N

N

A BSP Algorithm for the State Space Construction of
Security Protocols

Frédéric Gava, Michael Guedj, Franck Pommereau

» To cite this version:

Frédéric Gava, Michael Guedj, Franck Pommereau. A BSP Algorithm for the State Space Con-
struction of Security Protocols. 9th International Workshop on Parallel and Distributed Methods in
verifiCation (PDMC, affiliated to conference SPIN 2010), Sep 2010, Enschede, Netherlands. pp.37-44,
10.1109/PDMC-HiBi.2010.14 . hal-00669177

HAL Id: hal-00669177
https://hal.science/hal-00669177
Submitted on 9 Oct 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00669177
https://hal.archives-ouvertes.fr

A BSP algorithm for the state space construction
of security protocols

Frédéric Gava, Michaél Gued] Franck Pommereau
LACL, University of Paris-East Créteil, France IBISC, University of Evry, France
Email: frederic.gava@univ-paris-est.fr, michael.g@djiv-paris-est.fr Email: franck.pommereau@ibisc.univ-evry.fr

Abstract space construction on several machines is thus done inwrder
benefit from all the storage and computing resources of each
This paper presents a Bulk-Synchronous Parallel (BSP)rdfgn to mgachine. This allows to reduce both the amount of memory

compute the discrete state space of structured models afiseprotocols. . . .
The BSP model of parallelism avoids concurrency relatedleras (mainly needed on each machine and the overall execution time.

deadlocks and non-determinism) and allows us to designfieet algorithm
that is at the same time simple to express. A prototype ingpitation has been Djstributed state space constructionOne of the main techni-
developed, allowing to run benchmarks showing the bendfiasiraalgorithm. cal issues in the distributed memory state space consiruiti
to partition the state space among the participating coemput
Most of approaches to the distributed memory state space
1. Introduction construction use a partitioning mechanism that works at the
level of states which means that each single state is askigne
In a world strongly dependent on distributed data come a machine. This assignment is made using a function that
munication, the design of secure infrastructures is a atucpartitions the state space into subsets of states. Eachasuch
task. At the core of computer security-sensitive appl@#i subset is then “owned” by a single machine.
are security protocold,e., sequences of message exchangesTo have efficient parallel algorithms for state space con-
aiming at distributing data in a cryptographic way to thetruction, we see two requirements. First, the partitiorcfion
intended users and providing security guarantees. Thadsleanust be computed quickly and defined such that a successor
to search for a way to verify whether a system is secustate is likely to be mapped to the same processor as its
or not. Enumerative model-checking is well-adapted to thjzedecessor; otherwise the computation will be overwhdime
kind of asynchronous, non-deterministic systems comiginiby inter-processor communications (the so calteuss tran-
complex data types. In this paper, we consider the problesitiong which obviously implies a drop of the locality of the
of constructing the state space labelled transition systems computation and thus of the performances. Second, bakgncin
(LTS) that model security protocols. of the workload is obviously needed [3] because it is necgssa
Let us recall that the state space construction probleneis tlo fully profit from available computational power to achéev
problem of computing the explicit representation of a givetie expected speedup. In the case of state space constructio
model from the implicit one. This space is constructed bine problem is hampered by the fact that future size and
exploring all the states reachable through a successotidunc structure of the undiscovered portion of the space space is
from an initial state. Generally, during this operatiori,the unknown and cannot be predicted in general.
explored states must be kept in memory in order to avoidWhile it has been showed that a pure static hashing for the
multiple exploration of a same state. Once the state spagmatition function can effectively balance the workloaddan
is constructed, or during its construction, it can be used ashieve reasonable execution time as well [4], this method
input for various verification procedures, such as readitybi suffers from some obvious drawbacks [5], [6]. First, it czas
analysis or model-checking of temporal logic properties. too much cross transitions. Second, if ever in the coursheof t
State space construction may be very consuming both danstruction just one processor is so burdened with stagds t
terms of memory and execution time: this is the so-callédexhausts its available main memory, the whole computatio
state explosion problem. The construction of large discrefils or slows too much due swapping.
state spaces is so a computationally intensive activityh wit
extreme memory demands, highly irregular behavior, ana poderifying Security protocols. Designing security protocols is
locality of references. This is especially true when compleomplex and often error prone: various attacks are reported
data-structures are used in the model as the knowledge ofimnhe literature to protocols thought to be “correct” for mya
intruder in security protocols. Because this constructian years. These attacks exploit weaknesses in the protodaitha
cause memory thrashing on single or multiple processor syhse to the complex and unexpected interleavings of difteren
tems, it has led to consider exploiting the larger memorgspaprotocol sessions as well as to the possible interference of
available in distributed systems [1], [2]. Parallelize tftate malicious participants,e., the attacker.

