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Abstract

When the incidence and prevalence of most common vaccine preventable childhood infectious
diseases are constantly low, as is the case in many industrialized countries, the incidence of
vaccine-associated side effects might become a key determinant in vaccine demand. We study an
SIR transmission model with dynamic vaccine demand based on an imitation mechanism where
the perceived risk of vaccination is modelled as a function of the incidence of vaccine side effects.
The model shows some important differences compared to previous game dynamic models of
vaccination, and allows noteworthy inferences as regards both the past and future lifetime of
vaccination programmes. In particular it is suggested that a huge disproportion between the
perceived risk of disease and vaccination is necessary in order to achieve high coverages. This
disproportion is further increased in highly industrialised countries. Such considerations represent
serious challenges for future vaccination programmes.

Keywords: Epidemiological models, vaccination choices, imitation dynamics, vaccine side effects.

1 Introduction

Although forms of exemption to vaccination have always existed [23], the ”natural history” of vaccina-
tion programmes, as part of the historical pathway through which humankind progressively rids itself
of infectious diseases, has always been pervaded by a high degree of optimism [5]. However, recently
this optimistic view has increasingly been challenged: for example, opposition to the whole-cell per-
tussis vaccine [12], the thimerosal case [16], and the MMR scare [20] can be considered evidence that
in industrialized countries, the success story of vaccination is feeding back on itself. This is the con-
sequence of two different processes. On the one hand, the high degree of herd immunity achieved by
decades of successful immunization programmes has reduced the incidence of many infections to neg-
ligible levels. On the other hand the large, and increasing, number of vaccines routinely administered
every year yields steady flows of vaccine-associated side effects [26], [27]. In the US approximately
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30,000 reports of Vaccine Adverse Events are notified annually, with 10–15% classified as serious [4].
In such circumstances the perception of the public will likely rank the perceived risk of suffering a vac-
cine side effect (VSE) as much higher than the corresponding risk of infection [1, 2, 6, 7]. A common
example is poliomyelitis in industrialized countries. For example in Italy during 1980-2000 the number
of vaccine-induced polio cases was three times higher than wild polio cases [15]. Under voluntary vac-
cination high degrees of herd immunity might therefore incentivise vaccination free riding [3],[21], i.e.
the parents’ decision not to vaccinate children after comparing the perceived risk of disease and the
perceived risk of vaccine side effects [1, 2, 6]. Vaccination free riding [3, 10, 13, 1, 2, 6, 7, 9, 21, 22, 11]
makes eradication impossible (unless special contact structures are considered [19]) and triggers stable
oscillations in the infection prevalence.
Previous studies on the impact of vaccination free riding on endemic infections have focused on scenar-
ios where the vaccine demand is driven by the time changes in the perceived risk of disease, measured
through the current (or past) infection prevalence. Based on the above-cited literature on VSEs we
instead suggest that in industrialized countries, where the incidence of common vaccine preventable
infections is very low, the available information on vaccine side effects might become the main driv-
ing force of vaccine demand. The only paper devoted to this issue is [9], where, however, vaccine
demand was phenomenologically modelled as a decreasing function of the perceived risk of suffering a
vaccine-associated side effect. The perceived risk of VSEs was in its turn evaluated by the public from
available information on current and past trends of side effects attributed to the vaccine. In this paper
we shift the focus onto the impact of VSEs on the dynamics of immunization programmes for endemic
infections, using an SIR transmission model with voluntary vaccination choice. Vaccination choices
are described by an evolutionary game as in [2], where the vaccine uptake p(t) is determined by an
imitation process between agents (the parents of the children to be vaccinated) who are divided into
”vaccinators” and ”non-vaccinators”. However, in [2] the perceived payoff of the ”non-vaccinators”
is proportional to the prevalence of the disease, whereas the payoff of ”vaccinators” is constant, i.e.
independent of VSEs.
The novelty of the present work is that the payoff of ”vaccinators” is proportional to the incidence of
vaccine-associated side effects. In turn, this incidence is assumed to be proportional to the actual
vaccine uptake. We believe that this model represents a more appropriate description of the future
evolution of immunization programmes in voluntary vaccination regimes. Indeed, the fact that avail-
able information on vaccine side effects might become the main driving force of vaccine demand is
strongly supported by the empirical evidence, e.g. the case of England and Wales, where due to the
MMR scare [20], first dose measles uptake fell for several years from 94% to about 75%. Compared
to [2] we also expand our basic model to include (a) nonlinear perceived costs of infection; (b) the
possibility that the perceived costs of infection and vaccination are evaluated by the public using past
values of state variables, for example due to information delay [7] or to the perception of long-term
vaccine side effects [9].

