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Abstract 
Alignment-free classifiers are especially useful in the functional classification of protein classes with 

variable homology and different domain structures. Thus, the TI2BioP (Topological Indices to 

BioPolymers) methodology [1] inspired in both the TOPS-MODE and the MARCH-INSIDE 

methodologies allows the calculation of simple topological indices (TIs) as alignment-free classifiers. 

These indices were derived from the clustering of the amino acids into four classes of hydrophobicity and 

polarity revealing higher sequence-order information beyond the amino acid composition level. The 

predictability power of such TIs was evaluated for the first time on the RNase III family due to the high 

diversity of its members (primary sequence and domain organization). Three non-linear models were 

developed for RNase III class prediction: Decision Tree Model (DTM), Artificial Neural Networks (ANN)-

model and Hidden Markov Model (HMM). The first two are alignment-free approaches using TIs as input 

predictors. Their performances were compared with a non-classical HMM, modified according to our 

amino acid clustering strategy. The alignment-free models showed similar performances on the training and 

the test sets reaching values above 90% in the overall classification. The non-classical HMM showed the 

highest rate in the classification with values above 95% in training and 100% in test. Although the higher 

accuracy of the HMM, the DTM showed simplicity for the RNase III classification with low computational 

cost. Such simplicity was evaluated in respect to HMM and ANN models for the functional annotation of a 

new bacterial RNAse III class member isolated and annotated by our group.  
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1. Introduction  

There are many software tools for searching sequences into databases but all use some measure of 

similarity between sequences to annotate the biological function of certain gene or protein [2]. While such 

available methodologies for sequence classification have a friendly interface for the normal users [3], its 

algorithms demand a high computational cost and in many cases require the implementation of stochastic 

process for building a predictive model [4]. Such procedures turn out to be less effective when the members 

of a certain gene [5] and protein [6] class diverge and show different domain structures; then much more 

expensive alignment strategies in time and memory are required to improve the classification accuracy. 

Thus, the development of effective and less costly classification methods based on alignment-free 

classifiers is important as a complement to alignment-dependent algorithms [2; 7]. To date most of the 

alignment-free classifiers estimate 1D sequence parameters based on the amino acid composition to 

evaluate sequence-function relationships [8], predict protein-protein interactions [9] and protein attributes 

[10]. 

The introduction of 2D or higher dimension representations of sequences [11; 12] previous to the 

calculation of such numerical parameters allows uncovering higher-order useful information not encoded 

by 1D sequence parameters. Thus, we cluster the amino acids of protein sequences according to its charge 

or its hydrophobic features into a 2D representation or map that provides higher sequence-order 

information beyond the amino acid composition level. This approach is one of the applications of our 

methodology TI2BioP (Topological Indices to BioPolymers) [1] inspired in both the TOPS-MODE 

(Topological Sub-structural Molecular Design) [13] and the MARCH-INSIDE (Markov Chain Invariants 

for Network Selection & Design) [14] methodologies. TI2BioP allows the calculation of the spectral 

moments as simple Topological Indices (TIs) from different structural representation of biopolymers 

(DNA, RNA and proteins) that can be used for the prediction of functional classes irrespective of sequence 

similarity.  

The RNase III family was selected as a case of study to assess the predictability power of our alignment-

free classifiers (TIs) due to the high diversity among its members (primary sequence and domain 

organization). This protein class belongs to a super-family that includes an extensive network of distinct 

and divergent gene lineages [15]. Although all RNases of this super-family share invariant structural and 
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catalytic elements and some degree of enzymatic activity, the primary sequences have diverged 

significantly. In fact, the RNase III family can be divided into four subclasses [16]. Class 1 consists of 

bacterial enzymes with a minimal RNase III domain and a single dsRNA binding domain (dsRBD). Class 2 

includes fungal enzymes, with an extra N-terminal region without any recognizable motif. Class 3 comprise 

the Drosha orthologs found in animals, which has two RNase III domains and one dsRBD in the C-terminal 

half and a proline-rich domain and an arginine rich (R-rich) domain in the N-terminal half of the protein. 

Class 4 RNase III enzymes contain the Dicer homologs expressed in S. pombe, plants, and animals. Their 

C-terminal half appears similar to Drosha, but the N-terminal half features shows different domain 

structures. The homology among the different RNase IIIs may vary from 20 to 84% depending on their 

evolutionary distance, suggesting a low level of primary structure conservation [16]. 

The electric charge clustering of the amino acids was used to develop three different non-linear models: 

Classification Trees (CT), Artificial Neural Networks (ANNs) and Hidden Markov Models (HMM), which 

allowed to predict the RNase III membership of a query sequence. CT and ANN-based models are 

alignment-free approaches obtained using our TIs as input predictors. These models were compared with a 

traditional alignment algorithm to recognize protein signatures: HMM, which was modified by using a non-

classical alignment profile based on the clustering of amino acids according to their charges values. 

The ANNs have been more frequently applied to the prediction of protein structure and function than the 

CTs [17; 18]. Although, the CTs are widely used in applied fields as diverse as medicine (diagnosis), 

computer science (data structures), botany (classification), and psychology (decision theory), due to its easy 

interpretation based on a graphical representation [19], they have been poorly explored in Proteomics, 

namely to annotate the biological function of proteins. In this sense, we showed its novel application into 

the Proteomics field by allowing the identification of RNase III-like sequences using simple TIs as 

alignment-free classifiers. The simple procedure to search an RNase III protein among the available protein 

molecular diversity was compared with the classification performance obtained using other artificial 

intelligent methods, such as ANNs and HMMs. 

We showed that the spectral moments were useful as input predictors to develop non-linear models 

(DTM, ANN) to classify the RNase III family irrespective of sequence similarity. A simple and 

interpretable alignment-free Decision Tree Model (DTM) was built to detect RNase III-like members using 
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just one TI at two different levels. However, the ANN-based model used 18 TIs as input predictors and 

demanded a more complex topology to retrieve similar results in the RNase III family classification. 

