

)
+ C2R

2,

||Γ(u)− Γ(v)||C([0,T ];Hs(T)) ≤ C2R||u− v||C([0,T ];Hs(T)).

Picking R = (2C2)
−1 and δ = (8C1C2)

−1, we obtain for u0, uT satisfying

‖u0‖Hs ≤ δ, ‖uT ‖Hs ≤ δ

and u, v ∈ BR that

||Γ(u)||C([0,T ];Hs(T)) ≤ R (6.10)

||Γ(u)− Γ(v)||C([0,T ];Hs(T)) ≤
1

2
||u− v||C([0,T ];Hs(T)). (6.11)

It follows from the contraction mapping theorem that Γ has a unique fixed point u in BR. Then
u satisfies (6.1)-(6.2) with h = Φ(u0, uT − ω(u)) and u(T ) = uT , as desired. The proof of
Theorem 6.1 is complete. �
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6.2. Exponential stabilizability. We are now concerned with the stabilization of (6.1)-(6.2)
with a feedback law h = h(u). To guess the expression of h, it is convenient to write the
linearized system (6.4)-(6.5) as

ut = Au+Bk, (6.12)

u(0) = u0 (6.13)

where k(t) = (1− ∂2x)
−1h(t) ∈ L2(0, T ;Hs(T)) is the new control input, and

B = (1− ∂2x)
−1a(1− ∂2x) ∈ L(Hs(T)). (6.14)

We already noticed that A is skew-adjoint inHs(T), and that (6.12)-(6.13) is exactly controllable
in Hs(T) (with some control functions k ∈ L2(0, T ;Hs(T))) for any s ≥ 0. If we choose the
simple feedback law

k = −B∗,su, (6.15)

the resulting closed-loop system

ut = Au−BB∗,su, (6.16)

u(0) = u0 (6.17)

is exponentially stable in Hs(T) (see e.g. [28, 38].) In (6.15), B∗,s denotes the adjoint of B in
L(Hs(T)). Easy computations show that

B∗,su = (1− ∂2x)
1−sa(1− ∂2x)

s−1u. (6.18)

In particular
B∗,1u = au.

Let Ã = A−BB∗,1, where (BB∗,1)u = (1− ∂2x)
−1[a(1− ∂2x)(au)]. Since BB

∗,1 ∈ L(Hs(T)) and

A is skew-adjoint in Hs(T), Ã is the infinitesimal generator of a group {Wa(t)}t∈R on Hs(T)
(see e.g. [35, Theorem 1.1 p. 76]). We first show that the closed-loop system (6.16)-(6.17) is
exponentially stable in Hs(T) for all s ≥ 1.

Lemma 6.3. Let a ∈ C∞(T) with a 6= 0. Then there exists a constant γ > 0 such that for any
s ≥ 1, one can find a constant Cs > 0 for which the following holds for all u0 ∈ Hs(T)

‖Wa(t)u0‖Hs ≤ Cse
−γt‖u0‖Hs for all t ≥ 0. (6.19)

Proof. (6.19) is well known for s = 1 (see e.g. [28]). Assume that it is true for some s ∈ N
∗, and

pick any u0 ∈ Hs+1(T). Let v0 = Ãu0 ∈ Hs(T). Then

||Wa(t)v0||Hs ≤ Cse
−γt||v0||Hs .

Clearly,
Wa(t)v0 = ÃWa(t)u0 = AWa(t)u0 −BB∗,1Wa(t)u0,

hence

||AWa(t)u0||Hs ≤ ||Wa(t)v0||Hs + ||BB∗,1||L(Hs)||Wa(t)u0||Hs ≤ Ce−γt||u0||Hs+1 ·

Therefore
||Wa(t)u0||Hs+1 ≤ Cs+1e

−γt||u0||Hs+1 ,

as desired. The estimate (6.19) is thus proved for any s ∈ N
∗. It may be extended to any

s ∈ [1,+∞) by interpolation. �
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Plugging the feedback law k = −B∗,1u = −au in the nonlinear equation gives the following
closed-loop system

ut − utxx − cuxxx + (c+ 1)ux + uux = −a(1− ∂2x)[au], (6.20)

u(x, 0) = u0(x). (6.21)

We first show that the system (6.20)-(6.21) is globally well-posed in the space Hs(T) for any
s ≥ 0.

Theorem 6.4. Let s ≥ 0 and T > 0 be given. For any u0 ∈ Hs(T), the system (6.20)-(6.21)
admits a unique solution u ∈ C([0, T ];Hs(T)).