2 Materials and Methods

2.1 Dynamic vaccine demand and vaccine side effects

We consider a family of models of the spread of a non-fatal SIR infection controlled by voluntary vac-
cination with a ”perfect” vaccine administered in a single dose at birth and giving life-long immunity:

S′ = μ(1− p)− μS − βSI (1)
I ′ = βSI − (μ + ν)I (2)
p′ = k1ΔEp(1− p) (3)

where: S, I are the susceptible and infective fractions, and p the vaccinated proportion among newborn
children; β > 0, μ > 0, ν > 0 denote the transmission, the mortality and the recovery rates. We assume
that, in absence of vaccination, the disease is endemic, i.e. R0 = β/(μ + ν) > 1.
The dynamics of p obeys a learning by imitation [14] process where k1 is the ”imitation” coefficient
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and switching between the decisions to vaccinate or not to vaccinate, is determined by the payoff gain
ΔE(t). The latter is given by the difference between the perceived payoff of vaccinators −ρV (t), where
ρV (t) is the perceived risk of suffering a VSE, and the perceived payoff of non-vaccinators: −ρI(t),
where ρI(t) is the perceived risk of suffering serious illness due to infection.
We note that, irrespective of the specific forms of ΔE(t), the family of models (1-2-3) has the following
three equilibria: (i) an unstable disease-free equilibrium with no vaccinators A = (1, 0, 0); (ii) a
pure-vaccinator disease-free equilibrium B = (0, 0, 1); (iii) the pre-vaccination endemic equilibrium
C =

(
SSIR = R−1

0 , ISIR = μ(1 −R−1
0 )/(μ + ν), 0

)
.

The stability of B and C and the existence of further equilibria depend on the specific types of the
payoff gain.
Modelling of the dynamics of p by an imitation game was introduced by Bauch in the seminal paper
[2], where a specific model of the family (1-2-3) was proposed, where: i) the perceived payoff of
vaccinators is constant:−ρV = −rV ; and ii) the perceived payoff of non-vaccinators is proportional to
the infective prevalence I(t): −ρI(t) = −rImI(t), where mI(t) is an estimate of the current risk of
infection, and rI is the risk of serious disease as a consequence of infection. Hence:

ΔE(t) = rImI(t)− rV = rV (ϑI(t)− 1) ,

where ϑ = mrI/rV is proportional to the relative cost of the non-vaccinator strategy.
In Bauch’s model the B equilibrium is unstable and there is a fourth equilibrium: the post-vaccination
equilibrium D =

(
R−1

0 , ϑ−1, p̂
)

where: p̂ = (1 + ν/μ)
(
ISIR − ϑ−1

)
. At ϑ = ϑ0 = I−1

SIR there is a
transcritical bifurcation between C and D. In turn, the stability/instability of D depends on the
product k1(ϑ− ϑ0).
The assumption in [2] that the perceived risk of VSEs ρV (t) is constant can be justified if the public
correctly evaluates this risk as the ratio between total VSEs per unit time, given by α (μN) p(t)
(α ∈ (0, 1)) where N is the total population size (so that μN is the yearly number of births), and α
the per-capita probability of incurring a VSE during a single vaccine administration, and the total
number of vaccinations administered for that specific disease μNp(t). We instead suppose that the
public evaluates the risk of VSEs by using the available information on the total number of vaccine-
associated side effects, or, which is equivalent, on the ratio between the total number of vaccine
associated side effects and the total number of newborn children per unit of time. We therefore set:

ρV (t) = αp(t) (4)