Although, the HMM based on our clustering strategy provided an optimal performance in the prediction of 

the test set, it is not a practical procedure for a normal user. Therefore, we recommend the easy use of the 

DTM based on the spectral moments calculated by the TI2BioP methodology [1] for the RNase III 

classification. The performance of the three non-linear models was also compared for the prediction of a 

new bacterial member of the RNase III class. This sequence was isolated, characterized and annotated by 

our group at the GenBank Database (accession number GU190214) [20]. Its DTM detection as a RNase III 

class member was remarkable simple and required low computational cost relatively to the HMM and ANN 

models. 

  

2. Methods 
2.1 Computational methods 

TI2BioP was built up on object-oriented Free Pascal IDE Tools (lazarus) [1]. The program could be run 

on Windows and Linux operating system. The user friendly interface allows the users to access to the 

sequence list introduction, selecting the representation type and calculations of TIs. It is based on the graph 

theory considering the “building blocks” of the biopolymers DNA, RNA and protein as nodes or vertexes 

and the bonds between them as edges into a certain graph. Thus, the information contained in biopolymeric 

long strings is simplified in a graph considering some of its relevant features as the topology and properties 

of the monomers. These factors determine either the approximated secondary structure [21] or the artificial, 

but informative, folding of linear sequences [22]. TI2BioP allows the calculation of the spectral moments 

derived from such inferred and artificial 2D structures of DNA, RNA and proteins. Consequently, it was 

developed on the basis of two well-known methodologies: ¨TOPS-MODE¨ [13] implemented in the 

“MODESLAB” software [23] and the MARCH-INSIDE program [14]. The calculation of the spectral 

moments as TIs is performed according the TOPS-MODE approach [13] and the pseudo-secondary 

structures for the protein sequences were taken from the experiences achieved by using the MARCH-

INSIDE methodology [22; 24]. We used the 2D lattice of Hydrophobicity (H) and Polarity (P) introduced 
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by our group to encode information about polygalacturonases enzymes [22] to obtain the protein pseudo-

secondary structures. 

The 20 different amino acids are regrouped into four HP classes. These four groups characterize the HP 

physicochemical nature of the amino acids as polar, non-polar, acidic or basic [25]. Each amino acid in the 

sequence is placed in a Cartesian 2D space starting with the first monomer at the (0, 0) coordinates. The 

coordinates of the successive amino acids are calculated as follows: 

a) Decrease by –1 the abscissa axis coordinate for an acid amino acid (leftwards-step) or: 

b) Increase by +1 the abscissa axis coordinate for a basic amino acid (rightwards-step) or: 

c) Increase by +1 the ordinate axis coordinate for a non-polar amino acid (upwards-step) or: 

d) Decrease by –1 the ordinate axis coordinate for a polar amino acid (downwards-step).  

This 2D graphical representation for proteins is similar to those previously reported for DNA [26; 27; 

28] that was extended later to classify protein families [22; 24] and structural RNA [29] using stochastic 

indices [30]. The figure 1 shows how the new RNase III protein sequence from Escherichia coli BL21 

substrain GG1108 is pseudo-folded into a HP-lattice or 2D-HP map that compact its linear sequence: its 

two major domains are highlighted in red (RNase III domain) and in blue (double-stranded RNA binding 

motif), respectively. Note that a node (n) in the 2D-HP map could be made up for more than one amino 

acid. The N and C termini residues are point out in black and red as a square and simple dot, respectively. 

Figure 1 comes about here 

All sequences are pseudo-folded into a HP-Cartesian lattice by TI2BioP. The original spectral moments 

(μk) introduced previously by Estrada [31; 32], that have been validated for many authors to encode the 

structure of small molecules in Quantitative Structure Activity Relationship (QSAR) studies [33; 34; 35], 

were applied to describe such protein 2D-HP maps (HPμk) to contain new structural information. The 

original adjacent matrix is modified according the building of the 2D-HP protein maps described above.   

 

2.2 Building an electronic bond matrix for 2D-HP protein maps. Calculation of TIs 

irrespective of sequence similarity 
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 After the representation of the sequences we assigned to each graph a bond adjacency matrix B for the 

computation of the TIs. They are called ¨spectral moments¨, defined as the trace of B consisting in the sum 

of main diagonal entries, of the different powers of bond adjacency matrix. B is square symmetric matrix 

where its non-diagonal entries are ones or zeroes if the corresponding bonds or edges share or not one 

amino acid. Thus, it set up connectivity relationships between the amino acid in the artificial secondary 

structure (2D-HP map). The number of edges (e) in the graph is equal to the number of rows and columns 

in B but may be equal or even smaller than the number of peptide bonds in the sequence. Main diagonal 

entries can be bonds weights describing hydrophobic/polarity, electronic and steric features of the amino 

acids. In particular, the main diagonal was weighted with the average of the electrostatic charge (Q) 

between two bound nodes. The charge value q in a node is equal to the sum of the charges of all amino 

acids placed on it. The q value for each amino acid was derived from the Amber 95 force field [36]. 

Thus, it is easy to carry out the calculation of the spectral moments of B in order to numerically 

characterize the protein sequence.  

� � � �1��
�

��
	 
� kTrk

HP�  

 Where Tr is the operator “trace” that indicates the sum of all the values in the main diagonal of the 

matrices kB = (B)k, which are the natural powers of B. 

In order to illustrate the calculation of the spectral moments an example is developed below. The 

building of the 2D-HP map on the Cartesian system for the protein fragment (D1-E2-D3-K4-V5), the 

coordinates for each one of its amino acids and the definition of its bond adjacency matrix are depicted in 

the figure 2. The calculation of the spectral moments up to the order k = 3 is also defined downstream of 

the figure 2. Please note in the graph that the central node contains both E and K and q values are 

represented in the matrix as the amino acid symbols (E= 1.885, V= 2.24, K= 2.254, D= 1.997) 

Figure 2 comes about here 

Expansion of expression (1) for k = 1 gives the HPμ1, for k = 2 the HPμ2 and for k = 3 the HPμ3. The bond 

adjacency matrix derived from this linear graph is described for each case 
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The calculation of HPμk values for protein sequences of both groups were carried out with our in-house 

software TI2BioP version 1.0 ®, including sequence representation [37]. We proceeded to upload a row 

data table containing the sixteen HPμk values for each sequence (k = 1, 2, 3,…16), two additional TIs 

defined as Edge Numbers and Edge Connectivity and a grouping variable (Group) that indicates the RNase 

III-like proteins with value of 1 and –1 for the Control Group  (CG) sequences to statistical analysis 

software [38], see File I of supplementary materials (SM). 