The following bilinear estimate from [43] will be very helpful.

Lemma 6.5. Let w ∈ Hr(T) and v ∈ Hr′(T) with 0 ≤ r ≤ s, 0 ≤ r′ ≤ s and 0 ≤ 2s−r−r′ < 1
4 .

Then

‖(1 − ∂2x)
−1∂x(wv)‖Hs ≤ cr,r′,s‖w‖Hr‖v‖Hr′ .

In particular, if w ∈ Hr(T) and v ∈ Hs(T) with 0 ≤ r ≤ s < r + 1
4 , then

‖(1 − ∂2x)
−1∂x(wv)‖Hs ≤ cr,s‖w‖Hr‖v‖Hs .

Proof of Theorem 6.4:

Step 1 : The system is locally well-posed in the space Hs(T):

Let s ≥ 0 and R > 0 be given. There exists a T ∗ depending only on s and R such that for
any u0 ∈ H

s(T) with

‖u0‖Hs ≤ R,

the system (6.20)-(6.21) admits a unique solution u ∈ C([0, T ∗];Hs(T)). Moreover, T ∗ → ∞ as
R→ 0.

Rewrite (6.20)-(6.21) in its integral form

u(t) =Wa(t)u0 −

∫ t

0
Wa(t− τ)(1− ∂2x)

−1(uux)(τ)dτ. (6.22)

For given θ > 0, define a map Γ on C([0, θ];Hs(T)) by

Γ(v) =Wa(t)u0 −

∫ t

0
Wa(t− τ)(1− ∂2x)

−1(vvx)(τ)dτ

for any v ∈ C([0, θ];Hs(T)). Note that, according to Lemma 6.3 and Lemma 6.5,

‖Wa(t)u0‖C([0,θ];Hs(T)) ≤ Cs‖u0‖Hs ,

and∥∥∥∥
∫ t

0
Wa(t− τ)(1 − ∂2x)

−1(vvx)(τ)dτ

∥∥∥∥
C([0,θ];Hs(T))

≤ Csθ sup
0≤t≤θ

‖(1 − ∂2x)
−1(vvx)(t)‖Hs

≤
Cscs,s

2
θ‖v‖2C([0,θ];Hs(T)).
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Thus, for given R > 0 and u0 ∈ Hs(T) with ‖u0‖Hs ≤ R, one can choose T ∗ = [2cs,s(1+Cs)R]
−1

such that Γ is a contraction mapping in the ball

B := {v ∈ C([0, T ∗];Hs(T)); ‖v‖C([0,T ∗];Hs(T)) ≤ 2CsR}

whose fixed point u is the desired solution.

Step 2: The system is globally well-posed in the space Hs(T) for any s ≥ 1.

To this end, it suffices to establish the following global a priori estimate for smooth solutions
of the system (6.20)-(6.21):

Let s ≥ 1 and T > 0 be given. There exists a continuous nondecreasing function

αs,T : R+ → R
+

such that any smooth solution u of the system (6.20)-(6.21) satisfies

sup
0≤t≤T

‖u(·, t)‖Hs ≤ αs,T (‖u0‖Hs). (6.23)

Estimate (6.23) holds obviously when s = 1 because of the energy identity

||u(t)||2H1 − ||u0||
2
H1 = −2

∫ t

0
||au(τ)||2H1dτ ∀t ≥ 0.

When 1 < s ≤ s1 := 1 + 1
8 , applying Lemma 6.3 and Lemma 6.5 to (6.22) yields that for any

0 < t ≤ T ,

‖u(·, t)‖Hs ≤ Cs‖u0‖Hs +
Csc1,s

2

∫ t

0
‖u(·, τ)‖H1‖u(·, τ)‖Hsdτ

≤ C‖u0‖Hs + Cα1,T (‖u0‖H1)

∫ t

0
‖u(·, τ)‖Hsdτ.

Estimate (6.23) for 1 < s ≤ s1 follows by using Gronwall’s lemma. Similarly, for s1 < s ≤ s2 :=
1 + 2

8 ,

‖u(·, t)‖Hs ≤ Cs‖u0‖Hs +
Cscs1,s

2

∫ t

0
‖u(·, τ)‖Hs1 ‖u(·, τ)‖Hsdτ

≤ C‖u0‖Hs + Cαs1,T (‖u0‖Hs1 )

∫ t

0
‖u(·, τ)‖Hsdτ.

