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Optimal control and applications to aerospace: some results and

challenges

E. Trélat ∗†

Abstract

This article surveys the classical techniques of nonlinear optimal control such as the
Pontryagin Maximum Principle and the conjugate point theory, and how they can be imple-
mented numerically, with a special focus on applications to aerospace problems. In practice
the knowledge resulting from the maximum principle is often insufficient for solving the prob-
lem in particular because of the well-known problem of initializing adequately the shooting
method. In this survey article it is explained how the classical tools of optimal control can
be combined with other mathematical techniques to improve significantly their performances
and widen their domain of application. The focus is put onto three important issues. The first
is geometric optimal control, which is a theory that has emerged in the 80’s and is combining
optimal control with various concepts of differential geometry, the ultimate objective being
to derive optimal synthesis results for general classes of control systems. Its applicability and
relevance is demonstrated on the problem of atmospheric re-entry of a space shuttle. The
second is the powerful continuation or homotopy method, consisting of deforming continu-
ously a problem towards a simpler one, and then of solving a series of parametrized problems
to end up with the solution of the initial problem. After having recalled its mathematical
foundations, it is shown how to combine successfully this method with the shooting method
on several aerospace problems such as the orbit transfer problem. The third one consists of
concepts of dynamical system theory, providing evidence of nice properties of the celestial
dynamics that are of great interest for future mission design such as low cost interplanetary
space missions. The article ends with open problems and perspectives.

Keywords: optimal control, Pontryagin Maximum Principle, second-order conditions, conju-
gate point, numerical methods, shooting method, orbit transfer, atmospheric re-entry, geometric
optimal control, optimal synthesis, continuation / homotopy method, dynamical systems, mis-
sion design.

AMS: 49J15, 93B40, 93B27, 93B50, 65H20, 90C31, 37N05, 37N35.

1 Introduction: optimal control problems in aerospace

The purpose of this article is to provide a survey of the main issues of optimal control theory and
of some geometric results of modern geometric nonlinear optimal control, with a specific focus
on applications to aerospace problems. The goal is here not only to report on some classical
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techniques of optimal control theory (in particular, Pontryagin Maximum Principle, conjugate
point theory, associated numerical methods) but also to show how this theory and these methods
can be significantly improved by combining them with powerful modern techniques of geomet-
ric optimal control, of the theory of numerical continuation, or of dynamical system theory.
I will illustrate the different approaches under consideration with different classical but non-
trivial aerospace problems: the minimal time or minimal consumption orbit transfer problem
with strong or low thrust, the minimal total thermal flux atmospheric re-entry problem of a
space shuttle, and space mission design using the dynamics around Lagrange points. On these
examples, I will attempt to put in evidence the limits of the classical techniques of optimal
control, which are in general not sufficient to provide an adequate solution to the problem, and
I will show how these techniques can be considerably enhanced by combining them with some
mathematical considerations that are sometimes quite deep but are an efficient (and most of the
times, superior) alternative to numerical refinement procedures or other computational efforts.
In particular, I will focus on three approaches that have been successfully combined with classi-
cal optimal control and that are in my opinion of primary importance in aerospace applications.
The first one is geometric optimal control, which started to be developed in the early 80’s and
has widely proved its superiority over the classical theory of the 60’s. The main objective of ge-
ometric optimal control is to develop general techniques for general classes of nonlinear optimal
control problems, using in particular the concept of Lie bracket to analyze the controllability
properties of nonlinear control systems and the regularity properties of optimal trajectories,
and to provide optimal synthesis results. I will show how recent results of geometric optimal
control can be used to provide a deep geometric insight into the atmospheric re-entry problem
and lead to an efficient solution. The second technique focused on is the numerical continuation
procedure, which is far from new but has been quite neglected until recently in optimal control
probably because of its difficulty to be implemented efficiently and quite systematically. In the
last ten years however much progress has been done that permits to understand better how this
powerful procedure can be successfully applied and I will show its particular relevance on the
orbit transfer problem. The third technique mentioned, that I believe to be of particular inter-
est for future aerospace applications, is the combination with dynamical system theory. Deep
mathematical results from this theory permit to put in evidence nice properties of the celestial
dynamics due to Lagrange points and gravitational effects, which are particularly interesting in
view of designing low cost space missions for future interplanetary exploration.

This article is addressed not only to mathematicians wanting to know more about these
geometric or mathematical issues associated with concrete applications, but also to engineers
already acquainted with classical techniques of optimal control, wishing to get more familiar
with the more modern approaches of geometric control and other mathematical notions that
have demonstrated significant enhancements in classical aerospace problems, or to experts of
nonlinear control wishing to learn about applications of this discipline to nontrivial examples in
aerospace.

The mathematical notions whose combination to optimal control has proved its relevance
are mainly from (elementary) differential geometry; they are introduced and explained step by
step, although they are mostly known by many readers, and can be skipped at the first reading.