The implication of (4) is that periods of large vaccine uptake negatively feed back, through an increase
in the incidence of VSEs, into the proportion of parents favourable to vaccination.
We model the perceived risk of infection as an increasing function h1(·) ≥ 0 of the information index
M , introduced in [6, 7], that summarizes the publicly available information on the infection:

ρI(t) = h1(M(t)). (5)

The index M , used by agents to evaluate the risk of infection, may model not only current, but also
past information. The case h1(0) > 0 accounts for the scenario where the disease is locally eliminated
but disease re-emergence by external reintroduction is feared. In the simplest case, the information
index M(t) is related to the current prevalence of the infection as follows:

M(t) = h2 (I(t)) , (6)

where h2(·) > 0 and h′2 (·) > 0. Using (4)-(5)-(6) the dynamics of p can be written as follows:

p′ = k (h(I)− p) p (1− p) (7)

where h(I) = α−1h1(h2(I)), k = αk1.
First, note that from: p′ ≥ k (h(0)− p) p (1− p) it follows that h(0) ≥ 1 ⇒ p(t) → 1, so that we shall
not consider this trivial case. On the contrary, if h(0) < 1 then p(t) ≥ h(0) holds asymptotically,
i.e. the collective coverage will at least reach the minimal level h(0). Symmetrically, inequality
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p′ ≤ khMaxp (1− p) means that p(t) is bounded by a logistic dynamics with kinetics constant khMax.
Finally, if imitation dynamics is faster than the infection time scale: k >> (μ + ν)−1, then p(t) is at
quasi-equilibrium:

p(t) ≈ min (h (M(t)) , 1) , (8)

which is the phenomenological relationship first proposed in [6].

2.2 The importance of time delays

The assumption that ΔE depends only on current values of I and p is an approximation. For example
agents might perceive that vaccines are responsible for VSEs arising with long time delays [9], as
might be the case with auto-immune diseases [18]. Moreover, delays of different nature, concerning
the information on the spread of the disease, may involve both p(t) and M(t) [6]. Thus in the case in
which the perceived risk of vaccination is evaluated on past VSEs:

ρV (t) =
∫ t

−∞
QH(Tv)αp(t− Tv)dTv (9)

where QH is a delay kernel. An important kernel is the exponentially fading memory: QH(x) =
b exp (−bx) , b > 0, which allows reduction to ODE since it holds that:

ρ′V = b (αp(t)− ρV ) . (10)

Scenarios such as long-term VSEs may require different kernels, more concentrated on past periods,
such as the Erlang functions: Anxn−1 exp(−bx), also allowing reduction to ODEs.

3 Results

3.1 Endemic equilibria and their stability

In this section we shall investigate the model (1)-(2)-(7) where no delays are present. Considering
a generic h(I), the system (1)-(2)-(7) has three equilibrium points A (unstable), B (unstable) and
C, which, unlike [2], is always unstable since the linearized equation for p reads η′ = kh (ISIR) η.
Moreover, two further equilibria are induced by the specific ΔE we introduced:

• A disease-free equilibrium with positive vaccine uptake Edfe = (1 − h(0), 0, h(0)).

• A new behaviour-related endemic equilibrium:

Ebeh =
(
R−1

0 , Ie, h (Ie)
)
,

where Ie is the unique solution of the equation:

h(I) = 1−R−1
0 − μ + ν

μ
I. (11)

Remark 3.1 The equilibrium Ebeh is equal to the endemic equilibrium of the model studied in [9],
where, however, p is not a state variable.

Since all equilibria are independent of k, which is an epidemiologically relevant parameter (we re-
call that it is proportional to the imitation coefficient k1 determining the time-scales of the imitation
phenomenon), this makes it natural to choose k as a bifurcation parameter. Our main results (demon-
strated in the Appendix ) are as follows:

A) If
βIeμh′ (Ie) < (μ + βIe)

(
(μ + βIe) + 2

√
βIe(μ + ν)

)
(12)

then Ebeh is locally asymptotically stable (LAS) irrespective of the imitation speed k;
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B) On the contrary, if

βIeμh′ (Ie) > (μ + βIe)
(
(μ + βIe) + 2

√
βIe(μ + ν)

)
(13)

holds then there are two positive values k1 and k2 > k1 such that:

1. If 0 < k < k1 or k > k2 then Ebeh is LAS;
2. At k = k1 and at k = k2 there are Hopf bifurcations;
3. If k ∈ (k1, k2) then Ebeh is unstable.