Furthermore, attacks are not as simple that they appear [7]:
the attacker is powerful enough to perform a number of poten-
tially dangerous actions as intercepting messages ordiepla
them by new ones using the knowledge it has previously
gained; or it is able to perform encryption and decryption
using the keys within its knowledge [8]. Consequently the LS
number of potential attacks generally grows exponentigiti
the number of exchanged messages.
Formal methods offer a promising approach for automated
security analysis of protocols: the intuitive notions am@ns- Fig. 1. A BSP super-step
lated into formal specifications, which is essential for eefud
design and analysis, and protocol executions can be siaaljlat
making it easier to verify various security properties.rially On most of cheaper distributed architectures, barriers of-
verifying security protocols is a well established domdiatt ten become more expensive when the number of processors
is still actively developed. Different approaches exist[8ls increases. However, dedicated architectures make therh muc
[10], [11] and tools are dedicated to this purpose as [12].[1 faster and they have also a number of attractions. In péaticu
they dramatically reduce the risks of deadlocks or livefck
Contribution. In this paper, we exploit the well-structuredsince barriers do not create circular data dependencies.
nature of security protocols and match it to a model of parall The BSP model considers communication actiensnasse
computation called BSP [14], [15]. This allows us to simplif This is less flexible than asynchronous messages, but easier
the writing of an efficient algorithm for computing the stateo debug since there are many simultaneous communication
space of finite protocol sessions. The structure of the pai$o actions in a parallel program, and their interactions armis
is exploited to partition the state space and reduce crassmplex. Bulk sending also provides better performancessi
transitions while increasing computation locality. At theame it is faster to send a block of data rather than individuahdat
time, the BSP model allows to simplify the detection of theecause of less network latency.
algorithm termination and to load balance the computations
2.2. State spaces of protocol models
Outline. First, we briefly review in Section 2 the context of
our work that is the BSP model, models of security protocols A labelled transition systerfLTS) is an implicit represen-
and their state space representation as labelled tramsititation of the state space of a modelled system. It is defined
systems (LTS). Section 3 is dedicated to the description a$ a tuple(S, T, /) where S is the set of states]’ C S? is
our new algorithm. Then, in Section 4, we briefly describe the set of transitions, anflis an arbitrary labelling o U T
prototype implementation and apply it to some typical pcoto Given a model defined by its initial statg and its successor
sessions, giving benchmarks to demonstrate the benefitg of functionsucc, the corresponding explicit LTS LSTS(sg, succ),
approach. Related works are discussed in Section 5 whilelefined as the smallest LT&, T, ¢) such thats, in S, and
conclusion and future works are presented in Section 6. if s € S then for all s’ € succ(s) we also haves’ € S
and(s,s’) € T. The labelling may be arbitrarily chosen, for

local computing

|
} communication
|

synchronisation barrier
next super-step

2. Context and general definitions instance to define properties on states and transitions with
respect to which model checking is performed.
2.1. The BSP model In the paper, we consider models of security protocols

involving a set ofagentsand we assume that any state can be

In the BSP model, a computer is a set of uniform processdgpresented by a function from a seof locationsto an arbi-
memory pairs connected through a communication netwdiiry data domairD. For instance, locations may correspond
allowing the inter-processor delivery of messages [153].[1 to local variables of agents, shared communication byfétcs
Supercomputers, clusters of PCs, multi-core and GRits, As a concrete formalism to model protocols, we have used
can be considered as BSP computers. an algebra of coloured Petri net$16] allowing for easy

A BSP program is executed as a sequenceugfer-steps and structured modelling. However, our approach is largely
(see Fig. 1), each one divided into three successive disjoiidependent of the chosen formalism and it is enough to
phases: first, each processor only uses its local data torperf assume that the following properties hold:
sequential computations and to request data transferdiés ot(P1) Any state of the system can be described as a function
nodes; then, the network delivers the requested data;firzall L — D.
global synchronisation barrier occurs, making the tramete (P2) There exists a subsétzy C L of reception locations
data available for the next super-step. The execution time corresponding to the information learnt (and stored) by
(cost) of a super-step is the sum of the maximum of the local agents from their communication with others.
processing, the data delivery and the barrier times. The cqB3) Functionsucc can be partitioned into two successor
of a program is the total sum of the cost of its super-steps. functionssuccg andsuccy, that correspond respectively

to the successors that change states or not on fBe A BSP algorithm for state space construction

locations fromLrg. _ _
More precisely: for all states and all s' € succ(s), if ~ W€ now show how the sequential algorithm can be par-