Estimate (6.23) thus holds for 1 < s ≤ s2. Continuing this argument, we can show that the
estimate (6.23) holds for 1 < s ≤ sk := 1 + k

8 for any k ≥ 1.

Step 3: The system (6.20)-(6.21) is globally well-posed in the space Hs(T) for any 0 ≤ s < 1.

To see it is true, as in [43], we decompose any u0 ∈ Hs(T) as

u0 =
∑

k∈Z

ûke
ikx =

∑

|k|≤k0

+
∑

|k|>k0

=: w0 + v0

with v0 ∈ Hs(T) satisfying
‖v0‖Hs ≤ δ
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for some small δ > 0 to be chosen, and w0 ∈ H1(T). Consider the following two initial value
problems {

vt − vtxx − cvxxx + (c+ 1)vx + vvx = −a(1− ∂2x)[av],

v(x, 0) = v0(x)
(6.24)

and {
wt − wtxx − cwxxx + (c+ 1)wx + wwx + (vw)x = −a(1− ∂2x)[aw],

w(x, 0) = w0(x).
(6.25)

By the local well-posedness established in Step 1, for given T > 0, if δ is small enough, then
(6.24) admits a unique solution v ∈ C([0, T ];Hs(T)). For (6.25), with v ∈ C([0, T ];Hs(T)), by
using Lemma 6.3, the estimate

||(1 − ∂2x)
−1∂x(wv)||H1 ≤ C||wv||L2 ≤ C||w||H1 ||v||Hs

and the contraction mapping principle, one can show first that it is locally well-posed in the
space H1(T). Then, for any smooth solution w of (6.25) it holds that

1

2

d

dt
‖w(·, t)‖2H1 −

∫

T

v(x, t)w(x, t)wx(x, t)dx = −‖a(·)w(·, t)‖2H1 ,

which implies that

‖w(·, t)‖2H1 ≤ ‖w0‖
2
H1 exp

(
C

∫ t

0
‖v(·, τ)‖L2dτ

)

for any t ≥ 0. The above estimate can be extended to any w0 ∈ H1(T) by a density argument.
Consequently, for w0 ∈ H1(T) and v ∈ C([0, T ];Hs(T)), (6.25) admits a unique solution w ∈
C([0, T ];H1(T)). Thus u = w + v ∈ C([0, T ];Hs(T)) is the desired solution of system (6.20)-
(6.21). The proof of Theorem 6.4 is complete. �

Next we show that the system (6.20)-(6.21) is locally exponentially stable in Hs(T) for any
s ≥ 1.

Proposition 6.6. Let s ≥ 1 be given and γ > 0 be as given in Lemma 6.3. Then there exist
two numbers δ > 0 and C ′

s depending only on s such that for any u0 ∈ Hs(T) with

‖u0‖Hs ≤ δ,

the corresponding solution u of the system (6.20)-(6.21) satisfies

‖u(·, t)‖Hs ≤ C ′
se

−γt‖u0‖Hs ∀t ≥ 0.

Proof. We proceed as in [36]. As in the proof of Theorem 6.4, rewrite the system (6.20)-(6.21)
in its integral form

u(t) =Wa(t)u0 −
1

2

∫ t

0
Wa(t− τ)(1− ∂2x)

−1∂x(u
2)(τ)dτ

and consider the map

Γ(v) :=Wa(t)u0 −
1

2

∫ t

0
Wa(t− τ)(1− ∂2x)

−1∂x(v
2)(τ)dτ.
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For given s ≥ 1, by Lemma 6.3 and Lemma 6.5, there exists a constant Cs > 0 such that

‖Γ(v)(·, t)‖Hs ≤ Cse
−γt‖u0‖Hs +

Cscs,s
2

∫ t

0
e−γ(t−τ)‖v(·, τ)‖2Hsdτ

≤ Cse
−γt‖u0‖Hs +

Cscs,s
2

sup
0≤τ≤t

‖eγτ v(·, τ)‖2Hs

∫ t

0
e−γ(t+τ)dτ

≤ Cse
−γt‖u0‖Hs +

Cscs,s
2γ

e−γt(1− e−γt) sup
0≤τ≤t

‖eγτv(·, τ)‖2Hs

for any t ≥ 0. Let us introduce the Banach space

Ys := {v ∈ C([0,∞);Hs(T)) : ||v||Ys := sup
0≤t<∞

‖eγtv(·, t)‖Hs <∞}.

