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Abstract 

Human transport and commerce have led to an increased spread of non-indigenous 

species. Alien invasive species can have major impacts on many aspects of 

ecological systems. Therefore, the ability to predict regions potentially suitable for 

alien species, which are hence at high risk, has become a core task for successful 

management. The common waxbill Estrilda astrild is a widespread African species, 

which has been successfully introduced to many parts of the world. Herein, we used 

MAXENT software, a machine learning algorithm, to assess its current potential 

distribution based on species records compiled from various sources. Models were 

trained separately with records from the species‟ native range and from both invaded 

and native ranges. Subsequently, the models were projected onto different future 

climate change scenarios. They successfully identified the species known range as 

well as some regions that seem climatically well suited, where the common waxbill is 

not recorded yet. Assuming future conditions, the models suggest pole ward range 

shifts. However, its potential distribution within its tropical native and invasive ranges 

appears to be more complex. Although the results of both separate analyses showed 

general similarities, many differences have become obvious. Niche overlap analysis 

shows that the invasive range includes only a small fraction of the ecological space 

that can be found in the native range. Thus, we tentatively prefer the model based on 
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native locations only, but in particular we highlight the importance of the selection 

process of species records for modelling invasive species. 
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Zusammenfassung 

 

Vorhersagen zur möglichen zukünftigen Verbreitung des invasiven 

Wellenastrilds Estrilda astrild  (Passeriformes: Estrildidae) 

 

Weltweiter Handel und Mobilität haben zu einer zunehmenden Ausbreitung nicht-

heimischer Arten geführt. Invasive Arten können großen Einfluss auf zahlreiche 

Aspekte ökosystemarer Zusammenhänge haben. Deshalb ist die Fähigkeit, 

Regionen vorherzusagen, die für solche Arten potentiell geeignet und daher 

möglicherweise bedroht sind, eine Kernaufgabe erfolgreichen Managements. Der 

Wellenastrild Estrilda astrild ist eine weit verbreitete afrikanische Art, die erfolgreich in 

viele Gebiete der Welt eingeführt wurde. Mit Hilfe der Software MAXENT, einem 

Algorithmus, der auf maschinellem Lernen basiert, haben wir seine gegenwärtige, 

potentielle Verbreitung basierend auf Fundpunkten aus verschiedenen Quellen 

modelliert. Die Modelle wurden sowohl mit Nachweisen aus dem heimischen als 

auch dem invasiven und heimischen Verbreitungsgebiet gemeinsam trainiert. 

Nachfolgend wurden beide auf unterschiedliche zukünftige Klimawandelszenarien 

projiziert. Die Modelle identifizierten erfolgreich sowohl das bekannte 

Verbreitungsgebiet der Art, als auch Gebiete, die klimatisch gut geeignet erscheinen, 

in denen der Wellenastrild aber noch nicht nachgewiesen wurde. Unter zukünftigen 

Bedingungen legen die Modelle eine polwärts gerichtete Verschiebung der 

Verbreitungsgebiete nahe, obwohl die potentielle Verbreitung innerhalb der Tropen 

des heimischen und invasiven Areals komplexer erscheint. Trotz allgemeiner 

Übereinstimmung zwischen beiden Analysen wurden einige Unterschiede auffällig. 

Eine Analyse des Überlappungsbereiches der Nischen ergab, dass invasive 

Fundpunkte innerhalb des ökologischen Raumes liegen, der durch die Fundpunkte 

aus dem natürlichen Verbreitungsgebiet aufgespannt wird. Wir tendieren daher 
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vorsichtig zu dem Modell basierend auf der natürlichen Verbreitung, unterstreichen 

aber vor allem die Bedeutung des Auswahlprozesses der Fundorte für 

Modellierungen invasiver Arten. 
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Introduction 

Human transport and commerce has led to an increased spread of non-indigenous 

species (Mack et al. 2000), which can have major impacts on ecological systems by 

altering mutualistic and competitive interactions among species, ecosystem 

functions, and resource distributions (Mooney and Cleland 2001). Among exotic 

species, birds are particularly ubiquitous. Although in general, impacts on native 

species are suggested to be rather weak, also substantial impacts are observed at 

times including competition, predation, disease transmission but also mutualisms 

(Blackburn et al. 2009, chapter 7.5 and references therein). Herein, we aim to predict 

the recent and future potential distribution of the granivorous common waxbill, one of 

the most successful invaders among estrildid finches and a species that might even 

belong to the most successful among all tropical birds (see Lever 2005). Although 

studies on interactions with native species are largely lacking, granivorous 

passerines (“finches”) can be substantial predators on plant seeds (Cueto et al. 2006) 

and are thus likely to influence ecosystems extensively. Food seems to be one of the 

most important factors determining finch densities and thus making food competition 

among these birds very likely (Schluter and Repasky 1991). Competition largely 

affects assemblages of invasive avian finch communities (Lockwood and Moulton 

1994). Thus, identification of potential risk areas for a finch like the common waxbill is 

especially appealing. 