'z, = S|z, thens' € succr(s), elses’ € succg(s); where aIIeIised. in BSP and .how sevgral succes_sive improvem_ent

s|z, denotes the state whose domain is restricted to thec@n be_mtrod_ucgd. This res_ults in an algorithm thaF remains

locations inL . Intuitively, succr corresponds to transitionsduite simple in its expression but that actually relies on a

upon which an agent receives information and stores it. G¥ecise use of a consistent set of observations and algocith

concrete models, it is generally easy to distinguish S)thtacmodifications. We will show in the next section that this

cally the transitions that correspond to a message receptfdgorithm is efficient despite its simplicty.

in the protocol with information storage. Thus, is it easy to . .

partition succ as above. This is the case in particular for thé-1. A naive BSP version

algebra of Petri nets that we have used. . : . . -
In the following, the presented algorithms compute onl Algorlthm 1 can be naively parallelised by using a_partlt.|c_>n

S. This is made without loss of generality and it is a triViaﬁmctmn cpu that returns for each state a processor identifier,

extension to compute alsb and/, assuming for this purpose":f" tfhe processor m:mbehredﬁ(s]z 'f’] the ow_r:jer 059' Usually,d |
that succ(s) returns tuples(t, £(t),s’, £(s")). This is usually this function is simply & hash of the considered state modulo

preferred in order to be able to perform model-checking 6I?e number of processors in the parallel computer. The slea i
temporal logic properties that each process computes the successors for only the itate

owns. This is rendered as Algorithm 2; notice that we assume

2.2.1. Dolev-Yao attackerWe consider models of protocolsthat arguments are passed by references so that they may be
where a Dolev-Yao attacker [8] resides on the network. An eftodified by sub-programs.

ecution of such a model is thus a series of message exchanges_ : :
as follows. (1) An agent sends a message on the netwdflgorithm 2 Naive BSP construction
(2) This message is captured by the attacker that tries ta leal: todo < 0

from it by recursively decomposing the message or decrgptin2: total <1

it when the key to do so is known. Then, the attacker forge§: known « 0

all possible messages from newly as well as previously tearr: if cpu(so) = mypid then
information. Finally, these messages (including the aagi 5@ todo < todo U {s0}

one) are made available on the network. (3) The agents gaitiné: €nd if

for a message reception accept some of the messages forg7<=;‘thiIe total > 0 do

by the attacker, according to the protocol rules. 8 tosend < Successor(known, todo)

9: todo, total < Exchange(known, tosend)
2.2.2. Sequential state space constructiorin order to ex- 10: end while
plain our parallel algorithm, we start with Algorithm 1 thatsuccessor(
corresponds to the usual sequential construction of a statle tosend < 0
space. The sequential algorithm involves a &b of states

that is used to hold all the states whose successors have n2(f)tWhIIe todo # 0 do

known, todo) :

been constructed yet; initially, it contains only the iaitstate i E'Ck 5 fimk] tOdOU{)
sg. Then, each statefrom todo is processed in turn and added 5 fonrm”,ne . CZ(OU)m do 5
to a setknown while its successors are addedtt@lo unless 6: ifs g z N U todo then
they are known already. At the end of the computatiomwuwn 7: ff ?O,Q)mi © .(Oj then
holds all the states reachable from that is, the state space. Cputls’) = myp! ,
8: todo + todo U {s'}
Algorithm 1 Sequential construction 9 else o
1 todo — {so} 10: tosend + tosend U {(cpu(s’),s’)}
+ boao = 150 11: end if
2: known + () 12 end if
3: while todo # 0 do '
. 13: end for
4. pick s from todo _ .
14: end while
5. known < known U {s}
15: return tosend
6: for s’ € succ(s) do
7: if s’ ¢ known U todo then Exchange(known, tosend) :
8: todo + todo U {s'} 1: received, total < BSP_EXCHANGE (tosend)
o: end if 2: return (received \ known), total
10: end for
11: end while This is a SPMD (Single Program, Multiple Data) algorithm

so that each processor executes it. Setswn and todo are

still used but become local to each processor and thus provadf new messages. Among the many forged messages, only
only a partial view on the ongoing computation. So, in order &a (usually) small proportion are accepted for a reception by
terminate the algorithm, we use an additional variafal:l agents. Each such reception gives rise to a new state.
in which we count the total number of states waiting to be This whole process can be kept local to one processor.
proceeded throughout all the processass, total is the sum To do so, we need to design a new partition functipn ,
of the sizes of all the set®do. Initially, only states, is known such that, for all states; and s, if s1|z, = s2|z, then
and only its owner puts it in itsodo set. This is performed cpug(s1) = cpug(sz2). For instance, this can be obtained by
in lines 4-6, wherenypid evaluates locally to each processocomputing a hash (modulo the number of processors) using
to its own identifier. only the locations fromCx.