The article is structured as follows. Section 2 surveys the most well-known theoretical and
numerical aspects of optimal control. It is recalled how first-order necessary conditions lead to
the famous Pontryagin Maximum Principle and how it can be used in practice. Second-order
optimality conditions, leading to the conjugate point theory, are then briefly surveyed. The
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possible numerical approaches are then described and discussed, and their limits are underlined.
Section 3 is devoted to show how techniques of geometric optimal control can be used in order
to provide an efficient solution to the atmospheric re-entry problem. In Section 4, the continu-
ation method is first described, and a theoretical foundation is provided in terms of sensitivity
analysis. It is then shown how it can be combined with a shooting method in order to solve
different problems, such as the orbit transfer problem. Finally, in Section 5 the focus is made
on the properties of the dynamics around Lagrange points and on potential applications to mis-
sion design. Throughout the article, and in the conclusion, open problems and challenges are
described.

Before going further, let us start with the motivating example of the orbit transfer problem
with low thrust, where the system under consideration consists of the controlled Kepler equations

q̈(t) = −q(t) µ

r(t)3
+
T (t)
m(t)

, ṁ(t) = −β‖T (t)‖, (1)

where q(t) ∈ IR3 is the position of the engine at time t, r(t) = ‖q(t)‖, T (t) is the thrust at time
t, and m(t) is the mass, with β = 1/Ispg0. Here g0 is the usual gravitational constant and Isp is
the specific impulsion of the engine. The thrust is submitted to the constraint

‖T (t)‖ 6 Tmax, (2)

where the typical value of the maximal thrust Tmax is around 0.1 Newton, for low-thrust engines.
The well-known orbit transfer problem consists of steering the engine from a given initial

orbit (e.g. an initial excentric inclinated orbit) to a final one (e.g., the geostationary orbit).
Controllability properties, ensuring the feasibility of the problem, have been studied in [1, 2],
based on a careful analysis of the Lie algebra generated by the vector fields of the system (1).

For this control problem, one is moreover interested in realizing this transfer for instance in
minimal time, or minimizing the fuel consumption. Then the problem turns into an optimal
control problem, of the form settled hereafter.

2 A short survey on optimal control: theory and numerics

Let n and m be nonzero integers. Consider on IRn the control system

ẋ(t) = f(t, x(t), u(t)), (3)

where f : IRn×IRm −→ IRn is C1, and where the controls are bounded and measurable functions,
defined on intervals [0, T (u)] of IR+, and taking their values in a subset U of IRm. Let M0 and
M1 be two subsets of IRn. Denote by U the set of admissible controls, so that the corresponding
trajectories steer the system from an initial point of M0 to a final point in M1. For such a
control u, the cost of the corresponding trajectory xu(·) is defined by

C(tf , u) =
∫ tf

0
f0(t, xu(t), u(t))dt+ g(tf , xu(tf )), (4)

where f0 : IR× IRn× IRm −→ IR and g : IR× IRn → IR are C1. We investigate the optimal control
problem of determining a trajectory xu(·) solution of (3), associated with a control u on [0, tf ],
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such that xu(0) ∈ M0, xu(tf ) ∈ M1, and minimizing the cost C. The final time tf can be fixed
or not.

When the optimal control problem has a solution, we say that the corresponding control (or
the corresponding trajectory) is minimizing or optimal.

The orbit transfer problem mentioned previously enters into this category of problems. The
state is then x = (q, q̇,m) ∈ IR7, the control is the thrust, the set U of constraints on the control
is the closed ball of IR3, centered at the origin, with radius Tmax. If one considers the minimal
time problem, then one can choose f0 = 1 and g = 0, and if one considers the minimal fuel
consumption problem, then one can choose f0(t, x, u) = β‖u‖ and g = 0.

2.1 Existence results

This is not our aim to provide elaborate existence results for optimal controls. It should just
be noted that usual existence results require some convexity on the dynamics since their proof
usually relies on weak compactness properties. We refer to [3] for a survey of existence results
in optimal control. The result given below, whose early version was obtained by Filippov in [4],
is standard.

Theorem 1. Assume that U is compact, that there may be state constraint c1(x) 6 0, . . . , cr(x) 6
0, where c1, . . . cr are continuous functions on M , and that M0 and M1 are compact subsets of
M such that M1 is accessible from M0. Assume that there exists b > 0 such that every trajectory
steering the system from M0 to M1 is bounded by b on [0, t(u)] in C0 norm, and that the set

Ṽ (t, x) = {(f0(t, x, u) + γ, f(t, x, u)) | u ∈ U, γ > 0}

is convex, for every t ∈ IR and every x ∈ IRn. Then there exists an optimal control u defined
on [0, t(u)] such that the corresponding trajectory steers the system from M0 to M1 in time t(u)
and minimizing the cost.

Even though existence results would certainly deserve many further interesting discussions,
this is not the objective of this paper to report on that subject. It can however be noticed
that, if the set U is unbounded then in general existence results lead to optimal controls that
are not necessarily in L∞([0, t(u)], U), leading then to a potential gap with the usual necessary
conditions reported hereafter, which assume that the optimal control is essentially bounded.
This gap may cause the so-called Lavrentiev phenomenon and raises the question of studying
the regularity of the optimal control (see [5, 6, 7, 8] where such issues are investigated).

2.2 First-order optimality conditions

The set of admissible controls on [0, tf ] is denoted Utf ,IRm , and the set of admissible controls on
[0, tf ] taking their values in U is denoted Utf ,U .

Definition 1. The end-point mapping E : IRn × IR+ × U → IRn of the system is defined by
E(x0, T, u) = x(x0, T, u), where t 7→ x(x0, t, u) is the trajectory solution of (3), corresponding to
the control u, such that x(x0, 0, u) = x0.

