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The paper contributes to modeling an orchestrated complex Web Service (BPEL) with Colored Petri Nets (CPNs) for diagnosis. In the CPNs model, colored tokens are used to represent the faults in a BPEL process. A uniform fault model is introduced to represent both the faulty input data and external faulty Web services called by the BPEL activities. We use three I/O data dependency relations for each BPEL activity. To represent the fault propagation in colored Petri nets, we define the color propagation functions for each data dependency relation. We give a concrete translation from a BPEL service to a CPNs model. Model-based diagnosis framework is then used. Based on the evolution equation in Petri nets theory, we construct an inequations system as a diagnosis problem and solve it with an algebra algorithm.

INTRODUCTION

Self-healing software is one of the important challenges for Information Society Technologies research. Our paper proposes a centralized diagnosis approach for BPEL (OASIS [2006]) services, whose goal is to design a framework for self-healing Web services by adopting artificial intelligence methodologies to solve the diagnosis problem by supporting online detection and identification of faults.

A Web service (WS) is a set of distributed message oriented interacting components. We can construct complex WS systems by composing basic WSs in two ways: orchestration and choreography (P2P). An orchestrated BPEL service is a central process to organize (basic or complex) WSs to finish complex tasks. A choreographed WS has not a central process while all the involved WSs are aware of their partners but none has the global view of the whole WS application. Distributed WS applications make B2B engineering more convenient but raise more challenges for handling dysfunctions. For example, how to locate the source and reason of faults when they occur somewhere in a distributed WS application? As orchestration is the basic of the WS composition, we focus on single BPEL service diagnosis based on CPN [START_REF] Diaz | Les réseaux de Petri de haut niveau[END_REF]) model which can be easily extended to a distributed environment.

During the interaction of distributed WS components, subtle faults can come from corrupted data or some functional errors. Due to the message oriented nature of WS applications, faulty data is propagated through the ⋆ This research has been initiated in the framework of the FP6 IST project 516933, WSDIAMOND (Web Services DIAgnosability, MONitoring and Diagnosis) and continued in the framework of the national ANR project WEBMOV (Web services Modeling and Verification).

execution trace and is used to elaborate other faulty data and control decisions. In this way the subtle faults become large ones.

Consider the following example which will be used as an illustration example along this paper: a BPEL service F lightAgent calculates a series of business flight costs. The F lightAgent starts with a receive activity C to receive a request string of the series of departure cities and dates, for example, from Paris to London on 01/03/2008, and from London to Madrid on 03/03/2008, from Madrid to Rome on 05/03/2008, and from Rome to Paris on 09/03/2008, all the dates are in European format. F lightAgent iteratively (by using While activity W ) invokes an invoke activity S to split the request string to get the information for one flight: the departure city, a departure date, and an arriving city (which is also the departure city of next flight). Whereafter an invoke activity O reserves the flight tickets and cumulatively calculates the flight fees.

We consider two types of faults: the faulty input data and the bad basic WS which sometimes cannot be tested or detected immediately. For example, bad activity S interprets the date format incorrectly, 01/03/2008, 03/03/2008, 05/03/2008, and 09/03/2008 are misinterpreted as January 03, 2008, March 03, 2008, May 03, 2008, and September 03, 2008. which is hard to test locally. As to the prizing rules of the airline, at the end of the process, reply activity P returns the total ticket price of the whole trip (in figure 3a) which is unreasonably huge. The client (or other Web service which invokes F lightAgent) can arise an exception. These two types of faults both reflect on data within the BPEL process. So we consider both of them as data fault while the latter one is explained as the basic WS fault. Note that we suppose the overall orchestration and choreography schema is correctly designed.

A BPEL process can be considered as a discrete event system (DES). Automata, process algebra, and Petri nets are the most popular models. We refer the reader to [START_REF] Yan | Description Language and Formal Methods for Web Service Process Modeling[END_REF] for the surveys of formal methods of Web services modeling. In this paper, we address the data faults by using the model based diagnosis approach, and more specially, the discrete event model based approach [START_REF] Ardissono | Enhancing web services with diagnostic capabilities[END_REF], [START_REF] Benveniste | Diagnosis of asynchronous discrete event systems, a net unfolding approach[END_REF], [START_REF] Boukadi | Specification and verification of views over composite web services using high level petri-nets[END_REF], [START_REF] Chatain | Models for the supervision of web services orchestration with dynamic changes[END_REF], Li et al. [2007], Yan and Dague [2007], [START_REF] Ye | Decentralized diagnosis for bpel web services (poster)[END_REF], [START_REF] Zhang | A colored petri net-based model for web service composition[END_REF]). Among the usual discrete event model, we use colored Petri nets to define the diagnoser. Many works use the Petri nets to do diagnosis [START_REF] Benveniste | Diagnosis of asynchronous discrete event systems, a net unfolding approach[END_REF], Li et al. [2007], S. Genc and S.Lafortune [2005], [START_REF] Ye | Decentralized diagnosis for bpel web services (poster)[END_REF]). Some works use high level Petri nets to modeling WS [START_REF] Chatain | Models for the supervision of web services orchestration with dynamic changes[END_REF], [START_REF] Yi | Process composition of web services with complex conversation protocols: A colored petri nets based approach[END_REF], [START_REF] Zhang | A colored petri net-based model for web service composition[END_REF], [START_REF] Boukadi | Specification and verification of views over composite web services using high level petri-nets[END_REF]) as the CPN model is more compact and expressive from the aspect of data evolution. While there are few work which uses CPN model to solve the WS diagnosis problem.