2.3 Database  

A total of 206 RNase III protein sequences belonging to prokaryote and eukaryote species were 

downloaded from GenBank database gathering RNAses III registered up to May of 2009. Each RNase III 

sequence was labelled by its accession number. The control group was selected from 2015 high-resolution 

proteins in a structurally non-redundant subset of the Protein Data Bank (PDB); such data were published 

by other authors to distinguish enzymes and non-enzymes without alignment [39], see File I of SM. The 

selection of such subset was determined using a K-Means cluster analysis (k-MCA) [40]. This same 

procedure was carried out to design the training and predicting series in both groups.    

2.4 Selection of Training and Predicting series. K-Means cluster analysis (k-MCA) 

The selection of members to conform training and predicting series was carried out by k-MCA [40]. This 

method requires a partition of the RNase III group and the 2015 high-resolution proteins independently into 

several statistically representative clusters of sequences. The RNase III members that conform the training 

and predicting series were selected straightforward from its clusters according the Euclidean distance. 

 A representative sample of 224 non-redundant proteins was set as the control group. This subset was 

selected from the partition of the 2015 proteins into representative clusters following the same procedure 

which ensures the main protein classes will be represented in the control group. Finally the control group 

was further partitioned in training and prediction series. The spectral moment series was explored as 

clustering variables in order to carry out k-MCA. This method has been widely applied before in QSAR to 

design the training and predicting series [40; 41]. The procedure described above is represented graphically 

in figure 3 for both groups. 
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Figure 3 comes about here 

2.5. Non-linear methods for RNase III classification. Decision Tree Models  

A series of eighteen TIs, consisting in sixteen spectral moments (HPμk), edge numbers and edge 

connectivity, calculated for protein sequences from training and predicting series were used as ordered 

predictors to build a DTM using the CT module of the STATISTICA 7.0 for Windows [38]. A categorical 

variable that assign the value of 1 to the RNase III class and -1 to the control group was set as dependent 

variable. CT is a technique that builds a classification rule to predict the class membership on the basis of 

feature information. CT is a data-analysis method for relating a categorical dependent variable (Y) to one or 

more independent variables (X) in order to uncover or simply understand the elusive relationship, Y=f(X). 

The result of CT is a “graph” that divides the study sample into smaller samples (every subsample is called 

a node) according to whether a particular selected predictor is above of a chosen cutoff value or not. In the 

development of the DTM, the C&RT (Classification and Regression Trees)-style univariate split selection 

method was used since it examine all possible splits for each predictor variable at each node to find the split 

producing the largest improvement in goodness of fit. The prior probabilities were estimated for both 

groups with equal misclassification cost. The Gini index was used as a measure of goodness of fit and the 

¨Prune on misclassification error¨ was set as stopping rule to select the right-sized classification tree. 

The prediction capacity of the classification model was verified by a cross-validation (CV) procedure. 

Ten random sub-samples were selected from the learning sample. The classification tree of the specified 

size is computed ten times, each time leaving out one of the subsamples from the computations, and using 

such sub sample as a test sample for cross-validation. The CV costs computed for each of the ten test 

samples are then averaged to give the 10-fold estimate of the CV costs.  

2.6 Artificial Neural Networks (ANN) for RNase III classification 

We used ANN as another non-linear method for RNase III classification using the same series of TIs as 

input variables and only one output variable (RNase III membership). We used the Multilayer Layer 

Perceptron (MLP) due to its ability to model functions of almost arbitrary complexity showing a simple 

interpretation as a form of input-output model. As starting point we used one hidden layer, with the number 

of units equal to half the sum of the number of input and output units. To select the right complexity of 

network, we tested different topologies to the MLP but checking the progress against an independent data 
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set to avoid over-fitting during the back propagation training method. The selection set was extracted by k-

MCA from the training set used to build the DTM, the test set to asses ANN predictability was the same.    

2.7 Building a non-classical HMM for the RNAse III family 

A non-classical profile HMMs for this family were constructed based on the training set using the 

HMMer software package (release 2.3.2) [42]. In first place, a HMM representing the appearance 

probabilities of amino acids charges was obtained. For this purpose, amino acids were grouped according to 

their charges values as follows:  

class-I = (A, S, G); class-II = (M, L, I, V); class-III = (K, R, T, H); class-IV  = (N, D, E, Q) ; class-V = 

(F, Y, W). Based on this regrouping, sequences in the training set were modified according to the following 

criteria: amino acids belonging to the same class were substituted by the same character identifier of each 

group. Regardless their charge characteristics, proline and cysteine remained unchangeable due to its 

biological meaning. The modified training set was then aligned.  The HMM-build program was used to 

create a new profile HMM based on the alignment of the set of sequences. Finally, the HMM-search was 

used to score test sequences against the non-classical HMM. 

3. Experimental Section  

3.1 Strains and Culture Media 

Escherichia coli BL 21 strain CG 1208 was routinely grown in Luria Broth (LB) medium at 30ºC during 

12 h. Bacterial strains Escherichia coli BL 21 strain CG 1208 and DH5� was grown in Luria Broth (LB). 

Transformed bacteria were recovered in the same LB medium but supplemented with carbencillin at 

100μg/mL. Media were also supplemented with bacteriological agar when it was required.  

3.2 Total DNA Extraction 

A colony from Escherichia coli BL 21 strain CG 1208 was inoculated in 5 mL of LB medium and 

grown at 30ºC during 12 hours until OD600= 0.5. From this culture 250 μL were transferred to 50 mL of the 

same medium and grown overnight at the same temperature. When OD600= 0.8, cells were collected by 

centrifugation and broken using standard procedure. Cellular pellet was resuspended in 300μL sterile water 

at 50°C and the extract was separated from cellular debris by centrifugation. Total DNA was purified using 

a total DNA extraction kit (Qiagen GmbH, Germany).  
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3.3 Primers design  

The primers using for PCR amplification of Escherichia coli RNase type III were designed based on the 

previously reported E. coli RNAse type III coding sequence [43; 44]: forward primer (RNaseIII5’) 5’-

cccATGGACCCCATCGTAATTAATCGGC–3’ and reverse primer (RNase III3’) 5’-

caataaatccgcggatccttttatcgatgcTCA-3’. In both primer sequences are shown the restriction sites Nco1 and 

BamH1 introduced at 5’ and 3’ ends, the start ATG and the stop TGA codon. The coding regions are also 

shown in capital letters.  