The set Utf ,IRm , endowed with the standard topology of L∞([0, tf ], IRm), is open, and the
end-point mapping is C1 on Utf ,IRm (and Ck whenever the dynamics are Ck).
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Note that, in terms of the end-point mapping, the optimal control problem under consider-
ation can be written as the infinite dimensional minimization problem

min{C(tf , u) | x0 ∈M0, E(x0, tf , u) ∈M1, u ∈ L∞(0, tf ;U)}. (5)

Definition 2. Assume that M0 = {x0}. A control u defined on [0, tf ] is said singular if and
only if the differential ∂E

∂u (x0, tf , u) is not of full rank.

Singular controls are of high importance in optimal control theory. At this step their potential
influence can be stressed by noting that, in the above constrained minimization problem, the set
of constraints is a local manifold around a given control u provided u is nonsingular. It is well-
known in constrained optimization theory that, in order to derive the usual necessary conditions
exposed hereafter, it is in general needed that the set of constraints be (at least locally) a
manifold. Hence at this step it can be easily understood that the existence of minimizing
singular controls is a potential source of problems.

2.2.1 Lagrange multipliers

Assume for one moment that we are in the simplified situation where M0 = {x0}, M1 = {x1}, T
is fixed, and U = IRm. That is, we consider the optimal control problem of steering the system
(3) from the initial point x0 to the final point x1 in time T and minimizing the cost (4) among
controls u ∈ L∞([0, T ], IRm). In that case, the optimization problem (5) reduces to

min
E(x0,T,u)=x1

C(T, u). (6)

According to the well-known Lagrange multipliers rule (and using the C1 regularity of our data),
if u is optimal then there exists (ψ,ψ0) ∈ IRn × IR \ {0} such that

ψ.dEx0,T (u) = −ψ0dCT (u). (7)

Note that, if one defines the Lagrangian LT (u, ψ, ψ0) = ψEx0,T (u) + ψ0CT (u), then this first-
order necessary condition for optimality is written in the usual form as

∂LT
∂u

(u, ψ, ψ0) = 0. (8)

Here the main simplification was U = IRm, that is, we considered the case without control
constraints. In the general case the situation is more intricate to deal with control constraints
and even more when there are state constraints. When there are some control constraints,
one possibility could be to take these constraints into account directly in the Lagrangian, with
some additional Lagrange multiplier, as it is done e.g. in [9]. This method leads however to
weaker results than the Pontryagin Maximum Principle stated hereafter. Actually the method
used by Pontryagin in order to take into account control constraints is stronger and consists of
considering needle-like variations (see also Remark 2 further).

When there are some state constraints, it is also still possible to express a first-order necessary
condition in terms of Lagrange multipliers as above but this has to be done in distributions spaces
and the Lagrange multipliers must be expressed as Radon measures (see e.g. [10, 11, 12, 13, 14]).

Whatever simplified or general case we may consider, the first-order condition (8) is in this
form not much tractable for practical purposes. This first-order condition can be in some sense
parametrized along the trajectory, and this leads to the famous Pontryagin Maximum Principle.
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2.2.2 Pontryagin Maximum Principle

The following statement is the most usual Pontryagin Maximum Principle, valuable for general
nonlinear optimal control problems (3)-(4), with control constraints but without state constraint.
Usual proofs rely on a fixed point argument and on the use of Pontryagin cones (see e.g. [14,
15, 16, 17]).

Theorem 2. If the trajectory x(·), associated to the optimal control u on [0, tf ], is optimal, then
it is the projection of an extremal (x(·), p(·), p0, u(·)) (called extremal lift), where p0 6 0 and p(·) :
[0, tf ] → IRn is an absolutely continuous mapping called adjoint vector, with (p(·), p0) 6= (0, 0),
such that

ẋ(t) =
∂H

∂p
(t, x(t), p(t), p0, u(t)), ṗ(t) = −∂H

∂x
(t, x(t), p(t), p0, u(t)),

almost everywhere on [0, tf ], where H(t, x, p, p0, u) = 〈p, f(t, x, u)〉 + p0f0(t, x, u) is the Hamil-
tonian, and there holds

H(t, x(t), p(t), p0, u(t)) = max
v∈U

H(t, x(t), p(t), p0, v) (9)

almost everywhere on [0, tf ]. If moreover the final time tf to reach the target M1 is not fixed,
then one has the condition at the final time tf

max
v∈U

H(tf , x(tf ), p(tf ), p0, v) = −p0∂g

∂t
(tf , x(tf )). (10)

Additionally, if M0 and M1 (or just one of them) are submanifolds of IRn locally around
x(0) ∈M0 and x(tf ) ∈M1, then the adjoint vector can be built in order to satisfy the transver-
sality conditions at both extremities (or just one of them)

p(0) ⊥ Tx(0)M0, p(tf )− p0 ∂g

∂x
(tf , x(tf )) ⊥ Tx(tf )M1, (11)

where TxMi denotes the tangent space to Mi at the point x.

The relation between the Lagrange multipliers of the previous section and (p(·), p0) is that
the adjoint vector can be constructed so that (ψ,ψ0) = (p(tf ), p0) up to some multiplicative
scalar. In particular, the Lagrange multiplier ψ is unique (up to a multiplicative scalar) if and
only if the trajectory x(·) admits a unique extremal lift (up to a multiplicative scalar).