FunctionSuccessor is then called to compute the successors On this basis, functioluccessor can be changed as shown
of the states intodo. It is essentially the same as the sequential Algorithm 3.
exploration, except that each processor computes only the
successors for the states it actually owns. Each compuaésl shlgorithm 3 An exploration to improve local computation
that is not owned by the local processor is recorded in & S§fccessor(known, todo)
tosend.together W|th |ts_ owner number. This partitioning of 1 tosend « 0
states is perfo_rmed in lines _7—11. _ _ 2: while todo # () do

Then, function Exzchange is responsible for performing
the actual communication between processors. The prinitiv,.
BSP_EXCHANGE send each state for a pair (é,s) in
tosend to the processarand returns the set of states received
from the other processors, together with the total number o
exchanged states. The routiBSP_EXCHANGE performs a

pick s from todo

known < known U {s}

for s’ € succr(s) \ known do
todo + todo U {s'}

end for

a khw

lobal (collecti hronisation barti hich makestad 8 for s’ € succg(s) \ known do

obal (collective) synchronisation barrier which ma

glob () sy o: tosend < tosend U {(cpur(s’),s’)}
available for the next super-step so that all the processers 10: end for

now synchronised. Then, functidixchange returns the set of 11: end while

received states that are not yet known locally together thith
new value oftotal. Notice that, by postponing communication : , ,

this algorithm allows buffered sending and forbids sendinH1e rest is as in Algorithm 2.

several times the same state.

It can be noted that the value oftal may be greater than With respect to Algorithm 2, this one splits the for loop,
the intended count of states fndo sets. Indeed, it may happen@voiding calls tocpup when they are not required. This
that two processors compute a same state owned by a third prgy yield a performance improvement, both because,
cessor, in which case two states are exchanged but then dflyikely to be faster thatpu and because we only call it
one is kept upon reception. Moreover, if this states has be&Ren necessary. But the main benefits in the usepof;
also computed by its owner, it will be ignored. This not a prodnstead ofcpu is to generate less cross transitions since less
lem in practise because in the next super-step, this dupticastates are need to be send. Notice that in the second loop,
count will disappear. In the worst case, the terminationireg N0 state fromtodo may be obtained througsuccr because
one more super-step during which all the processors wif the progression. So we can usénown to replace test
process an emptyodO, resumng in an empty exchange anda’/ ¢ knownUtodo from the preViOUS algorithm. Fina"y, notice

thus total = 0 on every processor, yielding the termination. that, on some statespu, may return the number of the local
processor, in which case the computation of the successors f

3.2. Increasing local computation time such states will occur in the next super-step. We show now on
how this can be exploited.

Using Algorithm 2, functiorcpu distributes evenly the states
over the processors. However, each super-step is likely 3a3. Decreasing local storage
compute very few states because only few computed suc-
cessors are locally owned. This results in a bad balance ofOne can observe that the structure of the computation is
the time spent in computation with respect to the time spembw matching closely the structure of the protocol executio
in communication. If more states can be computed locallgach super-step computes the executions of the protodbl unt
this balance improves but also the total communication tin@e message is received. As a consequence, from the states
decreases because more states are computed during eactexalianged at the end of a super-step, it is not possible to
to function Successor. reach states computed in any previous super-step. Inde=d, t
To achieve this result, we consider a peculiarity of thprotocol progression matches the super-steps succession.
models we are analysing. The learning phase of the attackeil his kind of progression in a model execution is the basis of
is computationally expensive, in particular when a messatie sweep-linemethod [17] that aims at reducing the memory
can be actually decomposed, which leads to recompose aftmitstep of a state space computation by exploring statas in

12: return tosend

order compatible with progression. It thus becomes passitlgorithm 5 Balancing strategy

to regularly dump from the main memory all the states thdtzchange(tosend, known) :

cannot be reached anymore. Enforcing such an exploration dump(known)

order is usually made by defining on states a measure &f return BSP_EXCHANGE (Balance(tosend))
progression. In our case, such a measure is not needed becaus

of the match between the protocol progression and the sup@?—l“”’:e(tose”d) :

steps succession. So we can apply the sweep-line method by histoL < {(i,#{(i, s) € tosend})}

making a simple modification of the exploration algorithrs, a 2: computehistoG from BSP_MULTICAST (histoL)
shown in Algorithm 4. 3: return BinPack(tosend, histoG)

The rest is as in Algorithm 4, usingpu instead ofcpuy,.

Algorithm 4 Sweep-line implementation
Ezchange(tosend, known) :

1. dump(known) These operations are detailed in Algorithm 5 where vari-
2: return BSP_EXCHANGE (tosend) ableshistoL andhistoG store respectively the local and global
histograms, and functioBin Pack implements the dispatching
method described above. In functiddalance, §X denotes
the cardinality of setX. FunctionBSP_MULTICAST is
used so that each processor sends its local histogram tp ever
processor and receives in turn their histograms, allowong t
build the global one. Like any BSP communication primitive
it involves a synchronisation barrier.

