
HAL Id: hal-00669179
https://hal.science/hal-00669179

Submitted on 16 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating a Peer-to-peer Storage System in Presence of
Malicious Peers

Samira Chaou, Gil Utard, Franck Pommereau

To cite this version:
Samira Chaou, Gil Utard, Franck Pommereau. Evaluating a Peer-to-peer Storage System in Presence
of Malicious Peers. International Conférence on High Performance Computing and Simulation (HPCS
2011), Jul 2011, Istanbul, Turkey. pp.419–426, �10.1109/HPCSim.2011.5999855�. �hal-00669179�

https://hal.science/hal-00669179
https://hal.archives-ouvertes.fr


Evaluating a Peer-to-peer Storage System

in Presence of Malicious Peers

Samira Chaou, Gil Utard

UbiStorage, 20 avenue Paul Claudel, 80000 Amiens, France
{samira.chaou,gil.utard}@ubistorage.com

Franck Pommereau

IBISC, University of Évry, 91000 Évry, France
franck.pommereau@ibisc.univ-evry.fr

ABSTRACT

We present a peer-to-peer based storage system and
evaluate its resistance in the presence of malicious
peers. To do so, we resort to simulation of the ac-
tual code borrowed from the production system. Our
analysis allows to identify the main threats, prioritise
them and propose directions for mitigating the attacks.

KEYWORDS: Cryptographic protocols, security,
storage, peer-to-peer, simulation.

1. INTRODUCTION

Ubiquitous Storage (UbiStorage for short) develops

and commercialises a storage solution based on a peer-

to-peer network allowing each user to securely store

and retrieve data [1], [2]. This system is based on a

set of protocols allowing peers to exchange pieces of

information in a fully distributed manner. The system

is currently provided to UbiStorage consumers as a

box that is ready to plug on the consumer’s network

and is pre-installed with a Linux system running the

peer-to-peer software as well as end-user services.

In [3], the security of these protocols has been as-

sessed from a qualitative point of view, resorting to

a formal modelling of the protocols combined with

automated model-checking of typical scenarios as well

as a manual proof. Model-checking allowed to discover

potential flaws based on replay attacks, fixes have been

proposed and their quality checked again using model-

checking. A manual proof allowed to show that no

intruder external to the network (i.e., whose public key

is not recognised by peers) could ever learn any piece

of data stored by the peer-to-peer network.

In this paper, we would like to complete further this

initial work by assessing the resistance of the peer-

to-peer network in the presence of malicious peers,

i.e., attackers that are part of the network. This cannot

be analysed from a qualitative point of view because

in such conditions, there obviously exists attacks and

modelling is not needed to discover them. More in-

teresting is the quantitative point of view, which is

the topic of this paper. Using various simulations,

we will show that the system can resist to various

attacks as long as the number of malicious peers

remains limited. Such attacks would require that a

number of users gain control over their boxes and

coordinate their actions to perform the attack, which

is unlikely to occur in practise. Knowing how many

internal attackers the system can resist to is important

for UbiStorage because this can be partially controlled,

for instance by avoiding to allocate too many boxes to

a single customer.

The rest of the paper starts with a presentation of

the peer-to-peer system architecture. Then, section 3

presents the attack scenarios we have considered. How

they are implemented as simulations is then described

in section 4. Next, the results from these simulations

are presented in section 5. Concluding remarks are

finally given in section 6.

2. THE UBISTORAGE SYSTEM

The system developed by UbiStorage is fully dis-

tributed using peer-to-peer communication. Each peer

in the system is a network node that corresponds

physically to a box allocated to a given customer, and



runs the various services and clients composing the

system. The system is structured in three layers:

• the application layer is directly queried from the

end-user interface and is composed of client pro-

cesses to perform three basic primitives: primitive

Put is used to store a file in the system, primitive

Get to get back a stored file, and primitive Delete
to remove a file from the system;

• the communication layer consists of a distributed

hash table (DHT) that stores all the information

needed by the application layer;

• the routing layer uses a key-based routing pro-

tocol to dispatch the messages exchanged within

the DHT.