The main originality of this work is a natural use of the colored Petri nets (supported by CPN Tools CPN Group [2007]); the color domain is used to model data (states) status and transitions are used to define transition status. The model presented here can be generalized to a very large software domain besides Web services. Another originality is the diagnosis methods: unlike most of other works based on Petri nets, we don't use an unfolding approach [START_REF] Benveniste | Diagnosis of asynchronous discrete event systems, a net unfolding approach[END_REF], S. Genc and S.Lafortune [2005], Yan and Dague [2007], [START_REF] Ye | Decentralized diagnosis for bpel web services (poster)[END_REF]), but use the incidence matrix and the characteristic vector of the observed trace in order to transform the diagnosis problem to an inequations system, and then we propose an algorithm to solve one inequation and then the inequations system.

The paper is organized as follows: in section 2, we introduce CPN model for the BPEL services and define their firing rules. We define CPN model for typical basic activities and structural operators of BPEL in section 3; in section 4, we define the diagnosis problem and its solution and illustrate it with a concrete example; in section 5, we introduce some related work, compare the different methods, and give some directions for future research.

COLORED PETRI NET

A Petri net is a Colored Petri Net if its tokens can be distinguished by colors. Here we restrict the definition of Colored Petri Net that we use in this paper.

Let E be a set, a multiset on E is an application m from E to Z (a multiset is denoted as m = q 0 e 0 + .... + q n e n where q i = m(e i ), Z is the integer set). We use M(E) to define the set of finite multisets from E to Z, and M + (E) if we restrict it to N. Sum and subtract operators between two multisets are defined as in [START_REF] Jensen | Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical Use[END_REF]. For two given value domains D, D ′ , we denote by [D → D ′ ] the set of possible functions from D to D ′ . Definition 1. A Colored Petri Net graph (CPN graph) is a tuple N = Σ,X ,F ,P ,T ,cd,P re,P ost , where: Σ is a set of colors (see [START_REF] Jensen | Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical Use[END_REF]). X is set of variables that range over Σ. F is a set of color functions,

F ⊆ n [Σ n → Σ].
P is a set of labeled places, and there are two types of places exists: AP , the activation places which contains the CPN execution control, DP , which contains the data used during the execution of CPN, especially, we denote the constant data places set as CP ; Formally, this is represented as follows: P : AP ∪ DP and CP ⊆ DP , AP ∩ DP = ∅. T is a set of labeled transitions, we denote T ype : T ′ → T ′′ with T ′ , T ′′ ⊂ T and T ′ ∩ T ′′ =∅ is a type function of T . Cd : P → 2 Σ , is a function that associates to each place a color domain1 . P re, P ost : are forward and backward matrices such that P re : P × T → M + (Σ ∪ X ), are input arc expressions. And P ost : P × T → M + (E), are output arc expressions. E represents a color expression which can be a color constant, a variable, or a color function of F (completely or partially instantiated). Given an expression e ∈ E, we use V ar(e) to denote the set of variables which appear in e, and Eval(e), the evaluation of e in Σ.

We denote • t and t • as the input and output places set of transition t, • p and p • as the input and output transitions set of place p. Definition 2. A CPN graph N = Σ,X ,F ,P ,T ,cd,P re, P ost is well formed iff: ∀t ∈ T, ∀p ∈ t • , we have V ar(P ost(p, t)) ⊆ V ar(P re(., t)) with V ar(P re(., t))

= p ′ ∈ • t var(P re(p ′ , t)).
In a well formed CPN graph, we restrict that for each transition, the output arc expressions must be composed by the variables which are in the input arcs expressions.

To each CPN graph, we associate its terms incidence Matrix C (P × T → M(E)) with C = P ost -P re.

In the following, we define the behaviors (the dynamics) of a CPN System. Definition 3. A marking M of a CPN graph is a multiset vector indexed by P , where ∀p ∈ P, M (p) ∈ M + (cd(p)).

Operators + andon multisets are extended to markings in an obvious way. Definition 4. A Colored Petri Net system (CPN system) is a pair S= N, M 0 where N is a CPN graph and M 0 is an initial marking. Definition 5. A transition t is enabled in a CPN system S with present marking M , iff ∃u, with M ≥ P re(., t) u , V ar(P re(., t)) → Σ, which is a binding of the input arcs variables.2 

We use M [t u to denote that t is enabled in M by the use of u, and we use the classic notation M [t if u is not important (e.g. when u is unique). Definition 6. Let M be a marking and t a transition, with M [t u for some u. The firing of the transition t changes the marking of CPN from M to M ′ = M + C(., t) u . We note the firing as M [t u M ′ . Definition 7. We extend the definition 6 to a sequence of transitions δ ∈ T * as:

M [δ M if δ is the empty sequence; M [ωt M ′ iff ∃M ′′ such that M [ω M ′′ and M ′′ [t u M ′ .