Estrilda astrild is a widespread African species (Clement et al. 1993), originally 

endemic to mainland areas south of the Sahara and some islands (Fig. 1), including 

Bioko and Mafia. Distributional gaps exist in the rainforest areas of the Congo basin, 

and more arid parts of Western Africa and the northern Sahel zone, where it seems 

to be partly replaced by Estrilda troglodytes, with which it may form a superspecies 

(together with Estrilda nigriloris and Estrilda rufibarba; Fry 2004). It is a polytypic 

species with currently 15 (Fry 2004) to 17 (Dickinson 2003) recognized subspecies, 

although these taxa intergrade and most are only slightly differentiated in colour and 

size (e.g. Goodwin 1982). Estrilda astrild favours open habitats such as savannas as 

well as areas characterized by tall grasses, and it can be common around human 

settlements (Fry 2004, Goodwin 1982). Like most estrildid finches, common waxbills 

depend on at least some small puddles for drinking and bathing (Goodwin 1982). 

Experiences from birds in captivity show that common waxbills are sensitive to low 

temperatures (below 15° C) and seem to suffer from cold-wet weather conditions in 
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particular (Steinbacher and Wolters 1965, Nicolai and Steinbacher 2002). They 

sometimes roost in nests (Fry 2004), which might maintain a favourable microclimate 

under harsher weather conditions (compare Ricklefs 1974). Otherwise, common 

waxbills are highly gregarious and, although in most parts of their range are resident 

birds, local movements and nomadism seems to be not uncommon (Fry 2004). 

Common waxbills have been introduced, with and without intent, as a result of 

the pet trade to many parts of the world (Fig. 1). These introductions often date back 

to the 19th century, and for some cases the introduction event is well known (Lever 

2005). Although not all introductions have resulted in successfully established 

populations, some occur e.g. in the Iberian Peninsula, where it was introduced in 

1964 (Reino and Silva 1998 and references therein), in South America and on 

several tropical islands around the globe. The latter include Oahu (Hawaii), Society 

Islands (Tahiti), New Caledonia, Amirantes, parts of the Seychelles archipelago, 

Mauritius, Réunion, Rodrigues, Ascension, St Helena, São Tomé and Príncipe, 

Bermuda, Trinidad, Cape Verde and Canary Islands (e.g. Fry 2004, Lever 2005). 

Other parts of the world might offer also environmentally suitable conditions for the 

species, and further spreads are likely. During the last decades the species 

increased its invaded range at least within the Iberian Peninsula (Silva et al 2002). 

Based on data presented by Reino et al. (2009), the species might further expand its 

invaded range in south-western Europe making future predictions on a global scale 

especially appealing. 

Species distribution models (SDMs) are tools to assess the potential 

distribution of species (Guisan and Thuiller 2005, Jeschke and Strayer 2008, but see 

Elith and Leathwick 2009 for discussion on terminology) including birds (Peterson 

2001, Martinez-Meyer et al. 2004, Walther et al. 2004, Strubbe and Matthysen 2009, 

Echarri et al. 2009). A special case of SDMs are climate envelope models, which rely 

on the climatic niche of the organism only (Guisan and Thuiler 2005, Elith et al. 

2006). SDMs are widely used to predict possible further spreads of invasive species 

(Menke et al. 2009, Peterson and Vieglais 2001, Rödder and Lötters 2010). In 

particular, SDMs offer the possibility to project models derived from current conditions 

into the past or the future using palaeo climate layers or climate change scenarios of 

forthcoming decades (Peterson et al. 2002, Peterson and Nyári 2007, Rödder and 

Dambach 2010, Waltari et al. 2007). 
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Commonly, SDMs are derived from information of the spatial distribution of the 

target species and environmental, often climatic, variables at these locations. 