Each peer is identified by a unique 128 bits identifier

called PeerID and is the responsible for a range of

file identifiers (128 bits FileIDs) and is the owner of

another range of identifiers: when a peer needs to store

a new file, it must choose an unallocated FileID it

owns and send a storage request to the peer that is

responsible for the chosen FileID.

2.1. Application layer

The Put primitive is called when a file needs to

be stored on the system. To do so, the file is first

fragmented using a Reed-Solomon error-correction

code [4]. Compared with a simple duplication, this

allows to reduce the amount of storage required and

consequently the amount of network communication.

The fragments resulting from this phase constitute the

basic data unit that is exchanged between the peers.

Reed-Solomon code is parametrised with two positive

integers s and r, resulting in building s+ r fragments

for each file, and defined in such a way that any

set of only s fragments is required to reconstruct the

corresponding file. Each stored file is thus given a

unique identifier that is also the identifier of each

fragment of this file. The information about the lo-

cation of the fragments for each file, so called file
meta-information or FileMI, is maintained within the

network in order to be able to retrieve files, either to

reconstruct a file requested by a user when primitive

Get is invoked, or to ensure that enough fragments

to reconstruct any file always remain available. The

latter aspect requires a constant monitoring to detect

the possible disappearing of peers and trigger the

reconstruction and redistribution of files before they

become unavailable.

Each peer is internally organised as depicted in figure 1

to provide two main features: management of frag-

ments and of meta-information, both using the hard-

disk. More precisely:

• the client service is responsible for executing the

Put, Get and Delete primitives in response to

requests from the end-user;

• the storage service (StrS) receives fragments to

be stored from other peers or sends them back as

requested;

• the meta-information service (MIS) stores all the

meta-information related to the fragments locally

stored. Each MIS is responsible for a range of

FileIDs and associated to a leaf-set composed of

the peer’s neighbours in the network. Notice that

each peer belongs to several leaf-sets;

• the monitoring service (MonS) monitors the MIS

and issues warnings when critical files are found,

i.e., files for which there exist just enough frag-

ment to allow reconstruction;

• the reconstruction service (RecS) is responsible

for actually reconstructing files and redistribute

fragments within the leaf-set when an alert is sent

by the monitoring service.

Getting a file is executed in two phases: first get the

corresponding meta-information, called the FileMI and

that includes a FileID, which allows to know all the

storers that save a fragment of this file; then send to

these storers a request to get fragments, which allows

to reconstruct the file. Similarly, putting a file is also

executed in two phases: first get a list of storers which

are available to store fragments of the file; then, send

requests to the selected storage services to store the

fragments. The list of storers is requested to the MI

service that is currently online and has the PeerID the

closest to the chosen FileID (see routing below). The

returned list of storer services is chosen among those

in the leaf-set of the contacted MI service. Deleting

a file is performed similarly to getting it, except that

the storers will forget everything about the fragments

instead of sending them.

2.2. Communication and Routing Layers

Communication in the system is based on the dis-

tributed hash table (DHT) Pastry [5]. Network nodes

are logically organised as a ring and identified by

their PeerIDs. To facilitate communication between

peers, several tables are used, in particular, each peer

maintains three tables:

• routing table: each time a peer communicates with

another, it adds its IP address and PeerID to the

routing table;

• leaf-set table: a neighbour table is maintained by



Client MIS MonS RecS StrS

fragments

meta information

trigger

Server peer

Client

Client peer

user
StrSStrSStrS Other

peers

Figure 1. Organisation of Each Peer and of its Communication with Others. Each client communicates

directly with the MI service (MIS) that manages the file involved in a Put, Get or Delete, and possibly

with the storage services (StrS) that hold fragments of this file. The monitoring service (MonS) triggers

the reconstruction service (RecS) that in turn communicates with the storage services holding the required

fragments. The hard disk is used to store both meta-information and file fragments.

0

2
128

−1

X

P

Figure 2. Organisation of the Distributed Hash

Table. White dots denote peers and black squares

denote files. The dotted region corresponds to the

leaf-set of X .

each peer, it is updated regularly and evolves with

the arrival and departure of peers;

• jump table: pairs whose PeerID are located at

distances 2k are stored as a secondary routing

table. This table allows to find faster routes across

the DHT.