FROM BPEL TO CPN MODEL

There exist already many works dedicated to translate BPEL services into CPN model for verifying [START_REF] Tan | A petri net-based method for compatibility analysis and composition of web services in business process execution language[END_REF], [START_REF] Boukadi | Specification and verification of views over composite web services using high level petri-nets[END_REF]), composing [START_REF] Zhang | A colored petri net-based model for web service composition[END_REF]), supervising [START_REF] Chatain | Models for the supervision of web services orchestration with dynamic changes[END_REF]), etc.. In this section, we construct our own CPN model by introducing the faulty behaviors into Petri nets model which is suitable not only for diagnosing BPEL services, but also for diagnosing other large software systems.

A BPEL process consists of basic activities and structured operators. The idea of modeling BPEL to CPN is: to map each primitive data to a place, each basic activity to a transition. To each basic activity, input and output activation places a in ∈ P and a out ∈ P are associated to identify the execution order. To include the fault model, additional transitions are added to represent the unobservable faulty activities either in basic WSs or in BPEL services. The structured operators are modeled as CPNs which sew the structured sub-processes by combining, disjointing, or generating the local activation places. Once a red token is generated by a faulty transition in a basic activity, the fault is passed along the execution trace through the arc expressions which are represented in P re and P ost matrices. In the following, we define how to translate the static and dynamic features into CPN models.

BPEL data Variables and constants

BPEL data variables and constants

To catch maximally the dependency between data (variables, constants, etc.), we decompose the structured data types into their elementary parts, denoted by the leaves of their XML tree structure. For a variable X of type m (resp. an Xpath expression), we use x i to range over the Leaves(m) (resp. Leaves(X)) and denote the x i part of X by a couple (X, x i ). In our mapping, each data variable and constant is represented by a unique place in CPNs.

Color Domain

In our CPN model, three colors are used: red (r) marks a place with faulty data value; black (b), not faulty data value; and unknown color ( * ), unknown correctness of data value.

Data dependency within BPEL v.s. color functions

To specify the effect of each activity on data, we give each activity a data dependency signature in term of three dependency relations [START_REF] Ardissono | Enhancing web services with diagnostic capabilities[END_REF]): forward (F W ), if the activity just copies the value from the input to the output; source (SRC), if the output data is generated by the activity; and elaboration (EL), if the output data is elaborated from the set of input data. To each of this dependency relation, we associate a color propagation function to represent the data status (faulty, correct, or unknown status) production. Definition 8. Given the data relations set D = {F W , SRC, EL}, ∀d ∈ D, the associated color propagation function d c is defined as: ∀c,c ′ ∈Σ,∀C⊆Σ,

           F W c ∈ [Σ → Σ], F W c (c)=c SRC c ∈ [∅ → Σ], SRC c = * EL c ∈ [2 Σ → Σ], EL c (C)=c ′ , with c ′ = b, iff ∀c ∈ C, c=b r, iff ∃c ∈ C, c=r * , iff ∃c ∈ C, c= * ∧ ∄c ′′ ∈ C, c ′′ =r
In the following sections, we model dynamic features, the basic BPEL activities and structured operators with CPNs.

Translate basic BPEL activities into CPNs

BPEL service is composed with a series of basic activities.

We map each basic activity to its CPN model. Due to space limitation, we restrict our definitions to four main basic activities (Receive,Assign,Invoke, and Reply) while the other similar activities can be easily translated in the same way.

The main idea in mapping BPEL basic activities to CPNs is: each primitive data is mapped to a place, each basic activity is mapped to a transition, and P re and P ost matrices are defined based on semantical data dependency.

In order to distinguish the activities execution order and the traces among different branches, to each basic activity, we associate an input activation place a in and an output activation place a out .

As we focus on the data fault diagnosis of one BPEL service, the BPEL service code is assumed to be correct.

Possible faults can be faulty data received by Receive activities, or faulty activities which come from other WS called by Invoke activities. So we must introduce fault models for Receive and Invoke activities to localize the faulty data or external WS. Our approach is to introduce additional transitions to represent the unobservable faulty activities and to define the color functions in P re and P ost matrices which represent the propagation of faults.

r r r (C X F =EL c ) ,C i1 X i2 c F C Type( )= t fi t inv Type ( ) =Type( )= t f0 t rec t fi m i X i C i x FW (C c ) in a FW (C c ) i m C in a C i m C in a a in C i m t rec a out a out a in x i2 x i1 C in a C in a t inv y i FW (C c ) in a C X i2 C X i1 C y i C y i C a out t f0 t fi t fi
Fig. 1. receive and invoke CPN Receive(m,X): an activity simply copies the values from a message m to a local variable X. In order to model the receiving of a set of faulty parts from a message value, we add for each part of the message an internal transition (fault) before the firing of the receive transition in figure 1 (left). Note that data places (m, m i ), (x, x i ) are simplified as m i , x i .