Subsequently, the model is projected into geographic space using a geographic 

information system (GIS). Preferably, predictor variables should be proximal factors 

limiting the niche of the species (e.g. Austin 2002, Elith and Leathwick 2009, Rödder 

et al. 2009a). Models base upon the ecological niche concept, which assumes that 

the ecological niche of a species is the range of biotic and abiotic conditions in a 

multidimensional space, which allows the species to persist without immigration 

(Hutchinson 1957, Soberón 2007, Soberón and Peterson 2005). One needs to keep 

in mind that SDMs postulate three key assumptions that are mostly not strictly met in 

nature (Jeschke and Strayer 2008). First, climatic tolerances of the species should be 

the main determinants of their distribution, neglecting dispersal limitations and biotic 

factors (e.g. competition, predation), which can only seldomly be incorporated in 

SDMs (e.g. Rödder et al. 2008a,b). Therefore the realized niche, i.e. environmental 

conditions present within the geographical space occupied by the species, is under 

natural circumstances only a subset of the fundamental niche (Hutchinson 1957, 

Soberón and Peterson 2005). In addition, SDMs assume that the range of the 

species under study is in equilibrium with environmental parameters (Pearson and 

Dawson 2003, Araújo and Pearson 2005) and the niche is conservative over time 

and space (Peterson et al 1999, Wiens and Graham 2005). Finally, SDMs cannot 

easily cope with dispersal limitations and thus claim that species occur at all locations 

where environmental conditions are favourable and nowhere else (Jeschke and 

Strayer 2008). Note that these assumptions are not undisputed (e.g. Beale et al. 

2008, Losos 2008, Rödder and Lötters 2009, Warren et al. 2008). 

When modelling the potential distribution of an exotic species, the question 

arises how to treat observations from the native and the invaded range, respectively. 

Upon recently, SDMs were commonly derived from either species records obtained 

from the native range (e.g. Peterson and Viglais 2001, Thuiller et al. 2005) or the 

invaded range (e.g. Mau-Crimmins et al. 2006). As recent findings highlighted a 

failure of models trained with native records to predict invasive ones (Fitzpatrick et al. 

2007, Rödder and Lötters 2009, Beaumont et al. 2009), Broennimann and Guisan 

(2008) recommend using occurrence data from the whole range of the species. 

Herein, we approach this issue using a split dataset from the (1) native as well as (2) 
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from the native and invaded range of Estrilda astrild and describe its consequences 

for (a) current and (b) future predictions of the potential range of this species. 

 

Methods 

Common waxbill records 

Species records were obtained from the “Global Biodiversity Information Facility” 

(GBIF, http://www.gbif.org), from the “Invasives Information Network” (I3N, 

http://i3n.institutohorus.org.br/filt_especies.asp) of the Inter-American Biodiversity 

Information Network, from labels of museum specimens held in the Zoological 

Research Museum Alexander Koenig, and from additional literature references (Fry 

2004, Gatter 1998, Leonard 2005). All records were mapped using DIVA-GIS 5.4 

(Hijmans et al. 2001, available through http://www.diva-gis.org) for visual inspection, 

and coordinates were checked to spot possible errors, i.e. if coordinates were not 

sufficiently accurate (possible spatial error decisively larger than selected spatial 

solution of grid size of environmental data, see below) or otherwise unreasonable 

(e.g. coordinates of the museum instead of the location of the bird), locations were 

excluded from the analysis. Localities without coordinates were georeferenced by 

consulting online gazetteers, i.e. the Biogeomancer (http://bg.berkely.edu/latest, last 

access 18.05.2009) and Falling Rain (http://www.fallingrain.com/world, last access 

18.05.2009). Furthermore, specimens collected before 1950 were not included in this 

study to be in concordance with the temporal resolution of the environmental 

predictors (see below). For each grid cell only one record was permitted in any 

analysis, resulting in 135 species records from the native and 341 species records 

from the introduced part of the range. 

Spatially unbalanced sampling designs may cause artificial regional clusters of 

species records (Dormann et al. 2007). To minimize such effects, a cluster analysis 

based on Euclidean distances in feature space was conducted with XLSTAT 2009 

(Addinsoft, http://www.xlstat.com). The resulting dendrogram was blunted leaving 

each 118 native and invasive classes, and only one randomly chosen record per 

class was used for further processing. This method has been used to reduce effects 

of spatial autocorrelation (e.g. Rödder et al. 2009b), and simulations suggest a 

superior performance compared to simple distance buffers (Schmidtlein, Rödder and 

Feilhauer, unpubl. data). As AUC scores are affected by prevalence, and although 
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native and invasive data did not contribute equally within the NAT+INV model, this 

procedure allows a better comparability between the NAT and the NAT+INV models. 