How these tables are used is illustrated in figure 2.

All the possible 128 bits PeerIDs are considered as

logical addresses within a ring (i.e., working modulo

2128). Each peer is located at a given PeerID depicted

by a white dot. FileIDs are considered similarly and

depicted as black squares. Consider for instance the

node tagged by X . Its leaf-set is depicted as a dotted

region and contains all its neighbour peers whose IP

addresses are maintained in the leaf-set table. Assume

now that X needs to send a message to a PeerID at

position P , for instance to request a list of storers for

a new file whose FileID is also P . In the first case (not

depicted), if P is within the leaf-set of X , messages

are send directly using the leaf-set table. Otherwise, as

depicted in figure 2, the jump and routing tables will

be used to route the message throughout the DHT: X
first sends the message to the peer it knows that is the

closest one to P (first arrows outgoing from X); then,

such intermediate peers will forward the message using

the same principle; eventually, the message will arrive

to the peer that is the closest one to P among those

that are presently online, which is known because this

last peer knows all of its leaf-set. The routing table

thus acts as a cache, while the jump table allows to

accelerate routing by providing shortcuts through the

ring of the DHT.

3. INTRODUCING MALICIOUS PEERS

In this section we consider several cases of malicious

peers that could be introduced in the system, for

instance if a customers gains control over a box. Then

we discuss how such modified peers could influence

the global behaviour of the system and the service

provided to other peers. We can consider five cases:



• malicious storage services lying about the out-

come of requests or trying to recover information

from stored fragments;

• malicious MI services sending incorrect FileMIs;

• malicious reconstruction services that do not

launch reconstruction when critical files are

found;

• reconstruction of files by malicious peers trying

to gather enough fragments to do so;

• monitoring services preventing reconstruction to

actually occur;

For our simulations we retain only the three first

cases, and ignore the two remaining ones because

there results are already predictable without the need

for simulation. Indeed, a malicious monitoring service

is equivalent to a malicious reconstruction service:

reconstruction does not occur. Concerning illegitimate

reconstructions of files, we observed that it can occur

only in case of a small network (which is far from

real case) because otherwise, fragments are so much

distributed that it is statistically difficult to obtain

enough of them to attempt a reconstruction. More-

over, the fragmented files are ciphered using strong

cryptography which makes a reconstruction useless. As

discussed below, the main threat is the loss of files in

the three considered cases.

3.1. Malicious Storage Services

Two malicious behaviours can be envisaged for a

storage service: pretend it stores a fragment while

it does not, or pretend it does not store a fragment

while its does. In the first case, the storer may as well

actually save the fragment but then refuse to send it

back upon a later request (or send an invalid fragment).

So, in both cases, the storer may try to accumulate

enough fragments of a given file in order to allow a re-

construction. The second behaviour (store but pretend

not to) is probably a better strategy for a malicious

storage service in order to attempt a reconstruction:

indeed, the rest of the system, and in particular a

client willing to put a file, may try to avoid sending

more than one fragment of a file to each storer; by

faking failures, a storer may actually accumulate more

fragments than what others in the system can assume.

The possibility of such malicious reconstruction has

been actually observed on simulations, but fortunately,

as discussed above, there exists a simple fix that

consists in encrypting files before to store them. So

we concentrate here on another threat that is file losses,

which turns out to be the main concern for customers

when the problem of privacy has been solved.

3.1.1. Malicious Success on Store (Attack A1).

Obviously, this first malicious behaviour can result in

file losses. When asked to store a fragment, the storage

service pretends it succeeded but actually the fragment

is discarded, or it is stored but will never be sent back

when requested, or, equivalently, an invalid fragment is

returned instead (which is more difficult to detect as a

malicious behaviour—we have implemented this case).

If at least r + 1 storers lie this way for a given file, it

will never be possible to reconstruct the file because

less than s of the required fragments to do so actually

remain in the system.