3.4 PCR Amplifications 

Amplification of E. coli RNase III gene from Escherichia coli BL 21 strain CG 1208 was performed by 

standard PCR from its total DNA. The reaction mixture containing 10 ng of template, 1mM of each dNTP, 

1.5mM MgCl2,  2μM of each PAC5’ and PAC3’ primers, in a total volume of  50μL, 1x Taq Pol (Gibco 

BRL) and 2.5 U Taq Pol (Gibco) was completed. The PCR was carried out using thermo-cycler (Perkin 

Elmer 2400) programmed as follows: 5 min previous template denaturation at 94°C, cycle steps: 1 min 

template denaturation at 94°C, 2 min primer annealing at 45°C, 1 min primer extension at 72°C for 30 

cycles; plus a final extension step at 72°C for 5 min. PCR product was visualized by electrophoresis on 1% 

TBE agarose gel. 

3.5 Plasmid Construction and Sequencing 

PCR amplification product was purified using GEL Band Purification kit (Amersham Pharmacia 

Biotech) and ligated to pMOS-Blue T-vector (Amersham Pharmacia Biotech). The ligation was 

transformed into electrocompetent E. coli DH5� by electroporation in 0.2 cm cubettes and Gene Pulser 

Machine (BioRad) (12.5 kV, 25 μF, 1000 �). Transformation was plated onto of LB medium supplemented 

with 40 μL of 20 μg/mL X-gal solution and 4μL of isopropylthio-�-D-galactoside from 200 μg/mL IPTG 

solution per plate and grown overnight at 37ºC. White colonies, presumable carrying the recombinant E. 

coli RNAse III gene inserted in pMOS-Blue T-vector, named pREC1, were selected and plasmid DNA 

extracted for analysis of cloned fragments. Sequencing of cloned fragment was performed using the ABI 

3700 sequencer (Applied Biosystems). The cloned gene was properly manipulated for further purification 

and enzymatic assay purposes as described [45]. 
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3.6 Synthesis and preparation of dsRNA substrate for enzymatic assay. 

The synthesis and preparation of dsRNA substrate for enzymatic assay of recombinant E. coli RNAse III 

was conceived according to create optimized dsRNA structure for measurement of enzymatic activity [16]. 

One of the T7 substrates, named R1.1 RNA (109 nt), was used for biological assay of recombinant enzyme. 

This short RNA forms hairpin structures containing the recognition and cleavage sites by E. coli RNAse 

type III and have been extensively studied [46]. The DNA fragment encoding for 109 nt R1.1 RNA were 

synthesized chemically, purified by denaturing gel-electrophoresis and cloning into pBluescript II KS (-) 

for further T7 polymerase transcription. The integrity of the cloned fragment was verified by sequencing. 

The RNA transcripts were generated by T7 polymerases using oligonucleotides as templates and the 

reactions were carried in the presence of [�32P] UTP. The transcription reactions were prepared in a final 

volume of 20 �L containing 40 mM Tris-HCl (pH 7.9), 6 mM MgCl2, 2 mM spermedine, 10 mM DTT, 0.5 

mM of each ribonucleoside (Amersham Pharmacia Biotech), 50 �Ci [�32P] UTP (800 Ci/mmol), 20 U 

RNAsin (Promega), and 20 U T7 RNA polymerase (Amersham Pharmacia Biotech). The unpaired RNA 

strands were removed by RNase A (Promega) treatment. The dsRNA substrate was purified (PAGE-TBE 

15% gel) and stored in diethyl pyrocarbonate (DEPC) treated distilled water at -70 °C and purified for the 

enzymatic assay. 

3.7 Enzymatic assay of recombinant E. coli RNAse III. 

The E. coli RNAse III gene was properly cloned within Nco1 and BamH1 of pIVEX2.4a (Roche Applied 

Science, Indianapolis, IN 46250 United States) to produce and purified the recombinant protein as 

described [45] in the form of 6x(His)-RNAse III. Double stranded RNase activity of recombinant protein 

form was performed basically with the same method we used for S. pombe strain 428-4-1 but with minor 

variations [47]. The E. coli assay was carried using the following conditions: 30 mM Tris-HCl (pH7.6), 1 

mM DTT, 10 mM of MgCl2 , 10 nM of dsRNA substrate and 100 mM polydifferent quantities (0, 1, 10, 

100 nM) of purified recombinant E. coli RNAse type III  enzyme. Enzymatic reactions were completed on 

ice and started by the addition of 0.1V of 50 mM MgCl2, incubated at 30ºC for 10 minutes and stopped by 

addition of 500 μl of 5% ice-cooled TCA followed by 15 minutes on ice. The aliquots were centrifuged at 

16 000g during 5 minutes in Spin-X filter unit (Costar). The soluble fractions (filtrate) were quantified by 

liquid scintillation counting. The counting data represent the amount of acid precipitable polynucleotide 
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phosphorus (dsRNA) substrate transformed into acid soluble cleavage products by E. coli RNAse type III 

enzyme. The procedure was repeated three times with three repetitions per experiment. 

 

4. Results and discussion  

4.1 Predicting type III RNAse activity irrespective of sequence alignment 

In this work, we calculated the spectral moments (HPμk) of the bond adjacency matrix between the amino 

acids of protein sequences pseudo folded into the 2D-HP lattice. Such TIs describe electronically the amino 

acids connectivity at different orders in a pseudo secondary structure that is determined by the hydrophobic 

and polarity features of the amino acids. The calculation was carried out for two groups of protein 

sequences, one made up of 206 RNase III like enzymes and other conformed by 224 non-redundant 

enzymes and non-enzymes as control group. 