The CPN model of Receive contains two kinds of fault transitions: the activation fault transition t f0 , and the data fault transitions t fi , we define their types as: T ype(t f0 )=T ype(t fi )=t rec . The execution of t fi is triggered by the consummation of the token in the input activation place. Once t f0 (or t fi ) is executed, we can deduce that there is a faulty control (or data) input. The transmission of the fault (red token) is illustrated on the arc expressions. Each arc expression represents the colored token consumed (on an arc (p, t)) or produced (on an arc (t, p)). To keep the liveness of the CPNs, we add an arc from the output place x i to the receive transition t rec and its associated color function C xi is the color of the output data place x i .

Reply(Y,m): an activity that copies values from a variable Y to a message m for returning the response of the BPEL service to its invoker. So Reply can be the ending of BPEL and simply forwards (F W ) values. There is no fault model in its CPN and we simply fill P ost with F W functions.

Assign(X,Y): an activity that reorganizes local variable parts inside a BPEL process without changing the values. So its model is similar to Reply activity. Similar operators: T hrow and Rethrow. The W ait, Empty, and Exit activities do not have relation with the variables, so their CPN model only have the input and output activation places.

Invoke(X,Y): an activity that calls another basic or composite Web service. It takes the value of the variable X as input and stores the output in the variable Y . The data dependency can be F W , EL, and/or SRC. As Y can be infected by external faulty WS which is unobservable, we introduce a series of unobservable faulty transitions after the invoke transition to model the faults caused by external WS as is illustrated in figure 1 (right).

The CPN model of Invoke only contains the data fault transitions t fi , which are triggered by the consummation of the token in the output activation place. Once t fi is executed, there should be a fault in its output data place and it can be passed to the other activities along the BPEL process execution trace. Again, we define T ype(t fi ) = t inv .

Translate structured BPEL activities into CPNs

In this section, we show how to obtain BPEL process CPN by a modular combination of a set of CPNs. We formally define four main structural operators (Sequence, Switch, W hile, and F low) while the other similar operators can be easily translated in the same way.

Sequence operator sequence(S 1 , S 2 ) Sequence connects different activities, and the execution order of these activities is the same as their appearance order in the constructor. So we can generate the resulting sequence CPN by simply merging the local intermediate output and input activation places of contractive CPNs (in figure 2(a)).

Conditional operator Switch({(con i (X i , V i ),S i )} i∈I ) Switch represents an alternative execution of the activities S i under the conditions con i (X i , V i ). X i and V i are respectively the variables and constants. For each subprocess S i , we add a transition con i to generate its activation place. Each con i takes the common activation input place of Switch, X i , and V i as inputs to elaborate an input activation place a in i for subprocess S i . A new a out is added to replace all the a outi of subprocess S i (in figure 2(c)). Similar operators: Scope together with the compensation handlers, event handlers, and fault handlers, P ick together with OnM essage, IF , Link.

Iterative operator while(con(X, V ), S 1 ) W hile iterates the activity S 1 execution until the breaking off of the conditions con(X). The CPN graph of W hile is similar to Switch in which the activation input place of the subprocess S 1 is elaborated by the activation input place of W hile, X, and V . But in W hile, the a out of iterative subprocess is also a in of t con . Note that t con represents the transition if condition con is true and t con represents the transition if condition con is false (in figure 2(b)). Similar operators: RepeatU ntil, F orEach.

Parallel operator f low({S i } i∈I ) F low executes the activities S i in parallel. It terminates when all the activities are finished (fork-join). So we add a in , a out , t in , and t out to compose the subprocesses together in parallel (in figure 2(d)). 

Some remarks on the BPEL model

Observable vs unobservable transitions

To distinguish the BPEL activities transitions which are observable and the fault transitions which are not, we divide T into observable transitions T obs and fault transitions T F (T =T obs ∪T F and T obs ∩T F =∅). Remember a type function over faults has been defined, that associates to a fault its observable transition Type: T F →T obs .

Initial and symptom markings of BPEL model net

The initial marking is obtained by marking P . CP are marked as unknown as they cannot be changed by any transition; DP are marked as black; a ap ∈ AP which activate the first execution of CPN is marked as black and the other AP are marked as 0. The final marking is retrieved from the thrown exception. When fault(s) occurs, an exception will be thrown to specify on which activity, there is a faulty part(s), which corresponds to the places in DP . Specially, unmatched or uninitiated data (variable) refers the BPEL process may chose fault execution branch. In this case, the input activation place of the activity will be marked as r. All the other places are marked as unknown because there is no information of their marking.

One-boundness of the BPEL model nets

The resulted CPNs are one-bounded (or safe, means one place can at most contain one token, proof is omitted because of space limitation), in which places represent either data or activation variables.