For any v ∈ Ys,

‖Γ(v)‖Ys ≤ Cs‖u0‖Hs +
Cscs,s
2γ

‖v‖2Ys .

Choose
δ =

γ

4C2
s cs,s

, R = 2Csδ.

Then, if ‖u0‖ ≤ δ, for any v ∈ Ys with ‖v‖Ys ≤ R,

‖Γ(v)‖Ys ≤ Csδ +
Cscs,s
2γ

(2Csδ)R ≤ R.

Moreover, for any v1, v2 ∈ Ys with ‖v1‖Ys ≤ R and ‖v2‖Ys ≤ R,

‖Γ(v1)− Γ(v2)‖Ys ≤
1

2
‖v1 − v2‖Ys .

The map Γ is a contraction whose fixed point u ∈ Ys is the desired solution satisfying

‖u(·, t)‖Hs ≤ 2Cse
−γt‖u0‖Hs

for any t ≥ 0. �

Now we turn to the issue of the global stability of the system (6.20)-(6.21). First we show
that the system (6.20)-(6.21) is globally exponentially stable in the space H1(T).

Theorem 6.7. Let a ∈ C∞(T) with a 6= 0, and let γ > 0 be as in Lemma 6.3. Then for any
R0 > 0, there exists a constant C∗ > 0 such that for any u0 ∈ H1(T) with ||u0||H1 ≤ R0, the
corresponding solution u of (6.20)-(6.21) satisfies

||u(·, t)||H1 ≤ C∗e−γt||u0||H1 for all t ≥ 0. (6.26)

Theorem 6.7 is a direct consequence of the following observability inequality.

Proposition 6.8. Let R0 > 0 be given. Then there exist two positive numbers T and β such
that for any u0 ∈ H1(T) satisfying

||u0||H1 ≤ R0, (6.27)

the corresponding solution u of (6.20)-(6.21) satisfies

||u0||
2
H1 ≤ β

∫ T

0
||au(t)||2H1dt. (6.28)
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Indeed, if (6.28) holds, then it follows from the energy identity

||u(t)||2H1 = ||u0||
2
H1 − 2

∫ t

0
||au(τ)||2H1dτ ∀t ≥ 0 (6.29)

that
||u(T )||2H1 ≤ (1− 2β−1)||u0||

2
H1 .

Thus
||u(mT )||2H1 ≤ (1− 2β−1)m||u0||

2
H1

which gives by the semigroup property

||u(t)||H1 ≤ Ce−κt||u0||H1 for all t ≥ 0, (6.30)

for some positive constants C = C(R0), κ = κ(R0).
Finally, we can replace κ by the γ given in Lemma 6.3. Indeed, let t′ = κ−1 log[1 +CR0δ

−1],
where δ is as given in Proposition 6.6. Then for ‖u0‖H1 ≤ R0, ‖u(t

′)‖H1 < δ, hence for all t ≥ t′

‖u(t)‖H1 ≤ C ′
1‖u(t

′)‖H1e−γ(t−t
′) ≤ (C ′

1δ/R0)‖u0‖H1e−γ(t−t
′) ≤ C∗e−γt‖u0‖H1

where C∗ = (C ′
1δ/R0)e

γt′ . �

Now we present a proof of Proposition 6.8. Pick for the moment any T > 2π/|c| (its value
will be specified later on). We prove the estimate (6.28) by contradiction. If (6.28) is not true,
then for any n ≥ 1 (6.20)-(6.21) admits a solution un ∈ C([0, T ];H1(T)) satisfying

||un(0)||H1 ≤ R0 (6.31)

and ∫ T

0
||aun(t)||

2
H1dt <

1

n
||u0,n||

2
H1 (6.32)

where u0,n = un(0). Since αn := ||u0,n||H1 ≤ R0, one can choose a subsequence of (αn), still
denoted by (αn), such that limn→∞ αn = α. Note that αn > 0 for all n, by (6.32). Set
vn = un/αn for all n ≥ 1. Then

vn,t − vn,txx − cvn,xxx + (c+ 1)vn,x + αnvnvn,x = −a(1− ∂2x)[avn] (6.33)

and ∫ T

0
||avn||

2
H1dt <

1

n
· (6.34)