 The members of the training and predicting series for the RNase III class were selected according to the 

k-MCA, which divided the data into three clusters containing 53, 77, and 76 members, respectively. 

Selection was based on the distance from each member to the cluster center (Euclidean distance). The 

members of the external validation subset were selected uniformly in respect to Euclidean distance taking 

out the 25% in each cluster. The remainder of the cases was used to train the model. 

To set up the final control group, the original data of 2015 proteins (enzymes and non-enzymes) were 

reduced to 224 members in order to balance both groups. Data selection was also carried out using the k-

MCA to ensure the inclusion of representative protein domains of each cluster in the control group. The 

original data was split into four statistically representative clusters of sequences made up by: 267, 430, 655 

and 663 members. Afterwards, the members to constitute the training and predicting subsets were selected 

following the same procedure described for the RNase III class. 

Clustering of cases was carried out by using the TIs computed in TI2BioP methodology [1]. We 

explored the standard deviation between and within clusters, the respective Fisher ratio and their p-level of 

significance [40]. All variables were used to construct the clusters but only the combination from the HPμ10 

to HPμ14 showed p-levels < 0.05 for Fisher test, as depicted in Table 1. We also obtained different mean 

values for these five variables that produce an evident separation between the clusters (figure 4). They 
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described three and four statistically homogeneous clusters for the RNase III class and the control group, 

respectively.  

Table 1 comes about here 

Figure 4 comes about here 

Such division of the RNase III protein sequences into three clusters according our TIs is a close 

approximation to the structure-based characterization reported by Lamontagne and Elela for this family 

[16], which divided it into 4 sub-classes. However, our three groups coincided perfectly with another 

subdivision based on the biological activity [48]. 

4.2 Prediction based on DTM using TIs 

Although different alignment-free methods have been reported for improving the classification accuracy 

in protein classes and super-families, to date no DTM have been developed to differentiate protein classes. 

We select the RNase III class to assess the DTM predictability due to its diversity in sequence similarity 

and domain organization between its members representing different subclasses. Thus, we used the CT as 

an exploratory technique to obtain a DTM to differentiate the RNase III class from a non-redundant subset 

of enzymes and non-enzymes, as linear traditional methods failed to succeed on that goal. We carried out 

previously a General Discrimination Analysis (GDA) for variable selection to build up a linear model [49; 

50; 51]. Eighteen variables, including a series of sixteen HPμk calculated by TI2BioP methodology, were 

reviewed for finding the "best" possible sub model with the STATISTICA software. The best sub model 

selected from 262126 models showed a Wilk’s statistic of 0.86 indicating little separation between the two 

groups. All predictors entered significantly into the model but just provided an overall classification of 

62.32%. In contrast, the development of DTM based on C&RT-style exhaustive search for univariate splits 

showed excellent results on the RNase III classification.  

The method found the HPμ1 predictor as the splitting variable to produce two decision splits at different 

values showing the largest improvement in goodness of fit, therefore an effective classification was 

developed. The tree structure was very simple, two decision nodes (outlined in black) and three terminal 

nodes (outlined in gray) summing up a total of five nodes. In the graph, the numbers of the nodes are 

labelled on its top-left corner. All 323 training sequences are assigned to the root node (first node) and 

tentatively classified as non-RNase III enzymes or control group, as is indicated by the control group label 



 15

(-1) placed in the top-right corner of the root node. Sequences from control group are chosen as the initial 

classification because they are slightly more than RNase III enzymes (1), as is indicated by the histogram 

plotted within the root node.  

The root node is split, forming two new nodes. The text below the root node describes the split. It 

indicates that protein sequences with HPμ1 values less than or equal to 422.6 are sent to node number 2 and 

tentatively classified as RNase III enzymes, and the protein sequences with HPμ1 values greater than 422.6 

are assigned to node number 3 and classified as non-RNase III enzymes or other non-enzymatic proteins. 

Similarly, node 2 is subsequently split taking the decision that sequences with HPμ1 values lesser than or 

equal to 339.69 are sent to node number 4 to be classified in the control group (59 cases). The remaining 

160 proteins with HPμ1 values of greater than 339.69 are sent to node number 5 to be classified as RNase III 

enzymes.  

The tree graph presents all this information in a simple and straightforward way allowing to evaluate the 

information in much less time. The histograms plotted within the tree's terminal nodes show that the 

classification tree classifies the RNase III enzymes from the control group quite efficiently (figure 5). All 

the information in the tree graph is also available in the tree structure shown in Table 2. 

Figure 5 and Table 2 come about here 

When univariate splits are performed, the predictor variables can be ranked on a 0 - 100 scale in terms of 

their potential importance in accounting for responses on the dependent variable [52]. In this case, HPμ1 is 

clearly the most important predictor to discriminate the RNase III class from other protein signatures 

(figure 6). 

Figure 6 comes about here 

The DTM classified correctly 296 out of the 323 proteins used in the training series (level of accuracy of 

91.64%). More specifically, the model correctly classified 144/155 (92.90%) of RNase III like sequences 

and 152/168 (90.48%) of the control group. In order to minimize computational cost, the DTM was 

validated using 10-fold cross-validation method. For this purpose, we took out randomly 65 sequences 

representing the 20% of the training set to examine the prediction accuracy of the model. The procedure 

was repeated 10 times varying the composition of the sub samples. The mean values for the accuracy, 

sensitivity and specificity obtained in the 10 fold cross-validation on the training sample were very similar 
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to those achieved from the data partition using k-MCA showing the robustness of the DTM. The 

classification matrices for training and cross-validation are depicted in Table 3. 

An external validation was also performed using the same cross-validation method mentioned above on the 

predicting series derived from the k-MCA. It is important to highlight that this external set was not used to 

build the model. This procedure was carried out with an external series of 107 protein sequences, 51 RNase 

III-like proteins and 56 proteins from the control group (see Table 3 and File IISM). The model showed a 

prediction overall performance of 92.52%, being able to predict 49/51 (96.07%) of the ribonucleases III 

and 50/56 (89.28%) of the functionally-diverse proteins. The cross-validation cost (CV cost) and standard 

deviation (SD) in misclassification were also explored for the two validation procedures to evaluate 

predictability performance. Both cases showed values less than 0.5, which is an excellent result for the 

misclassification of the model. 