It is quite difficult to protect the system against such an

attack, in particular if it occurs during a reconstruction

triggered by a monitoring service. Indeed, we can

imagine that on a Put, the client may hold the file

some time and, before to report a success, it may

challenge the appropriate storage services to check that

the fragments are actually stored. But after Put has

succeeded, the file is assumed to be safely stored on

the system and is likely to be deleted from the user’s

computer. So, the client may attach to the FileMI a

series of precomputed challenges that could be used

by the MIS to check that fragments are effectively

stored. A challenge can consist of a random value

and a hash of each fragment concatenated with this

value. A storer can then be sent the random value

and challenged to compute the hash from its fragment.

Each challenge does not cost too much storage and

a series of challenges can be easily computed during

the Put. Then, at each reconstruction, more challenges

can be generated again to replace the used ones.

The main drawback of this method is that it requires

additional operations in the system, but fortunately

these are computational tasks with very few network

communication. Moreover, correctly calibrating how

often storage services are challenged is important.

Indeed, when all the challenges of a series have been

used, it may be necessary to reconstruct the file in order

to generate new challenges, which results in a large

amount of network communication. Knowing how the

system is resistant to attack A1 is the first step to

perform a correct calibration of this counter-measure.

3.1.2. Malicious Fail on Store (Attack A2). When

asked to store a fragment, a malicious storage service

may pretend to fail. As a consequence, it will never

be asked for this fragment since it is not assumed to

hold it. If enough storage services behave this way,

a Put may fail, which is not a security problem. But

also a reconstruction may fail, resulting in a file loss,

which is now a more serious concern. Notice that this



is quite a different situation compared with the case

of real failures: this latter case may occur in particular

when a disk is full, but the overall available storage

space can be monitored from a global point of view

and increased by plugging more boxes into the system

or adding bigger disks to the existing boxes. So, this

turns out to be more a maintaining concern. But in

the presence of malicious storage services, the overall

available space may be sufficient to guarantee the

possible reconstruction of a file, but the faked failures

may anyway result into a file loss.

Like the previous malicious behaviour, this one is

difficult to combat because it can be detected only

when it is too late. So, in both cases, it is important to

measure the resistance of the system against malicious

storage services.

3.2. Malicious MI Services (Attack B)

A MI service is responsible for storing and maintaining

the list of storers that hold the fragments of a given

file. A malicious MI service may intentionally destroy

or corrupt this information, either when it stores it or

when it sends it back on request. We have implemented

a malicious MI service that sends invalid FileMIs when

requested, which is probably the most difficult situation

to detect as a malicious behaviour. This of course

immediately results in file losses because the data to

recover the file is actually stored in the system but it

is not known where.

This is somehow a less critical problem than the previ-

ous one because meta-information does not represent

a large amount of data and can be easily replicated.

Actually, this is already the case in some way because

an exploration of the system can be attempted to find

lost fragments and rebuild meta-information. But this

countermeasure has a cost that needs to be considered

with a clear understanding of the resistance of the

system against malicious MI services.

3.3. Malicious Monitor or Reconstruction Ser-

vice (Attack C)

When too many peers holding fragments of a given

file go offline or crash, it is necessary to reconstruct

the file and redistribute its fragments before there is

not enough available fragments to do so. The monitor

service is responsible for detecting this situation and

triggering the reconstruction service to actually per-

form the required tasks. If one of these services is

malicious and does not actually fulfill its duty, files

will be inevitably lost.

To combat such attacks, monitoring and reconstruction

can be duplicated, i.e., several peers in a leaf-set may

be simultaneously responsible for performing these

tasks. But as in the previous case, this induces an extra

cost and also it requires an additional coordination

between the redundant services, which increases the

complexity of the system.

4. SIMULATION ARCHITECTURE

To assess the resistance of UbiStorage system against

malicious peers as defined above, we can resort to

simulation. This allows in particular to measure how

many files can be lost with respect to the number of

malicious peers in the network.

We have designed and implemented a fully config-

urable simulator that embeds the actual code executed

on the boxes. The simulator takes as input a configu-

ration file that describes the simulation environment,

i.e., information about: the number of peers in the

simulated network; the number of malicious peers in

the system; the number of files stored in the system; the

duration of the simulation; the reconstruction threshold

(i.e., the minimal number of fragments after which a

reconstruction must be undertaken); the leaf-set size.