It may be remarked that the global histogram is not fully
8ccurate since several processors may have a same state to be

The final optimisation step aims at balancing the workloa . I X ;
. . . sent. Nor the computed dispatching is optimal since we do not
To do so, we exploit the following observation: for all the

: Wémt to solve a NP-hard bin packing problem. But, as shown
protocols we have studied so far, the number of compute . :
n our benchmarks below, the result is yet fully satisfagtor

states during a super-step is usually c_Ioser related to tlheFinaIIy, it is worth noting that if a state found in a previous
number of states received at the beginning of the super-steg

So, before to exchange the states themselves, we can ﬁr§er-step may be computed again, it would be necessary to

: . nown which processor owns it: this could not be obtained
exchange information about how many state each processqr . . o
A efficiently when dynamic remapping is used. But that could
has to send and how they will be spread onto the othér ;)
) o . - not happen thanks to the exploration order enforced in
processors. Using this information, we can anticipate a . X ; . :
: ection 3.2 and discussed in Section 3.3. Our dynamic states
compensate balancing problems.

L . remapping is thus correct because states classes match the
To compute the balancing information, we use a ne

partition functioncpup that is equivalent t@puy but works challty of computation.

for an infinite number of processoiise., we havecpuy(s) =]

cpuy(s) mod P, where P is the number of processors. In4. EXperimental results

practise,cpup computes a hash using only information from

the locations inC g, and without using a modulo. This function In order to evaluate our algorithm, we have implemented
defines classes of states for whighu ; returns the same value.a prototype version in Python, using SNAKES [18] for the
We compute a histogram of these classes on each proced3etti net part (which also allowed for a quick modelling of
which summarises howpu, would dispatch the states. Thisthe protocols, including the inference rules of the DoleaoeY
information is then globally exchanged, yielding a globaittacker) and a Python BSP library [19] for the BSP routines
histogram that is exploited to compute on each processofvehich is very close to an MPI “alltoall”). We actually used
better dispatching of the states it has to send. This is matie MPI version (with MPICH) of the BSP-Python library.
by placing the classes according to a simple heuristic fé#vhile largely suboptimal (Python programs are interpreted
the bin packing problem: the largest class is placed onto ttieere is no optimisation about the representation of theesta
less charged processor, which is repeated until all thesetasin SNAKES), this prototype nevertheless allows and aceurat
have been placed. It is worth noting that this placement é@mparisonof the various algorithms.

computed with respect to the global histogram, but therl) eac With respect to the presented algorithms, our implemen-
processor dispatches only the states it actually holdsgubis tations differ only on technical detailse.g, value total
global placement. Moreover, if several processors computeeturned byBSP_EXCHANGE is actually computed by
same state, these identical states will be in the same clagshanging also the number of values sent by each processor)
and so every processor that holds such states will send thend minor improvementse(g, we used in-place updating of
to the same target. So there is no possibility of duplicategts and avoided multiple computations aplu(s) using an
computation because of dynamic states remapping. intermediate variable).

The rest is as in Algorithm 3.

The statemerdump(known) resetsknown to an empty set,
possibly saving its content to disk if this is desirable. Tést
of function Ezchange is simplified accordingly.

3.4. Balancing the computation

8000

The benchmarks presented below have been performe o] 7000]
using a cluster with 20 PCs connected through a 1Gb Etherne « H .

network. Each PC is equipped with a 2GHz I@ePentiun®] o]
dual core CPU, with 2Gb of physical memory. This allowed N -
to simulate a BSP computer with 40 processors equipped witf ., | 1000

1Gb of memory each. T ez T mmes T ames T Az T Ages | Awes
These experiments are designed to reveal how various as * 25000
pects of the new method contribute to the overall perforranc l 20000
Our cases study involved the following four protocols: - 15000
1) Needham-Schroeder (NS) public key protocol for mutual { | | 10000
authentication. - 5000 {
2) Yahalom (Y) key distribution and mutual authentication o+ ——————— R e
using a trusted third party.
3) Otway-Rees (OR) key sharing using a trusted third party. ., |
4) Kao-Chow (KC) key distribution and authentication.
These protocols and their security issues are documented
the Security Protocols Open Repository (SPORE) [20]. . .
For each protocol, we have built a modular model allowing o+ —————="= e T T s
for defining easily various scenarios involving differemntm-
bers of each kind of agents (but only one attacker, which is - 60000
always enough). 0| -
4.1. Global performances H -] !