Table 3 comes about here 

The retrieved DTM structure is very simple and its graphical display makes easier the interpretation of 

the data classification. Particularly, the spectral moment HPμ1 is the split condition at two levels to predict 

membership of protein sequences in the RNase III class or in other structural and functional different 

group. This fact points out that proteins sequences pseudo folded into 2D-HP maps with values of 339.69 

�HPμ1� 422.6 are more likely to present double-stranded ribonuclease activity.  

4.3 Artificial Neural Networks (ANN) in the prediction of the RNase III class 

The complexity of DTM as a non-linear statistical method to predict the RNase III class using our TIs 

was evaluated in respect to another non-linear method: ANN. The Multilayer Layer Perceptron (MLP) was 

selected as the most popular ANN architecture in use today [53]. The MLP was tested at different 

topologies using the 18 predictors calculated by the TI2BioP methodology as input variables. From the 

same training set used to develop the DTM, an independent data set (the selection set) was selected to keep 

an independent check on the progress of the back propagation algorithm used for the training. Such 

selection set was chosen by k-MCA to take out a representative subset of 61 sequences that were not used 

in the back propagation algorithm. Thus, 262 cases were used for the training and the same test subset 

made up of 107 cases was evaluated on the external validation (File IISM). The Table 4 shows the 

different MLP topologies used to select the right complexity of network, the performance on training, 
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selection and test progress were examined as well as its errors. The best model was the MLP profile 

number 7 (highlighted in bold), which showed an excellent performance on training, selection and test sets, 

minimizing its respective errors.  

Table 4 should come here 

This ANN model showed an overall classification in training, selection and test of 93.89, 93.34 and 90.65 

%, respectively, which are quite good results taking into account the classification values reported for 

protein families with a higher degree of conservation [24]. The classification results derived from our 

alignment-free approach to classify RNase III membership is showed in Table 5 and in File IISM for more 

details.  

Table 5 comes about here 

Although the excellent results obtained, the method is based on a non-linear function of high complexity 

implemented in the MLP classifier. ANN-based models are complex non-linear functions that are 

unknown, therefore hard to interpret. In addition, the 18 predictors entered in the ANN model using one 

hidden layer made up of four neurons representing a more complex architecture to face the RNase III 

classification in contrast with the simplicity of the DTM. The Figure 7 depicts the network map for the best 

MLP model. 

Figure 7 come about here 

To validate the ANN model, we constructed the Receiver Operating Characteristic (ROC) curve for the 

training, selection and test subsets. In each case, the curve presented an area higher than 0.5 reaching values 

of 0.95, 0.97 and 0.92 for training, selection and test sets, respectively (figure 8). According to the ROC 

curve theory random classifiers have an area of only 0.5. This result confirms that the present model is a 

significant classifier relatively to those working at random. The validity of this type of procedures in 

developing ANN-QSAR models have been demonstrated before, namely by Fernandez and Caballero [54; 

55; 56]. 

Figure 8 comes about here 

 4.4 Non-classical HMM in RNase III classification 

In order to compare with other non-linear methodologies based on sequence alignment, the training and 

the test set from the RNAse III class and control group were scored against a non-classical HMMs profile. 
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We constructed a modified training set representing the electrical properties of the amino acids to add sense 

to the comparison with the TI2BioP methodology. The retrieved HMM represents the occurrence 

probabilities of amino acids charge groups. As this modification has an implicit generalization step, we 

expect this model to perform better in detecting remote homologues than classical HMMs. Since our TIs 

encode information of the complete sequence, we present the classification results for the whole sequences. 

The HMM performance on RNase III training set was 94.83%, 147 out of 155 satisfied the E-value cut off, 

while the test set was successfully predicted at 100% (51/51). In the case of the control group coming from 

a high-resolution non-redundant subset from PDB, the HMM did not recognized any RNase III sequence in 

the training and the test sets of this group showing a classification of 100% (see File IIISM). We consider 

a better general performance of the modified HMMs due to the hydrophobic clustering in the alignment 

profile according to the amino acids charges. In fact, in previous reports the application of classical HMM 

on RNase III classification showed a major failing rate on a similar control subset [47]. 

 Our free-alignment approach TI2BioP provide simplicity to non-linear methods like DTM that can be 

used as an alternative classification method for the RNase III class allowing a simple screening of a large 

set of proteins and at low computational cost. It just requires to carry out the calculation of HPμ1 values for 

the 2D-HP protein maps (automatically represented and calculated by the TI2BioP methodology). On the 

other hand, the basis of our graphical approach inspired the building of a non-classical HMM profile to 

increase the prediction accuracy in the recognition of double-stranded ribonucleases. Although maximal 

prediction percentages were attained, its main drawback stems from its hard implementation for non-

specialized researches. The prediction of a completely new putative RNase III type sequence (unregistered 

previously in a public database) represents another way of validating the DTM simplicity in respect to the 

HMM and the ANN models. 

Table 6 comes about here 

4.5 Isolation, prediction and biological activity for a new RNase III member  

4.5.1 Isolation and sequencing  

We isolated, cloned and expressed a new putative RNAse type III DNA sequence from Escherichia coli 

BL 21 strain CG 1208. Total DNA solution was measured at 260 nm in a spectrophotometer reaching a 

concentration of 3.8μg/μL. It was also run on agarose gel 0.8% visualizing high integrity. PCR reaction 
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showed a band coinciding with the size of the predicted ORF (data not showed). Sequencing retrieved a 

product of 681 kb, and its nucleotide and amino acid sequence from a genomic-cloned gene was recorded 

at GenBank database with the accession number GU190214 Before submission to GenBank this new 

RNase III member was also predicted using our three non-linear models and further tested enzymatically as 

a ribonuclease. 