If p0 < 0 then the extremal is said normal, and in this case, since the Lagrange multiplier is
defined up to a multiplicative scalar, it is usual to normalize it so that p0 = −1. If p0 = 0 then
the extremal is said abnormal.

It can be also noted that, in the absence of control constraints, abnormal extremals project
exactly onto singular trajectories (it is evident using (8)).

Remark 1. With respect to this relation, it can be noted that in the normal case the Lagrange
multiplier ψ (or the adjoint vector p(tf ) at the final time) coincides up to some multiplicative
scalar with the gradient of the value function (solution of the Hamilton-Jacobi equation); see
e.g. [18] for precise results.
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Remark 2. In the case U = IRm (no control constraints), the maximization condition (9)
implies in particular ∂H

∂u (t, x(t), p(t), p0, u(t)) = 0 almost everywhere on [0, tf ]. In this form, the
Pontryagin Maximum Principle is exactly the parametrized version of the first-order necessary
condition (8) of the simplified case. Note that, in the absence of control constraints, the proof
is quite obvious and can be found e.g. in [19, 20]. Note also that the maximimization condition
implies as well that the quadratic form ∂2H

∂u2 (t, x(t), p(t), p0, u(t)) is nonpositive almost everywhere
on [0, tf ]. These two conditions remain however weaker than the maximization condition (9).
Indeed, those two conditions are local, whereas the maximization condition (9) is global. In the
proof of the general version of the Pontryagin Maximum Principle, needle-like variations of the
control are the main tool in order to derive the strong condition (9) (note that that a short proof
of the Pontryagin Maximum Principle is provided in the general case, with needle-like variations
and with a conic implicit function theorem, in [21]).

Remark 3. The scalar p0 is a Lagrange multiplier associated with the instantaneous cost. It
may happen that it is equal to 0 and these cases are called abnormal. Abnormal extremals are
not detected with the usual Calculus of Variations approach, because this approach postulates
at the very beginning that, in a neighborhood of some given reference trajectory, there are other
trajectories having the same terminal points, whose respective costs can be compared (and this
leads to Euler-Lagrange equations). But this postulate fails whenever the reference trajectory
is isolated: it may indeed happen that there is only one trajectory joining the terminal points
under consideration (see [22]). In this case, in some sense there is no optimization to do any
more. Indeed since the trajectory joining the desired extremities is unique, then obviously it
will be optimal, for every optimization criterion we may consider. These cases may appear to be
quite trivial, but actually in practice this issue is far from being obvious because a priori, given
some extremities, we are not able to say if the resulting problem can be solved with a normal
extremal (that is, with a p0 = −1). It could happen that it is not: this is the case for instance
for certain initial and final conditions in the well-known minimal-time attitude control problem
(see [23], where such abnormals are referred to as exceptional singular trajectories).

Hence, when applying the Pontryagin Maximum Principle, we must distinguish between two
extremal flows: the normal flow, with p0 < 0 (and in general we normalize to p0 = −1), and the
abnormal one, for which p0 = 0.

In many situations, where some qualification conditions hold, abnormal extremals do not
exist in the problem under consideration, but in general it is impossible to say whether, given
some initial and final conditions, these qualification conditions hold or not. Furthermore it can
be noted that, when they exist, extremities of projections of abnormal extremals do not fill much
of the state space (see [24, 25] for precise statements).

Remark 4. An ultimate remark on the multiplier p0 is about its sign. According to the
convention chosen by Pontryagin, we consider p0 6 0. If, instead, we adopt the convention
p0 > 0, then we have to replace the maximization condition (9) with a minimization condition.
This just consists in considering the opposite of the adjoint vector.

If there is no integral term in (4) (that is, f0 = 0), this does not change anything for the
considerations on p0. The p0 still appears in the transversality condition (11). Note that, if
M1 = IRn (no condition on the final point), then this condition leads to p(tf ) = p0 ∂g

∂x(tf , x(tf )),
and then necessarily p0 6= 0 (otherwise the adjoint vector (p(tf ), p0) would be zero and this
would contradict the assertion of the Pontryagin Maximum Principle) and in that case we can
normalize to p0 = −1.
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2.2.3 Generalizations

The Pontryagin Maximum Principle withstands many possible generalizations.
First, it can be expressed for control systems evolving on a manifold, that is, control systems

of the form (3) with a dynamics f : M ×N −→ TM , where M (resp., N) is a smooth manifold
of dimension n (resp., m). This situation can be of interest if for instance the system is evolving
on an energy surface (it is often the case in aerospace) and/or if the controls take their values in
the unit sphere (this situation occurs often in aerospace as well, for instance when the control
models a thrust of constant modulus). We refer the reader e.g. to [17] for such a version on
manifolds.

The Pontryagin Maximum Principle can be generalized to wider classes of functionals and
boundary conditions; for instance, periodic boundary conditions (see [17]), systems involving
some delays (see [14, 26]), intermediate conditions (see [9, 27, 28]), or, more generally, hybrid
systems where the dynamics may change along the trajectory, accordingly to time and/or state
conditions (see [29, 30, 31, 32, 33, 21]). In particular in this last case, when the system crosses
a given boundary then a jump condition must hold on the adjoint vector, which means that the
adjoint vector is no more continuous (but is however piecewise absolutely continuous). It can
be also generalized to nonsmooth systems (see [10]).