 

Environmental data 

We used climate data taken from WorldClim, v. 1.4 (Hijmans et al. 2005, 

http://www.worldclim.org), which cover the period from 1950-2000. Data from a global 

network of weather stations were interpolated for the whole land surface of the globe 

with latitude, longitude and elevation as independent variables (Hijmans et al. 2005). 

Monthly temperature and precipitation data were summarized into 19 so called 

Bioclim variables (Busby 1991). We used only eight of them as predictor variables in 

our ecological niche models to reduce effects of overfitting and multi-collinearity of 

predictors (Heikkinnen et al. 2006). Given the changing seasonal aspect of 

grasslands and the need for open water for the species, we selected variables 

covering annual parameters (BIO1, annual mean temperature; BIO12, annual 

precipitation), quaternary aspects (BIO10, mean temperature of warmest quarter; 

BIO11, mean temperature of coldest quarter; BIO16, precipitation of wettest quarter; 

BIO17, precipitation of driest quarter) and seasonal characteristics (BIO4, 

temperature seasonality; BIO15 precipitation seasonality) of the climate as a 

biological meaningful combination of predictors. We used a rather coarse resolution 

of 2.5 arc-minutes (about 4.63 km at the equator) meeting the accuracy of most 

available occurrence data (see Graham et al. 2008 for a discussion on spatial errors) 

and at least slightly compensating for the nomadic biology of the species. 

For future projections, we obtained climate data of six climate scenarios 

describing projected conditions for the year 2080 under two different emission 

scenarios (A2a, B2a) and two different climate models, respectively. The scenarios 

are described in detail in the “Special Report on Emissions Scenarios” by the 

Intergovernmental Panel on Climate Change (IPCC, 

http://www.grida.no/publications/other/ipcc_sr/, last access 10.08.2010). In general, 

scenarios belonging to the A2 family assume higher CO2 concentrations as well as 

higher surface temperatures for the end of the century than assumed under B2 

scenarios. In order to deal with uncertainties that are prone to every single climate 

model, we use two currently available climate model outputs (CSIRO, CCCMA). Final 

distribution maps are based on average values of both models respectively 
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representing one family of emission scenario. Original data were downscaled by R. J. 

Hijmans and can be obtained from http://www.worldclim.org (last access 10.08.2010). 

 

Climate envelope modelling 

We chose MAXENT v.3.3.3a (Phillips et al. 2004, Phillips et al. 2006, available 

through http://www.cs.princeton.edu/~schapire/maxent/), a machine learning program 

which uses environmental variables as predictors, for species distribution modelling 

(SDM). MAXENT has frequently outperformed other competing algorithms (Elith 

2006, Heikkinnen 2006), in particular, when the number of data points was limited 

(Hernandez 2006, Wisz et al. 2008). For model evaluation we use the area under the 

receiver operation characteristic curve (AUC), which is generated by MAXENT for 

each run derived from ten random splits of the species records (70% / 30% test). The 

results were summarized as average of the ten models. We are aware that AUC 

values have been criticized recently (e.g. by Lobo et al. 2008), but given the general 

problems with different model evaluation approaches (see examples in Baldwin 

2009) and the ongoing wide use of AUC values in ecological studies, we only call for 

caution if relying on them alone. For common waxbills, descriptions of the current 

range are broadly available from the literature, and visual inspection of the maps 

might help interpreting model outputs. 

We followed two different modelling approaches: (1) models trained with 

species records from the native range only (termed NAT in the following), or (2) with 

records from both native and invaded ranges (termed NAT+INV). All runs were 

conducted using the default settings of the program.  

Ideally, random background points, which are automatically selected by 

MAXENT, should reflect an area potentially colonisable by the target species (Phillips 

et al. 2009). Therefore, we restricted the spatial extent of the background records to 

an area encompassing largely the African continent and thus the complete native 

range in model (1), and to the transatlantic range including Africa, the Atlantic islands 

and huge parts of South America east of the Andes in model (2). Subsequently, 

averages of both models were projected on a global scale onto current climatic 

conditions and the future climate change scenarios. In order to reduce model 

uncertainty, we did not extrapolate into climates exceeding those conditions in the 

background regions. We chose the logistic output format, resulting in values between 

0 and 1 for each grid cell, where higher values indicate more suitable climatic 
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conditions. MAXENT ASCII-outputs were imported into DIVA-GIS, and species 

presence is presented for two different thresholds: the 10 percentile training presence 

logistic threshold and the minimum training presence logistic threshold. Both are non-

fixed thresholds, as recommended by Liu et al. (2005), which provide minimum 

requirements for the species climate preferences. Variable response was estimated 

using the implemented jackknife approach of MAXENT (e.g. Yost et al. 2009). Area 

calculations of global potential distribution were performed with ArcMap 9.1 (ESRI, 

Redlands, California). 