Taking this information in account, a trace of events

are generated, it is called a churn trace and describes

the departure and arrival of peers in the system. Three

events are considered: creation of a new peer (i.e.,
installation of a new box), definitive disappearing of

a peer (i.e., crash of a box), and transient disappearing

of a peer (i.e., reboot of a box, shut down during the

night, or temporary network failure). The simulation

engine then follows the churn trace, which triggers

reactions of the peers as in the real system. Notice

that we have not considered clients in the simulation

but instead we have started from a system that already

stores file. Indeed, as explained in the previous section,

our primary goal is to assess the resistance of the

storage system in terms of file losses.

During the simulation a state manager monitors the

system and gives information about the state of the

system. In particular, it reports the number of files still

stored in the system (i.e., that can be reconstructed),

and the number of dead files (i.e., for which the meta-

information has disappeared or there does not exist

enough fragments to allow reconstruction). We have

run a number of simulations with various initial setting



Attack A1: malicious success on store
% malicious ≤ 5 6 7 10 15 20

% dead files 0 0 0 0.67 1.29 3.64

Attack A2: malicious fail on store
% malicious ≤ 5 6 7 10 15 20

% dead files 0 0 0 0 1.71 5.35

Attack B: malicious MI service
% malicious 0 1 2 3 5 7

% dead files 0 1.57 3.92 4.08 4.51 5.71

Attack C: malicious monitor/reconstruction service
% malicious 0 1 2 3 4 5

% dead files 0 1.66 2.01 2.60 4.26 5.94

Figure 3. Simulation Results for the Considered

Attacks.

of the parameters, in particular of the percentage of

malicious peers of each kind.

5. EXPERIMENTAL RESULTS

In this section, we report the observations draw from a

series of simulations for a network of 200 peers storing

10 000 files whose fragments are uniformly distributed,

with a reconstruction threshold of 50% (i.e., if r/2
fragments are no more available, a reconstruction is

attempted). This parameter can be adjusted to easily

improve the resistance to attacks but at the same times,

it leads to an increased amount of costly operations.

The chosen leaf-set size is 16 nodes and the simulation

duration has been set to 1 year and 23 days. In average,

each simulation has run for about 75 minutes. These

choice of the parameters allows a reasonable sim-

ulation time while already demonstrating interesting

behaviours. We have also ran simulations with higher

numbers or peers and files, resulting in similar results.

This also allowed to check that, for a given number

of files, the number of files lost decreases with the

number of peers: the system is more resistant when

each peer is in charge of less files.

Figure 3 and figure 4 summarises the results of these

simulations. (Attacks A1, A2, B and C are named con-

sistently with respect to the corresponding paragraphs

in section 3.)

As one can see in figure 4, attacks B and C are

much sooner efficient than attacks A1 and A2. This

is not surprising because the latter threaten fragments

while the former directly threaten files, either at the

level of meta-information (attack B) or by letting them

disappear with peers (attack C). As explained above,

attack B can be mitigated by maintaining multiple

copies of the meta-information. Similarly, attack C

can be mitigated by duplicating the monitoring and

reconstruction process, which also requires to duplicate

meta-information (each monitoring service needs the

FileMIs for all the files it monitors). So both questions

are clearly related and rely on a consistent duplication

of meta-information. Fortunately, part of this problem

has been solved already because it is a crucial require-

ment in a network where peers can be disconnect at

any time (and reconnected later): even if a peer that is

the serves a FileMI goes offline, the corresponding file

should be recoverable without waiting until the peer

goes online again (which will not occur if the peer has

crashed). To allow this, we exploit the fact that FileMIs

can be recovered from the peers within a leaf-set that

store fragments for the corresponding file. When a peer

goes offline, the meta information it served has to be

now served by other peers in its leaf-set; conversely,

when a peer goes online, it becomes responsible for

meta information it may not know (for instance for

files Put when it was offline). So, in this situations,

FileMIs are reconstructed using information attached

to fragments and the newly online MI service collects

it within its leaf-set to reconstructs the needed FileMIs.