Probably the most difficult generalization is when there are some state constraints. In that
case, we impose to the trajectories to lie in a given part of the space. From the mathematical
point of view the situation is more intricate since the adjoint vector becomes a measure, evolving
in some distribution space. What can be probably considered as the most general Maximum
Principle statement has been derived in [10], which can be applied to very general (possibly
nonsmooth) control systems with state/control constraints. Note that a version of that result
for smooth systems (with state and control constraints) has been written in [34]. As explained in
[2], the difficulty in practice is that since the adjoint vector is a vectorial measure it may admit
an accumulation of atoms; in other words the measure does not admit necessarily piecewise a
density, for instance there may occur an accumulation of touching points with the boundary
of the state domain. To overcome this mathematical difficulty the usual argument consists
of assuming that, in practice, such an accumulation does not occur, and the trajectory is a
”regular” succession of free arcs (i.e., arcs inside the authorized state domain) and of boundary
arcs (i.e., arcs that are at the boundary of the authorized state domain), with possibly some
isolated touching points (at which the trajectory touches the boundary). This regular structure
was already assumed by Pontryagin and his co-authors in their seminal book [14], however
in this book they moreover restricted to so-called first-order constraints. In few words, and
roughly speaking, the order of a state constraint is the number of times one must differentiate the
equality constraint along the trajectory with respect to time in order to make appear the control.
The general case has been treated in [35] in the case where the Hessian of the Hamiltonian is
nondegenerate, and in [36] for the case where the controls appear linearly in the system (note
that the jump conditions have been clarified in [37, 38, 39, 40, 41, 42]). Note that a nice survey on
the Pontryagin Maximum Principle for control systems with general state constraints has been
written in [12]. In any case, under this regular structure assumption, as in the hybrid situation
the adjoint vector is absolutely continuous by parts, with jump conditions at the boundary (the
discontinuity of the adjoint vector is along the gradient of the frontier). It can be noted however
that for state constraints of order greater than or equal to three the bad chattering phenomenon
of accumulation of touching points may occur in a typical way (see [43]).
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2.2.4 Practical use of the Pontryagin Maximum Principle

In practice in order to compute optimal trajectories with the Pontryagin Maximum Principle
the first step is to make explicit the maximization condition. An usual assumption to make
this step feasible is to assume the so-called strict Legendre assumption, that is, to assume that
the Hessian ∂2H

∂u2 (t, x, p, p0, u) is negative definite. Under that assumption, a standard implicit
function argument permits to end up, at least locally, with a control u expressed as a function of
x and p. This assumption is for instance obviously satisfied for normal extremals if one considers
control affine systems with a cost that is quadratic in u. Assume for example that we are in the
normal case (p0 = −1). Then, plugging the resulting expression of the control in the Hamiltonian
equations, and defining the reduced (normal) Hamiltonian by Hr(t, x, p) = H(t, x, p,−1, u(x, p)),
it follows that every normal extremal is solution of

ẋ(t) =
∂Hr

∂p
(t, x(t), p(t)), ṗ(t) = −∂Hr

∂x
(t, x(t), p(t)), (12)

and this leads to define the (normal) exponential mapping.

Definition 3. The exponential mapping is defined by expx0
(t, p0) = x(t, x0, p0), where the solu-

tion of (12) starting from (x0, p0) at t = 0 is denoted as (x(t, x0, p0), p(t, x0, p0)).

In other words, the exponential mapping parametrizes the (normal) extremal flow. This map-
ping generalizes the concept of Riemannian ou sub-Riemannian exponential mapping. Indeed in
Riemannian geometry the extremal equations correspond exactly to the cotangent formulation
of the geodesics equations. Note as well that the equations (12) are the cotangent version of the
usual Euler-Lagrange equations of the calculus of variations1.

The abnormal extremal flow can be parametrized as well provided that there holds such a
kind of Legendre assumption in the abnormal case.

At the opposite, when the Hessian of the Hamiltonian considered above is degenerate, the
situation can be far more intricate. A typical example is when one considers the minimal time
problem for single-input control affine systems ẋ(t) = f0(x(t)) + u(t)f1(x(t)) without constraint
on controls. In that case, the maximization condition leads to ∂H

∂u = 0, that is, there must hold
〈p(t), f1(x(t))〉 = 0 along the corresponding extremal. By the way, note that, since the optimal
control takes here its values in the interior of the domain of constraints, it is necessarily singular.
To compute the control, the method consists of differentiating two times this relation with
respect to t, which leads at first to 〈p(t), [f0, f1](x(t))〉 = 0 and then at 〈p(t), [f0, [f0, f1]](x(t))〉+
u(t)〈p(t), [f1, [f0, f1]](x(t))〉 = 0, where [·, ·] denotes the Lie bracket of vector fields. This permits
as well to express the optimal control u(t) as a function of x(t) and p(t), provided that the
quantity 〈p(t), [f1, [f0, f1]](x(t))〉 does not vanish along the extremal. The latter condition is
called strong generalized Legendre-Clebsch condition. We refer the reader to [19] for more
details on this theory. It can also be shown that this kind of computation is valid in a ”generic”
situation (see [44, 45, 46, 47]).