 

Comparison of climate niches 

In order to illustrate the relative positions of native vs. invasive ranges in ecological 

space (E-Space) as well as the potential niche available for each of them, we 

computed principal component analyses (PCA) depending on the environmental 

variables used for modelling. Only those principal components were selected which 

had eigenvalues ≥1 because these PCs explain more variance than the original data 

does (here, two PCs were extracted). To assess the niche overlaps in E-space, we 

subsequently performed linear discriminant analysis (LDA) following Rödder and 

Engler (in press). This method has the advantage of comparing niche-overlap directly 

in ecological space instead of geographical space. Hence, it is independent from 

SDM predictions. In LDA native and invasive ranges were a priori defined as groups, 

each with equal prior probabilities and compared through a set of explanatory 

variables, representing the E-space spanned by principal components. The 

discriminant model was constructed with a randomly selected subset of 70% of the 

dataset and validated with the rest of the data. Total overlaps in E-space were 

derived by summing all falsely classified values and dividing them by the total of all 

values resulting in a metric ranged between 0 (no overlap) to 1 (total overlap). 

Accounting for possible variations caused by data splits, this procedure was repeated 

1000 times. Computations were conducted using R 2.11.1 (R Development Core 

Team, 2010). 

 

Results 

Model Performance 

We received similar AUC values in both model approaches, i.e. for NAT based on the 

native range (AUCTest = 0.8211) and NAT+INV including data points from the native 
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and the introduced range (AUCTest = 0.7567) (Fig. 2). AUC values can be considered 

at least as “useful” (>0.75) or even good (>0.8) although classification schemes might 

differ according to the aim of the study (Swets 1988). Analysis of variable 

contributions revealed high values for mean temperature of the warmest and coldest 

quarters as well as precipitation variables (Figs. 3a, b). In general, variable 

contributions were similar in both models, although we detected pronounced 

differences in the contributions of „temperature seasonality‟. Response curves for 

each predictor variable are provided in the online supplementary material. The 

minimum training logistic threshold was 0.0822 for NAT and 0.0883 for NAT+INV. 

Values of the more relaxed 10% training presence logistic threshold were also similar 

in both models (0.2483 for NAT, 0.2820 for NAT+INV, Fig. 4). The spatial extent of 

the potential distributions derived from the more restrictive 10% training presence 

logistic threshold was generally smaller (Table 1). 

 

Current potential distribution 

Based on both models (Figs. 5a, b) the common waxbill has a huge potential 

distribution throughout the tropics, subtropics and some temperate regions. The 

spatial extent of the potential distributions suggested by the models is not consistent 

over both thresholds (Table 1). Both models show general similarities, although 

differences in some tropical areas are obvious (e.g. within Australia and Southeast 

Asia). Unsurprisingly, within Africa the NAT model better reflects the actual 

distribution when compared with the expert map. The NAT+INV model seems to 

overpredict some sub-Saharan areas like the Congo basin. According to the 

NAT+INV model (Fig. 5b) the potential distribution of E. astrild is slightly more 

concentrated in the tropics, and less so in the subtropics. Both models predict 

suitable areas in some temperate regions including parts of Europe and North 

America. Although the NAT+INV model includes data points from South America, the 

NAT (Fig. 5a) model projects larger areas of highly suitable conditions within this 

continent. However, the native as well as the introduced range of the common waxbill 

is well covered by both models. Note that large areas that host suitable climatic 

conditions for the species, e.g. in Australia, South East Asia and the Andes, are 

currently not populated by the species. 

 

Future potential distribution 



 12 

Under projected climate conditions for the end of the 21st century, both models 

predict a general reduction of climatically suitable areas (Table 1). Furthermore, a 

slight pole ward shift of current northern and southern distribution limits is suggested 

(Figs. 6a-d). This is mainly a shift of the northern potential distribution limit as even 

under current climate conditions the southernmost parts of Africa, Australia, and 

South America show suitable climatic conditions. In western North America, the 

NAT+INV model predicts only a slightly higher probability of occurrence (Fig. 6c-d) 

while under the NAT model this change is more obvious (Fig. 6a-b). In Europe, the 