Example (cont'd):

Now we can construct the CPN of the BPEL service f lightAgent as in figure 3 Before giving a definition of a solution to a diagnosis problem, we introduce a covering relation as follows: Definition 11. A covering relation between colors of Σ={r, b, * } is a partial ordered relation where any color covers itself and the * color covers all colors (i.e ={(r, r), (b, b),( * , * ),(r, * ),(b, * )}). We extend the color covering relation to multisets and markings as follows:

• let m, m ′ ∈ M + (Σ), we have m m ′ iff c∈Σ m(c)= c∈Σ m ′ (c) ∧ ∀c = * , m ′ (c) > 0 ⇒ m(c) ≥ m ′ (c) • let M, M ′ be two markings, we have M M ′ iff ∀p ∈ P , M (p) M ′ (p)
This means if two multisets have the covering relation, each of their elements must have the same token numbers. And explicitly, as * covers both r and b, but r and b do not cover each other, so 3 × r does not cover 2 × r + 1 × b.

We give now a definition of a diagnosis:

Definition 12. Let D= N ,δ o , M be a diagnosis problem, a diagnosis Sol⊆T F and Sol =∅ such that: M 0 +C× -⇀ δ M
with -⇀ δ is a characteristic vector defined as follows:

• ∀t ∈ T obs , -⇀ δ (t)= -⇀ δo(t), where -⇀ δo(t) is the occurrence number of t in δo; • ∀t f ∈ Sol, -⇀ δ (t f )=1; • ∀t f ∈ (T F \ Sol), -⇀ δ (t f )=0.
Note that we restrict the value of a fault transition to 1. This is due to the fact that a fault transition only changes the color of token to red and has no effect on the activation places marking. Even if a fault happens more than once we consider only the occurrence of the fault transition that can explain the symptom (the red token). Thus we restrict the value of the characteristic vector of a fault transition to one or zero (happened and explains the symptom or did not happen). 

Diagnosis of CPN by inequations system solving

Let D= N ,δ o , M be a diagnosis problem and let n i be variables ranging over {0, 1}, we construct the characteristic vector δ as follows:

• ∀t ∈ T obs , -⇀ δ (t)= -⇀ δo(t); • ∀t f i ∈ T F ∧ -⇀ δo(T ype(t f i )) = 0, -⇀ δ (t f i )=n i ; • ∀t f ∈ T F ∧ -⇀ δo(T ype(t f ))=0, -⇀ δ (t f )=0;
We can then construct an inequations system (one inequation for each place) for the diagnosis problem as follows:

Q M =      Eqp 1 : M (p 1 ) M 0 (p 1 ) + C(p 1 , .) -⇀ δ • • • Eqp i : M (p i ) M 0 (p i ) + C(p i , .) -⇀ δ • • •
To each place p, we associate an inequation Eq p where the left part is l(Eq p )= M (p) and the right part is r(Eq p )=M 0 (p)+C(p, .) -⇀ δ . We divide the set of inequations Q M into three subsets:

• Q r M ={Eqp|l(Eqp)=r} • Q b M ={Eqp|l(Eqp)=b} • Q * M ={Eqp|l(Eqp)= * ∨ l(Eqp)=0}
The diagnosis algorithm executes backward reasoning recursively (algorithm 2) for each inequation Eq p ∈ Q r M within Q M and then combines all the diagnosis results (algorithm 3). In the following, we give first the solution of one inequation and then that of an inequations system.

One inequation Q r M solving The part on the right side of an inequation is a multi set composed by color functions, constants, and the corresponding place variables which may have positive or negative coefficients. Solving the inequation consists in canceling the negative terms in the right part, keeping the positive color functions, and evaluating the positive coefficient n i red tokens to 1 (algorithm 1). Algorithm 1 looks for the possible minimal diagnosis N r p corresponding to one symptom place p in a symptom marking. And at the same time, it looks for the candidate inequations C r p which can explain the symptom place but should be solved further. So to completely solve an inequation, we need to recursively solve C r p until getting a final diagnosis solution for one symptom place. The idea is to recursively solve each inequation in Q r M by getting the diagnosis solution Sol p for one symptom place (algorithm 2).

An inequations system Q M solving By solving each inequation in Q r M , we get the diagnosis for a inequations system Q M (algorithm 3). The union set of all the Sol p is the diagnosis solution for Q M which can contain multiple symptoms (faults).

Example (cont'): incidence matrix of flight agent

In the example of CPN of flight agent, we can see that flight agent CPN contains 12 places and 11 transitions (5 of them are unobservable, and 6 are observable). Table 1 is the incidence matrix of flight agent got by C=C + -C -.

∪

× is an operator that applies the union operator on couples resulting from the Cartesian product.