Algo 2 " Algoa " Algos Ago2 | Agod | AlgoS

Figure 2 shows the execution times for two scenarios for
each protocol; the depicted results are fair witnesses @nwrﬁ

we could observe from the large number of scenarios we haly and 5 for the four studied protocols. Top row: two

acFuaIIy run. In the figu_re, we have distinguished: the COMPIhstances of NS yielding respectively about 8K (left) and
tation time that essentially corresponds to the computaifo 5M states (right). Second row: two instances of Y with

successor states on each processor; the communication §ut 400K (left) and 1M states (right). Third row: two
that corresponds to states exchange; the waiting times t ances of OR with about 12K (left) .and 29K s.tates
occur when processors are forced to wait the others before(ﬁ%ht) Bottom row: two instances of KC with about 400

enter the communication phase of each super-step. (left) and 2K states (right). Each bar show the maximums

We can See on th_ese graphs that_ the overall performanceaﬂ.fong processors of the accumulated computation times
our last algorithm (right-most bars) is always very good eo”ﬂblack), waiting times (white) and communication time
pared to the naive algorithm (left-most bars). In particutlae (gray)

e

communication and waiting times are always greatly reduc
This holds for large state spaces as well as for smaller ones.
An important waiting time corresponds to an unbalancad the fact that the waiting time accumulation becomes more
computation: if some processors spend more time computingportant on longer runs.
successors, the others will have to wait for them to finish
this computation before every processor enters the commu#i2. Memory consumption
cation phase. In several occurrences, we can observe that, b
increasing the local computation, we have worsen the balanc By measuring the memory consumption of our various
which increased the waiting time. This corresponds to gsapalgorithms, we could confirm the benefits of our sweep-line
where the middle part in the second column is taller than tivaplementation when large state spaces are computed. For
same part in the left column. However, we can observe thasttance, in the NS scenario with 5M states, we observed
our last optimisation to improve the balance is always vegnh improvement of the peak memory usage from 97% to
efficient and results in negligible waiting time in every eas 40% (maximum among all the processors). Similarly, for
The variations of observed computation times are similartiie Y scenario with 1M states, the peak decreases from
caused by a bad balance because we depicted the maxin@#®% to 60% (states in Y use more memory that states
accumulated time among the processors. in NS). We also observed, on very large state spaces, that
Finally, by comparing the left and right columns of resultghe naive implementation exhausts all the available memory
we can observe that the overall speedup is generally betdd some processors start to use the swap, which causes
when larger state spaces are computed. This is mainly duehuge performance drop. This never happened using our

2. Computation times (in seconds) of Algorithms 2,

sweep-line implementation. However, notice that, in al thmeration in which some states can be omitted with a low
presented scenarios, no swapping has occurred, which woptdbability. In our project, we only address exact, exhaast

have dramatically biased the results. verification issues. For completeness, we can also mention
an alternative approach [23] in which symbolic reachapilit
4.3. Scalability analysis is distributed over a network of workstationss thi

approach does not handle states individually, but setsatést
As a last observation about our algorithm, we would likencoded using BDDs.

to emphasise that we observed a linear speedup with respe@tor the partition function, different technics have been
to the number of processors. In general, most parallel alggsed. In [4] authors used of a prime number of virtual
rithms suffer from an amortised speedup when the numhsiocessors and map them to real processor. This improves
of processors increases. This is almost always caused by [th&l balancing but has no real impact on cross transitions.
increasing amount of communication that becomes dominant[24], the partition function is computed by a round-robin
over the computation. Because our algorithm is specificalyn the successor states. This improves the locality of the
dedicated to reduce the number of cross transitions, aggimputations but can duplicate states. Moreover, it wordds w
thus the amount of communication, this problem is largelynly when network communication is substantially slowerth
alleviated and we could observe amortised speedup only tmputation, which is not the case on modern architectures
very small models (less than 100 states) for which the degtee explicit model-checking. In [25], an user defined abstra
of intrinsic parallelism is very reduced but whose statecepainterpretation is used to reduce the size of the state spate a

is in any way computed very quickly. then it allows to distribute the abstract graph; the comcret
graphs is then computed in parallel for each part of the
5. Related works distributed abstract graph. In contrast, our distributieethod

is fully automated and does not require input from the user.

Distributed state space construction has been studied imhere are many tools dedicated to the modelling and veri-
various contexts. All these approaches share a common idggition of security protocols as [26], [9], [10], the mostiwe
each machine in the network explores a subset of the statfown is certainly AVISPA [12]. In contrast, our approach
space. This procedure continues until the entire stateesisacis based on a modelling framework (algebras of Petri nets)
generated and so no messages are sent anymore [4]. To de{@ft explicit state space construction, that is not tighatty
this situation a termination detection procedure is uguzth- particular application domain. Our approach howevergegeli
ployed. However, they differ on a number of design prind@pleon the particular structure of security protocols. We helie
and implementation choices such as: the way of partitionifigat our observations and the subsequent optimisations are
the state space using either static hash functions or dynamjéneral enough to be adapted to the tools dedicated to ptotoc
ones that allow dynamic load balancirgc. In this section, verification: we worked in a very general setting of LTS,
we focus on some of these technics and discuss their problefesined by an initial state and a successor function. Our only
and advantages. More references can be found in [5]. requirements are three simple conditions (P1 ro P3) which ca