Because of
||vn(0)||H1 = 1, (6.35)

the sequence (vn) is bounded in L∞(0, T ;H1(T)), while (vn,t) is bounded in L∞(0, T ;L2(T)).
From Aubin-Lions’ lemma and a diagonal process, we infer that we can extract a subsequence
of (vn), still denoted (vn), such that

vn → v in C([0, T ];Hs(T)) ∀s < 1 (6.36)

vn → v in L∞(0, T ;H1(T)) weak∗ (6.37)

for some v ∈ L∞(0, T ;H1(T)) ∩ C([0, T ];Hs(T)) for all s < 1, Note that, by (6.36)-(6.37), we
have that

αnvn vn,x → αvvx in L∞(0, T ;L2(T)) weak ∗ . (6.38)
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Furthermore, by (6.34),
∫ T

0
||av||2H1dt ≤ lim inf

n→∞

∫ T

0
||avn||

2
H1dt = 0. (6.39)

Thus, v solves

vt − vtxx − cvxxx + (c+ 1)vx + αvvx = 0 on T× (0, T ), (6.40)

v = 0 on ω × (0, T ). (6.41)

where ω is given in (6.3). According to Corollary 5.5, v ≡ 0 on T× (0, T ).
We claim that (vn) is linearizable in the sense of [10]; that is, if (wn) denotes the sequence of

solutions to the linear KdV-BBM equation with the same initial data

wn,t − wn,txx − cwn,xxx + (c+ 1)wn,x = −a(1− ∂2x)[awn], (6.42)

wn(x, 0) = vn(x, 0), (6.43)

then
sup

0≤t≤T
||vn(t)− wn(t)||H1 → 0 as n→ ∞. (6.44)

Indeed, if dn = vn − wn, then dn solves

dn,t − dn,txx − cdn,xxx + (c+ 1)dn,x = −a(1− ∂2x)[adn]− αnvnvn,x,

dn(0) = 0.

Since ||Wa(t)||L(H1(T)) ≤ 1, we have from Duhamel formula that for t ∈ [0, T ]

||dn(t)||H1 ≤

∫ T

0
||(1− ∂2x)

−1(αnvnvn,x)(τ)||H1dτ.

Combined to (6.36) and to the fact that v ≡ 0, this gives (6.44). By Lemma 6.3, we have that

||wn(t)||H1 ≤ C1e
−γt||wn(0)||H1 for all t ≥ 0. (6.45)

From (6.45) and the energy identity for (6.42)-(6.43), namely

||wn(t)||
2
H1 − ||wn(0)||

2
H1 = −2

∫ t

0
||awn(τ)||

2
H1dτ, (6.46)

we have for Ce−λT < 1

||wn(0)||
2
H1 ≤ 2(1− C2

1e
−2γT )−1

∫ T

0
||awn(τ)||

2
H1dτ. (6.47)

Combined to (6.34) and (6.44), this yields ||vn(0)||H1 = ||wn(0)||H1 → 0, which contradicts
(6.35). This completes the proof of Proposition 6.8 and of Theorem 6.7. �

Next we show that the system (6.20)-(6.26) is exponentially stable in the space Hs(T) for any
s ≥ 1.

Theorem 6.9. Let a ∈ C∞(T) with a 6= 0 and γ > 0 be as given in Lemma 6.3. For any given
s ≥ 1 and R0 > 0, there exists a constant C > 0 depending only on s and R0 such that for any
u0 ∈ Hs(T) with ||u0||Hs ≤ R0, the corresponding solution u of (6.20)-(6.21) satisfies

‖u(·, t)‖Hs ≤ Ce−γt‖u0‖Hs for all t ≥ 0. (6.48)
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Proof. As before, rewrite the system in its integral form

u(t) =Wa(t)u0 −
1

2

∫ t

0
Wa(t− τ)(1− ∂2x)

−1(uux)(τ)dτ.

For u0 ∈ Hs(T) with ‖u0‖Hs ≤ R0, applying Lemma 6.3, Lemma 6.5 and Theorem 6.7 yields
that, for any 1 ≤ s ≤ 1 + 1

10 ,

‖u(·, t)‖Hs ≤ Cse
−γt‖u0‖Hs +

Csc1,1,s
2

∫ t

0
e−γ(t−τ)‖u(·, τ)‖2H1dτ

≤ Cse
−γt‖u0‖Hs +

Csc1,1,s(C
∗)2

2

∫ t

0
e−γ(t−τ)e−2γτ‖u0‖

2
H1dτ

≤

(
Cs +

Csc1,1,s(C
∗)2

2γ
‖u0‖H1

)
e−γt‖u0‖Hs

for any t ≥ 0. Thus the estimate (6.48) holds for 1 ≤ s ≤ m1 := 1 + 1
10 . Similarly, for

m1 ≤ s ≤ m2 := 1 + 2
10 , we have for ||u0||Hs ≤ R0

‖u(·, t)‖Hs ≤ Cse
−γt‖u0‖Hs +

Cscm1,m1,s

2

∫ t

0
e−γ(t−τ)‖u(·, τ)‖2Hm1 dτ

≤ Cse
−γt‖u0‖Hs +C(s,m1, R0)