Remark 5. Note the important fact that the normal extremals are distinguished from the
abnormal ones by a binary variable, namely, the variable p0 ∈ {0,−1}. In the case where an

1The usual framework of calculus of variations consists of solving the problem of minimizing the actionR 1

0
L(t, x(t), ẋ(t))dt among all possible curves x(·). With respect to optimal control, this corresponds to the

trivial control system ẋ(t) = u(t), where all moving directions are authorized.
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abnormal flow is well defined, we then have to deal with two extremal flows. Intuitively, however,
is is expected that the abnormal flow fills less space than the normal flow, in the sense that almost
every point of the accessible set should be reached by a normal extremal. This kind of statement
is however difficult to derive. There exist some results for control-affine systems and for control-
affine systems without drift, that assert that the end-points of projections of abnormal extremals
fill only a negligible part of the state space (see [24, 48, 25]). In [24] in particular it is proved
that for control-affine systems without drift, with quadratic cost (framework of sub-Riemannian
geometry), the image normal exponential mapping is everywhere dense in the state space under
usual the usual Chow condition.

Remark 6. Note that the Pontryagin Maximum Principle is nothing else but a far-reaching
version of the Lagrange multipliers necessary condition derived formerly. It is thus only a first-
order necessary condition for optimality, asserting that if a trajectory is optimal then it should
be sought among projections of extremals joining the initial set to the final target. Conversely,
the projection of a given extremal is not necessarily (locally or globally) optimal. This leads us
to next section on second-order optimality conditions.

2.3 Second-order optimality conditions

Throughout this section we assume that we are in the simplified situation where M0 = {x0},
M1 = {x1} and U = IRm. Also, in order to consider second-order derivatives, we assume that
the dynamics are at least C2.

2.3.1 Abstract conditions

In this simplified situation, we have seen that the usual first-order necessary condition for opti-
mality is (8), that is, the vanishing of the differential of the Lagrangian.

In this simplified situation where there is no constraint on the control, conditions of order
two are also standard in terms of the Lagrangian. Defining as usually the intrinsic second order
derivative QT of the Lagrangian by

QT =
∂2LT
∂2u

(u, ψ, ψ0)| ker
∂LT
∂u

,

it is well-known that a second-order necessary condition for optimality is that QT be nonpositive
(recall the agreement ψ0 6 0), and a second-order sufficient condition for local optimality is that
QT be negative definite.

In this form, these conditions are not convenient for practical purposes. Fortunately, in
the same way that Lagrange multipliers conditions can be parametrized into the Pontryagin
Maximum Principle, the above second-order conditions can be parametrized as well along the
extremals and this leads to the theory of conjugate points, briefly sketched in next section.
LiuSussmann

Remark 7. The above quadratic form is the one considered in the simplified situation. Such
abstract conditions have been widely generalized in the literature (see e.g. [49]).
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2.3.2 Conjugate points

Under the strict Legendre assumption mentioned formerly, it happens that the quadratic form
QT is negative definite whenever T > 0 is small enough. This leads naturally to the following
definition.

Definition 4. The first conjugate time tc along x(·) is defined as the infimum of times t > 0
such that Qt has a nontrivial kernel.

Under the strict Legendre assumption, there holds tc > 0, and this first conjugate time
characterizes the (local) optimality status of the trajectory (see [17, 23, 19, 50, 51, 52]).

Theorem 3. The trajectory x(·) is locally optimal (in L∞ topology) on [0, t] if and only if t < tc.

The following result is crucial for practical computations of conjugate times.

Theorem 4. The time tc is a conjugate time along x(·) if and only if the mapping expx0
(tc, ·)

is not an immersion at p0 (that is, its differential is not injective).

Its proof can be found in [17, 23, 2]. Essentially it states that computing a first conjugate
time reduces to compute the vanishing of some determinant along the extremal. Indeed, the fact
that the exponential mapping is not an immersion can be translated in terms of so-called vertical
Jacobi fields. Note however that the domain of definition of the exponential mapping requires
a particular attention in order to define properly these Jacobi fields according to the context:
normal or abnormal extremal, final time fixed or not. A more complete exposition can be found
in the survey article [23], which provides also some algorithms to compute first conjugate times
in various contexts (however, always in the case where the control can be expressed as a smooth
function of x and p) and some practical hints for algorithmic purposes (see also section 2.4.2).

2.3.3 Generalizations, open problems and challenges

A first remark is that the conjugate point theory sketched previously can be generalized in the
case where the initial and final sets M0 and M1 are not necessarily restricted to a single point.
In that case, the notion of conjugate point must be replaced with the notion of focal point. The
theory and the resulting algorithms remain however similar (see [23, 2]).

It should be also stressed that the above conjugate point theory holds only in the ”smooth
case”, that is, whenever the optimal controls under consideration can be expressed as smooth
functions of x and p (thus, essentially, when there is no constraint on the control, although this
assumption involves some possible cases where there are some control constraints), and without
any state constraint. In this theory, the definition and the computation of conjugate points are
based on second-order conditions which do not involve in particular bang-bang situations where
the control is discontinuous and consists of successive arcs saturating the constraints.