4.5.2 Prediction of GU190214 using non-linear models. A comparative study 

We analyzed our new RNase III sequence GU190214 using TI2BioP methodology to predict its protein 

Open Reading Frame (ORF) as a member of the RNase III class. Its deduced protein ORF was 

automatically pseudo-folded into a hydrophobicity and polarity lattice as performed previously for the 

whole dataset. Afterwards, its HPμ1 value was calculated according to the TI2BioP methodology. It showed 

a HPμ1 value of 422.38, which was further evaluated on the DTM. Following the tree graph representing the 

DTM we can classify easily our query sequence. Accordingly to the first decision on the node two, it is 

classified as an RNase III; then after a second decision, the classification was reaffirmed being submitted it 

to the terminal node number five. The prediction of our query sequence using the other alignment-free non-

linear model was also carried out. This particular case was included in the validation subset to be predicted 

using the ANN-based model. Finally, the MLP also classified it in the group of the RNase III class 

supporting that the identification of protein signatures tend to be better assessed with non-linear models. 

In order to compare the prediction with classical alignment procedures based on non-linear functions, our 

protein query sequence was coded according to the amino acid charge clustering and assessed against the 

non-classical RNase III HMM profile. The HMM-search predicted it with a high score of 154.7, highly 

significant (E-value of 5.5 x 10-47) in the recognition of the ribonuclease III domain. All three models 

showed a good performance in the classification of the query sequence. However, the simplicity of DTM to 

classify a protein sequence based only on two values of one predictor is remarkable in respect to the others 

procedures. ANN-based model retrieved a similar performance in the classification but it was built on the 

basis of 18 predictors and its model architecture is much more complex than DTM. Although the non-

classical HMM showed the best performance for the query sequence and the whole database, its 

implementation require the building of a modified HMM-profile based on amino acid charge clustering, the 

codification of the query sequence and running the HMM-search program, which demand a much higher 
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computational cost. All these steps hinder its practicality for a normal user that wants to retrieve 

information easily. On the other hand, we demonstrated that our strategy of amino acid clustering according 

to their charge or to hydrophobic features can increase the accuracy in the classification of protein families 

with divergent members either using classical procedures or alignment-free models. 

4.5.3 Enzymatic assay of the recombinant RNase III  

The recombinant enzyme was expressed in E. coli DH5� strain and purified as we described previously. 

The figure 9 shows the results of the expression and the purification assays. The double stranded RNase 

activity of the recombinant protein from the E. coli strain BL 21 CG1208 was measured in vitro following 

the protocol described above. The unit definition for all RNAse III types is the amount of enzyme able to 

solubilize 1 nMol of acid precipitable per hour [57]. Enzymatic activity showed values of 5.858 x 105, 

6.017 x 105, and 6.177 x 105 U/mg, respectively for each assay, and the mean value was 6.017 x 105 U/mg 

(see Table7). 

Figure 9 and Table 7 come about here 

5. Conclusions  

The amino acid clustering in a protein sequence according to hydrophobic features or to charge 

properties at primary level and higher sequence-orders is effective to produce non-linear functions with 

high prediction power for the RNase III class. When this clustering is projected into a 2D protein map, it is 

possible to calculate simple TIs characterizing the protein sequence. Thus, TIs can be used to develop 

alignment-free approaches based on DTM and ANN, being of great utility for the classification of 

functional protein classes with low sequence similarity. Although, the non-classical HMM provided a 

higher accuracy in the prediction on the RNase III class, the use of DTM based on the TI2BioP 

methodology also showed excellent results in the detection of molecular diverse members of this protein 

class with low computational and procedure cost. 
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FIGURES LEGENDS 
Figure 1.  (a) RNase III protein sequence from Escherichia coli BL21 substrain GG1108 (b) Pseudo 

folding of this sequence into a 2D-HP-lattice. 

 

Figure 2. Building the 2D-HP map on the Cartesian axes for the protein fragment DEDKV. (a) The 

coordinates for each amino acid in the Cartesian system. (b) The definition of the bond adjacency matrix 

derived from the 2D-HP map. Note that all edges of the graph are adjacent, thus all non-diagonal entries are 

ones. 

 

Figure 3. Scheme describing the design of training and predicting series using k-MCA for both RNase III 

and control group. 

 

Figure 4. Plot of the TIs’s Means for Each Cluster (a) Division of the RNase III group into three clusters 

(b) Division of the Control Group into four clusters. 

 

Figure 5. The architecture of the DTM. Decision Nodes are represented in black and terminal nodes in 

gray. The RNase III class is labeled with 1 using an intermittent line. Otherwise the control group is signed 

with -1 using a continuous line. Numbers at the right-corner of the nodes indicates tentative membership to 

one group. Numbers at the left-corner represent the node’s number. 

 
Figure 6. Predictor Variable Importance Rankings, Rankings on scale from 0=low importance to 100=high 

importance. 

 

Figure. 7 The architecture of the MLP profile 7. It represents several input variables, four neurons in a one 

layer and only one output variable (from the left to the right). 
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Figure 8. Receiver Operating Characteristic curve (ROC-curve) for the ANN-based model in training (blue 

line), selection (red line) and test (green line) sets with areas under curve of 0.95, 0.97 and 0.92, 

respectively. 

 

Figure 9. Electrophoresis of the 25 kDa recombinant E. coli RNAse III from E.coli DH5 �: pREC1 loaded 

in 12.5% PAGE-SDS and stained with coomassie brilliant. Lane 1: crude extract from non induced 

bacteria; Lane 2: crude extract from induced bacteria; Lane 3: purified recombinant E. coli RNAse III. 

 
 

 
Table 1. Main results of the k-MCA for the RNase III class and the control group. 

 
Variance analysis  

RNase III-like proteins 
 

Protein 
Descriptors 

Between 
SSa 

Within 
SSb Fisher ratio (F) p-Levelc 

HPμ10 134.49 70.51 193.60 < 0.001 
HPμ11 142.75 62.25 232.75 < 0.001 
HPμ12 143.97 61.03 239.44 < 0.001 
HPμ13 146.00 58.99 251.23 < 0.001 
HPμ14 141.02 63.98 223.73 < 0.001 

  Control group   
HPμ10 1716.57 297.43 3868.72 < 0.001 
HPμ11 1763.70 250.30 4723.45 < 0.001 
HPμ12 1760.22 253.78 4649.43 < 0.001 
HPμ13 1770.23 243.77 4867.85 < 0.001 
HPμ14 1767.92 246.08 4815.87 < 0.001 

a Variability between groups. 
b Variability within groups. 
c Level of significance. 