NAT+INV model predicts a decline of suitable areas in parts of the Mediterranean 

region while these changes are less clear assuming the NAT model. The situation in 

the tropics is even more complex. In most parts of the native African range of the 

common waxbill, the NAT model predicts a strong reduction of occurrence 

probabilities. However, this pattern is reversed in Southern Africa, where higher 

suitability values are predicted for the future (Fig. 6a-b). Suitability also decreases 

according to NAT in parts of its invaded range such as in the Caatinga region of 

north-eastern Brazil and in areas not populated by common waxbills such as in India 

and in the south-western part of the Arabian Peninsula. The NAT+INV model also 

predicts lower likelihoods of occurrence in parts of South America and India (Fig. 6c-

d). Inside Africa, these results contradict the outputs of the NAT model as declines in 

suitability are much less pronounced and are only obvious in central Southern Africa, 

where the likelihood of occurrence might drop below the chosen thresholds. 

Decreases in suitability might also occur within the southern Congo basin and along 

the current northern natural border of the common waxbill‟s range. 

In direct comparison, both emission scenarios closely resemble each other 

although there are differences in some smaller areas. Assuming the A2a scenario, 

the NAT model predicts a stronger decrease in suitability than the B2a scenario 

within parts of tropical Africa and South America (Fig. 6a vs. 6b). This regional trend 

becomes also evident on a global extent. Here, decreases for the A2a scenario are 

more severe than for the B2a scenario. 

 

Comparison of climate niches 

PCA-LDA resulted in an overlap value of 0.32 (sd ± 0.057) of climate niches between 

the records from the native and records from the invasive distribution of the common 

waxbill. This low overlap is largely due to the fact that invasive locations occupy a 
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smaller climate space than the native ones and are nested within the native E-space 

(Fig. 7). This indicates that the NAT+INV model does not incorporate any additional 

climate space in comparison to the NAT model. 

 

Discussion 

Model performance and current potential distribution 

Based on our SDMs we were able to predict the current and future global potential 

distribution of the common waxbill. Compared to the expert map, our prediction 

reflects current distribution fairly well applying the minimum training presence 

threshold. This is especially true for the native afrotropical range, which has its 

northern limit south of the Sahel zone, well reflecting the gap in the Congo Basin 

applying the NAT model. The high occurrence probabilities in the invaded range of 

the Iberian Peninsula or in parts of eastern coastal Brazil are in concordance with the 

realized distribution of the species (Reino and Silva 1998, Ridgely and Tudor 2009). 

However, the current potential distribution limited by the 10% training presence 

threshold seems to underestimate its realized distribution, at least within the native 

African range. Hence, given the threshold dependencies, our global quantifications 

based on estimated areas should be interpreted with care. 

Variable contributions and response curves are well in concordance with the 

known climatic demands of the species (see introduction). However, seasonality 

parameters - with the noteworthy exception of temperature seasonality in the 

NAT+INV model - did not highly contribute to the model. This is possibly due to a 

high variability in parameters in the overall range, which is quite large. 

When interpreting the potential distribution of a species derived from a SDM, it 

is necessary to consider possible discrepancies between the fundamental climatic 

niche and the realized niche of the species (Hutchinson 1957, Soberón and Peterson 

2005). Besides climatic demands, biological interactions, accessibility of regions and 

non-climatic habitat parameters need to be considered (Heikkinen et al. 2006, Davis 

1998). Thus, unsurprisingly our models predict a potential distribution notably larger 

than the one actually inhabited by the species (Gioia and Pigot 2000). Huge parts of 

Central America, Australia as well as South and Southeast Asia harbour climatic 

conditions well suitable for the common waxbill. High occurrence probabilities are 

also found in mountainous areas of the Andes and the Himalaya. These areas might 

have not been colonized yet, maybe due to dispersal limitations, i.e. the species has 
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not been released there or did not make its way on its own from colonized areas. In 

any case, finding suitable conditions for a species on a rather coarse scale in 

climatically diverse areas such as the Andes does not surprise. Competition may play 

a role and theoretically could explain the absence of the common waxbill on mainland 

Asia and Australia as these areas are home to a variety of other estrildid finches 

(Clement et al. 1993, Restall 1996). 

Reino (2005) related an expansion of the invaded range of the common 

waxbill in Portugal mainly to spatial-temporal variables, but in a recent publication, 

temperature and relative humidity were identified as important predictor variables 

(Reino et al. 2009). This ongoing range extension might indicate that at least some 

northern invasive populations are not in environmental equilibrium. Modelling of 

species with ongoing range extensions is a special challenge (Elith et al. 2010). 