So, attacks B and C can be mitigated by exploiting this

mechanism in order to search an invalid or missing

FileMI on neighbour peers of the malicious one. How-

ever, this leads to an agreement problem that is known

to be difficult in distributed systems [6]. Moreover, the

underlying routing does not allow to choose which peer

is contacted during a communication: by construction

of a DHT only the online node with the ID the closest

to the requested ID can be contacted. Changing this

looks like a very complex extension that would be

better to avoid.

It is also interesting to note that UbiStorage system

exists in two versions. One is fully distributed and

has been studied in this paper, an earlier version is

based on a central MI service and has been considered

in [3]. The sensitivity to attacks B and C is an argument

in favour of the centralised version. But this can be

reversed by considering that all the meta-information

for the whole system can be lost simultaneously in case

of an attack of the central server (that becomes a single

point of failure). So we believe that the distributed

version considered in this paper is a better basis to

build a secure system.

A possible compromise is to introduce in the dis-

tributed system a centralised MI service to serve as

a fallback in the case of a failure of the MI services

located on the peers. Ideally, such a central MI service



5 10 15 20
0

1

2

3

4

5

6
%

o
f

d
ea

d
fi

le
s

% of malicious peers

(A1)

(A2)

(B)

(C)

Figure 4. Dead Files with Respect to the Percentage

of Malicious Peers.

could be in the cloud, improving its reactivity and its

resistance to attacks. Notice that this solution allows

to find a simple solution for the agreement problem as

long as the central MI service is considered reliable.

Concerning attacks A1 and A2, they can be seen as

actual tests of the robustness of the system. And we

can observe a satisfactory resistance of the system,

which can for sure be improved again by increas-

ing the redundancy of fragments (i.e., considering a

larger value of the parameter r). The resistance of

the system can also be improved by increasing the

critical threshold of the reconstruction, fixed to 50% in

our simulations. Other simulations done with a higher

critical threshold showed that the lost of files indeed

decreases when the threshold increases. Somehow, this

kind of attacks is not fundamentally different from

simple peer failures (i.e., fragments are lost) and the

system is exactly designed to resist to this problem.

So, we can assume that a correct maintaining and

monitoring of the network of peers can efficiently

prevent the multiplication of malicious peers and that

they may be detected using appropriate challenges

before file losses actually occur.

6. CONCLUSION

We have examined the peer-to-peer based storage sys-

tem developed by UbiStorage and how its resistance

to malicious peers can be analysed using simulation.

It turned out that the main threat is the loss of files

stored in the system by users. When malicious peers

only attack the stored data, we have seen that the

resistance of the system to peers disappearing provides

also a good resistance to such attacks. However, we

have seen also that attacks against meta-information

is a much more critical problem. We have proposed

directions to mitigate this issue by exploiting the ex-

isting redundancy of the meta-information and possibly

introducing a centralised meta-information server that

should be preferably implemented as a cloud service.

Future work will address the evaluation of combined

attacks and the design of defence strategies that will

be evaluated again using the simulation techniques

presented in this paper. We will also address the

crucial question of the detection and exclusion of

malicious peers from observations of their behaviours

(and using a reputation system like in [7], [8]), which

should greatly help to avoid relying on them. Another

direction for simulation is to evaluate performances

and we are currently working on the questions of

measuring reconstruction times, bandwidth usage, put

and get times, input/output amount, etc.

6.1. Related works

Two main types of distributed network storage can

be compared: centralised storage as a cloud service

and decentralised one as a peer-to-peer service. Cloud-

based systems are likely to be less complex than

P2P system and can be seen as a generalisation

of client/server technologies combined with balanc-

ing mechanisms. Most of the complexity resides in

maintaining the consistency of a redundant distributed

information. These problems also occur with P2P sys-

tems together with additional problems like agreement,

addressing and routing as discussed above. On the

side of infrastructure, P2P system are much lighter

than cloud-based systems. By exploiting comparatively

smaller computation and storage units distributed over

the network, the overall system is likely to be less

expensive and to consume less energy. At the same

time, P2P system are likely to be more robust and

scalable than cloud-based systems because they do not

rely on any centralisation. However, this centralisation

is a serious advantage when it comes to security:

a cloud infrastructure is entirely controlled by one

operator and can be globally secured while a P2P

system is only loosely controlled. Problems related to

data confidentiality can be solved easily using cryp-

tographic tools. But as shown in this paper, integrity

and availability problems are much more complex to

address in the presence of potentially malicious peers.