 
Table 2. Tree structure in details, child nodes, observed class n's, predicted class, and split condition for 
each node. 
 

Node Left 
branch 

Right 
branch 

n in Control 
(-1) 

n in RNase III class 
(1) 

Predict. 
class 

Split 
constant 

Split 
variable 

1 2 3 168 155 -1 -422.602 HPμ1 
2 4 5 66 153 1 -339.687 HPμ1 
3   102 2 -1   
4   50 9 -1   
5   16 144 1   
Numbers in bold highlight the well-classified cases and the terminal nodes. 

 

 
 
 
 
 
 



 27

 
Table 3. Classification results derived from CT for the training and the validation series. Predicted Class 
(row) x Observed Class n's (column). 
 

Training Sample 
k-MCA (N = 323) 

 
Cross-Validation 

10 fold 

 Class. %  RNase III  
class 

Control 
Group Class. % RNase III 

class 
Control 
Group 

CV 
cost 

RNase III class 92.90 144 16 92.90 144 20 0.095 

Control Group 90.48 11 152 88.10 11 148 SD 

Total 91.64 155 168 90.40 155 168 0.016 

 External Validation (N = 107) 

 Class. % RNase III  
class 

Control 
Group CV cost 

RNase III class 96.07 49 6 0.07 

Control Group 89.28 2 50 SD 

Total 92.52 51 56 0.025 

Numbers in bold highlight the well-classified cases. 

 

Table 4. Different topologies for the MLP on the RNase III classification. Performance and error on 
training, selection and test sets. 

Model Summary Report  
 MLP Profile Train Perf. Select Perf. Test Perf. Train Error Select Error Test Error 
1 18:18-10-1:1 0.885 0.967 0.850 0.303 0.226 0.325 
2 18:18-9-1:1 0.946 0.934 0.869 0.214 0.226 0.336 
3 18:18-8-1:1 0.954 0.934 0.887 0.216 0.223 0.343 
4 18:18-7-1:1 0.893 0.918 0.897 0.291 0.278 0.334 
5 18:18-6-1:1 0.923 0.885 0.869 0.281 0.311 0.338 
6 18:18-5-1:1 0.904 0.901 0.850 0.284 0.291 0.351 
7 18:18-4-1:1 0.938 0.934 0.906 0.240 0.244 0.294 
8 18:18-3-1:1 0.908 0.885 0.831 0.288 0.291 0.363 
9 18:18-2-1:1 0.541 0.524 0.626 0.459 0.459 0.461 

10 18:18-2-1:1 0.923 0.918 0.869 0.264 0.284 0.345 
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Table 5. Classification results derived from ANN (MPL-7) for training, selection and test series. 
 

 Train  
 (1) 

Train 
(-1) 

Selection 
(1) 

Selection 
(-1) 

Test 
(1) 

Test 
(-1) 

RNase III class (1) 119 9 28 3 47 6 
Control Group (-1) 7 127 1 29 4 50 

Total 126 136 29 32 51 56 
Good class. (%) 94.44 93.38 96.55 90.62 92.15 89.28 

Overall class. (%) 93.89 93.34 90.65 
Numbers in bold highlight the well-classified cases. 

 
Table 6. Classification results on RNase III class derived from the three classification algorithms used in 
the study. DTM, ANN-MLP and HMM modified for training and test series in the RNase III class and 
control group (CG).  

 

DTM ANN-MLP HMM modified 

 RNase III CG RNase III CG RNase III CG 

Training 92.90 90.48 94.44 93.38 94.83 100 

Overall 91.64 93.89 96.11 

Test 96.07 89.28 92.15 89.28 100 100 

Overall 92.52 90.65 100 

 
Table 7. Assay of biological activity of recombinant bacterial RNAse III using 10 nM of dsRNA substrate 
and polydifferent quantities of recombinant enzyme: 0, 1, 10 and 100 nM. The procedure consisted in three 
independent experiments with three repetitions per experiment.  

 
Enzyme   Enzymatic Activity 

nM  Experiment 1 
105 U/mg 

 Experiment 2 
105 U/mg 

 Experiment 3 
105 U/mg 

 0.011 0.042 0.021 
0.0 0.023 0.016 0.011 

 0.012 0.014 0.013 
 6.200 6.015 6.312 

0.1 6.512 5.912 6.801 
 6.011 6.108 6.709 
 6.701 5.519 6.089 

1.0 6.603 5.808 5.816 
 6.415 5.901 5.588 
 6.211 6.009 6.131 

10.0 6.112 6.221 6.674 
 6.221 6.325 6.415 
 6.306 6.119 6.201 

100.0 6.614 6.201 5.803 
 6.507 6.067 5.587 

Average 5.858 6.017 6.177 
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Figure 3. Scheme describing the design of training and predicting series using k-MCA 

for both RNase III and control group
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Figure 4. Plot of the TIs’s Means for Each Cluster (A) Division of the RNase III group 

into three clusters (B) Division of the Control Group into four clusters
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Figure 5.  The architecture of the DTM. Decision Nodes are represented in blue and 

terminal nodes in red. The RNase III class is labeled with 1 using an intermittent line. 

Otherwise the control group is signed with -1 using a continuous line. Numbers at the

right-corner of the nodes indicates tentative membership to one group. Numbers at the 

left-corner represent the node’s number.
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Figure 6. Predictor Variable Importance Rankings, Rankings on scale from 0=low 
importance to 100=high importance
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Figure. 7 The architecture of the MLP profile 7. It represents several input variables, 
four neurons in a one layer and only one output variable (from the left to the right) 
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Figure 8. Receiver Operating Characteristic curve (ROC-curve) for the ANN-based 
model in training (blue line), selection (red line) and test (green line) sets with areas 
under curve of 0.95, 0.97 and 0.92, respectively. 
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recombinant E. coli RNAse III from E.coli 
DH5 α: pREC1 loaded in 12.5% PAGE-SDS 
and stained with coomassie brilliant. Lane 1: 
crude extract from non induced bacteria; 
Lane 2: crude extract from induced bacteria; 
Lane 3: purified recombinant E. coli RNAse 
III.
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