C) In the case k ∈ (k1, k2) the orbits x(t) = (S(t), I(t), p(t)) are oscillatory in the sense of Yabu-
covich [25]. This intuitively means that for sufficiently large t all state variables are permanently
oscillating, with regular or irregular oscillations. Formally, for j = 1, 2, 3 it holds that:

minlimt→+∞xj(t) < maxlimt→+∞xj(t).

D) If h0 > pc then Edfe is globally asymptotically stable (GAS); if h0 < pc then Edfe is unstable.

Remark 3.2 Note that, on dividing both the r.h.s. and the l.h.s. of (13) by βμIe, after
trivial calculations we obtain that to have Hopf bifurcation at Ebeh the derivative of h at
Ie has to be at least of order O(

√
ν/μ).

Remark 3.3 Property D shows that, unlike [2], elimination is possible in our model, although only
if in absence of the disease the vaccinator payoff is so large as to yield a vaccine uptake greater than
the elimination threshold.

To better understand the phenomenon of epidemic oscillations driven by vaccination choice we compare
the above results with the recent literature on this subject. Unlike [2] where large values of k (ϑ− ϑ0)
induce sustained oscillations around the endemic state, in our model oscillations are possible in an
intermediate window of values of the imitation coefficient k. This means that both slow and fast
imitation are stabilizing forces. Moreover, we note that the stability condition (12) has the same
formal structure as that of the delayed model in [6], where dependence of the current vaccine uptake
on past prevalence of the infection was required to obtain oscillations. Indeed, imitation is a
(nonlinear) adjustment process introducing a delay, whose characteristic time scales are determined
by the speed with which the vaccine uptake reacts to changes in the payoff gain. Heuristically, close
to the equilibrium eq. (7) becomes:

p′ ≈ kh (Ie) (1− h (Ie)) (h (I)− p) = Ψ (h (I)− p) (14)

which may be read as an exponentially fading memory mechanism with average delay 1/Ψ. This
suggests a route to estimate the elusive imitation coefficient k, by preliminarily estimating the average
delay 1/Ψ.
Finally, we note that the Yabucovitch oscillatority is a global result, unlike the Hopf bifurcation
theorem, which is local. Although the nature (periodic, quasi-periodic or chaotic) of Yabucovitch
oscillations cannot be determined a priori, this makes the predictions of our model very general.
Finally, it is easy to show that the inclusion of time delays does not affect the location and stability of
equilibria A, B, C and Edfe, whereas the stability of Ebeh may be affected, as seen in the numerical
simulations below (see also the Appendix ).

3.2 Analysis of selected subcases

We report numerical illustrations of noteworthy sub-cases of epidemiological interest. The basic
reproduction number R0 is set to 10; the recovery rate is set to either ν = 0.1 days−1 (pertussis) or
ν = (1/7) days−1 (measles), which correspond to an average duration of the infectious period of
respectively 10 days (pertussis) and one week (measles). Finally the life expectancy L = 1/μ is fixed
either at L = 50 years (used in [2] to more closely reproduce UK pertussis data) or at L = 75 years,
which is more representative of mortality in modern industrialized countries.

5



3.2.1 The basic unlagged model: the case of linear h(I)

Letting h(I) = ϑI, the infection prevalence at Ebeh is:

Ie = Ie(ϑ) =
1− 1

R0

1 + ν
μ + ϑ

= ISIR

1 + ν
μ

1 + ν
μ + ϑ

and the vaccine uptake is:

pe(ϑ) = ϑIe(ϑ) = pc
ϑ

1 + ν
μ + ϑ

(15)