As suggested above, there should exist a compromise

combining a P2P network to perform most of the



required operations together with cloud-based services

to address security issues related to meta-information,

acting both as an arbiter and a fallback. Such a com-

bination is likely to exploit the best of both worlds by

displacing most on the charge toward the P2P network.

Performance evaluation is quite a classical use of

simulation in the domain of peer-to-peer systems, see

for instance [9], [10], [11]. However, to the best of

our knowledge, assessing security using simulation

is not as common. In [12], experimental results are

presented in case of attacks against the certification

system used to detect and exclude misbehaving nodes.

This corresponds to an attacker that is external to

the system, while we consider attackers from within

the system. The certification system in [12] is based

on the principle of consensus decision making, and

the simulation shows the resistance of the system to

false detections and exclusions (i.e., a honest node

is detected as misbehaving and is possibly banned

from the network). In [10], simulation is used to

measure the average time taken by a node to join the

system. Various combinations of two systems (Secure

Spread and Gnutella), two cryptographic algorithms

(RSA and DSA), and two methods (static and dynamic

threshold) are considered. In [11], simulation is used to

measure the availability, reliability and resource usage:

it shows how availability increases with the degree of

duplication of files in the system, and how reliability

can be ensured by cryptography and versioning. In [9],

simulation is performed on the Pond OceanStore pro-

totype to analyse system performance: it shows how

storage overhead increases with the size of stored data,

an update performance, archive retrieval performance

and replication costs are analysed.

ACKNOWLEDGMENT

The authors would like to acknowledge Sébastien

Choplin and Hung-Cuong Le for their decisive par-

ticipation in the design and implementation of the

simulator used in this paper.

REFERENCES

[1] Ubiquitous Storage company. [Online]. Available:
http://www.ubistorage.com

[2] SPREADS project. [Online]. Available: http://

www.spreads.fr

[3] S. Sanjabi and F. Pommereau, “Modelling, verification,
and formal analysis of security properties in a P2P
system,” in Workshop on Collaboration and Security
(COLSEC’10), ser. IEEE Digital Library. IEEE, 2010.

[4] I. S. Reed and G. Solomon, “Polynomial codes over
certain finite fields,” SIAM journal on applied mathe-
matics, vol. 8, no. 2, 1960.

[5] R. Mahajan, M. Castro, and A. Rowstron, “Controlling
the cost of reliability in peer-to-peer overlays,” in
IPTPS’03, 2003.

[6] L. Lamport, R. Shostak, and M. Pease, “The Byzantine
generals problem,” ACM Transactions on Programming
Languages and Systems, vol. 4, no. 3, 1982.

[7] M. Morvan and S. Sené, “A distributed trust diffusion
protocol for ad hoc networks,” in ICWMC Second
International Conference on Wireless and Mobile Com-
munications, 2006, p. 87.

[8] T. Cholez, I. Chrisment, and O. Festor, “A distributed
and adaptive revocation mechanism for P2P networks,”
in Proceedings of the 7th International Conference on
Networking. IEEE Computer Society, 2008.

[9] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao,
and J. Kubiatowicz, “Pond: the OceanStore prototype,”
in 2nd USENIX Conference on File and Storage Tech-
nologies (FAST’03), 2003.

[10] N. Saxena, G. Tsudik, and J. H. Yi, “Admission control
in peer-to-peer: Design and performance evaluation,”
in ACM Workshop on Security of Ad Hoc and Sensor
Networks, 2003.

[11] C. Batten, K. Barr, A. Saraf, and S. Trepetin, “Pstore
a secure P2P backup system,” Projet Pstore, 2001.

[12] F. Lesueur, L. Mé, and V. Viet Triem Tong, “Detecting
and excluding misbehaving nodes in a P2P network,”
Studia Informatica Universalis, vol. 7, no. 1, 2009.