∫ t

0
e−γ(t−τ)e−2γτ‖u0‖

2
Hm1dτ

≤
(
Cs + C(s,m1, R0)||u0||Hm1γ−1

)
e−γt‖u0‖Hs .

Thus the estimate (6.48) holds for 1 ≤ s ≤ m2 := 1 + 2
10 . Repeating this argument yields that

the estimate (6.48) holds for 1 ≤ s ≤ mk := 1 + k
10 for k = 1, 2, . . . �
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[16] L. Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis.

Springer-Verlag, Berlin, 1990.
[17] A. Khapalov, Controllability of the wave equation with moving point control, Appl. Math. Optim. 31 (1995),

no. 2, 155–175.
[18] A. Khapalov, Mobile point controls versus locally distributed ones for the controllability of the semilinear

parabolic equation, SIAM J. Cont. Optim., 40 (1) (2001) 231–252.
[19] N. A. Larkin, M. P. Vishnevskii, Dissipative initial boundary value problem for the BBM-equation, Electron.

J. Differential Equations 2008 (2008), no. 149, 1–10.
[20] C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval,

ESAIM Control Optim. Calc. Var. 16 (2010), no. 2, 356–379.
[21] C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on some compact

manifold of dimension 3, SIAM J. Math. Anal. 42 (2010), no. 2, 785–832.
[22] C. Laurent, L. Rosier, B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic

domain, Comm. Partial Differential Equations 35 (2010), no. 4, 707–744.
[23] G. Leugering, Optimal controllability in viscoelasticity of rate type, Math. Methods Appl. Sci. 8 (1986), no.

3, 368–386.
[24] G. Leugering, E. J. P. G. Schmidt, Boundary control of a vibrating plate with internal damping, Math.

Methods Appl. Sci., 11 (1989), no. 5, 573–586.
[25] F. Linares, J. Ortega, On the controllability and stabilization of the linearized Benjamin-Ono equation, ESAIM

Control Optim. Calc. Var. 11 (2005), no. 2, 204–218.
[26] F. Linares, L. Rosier, Exact controllability and stabilizability of the Benjamin-Ono equation, in preparation.
[27] J.-L. Lions, Pointwise control for distributed systems, in Control and estimation in distributed parameter

systems, edited by H. T. Banks, SIAM, 1992.
[28] K. Liu, Locally distributed control and damping for the conservative systems, SIAM J. Control Optim. 35

(1997), no. 5, 1574–1590.
[29] P. Martin, L. Rosier, P. Rouchon, Null controllability of the structurally damped wave equation with moving

point control, preprint.
[30] Y. Mammeri, Unique continuation property for the KP-BBM-II equation, Differential Integral Equations 22

(2009), no. 3-4, 393–399.
[31] S. Micu, On the controllability of the linearized Benjamin-Bona-Mahony equation, SIAM J. Control Optim.

39 (2001), no. 6, 1677–1696.
[32] S. Micu, J. Ortega, L. Rosier, B.-Y. Zhang, Control and stabilization of a family of Boussinesq systems,

Discrete Contin. Dyn. Syst. 24 (2009), no. 2, 273–313.
[33] P. J. Morrison, J. D. Meiss, J. R. Carey, Scattering of regularized-long-wave solitary waves, Phys. D 11

(1984), no. 3, 324–336.



UCP AND CONTROL FOR BBM 35

[34] P. J. Olver, Euler operators and conservation laws of the BBM equation, Math. Proc. Cambridge Philos. Soc.
85 (1979), no. 1, 143–160.

[35] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathemat-
ical Sciences, vol. 44, Springer-Verlag, 1983.

[36] A. Pazoto, L. Rosier, Stabilization of a Boussinesq system of KdV-KdV type, System & Control Letters 57

(2008), 595–601.
[37] L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM

Control Optim. Calc. Var. 2 (1997), 33–55.
[38] L. Rosier, A survey of controllability and stabilization results for partial differential equations, Revue des
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