As regards the stability of Ebeh, it is of interest to assess the relative role of the two main behavioral
parameters introduced by our model: ϑ and k. By applying (13) it is easy to show that a ϑ∗ exists
such that for ϑ > ϑ∗ then (13) is fulfilled and the two branches k1(ϑ) and k2(ϑ) of the bifurcation
curve in the space (k, ϑ) exist and are analytically computable. Below ϑ∗ the equilibrium Ebeh is (at
least) locally stable.
For example in the case ν = 0.1 days−1, μ = 1/50 years−1 it is (ϑ∗, k∗) ≈ (280, 0.042), from which
the two branches k1(ϑ) and k2(ϑ) of the Hopf curve depart. For ϑ = 1000 (implying Ie = 3. 18× 10−4

and pe = 0.32) we obtain k−1
2 = 4.75 days and k−1

1 = 312 days a range difficult to interpret. However,
the heuristic average imitation delay 1/Ψ correspondingly ranges between three weeks and about four
years, close to the values found in [6]. The bifurcation curve in the (k, ϑ) and (k−1, ϑ) parametric
spaces are shown in Fig. 1.

3.2.2 The basic unlagged model: the case of linear-affine h (I)

The case h(I) = ϑ0 +ϑI is of interest since it assumes that even in scenarios of zero prevalence agents
perceive a positive risk ϑ0 of infection re-emergence. We get:

Ie(ϑ) =
1−R−1

0 − ϑ0

1 + ν
μ + ϑ

, pe(ϑ) = ϑ0 + ϑ
1−R−1

0 − ϑ0

1 + ν
μ + ϑ

Thus the perception of such a risk has a positive effect on equilibrium uptake. The dependence of the
bifurcation curve on ϑ0 may be non-monotone, as in the right-hand panel of Fig. 1.

4 Substantive implications of vaccine side effects for vaccina-
tion programmes

4.1 The epidemiological transition and vaccination payoff

We use equilibrium results from the simple case of linear h(I) to explore the impact of human progress
on the natural history of vaccination programmes. Note that in the parametric set we are considering
the dimensionless quantity ν/μ ranges from about 1826 (pertussis in a population with low life-
expectancy) up to about 3913 (measles in a population with high life-expectancy). Thus, achieving
a large equilibrium uptake requires very large ϑ, i.e. of the order of ν/μ. Since ϑ = rIm/α, it
follows that to achieve large equilibrium uptakes for measles or pertussis, the perceived cost of serious
disease has to be at least three order of magnitude higher than the perceived cost of VSE. Though
this seems surprising, we feel it is consistent with what was still observed at the beginning of the 20th
century, when the risk of serious sequelae following measles or scarlet fever was extremely large (100-
250 deaths per 100000 cases of disease), and the absence of vaccines was keeping the risk of infection
very high. In such circumstances even a large probability of suffering a VSE from a vaccine could have
been tolerated by the community. This also suggests that industrialized countries could face
serious difficulties in maintaining high vaccine uptake in the future. Indeed, completion
of the epidemiological transition [24], i.e. the historic change in the cause composition of
mortality in industrialized countries from infectious and nutritional diseases to chronic-
degenerative ones, led to a dramatic fall in the levels of serious morbidity and mortality
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from all infectious diseases. Together with the current higher-than-ever degrees of herd
immunity allowed by decades of sustained vaccination, this has reduced the perceived
risks of serious disease from most infections to negligible levels. Finally, as regards the role
played by life expectancy on the steady state Ebeh, our results suggest that the achievement of a
given equilibrium uptake in industrialized countries (i.e. with a very high life expectancy) requires
a much larger value of ϑ compared to developing countries. This is consistent with the fact that in
regimes with low mortality (also as a consequence of vaccinations), agents demand a vaccine only if
the relative risks of suffering a VSE are very low. We stress that our predictions are equilibrium ones
based on a simple deterministic model with homogeneous mixing. Nonetheless more realistic models
would not substantially affect them.

4.2 Simulations

In our simulations we set h(I) = ϑI and, to better emphasize our main messages, we allow immigra-
tion of infectives, according to two different hypotheses: a) a small constant transfer Imm from the
susceptible to the infective state, representing a steady flow of infections as a consequence of interna-
tional travelling; b) a few new infections appear at some stage once and for all, in order to mimic the
possibility of infection resurgence. Indeed, in the oscillatory regime the infection prevalence I(t) may
reach extremely low values, which calls into question the appropriateness of a deterministic model.
This drawback is avoided by assumption a, also used in [2]. Imm is set to one infective individual
per week in a population of 5× 106 individuals.