However, we rest our results upon a large sample of locations from a huge part of the 

known distribution of the species and hence at least mitigate possible effects. In any 

case, interpretations of the common waxbill‟s potential distribution should be done 

cautiously as the species, although well studied for an estrildid finch, is still little 

known from the field. Exact temperature requirements rely on experience with pet 

birds only rather than from scientific experiments. Furthermore, variation in the 

climatic niche among populations and subspecies is hardly investigated although 

Nicolai and Steinbacher (2007) suppose considerable geographic differences, again 

mainly derived from temperature sensitivity of birds kept in captivity (Mau 2002). This 

would potentially violate one of the basic assumptions for niche models. However, for 

most areas of the introduced range, subspecific status of the populations is unknown 

although mainly the subspecies jagoensis (e.g. on Cape Verde), astrild and 

angolensis (Príncipe, São Tomé) might be involved (Fry 2004). 

The large distribution of suitable climate around the globe shown in this study 

underlines the invasive potential of the species. While many other estrildid finches 

are invasive on islands only, the common waxbill already has noteworthy populations 

on continents making these areas also relevant for considerations of invasive species 

management. Our models predict a larger potential distribution range than actually 

occupied within South America, where competitive (Peterson and Robins 2003) or 

mutualistic interactions with ecomorphologically similar species of the genus 

Sporophila (Emberizidae) and other syntopically granivorous species (Manhães and 

Loures-Ribeiro 2005) are likely. This is of particular concern as many seedeaters of 



 15 

the genus Sporophila are under severe threat, partially due to bird trapping, but also 

due to habitat destructions (Silva 1999). So these potential interactions are a 

rewarding field for future research. As long as detailed studies on the impact of 

common waxbills on native species are lacking, we can only recommend an 

enhanced monitoring of the species where it is already established. Our potential 

distribution maps may also indicate areas where pet trade of Estrilda astrild should 

be under particular control. 

 

Future Predictions 

Our models predict less climatically suitable area for the common waxbill on a global 

scale. This trend is consistent over thresholds and models. However, note that we did 

not extrapolate onto climate conditions exceeding the calibration range of the models. 

Hence, any novel climate conditions occurring in the future are assumed to be 

unsuitable for the species. Furthermore, we do not take any evolutionary or 

behavioural adaptations into account. Besides this global trend, a more regional view 

is warranted. The suggest pole ward shift in northern temperate areas is a common 

phenomenon predicted under climate change (Thomas and Lennon 1999, Parmesan 

2006 and references therein). However, predicted shifts suggest a reduction of 

habitat suitability in some areas (e.g. North Africa) and range extensions in others 

(e.g. Northern Central Europe). Our current models confirm detected and predicted 

range extensions in the Iberian Peninsula (Reino et al. 2009). However, for central 

Spain our future projections rather suggested less suitable future conditions 

underlining the complexity of observed patterns. Interpretation of distributional 

change in the tropics seems to be even more difficult. While our models predict an 

increased climate suitability in parts of South Africa, the distributional gap in the 

Congo Basin may also grow. Suitability inside today‟s tropical rain forest areas might 

be reduced in the invaded range (e.g. Amazonia), but results for both models are not 

without contradiction (see below). Predictions of range changes due to microhabitat 

availability were not part of this analysis. Dealing with a species living in open areas, 

ongoing deforestation in tropical areas also needs to be considered explaining range 

shifts on a smaller scale (Pearson and Dawson 2003).  

When predicting the future, many uncertainties arise in addition to the well 

known biological uncertainties and those related to the SDMs. Climatic incertitudes 

include the unknown development of greenhouse gas emission, all issues related to 
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the climate models and the downscaling of data and the resulting future climatic 

scenario (Beaumont et al. 2005). We dealt with this problem by using two different 

kinds of climate models and two different emission scenarios. However, given the 

current state of knowledge, our predictions are necessarily preliminary, and we agree 

with Beaumont et al. (2005) that repeated analysis with most recent data is 

warranted. 

 

Comparison of modelling approaches 

Both models NAT and NAT+INV were able to predict the current distribution of the 

common waxbill quite well. However, differences also became evident. AUC values 

were higher for the NAT model, but balancing up on this statistical measurement 

alone is certainly unsatisfying as stated above. Additionally, the native range shows 

fewer commission errors and is thus better reflected by the NAT model. However, this 

could be caused by a reduced number of records located in the native range used for 

the NAT+INV model as we use equal total sample sizes in both models. Furthermore, 

higher commission errors in the NAT+INV model are not unexpected because the 

species may not have reached all suitable habitat yet making an increased rate of 

false positives likely. In the South American part of the invasive range the NAT+INV 

model shows fewer commission errors compared to the expert map. Therefore, rating 

of both models is not straight forward. Interestingly, differences between both models 

become more obvious considering the future potential native range (e.g. Fig. 6a and 

6c / A2a conditions) further underlining the influence of location selection. 