Algorithm 1 Algorithm partially solving a Q r M inequation: solvAnEqu(Eqp) Input: Eqp: a Q r M inequation concerns a place p; Output: < C r p , N r p > {C r p :a set of color functions which generate red tokens; N r p : a set of faulty transitions;} 1: C r p =∅; N r p =∅; 2:

ForEach n i × c i ∈ r(Eqp) + = i∈I n i × c i do 3:
if n i is not a constant and c i = r then 4:

N r p =N r p ∪ {t f i }; {records the faulty transition t f i in N r p } 5:

else if c i is a color function concerning place p ′ then 6:

C r p =C r p ∪ {c p ′ };{records the place c p ′ if its color c i is unknown for further solving} 7:

else if c i is a color propagation function d c i then 8:

C r p ={C r p } ∪ {cp i ∈ V ar(c i )};{records all the input places of c i for further solving} 9:

end if 10: end for 11: return < C r p , N r p >;

Algorithm 2 Diagnosis solution algorithm for completely solving

a Q r M inequation: CSD(Q M , Eqp) Input: Q M =Q r M ∪ Q b M ∪ Q * M : the inequations system ; Eqp ∈ Q r
M : an inequation to solve; Output: Solp: a diagnosis solution concerning a symptom place p; 1: Solp=∅; 2: C r p ,N r p =solvAnEqu(Eqp);{get the first back reasoning result, C r p need to be resolve further} 3:

Solp=Solp ∪ N r p ;{record the current diagnosis} 4: if C r p = ∅ then 5: ForEach c p ′ ∈ C r p do 6: if ∃Eq p ′ ∈ Q * M then 7:
if l(Eq p ′ )= * then 8:

Solp = Solp ∪ CSD(Q r M ∪ {r r(Eq p ′ )} ∪ (Q b M ∪ Q * M )
\ {Eqp, Eq p ′ }, r r(Eq p ′ )); {evaluates the l(Eq p ′ ) as r, reconstructs the inequations system and recursively back reasoning until solved all the related places} 9:

else if l(Eq p ′ )=0 then 10:

Solp=Solp ∪ CSD(Q r M ∪ {r r(Eq p ′ ) + c p ′ } ∪ (Q b M ∪ Q * M )
\ {Eqp, Eq p ′ }, r r(Eq p ′ ) + c p ′ );{evaluates the l(Eq p ′ ) as r and add a red token on the right side of the inequation to balance Eq p ′ , reconstructs the inequations system, and recursively back reasoning until solved all the related places} 11:

end if 12:

end if 13:

end for 14: end if 15: return Solp; 

Algorithm 3 Diagnosis solution algorithm for Q M Input: Q M =Q r M ∪ Q b M ∪ Q * M :
1. C = C + -C -: incidence matrix of flight agent C + -C - t fa t f 0 t f 1 t C t W t W t S t f 3 t O t f 2 t P a in r -a in a in -a in a in -a in -a in a 2 F W c (a in ) -a 2 -a 2 F W c (a 4 ) a 3 EL c (a 2 , d 2 ) -a 3 a 3 -a 3 a 4 F W c (a 3 ) a 4 -a 4 -a 4 a 5 EL c (a 2 , d 2 ) -a 5 a out F W c (a 5 ) d 0 r -d 0 d 0 -d 0 d 1 r -d 1 d 1 -d 1 d 2 F W c (d 0 )-d 2 d 2 -d 2 d 2 -d 2 d 2 -d 2 r -d 2 d 3 F W c (d 1 )-d 3 EL c (d 4 )-d 3 -d 3 d 4 EL c (d 2 )-d 4 r-d 4 d 4 -d 4 d 5 EL c (d 3 )-d 5
As to space limitation, in the incidence matrices, we use the name of places to represent the colors of the Then we construct a characteristic vector -⇀ δ T : (t fa t f0 t f1 t C t W t W t S t f3 t O t f2 t P )=(n 0 n 1 n 2 1 2 1 2 n 4 2 n 3 1). Given an initial marking M 0 =(a in a 2 a 3 a 4 a 5 a out Note that for final marking M n2 , we can construct a similar inequations system except Eq a out is different (r F W c (C a5 ) + 0) from the one in equation system (1). By applying the diagnosis algorithms, the diagnosis that concerns the symptom marking M n1 is illustrated in figure 4 while the diagnosis that concerns M n2 is the ∪ × product of the diagnosis illustrated in figures 4 as the inequations system for symptom marking M n2 contains one more red token in the activation output place a out . In figure 4, we illustrate the diagnosis solving process in structured trees. The nodes represent the inequations needed to be solved and each leaf represents a diagnosis and the union of all leaves is a diagnosis solution.

As a result, for symptom marking M n1 , we have the diagnosis: D 1 ={{t f0 }, {t f1 }, {t f2 }, {t f3 }} represents 4 single faults. Either the input data fault d 0 , or the input data fault d 1 , or the transition fault on invoke activity S, or the transition fault on invoke activity O. Concerning the symptom marking M n2 , the diagnosis is extended as: D=D 1 ∪ × D 2 , where D 2 concerns the red token in activation place a out . As illustrated in figure 4 (right), D 2 ={{t fa }, {t f0 }, {t f2 }}. So, we get diagnosis D={{t f0 }, {t f2 }, {t fa , t f1 }, {t fa , t f3 }}, i.e., the fault is on input data place d 0 , or on transition O, or on input activation place f a and invoke activity C, or on input activation place f a and invoke activity S. And these results can be used further for the study of diagnosability. 