In [21], a distributed state space exploration algorithie easily fulfilled within most concrete modelling formatis.
derived from the Spin model-checker is implemented using

a master/slave model of computation. Several Spin-specific
partition functions are experimented, the most advantaged
one being a function that takes into account only a fraction o
the state vector. The algorithm performs well on homogeseou The critical problem of state space construction is deter-
networks of machines, but it does not outperform the stahdamining whether a newly generated state has been explored
implementation except for problems that do not fit into thbefore. In a serial implementation this question is ansdrere
main memory of a single machine. Moreover, no clue isy organizing known states in a specific data-structure, and
provided about how to correctly choose the fraction of statéboking for the new states in that structure. As this is a
to consider for hashing. centralized activity, any parallel or distributed solatimust

In [6] various technics from the literature are extended ifind an alternative approach. The common method is to assign
order to avoid sending a state away from the current processtates to processors using a static partition function kvisc
if its 2nd-generation successors are local. This is complgenerally a hashing of the states [4]. After a state has been
mented with a mechanism that prevents re-sending alreadly sgenerated, it is sent to its assigned location, where a local
states. The idea is to compute the missing states when tiseprch determines whether the state already exists. Tas le
become necessary for model-checking, which can be fastertwo main difficulties. First the number of cross transiso
than sending it. That clearly improves communications big too high, leading to a too heavy network use. Second,
our method achieves similar goals, in a much simpler wayemorising all the states in the main memory is impossible
without ignoring any state. without crashing the whole computation and is not clear when

There also exist approaches, such as [22], in which pdris possible to dump some states in disk and if heuristlas li
allelization is applied to “partial verification’i,e. state enu- those in [21], [2] would work well for complex protocols.

Conclusion and future works

Our first solution is to use the well-structured nature ofi6] C. Pajault, “Model checking paralléle et réparti deseaux de Petri
security pl’OtOCOlS to choose which part of the state is yea" colorés de haut-niveau,” Ph.D. dissertation, Conseinaafdational des

. . Arts et Métiers, 2008.
needed for the partition function and to empty the data[‘?] D. Basin, “How to evaluate the security of real-life ctggraphic

structure in each super-step of the parallel computatiam. O protocols? the cases of ISO/IEC 29128 and CRYPTRECWerkshop
second solution entails automated classification of statels on Real-life Cryptographic Protocols and Standardizafi@010.

. . . D. Dolev and A. C. Yao, “On the security of public key protis,”
dynamic mapping of classes to processors. We find that bo{ IEEE Transactions on Information Theoryol. 29, no. 2, pp. 198-208,

our methods execute significantly faster and achieve better 1983.

network use than a classical method. Furthermore, we findl 'S; oAtggjgd;andsi';,lﬁfn;F’ﬁ%”%é‘fczl'bssig rqodperj-cgeggmgggunty
that our method to balance states does indeed achieve bgit§ra armando, R. Carbone, and L. Compagna. “LTL model diiteg for

network use, memory balance and runs faster. security protocols,” ifProceedings of CSF IEEE Computer Society,

; ; 2007, pp. 385-396.
The fundamental message is that for parallel discrete Stf’ltﬁ H. Gao, “Analysis of security protocols by annotatigrigh.D. disserta-

space construction, it is essential to explqit charaatgsiwf tion, Technical University of Denmark, 2008.
the models and to structure the computation accordingly. W] A. Armando and al., “The AVISPA tool for the automatediigation
have demonstrated techniques that prove the feasibilithisf of Internet security protocols and applications,” Rroceedings of

. . Computer Aided Verification (CAV¥er. LNCS, K. Etessami and S. K.
approach and demonstrate its potential. Key elements to our rajamani, Eds., vol. 3576. Springer, 2005, pp. 281-285.

success were (1) an automated states classification thategd[13] C. J. F. Cremers, “Scyther - semantics and verificatiénsecurity

i A ; protocols,” Ph.D. dissertation, Technische Universiiitdhoven, 2006.
cross transitions and memory footstep, while improvingéhe |\ b "5 spiicom 3 M. b, Hill, and W. F. McColl, "“Questins and
cality of computation (2) using global barriers (which isomt Answers about BSP,Scientific Programmingvol. 6, no. 3, pp. 249—

overhead method) to compute a global remapping of states and 274, 1997.

; ; i Avi ; i1 [15] R. H. Bisseling,Parallel Scientific Computation. A structured approach
thus improve balancing workload, achieving a good scatgbil using BSP and MPI Oxford University Press, 2004.