4.2.1 The basic unlagged model

We first assess the impact of VSEs on the transient infection dynamics triggered by a new vaccination
introduced at the pre-vaccination endemic state, and under assumption a. The vaccine is introduced
at time t = 0, with initial vaccine uptake set to 0.95 > pc. Vaccine side effects occur from the beginning
of the programme. We set ϑ = 15000 (implying pe ≈ 0.71, k = 0.002 days−1 and 1/Ψ ≈ 7 years).
Note that k is small since it is the product between the natural imitation rate and the low probability
α of suffering a VSE. As predicted by (13), the system converges, in epidemiologically reasonable
time scales, to a stable limit cycle. With reference to Fig. 2, the vaccine uptake (right-hand panel)
starts declining soon after the programme starts, due to the onset of VSEs, and falls below the critical
threshold pc in less than four years. Thus the effective reproduction number RE(t) = R0 ∗ S(t) (left-
hand panel) initially declines but then increases and exceeds the unit threshold at t ≈ 8 years, yielding
a new epidemic outbreak at t ≈ 10 years. During this rather long ’honey-moon’ period the circulation
of the infection is essentially sustained by immigration. Note that p(t) > pc for a rather long period of
time (about 36 per cent of total time). During such periods routine vaccination surveys would reveal
a satisfactorily high coverage. Therefore they could not explain the endemic persistence of infection.
The role played by k is illustrated in Fig. 3, which considers the values: k = 0.0005 days−1, k =
0.002 days−1 (as before), k = 0.0035 days−1, and which shows that: i) the average uptake is not
significantly affected by k and remains close to pe; ii) both the amplitude of oscillations of p(t) and
the fraction of total time where p(t) > pc increase in k; iii) the duration of the period between the
start of the programme and a new epidemic outbreak is decreasing in k. For example, the ’low’ k
value (k = 0.0005 days−1) yields oscillations that are of small amplitude and that for a small portion
of their period are such that p(t) > pc. Moreover, there is an interval of 17 years about before a
new epidemics, which is only a few years long for k = 0.0035 days−1. This is the consequence of
the slow spread of information occurring for low k, which slows down the reactivity of the vaccine
uptake to changes in the payoff gain. Note that if no external infections are introduced, then for small
k the infection prevalence is close to zero. This suggests that oscillations might produce stochastic
elimination of infection.
We now study the introduction of a new vaccine for which no vaccine side effects are initially known.
In this case it seems reasonable to assume that an intermediate period might exist during which no
perception of VSEs arises. We consider α = 0 for t < t1 where t1 = 10 years, and that the starting
point is the pre-vaccination steady state. Of course, the vaccine uptake start increasing since the payoff
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vaccination is initially positive (α = 0). If VSEs raise after a very long time, or no VSEs are reported,
then stochastic elimination is possible. By contrast, if evidence of VSEs emerges, the scenario reduces
straightaway to the cases treated above. If the imitation process is very slow, VSEs appear before
reaching a sufficient coverage and a sub-optimal vaccination coverage is achieved (left-hand panel of
Fig. 4). Instead for a larger value of k, the infective fraction is very close to 0 such that stochastic
elimination may occur (central panel of Fig. 4). Finally, for an intermediate range of k there is onset
of oscillations, but at the end of their transitory the minimum I(t) is very close to 0 and elimination
can again occur (right-hand panel of Fig. 4).
Finally, we simulated the case where eradication was achieved thanks to a period of compulsory
vaccination, after which vaccination becomes voluntary. In this case VSEs induce individuals to
switch to the ’non-vaccinator’ strategy, thereby producing a decrease in vaccination coverage. This in
turn increases the probability of infection re-emergence from imported cases. If a few new external
infections are introduced (assumption b) before RE(t) = 1, then the occurrence or not of stochastic
transient elimination depends again on k, with patterns similar to the previous case (see Fig. 5.a,5.b).
Moreover, if individuals take into account a non zero risk of infection re-emergence from importation
(the linear affine case h(I) = ϑ0 + ϑI), the population is more ’protected’ and the impact of the
external infections can be reduced also for large values of k (see Fig. 5.c).