                               Eq a in : 0 (r -C a in ) × n 0 -C a in + b Eqa 2 : 0 F W c (C a in ) -Ca 2 × 2 -Ca 2 + F W c (Ca 4 ) × 2 + 0 Eqa 3 : 0 EL c (Ca 2 , C d 2 ) × 2 -Ca 3 × 2 + 0 Eqa 4 : 0 F W c (Ca 3 ) × 2 -Ca 4 × 2 + 0 Eqa 5 : 0 EL c (Ca 2 , C d 2 ) -Ca 5 + 0 Eq a out : * F W c (Ca 5 ) + 0 Eq d 0 : * (r -C d 0 ) × n 1 + b Eq d 1 : * (r -C d 1 ) × n 2 + b Eq d 2 : * F W c (C d 0 ) -C d 2 + (r -C d 2 ) × n 3 + b Eq d 3 : * F W c (C d 1 ) + (EL c (C d 4 ) -C d 3 ) × 2 -C d 3 + b Eq d 4 : * (EL c (C d 2 ) -C d 4 ) × 2 + (r -C d 3 ) × n 4 + b Eq d 5 : r EL c (C d 3 ) -C d 5 + b (1)

Eq

a out Eq a 5

Eq a 2 Eq d 2 Eq d 0 Eq a in Eq a 4

Eq a 3 

t f 3 t f 1 t f 2 t f 0 t f 2 t f 0 t f a

RELATED WORK

The major method for diagnosing a DES is trajectory unfolding. Unfolding method is used on the observable trajectory of system evolution to find the faulty states as the diagnosis. For example, [START_REF] Ye | Decentralized diagnosis for bpel web services (poster)[END_REF] proposes a decentralized model-based diagnosis algorithm based on the PNs model (Li et al. [2007]) by inversely unfolding the trajectory. But in [START_REF] Ye | Decentralized diagnosis for bpel web services (poster)[END_REF], local diagnoser does not support iteration in BPEL processes.

We can adapt the f lightagent example according to the modeling methods of [START_REF] Benveniste | Diagnosis of asynchronous discrete event systems, a net unfolding approach[END_REF] by representing the states of the BPEL service as places and activities as transitions for applying the unfolding approach for diagnosis. As this modeling approach does not consider the data dependency so it cannot ensure the diagnosis is as minimal as ours. S. Genc and S.Lafortune [2005] models a modular interacting system as a set of place-bordered Petri nets and proposes a distributed online diagnosis which applies algebra calculations from the local models and the communicating messages between them. But the fact that S. Genc and S.Lafortune [2005] models the state of a model as a transition which causes the combinatorial explosion of the state space, and its simple Petri nets definition are too limited to deal with the data aspects.

There are some works that model the WS system with other types of models. In [START_REF] Console | Process algebras for systems diagnosis[END_REF], a system is modeled with process algebra containing faulty behavior models. The diagnosis is done by comparing all possible action traces with the observations. All the faulty actions of the matched traces are the diagnosed faults. But [START_REF] Console | Process algebras for systems diagnosis[END_REF] models and diagnosis the general WS applications but not a concrete WS specification language. Yan and Dague [2007] models BPEL services as enriched synchronized automata pieces and diagnose by trajectory reconstruction from observation while the algorithm is incapable for diagnosing the control fault in the process.

A similar diagnosis approach has been proposed in [START_REF] Ardissono | Enhancing web services with diagnostic capabilities[END_REF], of which we use the same data dependency relation. But [START_REF] Ardissono | Enhancing web services with diagnostic capabilities[END_REF] does not support loops in WS process while we represent loops as the occurrence in a characteristic vector. In such way, we solve the loops without extra cost. The consistency-base diagnosis approach proposed in [START_REF] Ardissono | Enhancing web services with diagnostic capabilities[END_REF] is more abstract but loses the precision on the modeling level.

Although our approach contains recursive loop, all the recursive stops once each inequation is checked. So in worst case, each inequation in the inequations system is checked at most once. For each inequation concerning place p, the time of calculating depends on the color (propagation) functions defined in scope of 

CONCLUSION

This CPN modeling approach addresses diagnosis of data fault(s) of orchestrated Web services. The paper constructs a model for the faulty data and faulty activities in a BPEL process. We construct an inequations system for the diagnosis of a BPEL service. And a concrete inequations solving algorithm is proposed. The diagnosis takes advantage of the matrix calculation, which helps to improve the effectiveness of the diagnosis. The interpretation of happened (1) or not happened (0) status of the fault transitions avoids the unfolding of Petri nets. So the iterative structure in BPEL services does not increase the complexity of the diagnosis.

Our diagnosis approach can be easily extended into the distributed environments according to the approach proposed in S. Genc and S.Lafortune [2005] by defining a proper composition protocol of the CPNs.

Fig. 2 .