In this case where the extremal controls are continuous, the literature on first and/or second
order sufficient conditions is vast (see also [53, 54, 55, 56, 57, 58] and references therein), and
there exist also numerical procedures to test second order sufficient conditions that are based on
the Riccati equation (of course these procedures are equivalent to the one described previously
in terms of the exponential mapping). We refer also the reader to [50, 22, 37, 59] (and references
therein) for extensions of such theories to the abnormal case.

A conjugate time theory has been developed in the bang-bang case. In [60], the definition
of conjugate points for bang-bang situations is based on the theory of envelopes and is used
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for the study of the structure of locally optimal bang-bang trajectories for the minimal time
control problem for single-input control-affine systems in dimension two and three. These results
were generalized in [61]. Second order necessary and/or sufficient conditions of optimal control
problems with nonlinear control systems and discontinuous controls have been developed in
[62, 63, 64, 65, 66, 67] and references therein. A different point of view is provided in [68, 69]
(see also [62, 66]) in terms of extremal fields, and consists of embedding the reference trajectory
into a local field of broken extremals (corresponding to piecewise continuous controls). The
occurrence of a conjugate point is then related with an overlap of the flow near the switching
surface. In [70, 71] optimization methods are given to test second order sufficient optimality
conditions for such bang-bang situations. The idea is to reduce the problem to the finite-
dimensional subproblem consisting of moving the switching times and a second variation is
defined as a certain quadratic form associated to this subproblem. Then, finding a conjugate
time consists in testing the positivity of that quadratic form (and this can only happen at a
switching time). We refer the reader to [72] where a brief survey with a unifying point of view
of all these (apparently different) approaches has been written in the introduction.

This idea of parametrizing the trajectories by their switching times also extends to the
case where there are state constraints, and has been carried out in [58, 73, 74, 75, 76], and in
these references the test of positivity of the resulting quadratic form permits to derive sufficient
conditions for local optimality. The concept of conjugate point is however not so straightforward
to define, since one has to investigate stability properties of the structure. Indeed the loss of
positivity could be due to a change in the global structure of the trajectory. Hence the definition
of a conjugate point is not clear.

The situation is similar for trajectories that involve both bang and singular arcs. At the
moment there is no general conjugate point theory which would involve such cases. Note however
that there are some partial results such as in [77] where the authors study the particular case
of a bang-singular extremal.

This is an open (and important) problem to derive a complete conjugate point theory that
would consist of any possible smooth, bang, singular, or boundary arcs.

From the algorithmic point of view, note that, although the theory of conjugate times in the
bang-bang case has been well developed, the computation of conjugate times in the bang-bang
case is difficult in practice with the algorithms of the previously mentioned references (see in
particular [70, 71] and references therein). Besides, in the smooth case, as explained in the
previous section efficient tools are available (see [23]). In [78, 72] a regularization procedure is
proposed which allows the use of these tools for the computation of the first conjugate time of a
bang-bang situation for a single-input control-affine system, by showing the convergence of the
conjugate time of the regularized system to the conjugate time of the initial bang-bang system.
This result is of interest because it provides an efficient way to compute conjugate points in the
bang-bang case. It is an open problem to extend that kind of result to more general systems
and more general situations.

2.4 Numerical methods in optimal control

It is usual to distinguish between two kinds of numerical approaches in optimal control: direct
and indirect methods. Roughly speaking, direct methods consist in discretizing the state and
the control and thus reduce the problem to a nonlinear optimization problem with constraints.
Indirect methods consist of solving numerically the boundary value problem derived from the
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application of the Pontryagin Maximum Principle, and lead to the shooting methods.

2.4.1 Direct methods

They are the most evident methods when one addresses practically an optimal control problem.
By discretizing both the state and the control, the problem reduces to a nonlinear optimization
problem in finite dimension, or nonlinear programming problem, of the form

min
Z∈C

F (Z), (13)

where Z = (x1, . . . , xN , u1, . . . , un), and

C = {Z | gi(Z) = 0, i ∈ 1, . . . , r, gj(Z) 6 0, j ∈ r + 1, . . . ,m}. (14)

There exist many ways to carry out such discretizations. In any case, one has to choose finite
dimensional representations of the control and of the state, and then express in a discrete way
the differential equation representing the system. Once all static or dynamic constraints have
been transcribed into a problem with a finite number of variables, one is ought to solve the
resulting optimization problem with constraints, using some adapted optimization method.

Let us first explain hereafter one possible very simple way of such a discretization. Consider
a subdivision 0 = t0 < t1 < · · · < tN = tf of the interval [0, tf ]. Controls are discretized in such a
way that they are piecewise constant on this subdivision (with values in U). Moreover, we choose
a discretization process of ordinary differential equations, for instance choose here (to simplify)
the classical explicit Euler method. Setting hi = ti+1 − ti, we obtain xi+1 = xi + hif(ti, xi, ui).
There exist of course an infinite number of possible variants. On one hand, one may discretize
the set of admissible controls by piecewise constant, or piecewise affine controls, or splines, etc.
On the other hand, there exist many methods in order to discretize ODEs, such as Euler methods
(implicit or explicit), middle point, Heun, Runge-Kutta, Adams- Moulton, etc (see for instance
[79]). The choice of the method is guided by the problem under consideration. Here we choose
the Euler method for the simplicity of its writing but in practice it should be avoided because
it is too much rough.