4.2.2 Impact of information-related delays

An exponentially distributed lag in the p term yields a model given by (1)-(2) complemented by:

p′ = k (h(I)−H)) p (1− p) (16)

and by (10). Fig. 6 reports the stability regions in the (k, b) plane for ϑ = 260, ϑ ≈ 279.5 (which is
close to the critical value ϑ∗ in absence of delays) and ϑ = 500. Note that for ϑ = 500 > ϑ∗ for all b
there are two values kl(b; ϑ) and kr(b; ϑ) such that for kl(b; ϑ) < k < kr(b; ϑ) the endemic state Ebeh

is unstable and it is also an easy matter to show that Yabucovitch oscillations can arise. Similar plots
are obtained in all cases where ϑ > ϑ∗. This can be easily explained since for very large b the lagged
model reduces to the unlagged one that, for ϑ > ϑ∗, has an instability interval.
Interestingly, the right panel of 6 for ϑ = 260 < ϑ∗ shows instability regions that are uniquely due
to the information delay, because in absence of the delay (i.e. for large b) there is no instability, as
shown in the previous sub-sections. This confirms that the addition of time delays in the p term
(mimicking delayed onset of VSEs or delayed information acquisition) cumulates with the imitation
delay in triggering instabilities. Fig. 7 reports the time course of vaccine uptake p(t) for ϑ = 260
for two distinct cases. In the left-hand panel the behaviour in absence of delay is reported, showing
convergence to the endemic state. The right-hand panel reports the behaviour for a delay of 250 days
(b = 0.004 days−1) in the occurrence of side effects, showing instead convergence to a limit cycle.
Let us now consider an exponentially fading memory in the perceived risk of infection: let M stand
for past prevalence, and a the corresponding delaying rate. We set h1(M) = ϑM , and h2(I) = I. In
Fig. 8 we plotted the stability regions in the (k, a) plane for ϑ = 260, ϑ ≈ 279.5 (which is close to the
critical value ϑ∗) and ϑ = 500.
Finally, in the case where exponentially fading memories appear both in the perceived risk of vacci-
nation (with rate b) and the perceived risk of infection (with rate a), numerical simulations showed a
wide pattern of periodic behaviour, including very long periods (an example with alternating low and
high peaks is reported in the left-hand panel of Fig. 9), and also aperiodicity (as in the right-hand
panel of Fig. 9)

5 Concluding remarks

We investigated an SIR transmission model with voluntary vaccination. Unlike [2] we consider a
dynamic perceived risk of vaccination proportional to the trends of VSEs. Mathematical analysis of
the model confirms already known results, such as the onset of behaviour-triggered steady oscillations
about the post-vaccination endemic state. In addition it shows some noteworthy differences compared
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to findings elsewhere. For example global elimination may, or may not, be possible depending on
the actual magnitude of the baseline perceived risk of disease relative to the risk of vaccine side
effects. As regards the pre-vaccination equilibrium, differently from [2], it is always unstable, so
that any vaccination programme will initially be successful, at least partially. Moreover oscillations
occur, provided the relative risk of disease is large enough, in a bounded window of the imitation
parameter. In addition, we also considered the impact of time delays on the vaccination payoff gain,
which is a realistic feature. Finally, the model allows noteworthy inferences on the future lifetime
of vaccination voluntary programmes. It suggests that in order to achieve high equilibrium uptakes
for e.g. measles, the perceived cost of the disease must be at least three orders of magnitude higher
than the perceived cost of vaccine-associated side effects, and moreover that this requirement is further
increased under situations with large life expectancies. Both these facts seem to be consistent with real
world observations, and suggest that maximal vaccination effort by international institutions should
target increasing vaccine uptake in less developed countries where the risk of serious sequelae is still
high, and life expectancy is still low. Simulations finally provide further interesting insights on the
effect of behavioural parameters on vaccine uptake.