Future works will be dedicated to build a real and efficienis] F. Pommereau, “Algebras of coloured Petri nets,” Hetibn thesis,
implementation from our prototype. It will feature in patlar University Paris-East Créteil, 2009.

: _ - . [17] S. Christensen, L. M. Kristensen, and T. Mailund, “A pdine method
a temporal IOgIC model-checker, aIIowmg to Venfy morertha for state space exploration,” iRroceedings of Tools and Algorithms

reachability properties. Using this implementation, weulto for the Construction and Analysis of Systems (TACAS). LNCS,
like to run benchmarks in order to compare our approach with T. Margaria and W. i, Eds., vol. 2031. Springer, 2001, pp0-484.

g . .] F. Pommereau, “Quickly prototyping Petri nets toolshvENAKES,”
existing tools. We would like also to test our algorithm o ser. ACM Digital Library. ACM, 2008, pp. 1-10.

parallel computer with more processors in order to confiriio] K. Hinsen, “Parallel scripting with PythonComputing in Science &
the scalability that we could observe on 40 processors. Engineering vol. 9, no. 6, 2007.

. 20] E. C. LSV, “SPORE: Security protocols open repositohttp://www.
Moreover, we are working on the formal proof of ouf lsv.ens- cachan. friSoftware/spore.

algorithm. Proving a verification algorithm is highly degite [21] F. Lerda and R. Sista, “Distributed-memory model ctiegkvith SPIN,”

in order to certify the truth of the diagnostics delivered by n Proceedings of SPINser. LNCS, D. Dams, R. Gerth, S. Leue, and
. . . M. Massink, Eds., no. 1680. Springer-Verlag, 1999, pp. 22-3
such an algorithm. Such a proof is possible because, thanks[;zg] W. J. Knottenbelt. M. A. Mestern, P. G. Harrison, and Ritéinger,

the BSP model, our algorithm remains simple in its structure = “Probability, parallelism and the state space exploratimoblem,”
Finally, we would like to generalise our present results by in Proceedings of Computer Performance Evaluation-Modeliech-

. L . . . nigues and Tools (TOOLS3er. LNCS, R. Puigjaner, N. N. Savino, and
extending the application domain. In the security domain, g serra Eds., no. 1469, Springer-Verlag, 1998, pp. 16817
we will consider more complex protocols with branching an3] T. Heyman, D. Geist, O. Grumberg, and A. Schuster, “Aulrig

Iooping structures. as well as Complex data types manipu- scalability in parallel reachability analysis of very largircuits,” in
’ Proceedings of Computer Aided Verification (CAS8r. LNCS, no. 1855,

lations. In particular, we will consider protocols for seeu 2000, pp. 20-35.
storage distributed through peer-to-peer communicat@). [[24] D. Petcu, “Parallel explicit state reachability argidyand state space
Another genera“satlon will be to consider Symbollc Stm construction,” inProceedings of ISPDC IEEE Computer Society, 2003,

pp. 207-214.
S. Orzan, J. van de Pol, and M. Espada, “A state spaaebditetd polivy
based on abstract interpretation,” BNTCS vol. 128. Elsevier, 2005,
pp. 35-45.

References [26] T. Genet, Y.-M. Tang-Talpin, and V. V. T. Tong, “Verifitan of
copy-protection cryptographic protocol using approxiore of term
rewriting systems,” inWorkshop on Issues in the Theory of Security

representations, in particular those based on decisignmatizs. [25]

[1] D. Nicol and G. Ciardo, “Automated parallelization ofsdrete state- (WITS) 2003.
space generationJournal of Parallel and Distributed Computipgol. 4, [27] S. Sanjabi and F. Pommereau, “Modelling, verificatiamd formal
no. 2, pp. 153-167, 1997. analysis of security properties in a P2P system,”\Workshop on
[2] S.Evangelista and L. M. Kristensen, “Dynamic State $pRartitioning Collaboration and Security (COLSEC’10per. IEEE Digital Library.
for External Memory Model Checking,” iRroceedings of Formal Meth- IEEE, 2010, pp. 543-548.

ods In Computer Sciences (FMICSEer. LNCS, vol. 5825. Springer,
2009, pp. 70-85.

[3] R. Kumar and E. G. Mercer, “Load balancing parallel egiplistate
model checking,” iInENTCS vol. 128. Elsevier, 2005, pp. 19-34.

[4] H. Garavel, R. Mateescu, and |. Smarandache, “Parate sspace
construction for model-checking,” ilMorkshop on Model Checking of
Software SPINMay 2001.

[5] J. Barnat, “Distributed memory LTL model checking,” Bh.disserta-
tion, Faculty of Informatics Masaryk University Brno, 2004