When applying SDMs on invasive species, the fundamental niche is possibly 

not sufficiently represented within the native range so that the true dimensions of the 

climatic niche could be hidden due to e.g. dispersal limitations and/or climatic 

interactions (e.g. Pearson and Dawson 2003). Another possibility within the “realized 

niche dilemma” (Gallien et al. 2010) is the occurrence of a true evolutionary niche 

shift of an invasive population (Broennimann et al. 2007, Rödder and Lötters 2009). 

Evolutionary niche shift in invasive populations compared to native ones have been 

recently shown between populations of some species (Fitzpatrick et al. 2007, 

Broennimann et al. 2007). Yet, our PCA-LDA does not suggest any niche shift 

between native and invasive populations. Instead of that, within the invasive range 

only a rather small fraction of the climate space present in the native range is 

represented. This could be caused by the fact that the species is still under 
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expansion and thus has not covered the whole range yet (Gallien et al. 2010). 

Alternatively, invasive populations truly have a smaller climate niche than the native 

ones, possibly based on founder effects or subspecific differences (see above). Both 

explanations are not mutually exclusive.  

In conclusion, even in the absence of niche shifts between invasive and native 

ranges of a species the choice of occurrences from one or both areas influences the 

potential present and future distribution. Tentatively, our results indicate that for the 

common waxbill the SDM developed with data from the native range only provides 

more reliable predictions than by omitting the potential bias due to incomplete niche 

filling. Hence, we call for care when selecting species records from native and 

invaded ranges for modelling purposes of an invasive species and underline the 

importance of niche positions in ecological space. 
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Fig. 1 Expert map of the current distribution of Estrilda astrild based on published 

references (e.g. Fry 2004, Lever 2005). Grey areas show the native range, 

crosshatched areas and arrows mark invasive occurrences 

 

Fig. 2 AUC values of model trained with occurrences from the native range (NAT) 

and from the native and the invasive range (NAT+INV). Boxplots show range, 

quartile and median, a cross indicates the mean 

 

Fig. 3 a Variable contribution of models: a For model NAT trained with occurrences 

from the native range. b For model NAT+INV trained with occurrences from 

the native and the invasive range. Boxplots show range, quartile and median, 

a cross indicates the mean, see text for explanation of variables 

 

Fig. 4 Minimum training presence logistic threshold (Min train) and 10 percentile 

training presence logistic threshold (10% train) for models based on training 

points from the native (NAT) and from the native and invasive range 

(NAT+INV). Boxplots show range, quartile and median, a cross indicates the 

mean 

 

Fig. 5 Current potential range of Estrilda astrild. a based on model NAT trained with 

occurrences from the native area only and b trained with occurrences from the 

native and the invasive area. Species records are shown as white circles. 

Areas characterized by MAXENT values above the minimum training presence 

logistic threshold are grey, areas having MAXENT values above the 10 

percentile training presence logistic threshold are shown in black 

 

Fig. 6 Future potential range of Estrilda astrild under global climate change: a based 

on model NAT trained with occurrences from the native area only for the 

emission scenario A2a; b based on model NAT for the emission scenario B2a; 

c based on model NAT+INV trained with occurrences from the native and the 

invasive area for the emission scenario A2a; d based on model NAT+INV for 

the emission scenario B2a; shade of grey as in Fig. 5. 
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Fig. 7 Positions of native (squares) and invasive (triangles) presence locations of 

Estrilda astrild in ecological space represented by two Principal components 

(PC1 & PC2). Background samples are shown behind the presence locations 

as semi transparent point cloud for invasive and native ranges respectively 

(see electronic appendix for a coloured plate). 

 

Table 1 Spatial extend of the potential distribution (in Million km2) of Estrilda astrild 

derived from two different modelling approaches (NAT, NAT+INV, see running 

text for explanation) and applying two different thresholds (MIN = minimum 

training presence logistic threshold; 10% = 10% training presence logistic 

threshold, see running text for details) under current and predicted climate for 

the end of the 21st century (A2a and B2a climate change scenarios, differing in 

green house gas emission). 

 

 NAT NAT+INV 

 MIN 10% MIN 10% 

Current Climate 47.73 23.04 51.92 16.70 
A2a 2080 34.36 14.47 37.66 08.21 
B2a 2080 39.62 16.96 43.38 10.12 
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