Appendix

The biomathematical properties listed in section 3 may be demonstrated as follows:
Property A Let us define, to simplify the notation, the parameter:

Ψ = kh (Ie) (1− h (Ie)) . (17)

Linearizing at Ebeh yields the following characteristic polynomial with positive coefficients:

λ3 + (Ψ + μ + βIe) λ2 + ((μ + βIe)Ψ + (μ + ν)βIe)λ + βIe (μ + ν + μh′ (Ie))Ψ, (18)

for which the Routh-Hurwitz condition yields this inequality in the variable Ψ:

RH(Ψ) = (μ + βIe)Ψ2 +
(
(μ + βIe)

2 − βIeμh′ (Ie)
)

Ψ + (μ + βIe)βIe(μ + ν) > 0. (19)

Since the coefficients of power 0 and 2 of eq. (19) are positive, and taking also into account the sign
of the coefficient of power 1, it is easy to show that if (12) holds then Ebeh is LAS.
Property B If (13) holds then there are two positive values 0 < k1 < k2 such that if k < k1 or k > k2

then Ebeh is LAS; moreover, if k1 < k < k2 then Ebeh is unstable and k1 and k2 are Hopf points.
After some algebra it is easy to verify that at the Hopf points there are Hopf bifurcations since the
nonzero speed condition Re

(
(dλ/dk)|λ=±iωHopf

) 	= 0 is fulfilled.
Property C As regards the Yabucovitch oscillations, note that: i) the bounded set

A = {(S, I, p) ∈ R+|0 ≤ S + I ≤ 1− h(0), h(0) ≤ p ≤ 1}
is positively invariant and attractive; ii) Ebeh is unstable, and Edfe, which is in the boundary of A, has
as the stable manifold the line (w, 0, 1) w ∈ [0, 1] to which Ebeh does not belong, excluding heterocline
orbits. Thus we may apply the Yabucovitch theorem [25].
Property D Since asymptotically p(t) ≥ h(0), it follows that for large times:

S′ ≤ μ (1− h(0)− S) ,

i.e. asymptotically S(t) ≤ (1− h(0)). This in turn implies:

I ′ ≤ βI
(
1− h(0)−R−1

0

)
= β (pc − h(0)) I.

Thus, if h(0) > pc then I(t)→ 0 implying p(t)→ h(0) and S(t)→ 1− h(0), i.e. Edfe is GAS.
Let us now discuss the case of an exponentially fading memory in the perceived risk of vaccination
with linear h(I) = ϑI. The Routh-Hurwitz stability condition reads:

G(Ψ, b) = c2(b)Ψ2 + c1(b)Ψ + c0(b) > 0 (20)

9



where Ψ is as in eq. (17), and the coefficients are third order polynomials in the delay parameter b.
Thus, for each b there are at most two bifurcation values for k, whereas for each k there may be at
most three bifurcation values for b.
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Figure 1: Bifurcation curve for linear and linear affine h(I), in the case R0 = 10, ν = 1/10 days−1, μ =
1/50 year−1. (left-hand panel) Bifurcation curve for linear h(I) = ϑI in the parameter space (k, ϑ).
(Central panel) Bifurcation curve for linear h(I) = ϑI in the parameter space (k−1, ϑ) emphasizing
patterns for small imitation-related delays. (Right-hand panel) Bifurcation curve for linear affine
h(I) = ϑ0 + ϑI plotted for three values of ϑ0. As ϑ0 increases the minimal threshold of ϑ is non-
monotone.
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Figure 2: The unlagged model with linear h(I): dynamics of RE(t) (left-hand panel), I(t) (centre),
p(t) (right-hand panel), following the initiation of an immunization programme with p(0) = 0.95;
S0, I0 fixed at their pre-vaccination endemic state. Parameters: R0 = 10, ν = 1/7 days−1, μ = 1/75
year−1, ϑ = 15000,k = 0.002 days−1.
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0.0005 days−1 (left), k = 0.002 days−1 (centre), k = 0.0035 days−1 (right) following the initiation of
an immunization programme with p(0) = 0.95; S0, I0 fixed at their pre-vaccination endemic state.
Other parameters: R0 = 10, ν = 1/7 days−1, μ = 1/75 year−1, ϑ = 15000.
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