 2 Fig. 2. CPN models of the structural operators

4. 4

 4 Example (cont'): diagnosis solution of flight agentIn our diagnosis scenario, each BPEL process is associated with a monitoring platform, which dedicates to record the status of the activities and variables of each execution instance, and a diagnosis WS, which contains the initialed (all DP are marked as black and AP are marked as 0 excepts the first input activation) CPN model of the BPEL and acknowledge the diagnosis WS. The diagnosis WS can be triggered by the BPEL executer (BPEL execution engine) or invoker(WS, application, etc). Once a symptom is thrown by the executer or invoker, the (activation or data) places which correspond to the symptom is marked as r while the other data places are marked as * , and activation places are marked as 0. Now suppose we get a series of observed activities σ 0 : C, W , S, O, W , S, O, W , and P , which means the while iteration is processed twice.

  d 0 d 1 d 2 d 3 d 4 d 5 )=(b 0 0 0 0 0 b b b b b b), we suppose that, in two diagnosis scenarios, we got two symptom markings M n1 = (a in a 2 a 3 a 4 a 5 a out d 0 d 1 d 2 d 3 d 4 d 5 )=(0 0 0 0 0 * * * * * * r), and M n2 = (a in a 2 a 3 a 4 a 5 a out d 0 d 1 d 2 d 3 d 4 d 5 )=(0 0 0 0 0 r * * * * * r ). For symptom marking M n1 , we can construct an inequations system as in (1).

Fig. 4 .

 4 Fig. 4. Diag: Mn 1 and Diag: Eq a out in Mn 2

  . Note that place d 0 represents the request string, d 1 is a null flight schedule variable, and invoke activity t o will fill it with data during the execution of process f lightAgent. Place d 5 is the output flight schedule list variable. To keep the visibility of the graph, the color functions which do not concern the data dependency are omitted, for example, color function C a in on the arc (a in , t c ) is omitted. are marked as a red token and the others can be marked either as black or unknown. Definition 9. Let M be a marking, M is a symptom (exception) marking iff ∃p, M (p)(r) =0. We denote the symptom markings by M . • δo is an observable trace δo ∈ (T obs ) * ;• M is a symptom marking.

	FlightAgent (a) :Receive :Invoke :Invoke o t :Reply p t Type( ) = t f3 t s Type( ) = t f2 t o Type( ) = Type( t fa = Type( ) = t f1 t c :While c t w t s t Fig. 3. BPEL (a) and CPN model of f lightAgent r r a in t f0 f1 t t c FW C ( ) a in C FW FW C ( C r C C d ( 1 ) a 4 r t p t o t s d 0 t f a a out d 5 EL C ( ) C d 3 EL C ( ) d C 4 ( ) FW C C d 0 d 3 FW C (a ) 5 a 5 W t d 2 a 2 W t f 2 t FW C ( ) a C 3 a 3 a 4 EL C ( , ) C d 2 C a 2 EL C ( , ) C d 2 C a 2 ) t f0 4. DIAGNOSIS OF BPEL SERVICE USING CPN r ) EL C ( C d 2 f 3 t d 1 4.1 Diagnosis problem During the runtime of a BPEL service instance, we can ) d 4 record the sequence of activities executed within this instance, that we call the trace. This trace belongs to (T obs ) We can now give the definition of a diagnosis problem as follows: Definition 10. A diagnosis problem is a tuple D=< N, δ o , M >: • N is a CPN system that represents the model of a BPEL service;

* . When a fault occurs, an exception is thrown by an execution engine or a WS client, what we call in diagnosis literature, a symptom occurs. Exceptions are thrown due to some inconsistency of a part of the services state. The inconsistency concerns either data variables values or activation data (e.g receiving a null, corrupt, or unexpected message). In either case, a symptom can be represented as a marking where the faulty data (or activation) places

  Definition 13. Let D= N ,δ o , M be a diagnosis problem and Sol be a diagnosis, Sol is minimal iff ∀Sol ′ ⊂ Sol, Sol ′ is not a diagnosis.

	Definition 14. Let D= N ,δ o , M be a diagnosis problem, the diagnosis solution DS ⊆ 2 F is the set of all possible
	minimal diagnoses.

Table

  

  places, for example, a in represents C a in . Transitions t fa , t f0 , t f1 , t f2 , and t f3 are unobservable activities (in gray columns). Especially t fa , t f0 , and t f1 generate the input fault data of flight agent, t f3 represents the external fault in the WS which is invoked by t S , and t f2 represents the external fault in the WS which is invoked by t O .

  • p, |t| in worst case where t is the number of transitions. So the worst complexity is O(|p| • |t|). But in practical, related color (propagation) functions are much less than |t|. So the complexity of our algorithm is much less than those of Yan and Dague [2007], Ardissono et al. [2005], Ye and Dague [2008] (O(|p| • |t| 2 )).

In this definition, a transition has no color domain. This restriction will be explained in section 3.2.

u must respect the color domain of the places, i.e., ∀p ∈ • t, x ∈ var(P re(p, t)), we have u(x) ∈ cd(p).