The previous discretization process leads to the nonlinear programming problem

minC(x0, . . . , xN , u0, . . . , uN ),
xi+1 = xi + hif(ti, xi, ui), ui ∈ U, i = 0, . . . , N − 1,

which is a problem of the form (13).
Note that this kind of method is easy to implement in the sense that it does not require

a precise a priori knowledge of the optimal control problem. Moreover, it is easy to take into
account some state constraints or any other kinds of constraints in the optimal control problem.
In this sense, this approach is not sensitive to the model.

From a general point of view, this amounts to choosing a discretization of the control, of the
state, in some finite dimension spaces, using specific Galerkin bases. Typically, one may choose
piecewise polynomial approximations. The ODE and state or control constraints are satisfied
only at the discretization points. We thus arrive at a finite dimensional nonlinear optimization
problem of the form (13).

The numerical implementation of such a nonlinear programming problem is standard. It
can be achieved, for instance, using a penalty method, or more usually using a SQP method
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(sequential quadratic programming). The aim of these methods is to reduce the problem to sub-
problems, easier to treat, without constraints, by using penalty functions to handle constraints,
or applying Kuhn-Tucker necessary conditions for optimization problems with constraints. For
the problem (13)-(14), SQP methods permit to solve iteratively the optimality system derived
from the application of Kuhn-Tucker conditions, using Newton or quasi-Newton methods. At
each step of the iteration process, one chooses a quasi-Newton method in order to estimate
the Hessian of the Lagragian function associated to the nonlinear programming problem, and
one solves a quadratic programming subproblem based on a quadratic approximation of the
Lagrangian function. For more details, see e.g. [80, 81, 83].

From the point of view of practical implementation, in the last years much progress has been
done in the direction of combining automatic differentiation softwares (such as the modeling
language AMPL, see [84]) with expert optimization routines (such as the open-source package
IPOPT, see [85], carrying out an interior point optimization algorithm for large-scale differential
algebraic systems, combined with a filter line-search method). With such tools it has become
very simple to implement with only few lines of code difficult (nonacademic) optimal control
problems, with success and within a reasonable time of computation. Even more, web sites such
as NEOS (http://neos-server.org/neos/) propose to launch online such kinds of computation:
codes can be written in a modeling language such as [84] (or others) and can be combined with
many optimization routines (specialized either for linear problems, nonlinear, mixed, discrete,
etc). Note that there exists a large number (open-source or not) of automatic differentiation
softwares and of optimization routines, it is however not our aim to provide a list of them. They
are easy to find on the web.

For an excellent survey on direct methods with a special interest to applications in aerospace,
we refer the reader to [82, 83].

There exist many approaches to discretize an optimal control problem. Many of them are
described in [83] (in this survey book sparsity issues, very important in practice, are also dis-
cussed). Among these different approaches, we quote the following.

Speaking in a general way, collocation methods consist of choosing specific points or nodes
on every subinterval of a given subdivision of the time interval. From the point of view of
the discretization spaces, these methods consist in approximating the trajectories (and/or the
control functions) by polynomials on each subinterval. Then the collocation conditions state
that the derivatives of the approximated state match exactly with the dynamics at the nodes
mentioned previously. Note that Runge-Kutta discretizations are a particular case. We refer
the reader to [83, 86] for the use of such methods in aerospace.

In spectral or pseudospectral methods, the above nodes are chosen as the zeros of special
polynomials, such as Gauss-Legendre or Gauss-Lobatto polynomials. Equivalently, these poly-
nomials serve as a basis of approximation spaces for the trajectories and the controls. Since they
share nice orthogonality properties, the collocation conditions turn into constraints that are eas-
ily tractable for numerical purposes. We refer the reader to [87, 88, 89] and to the references
therein for more details on these approaches.

There exist also some probabilistic approaches, such as the method described in [90] (see
also [91]), which consists of expressing the optimal control problem in measure spaces and then
of seeking the optimal control as an occupation measure, which is approximated by a finite
number of its moments. This method uses algebraic geometry tools and permits as above to
reduce the optimal control problem to some finite dimensional optimization problem (more
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precisely, involving LMI inequalities).

Remark 8. Another approach to optimal control problems, which can be considered (although
it can be discussed) as a direct method, consists of solving the Hamilton-Jacobi equation satisfied
by the value function, that is, the optimal cost for the optimal control problem of reaching a
given point. The Hamilton-Jacobi equation is of the form

∂S

∂t
+H1(x,

∂S

∂x
) = 0,

where H1(x, p) = maxu∈U 〈p, f(x, u)〉 − f0(x, u) is the reduced normal Hamiltonian obtained
from the Pontryagin Maximum Principle (see [92, 93, 94, 95] for the theoretical problem of
existence and/or uniqueness of viscosity solutions). Although it can be discussed, we tend to
place numerical methods for solving the Hamilton-Jacobi equation among direct methods.

Consider a discretization (x̄ı) of the space, where ı̄ = (i1, . . . , in) ∈ Zn, assumed to be
regular for simplification, and consider a regular subdivision (tj) of the time interval. Denote
by h = (h1, . . . , hn) the space step, and by k = tj+1 − tj the time step. Let Sı̄,j denote
the approximate value of S(tj , x̄ı). One should approximate ∂S

∂xp
(x̄ı) with a backward (resp.

forward) finite difference whenever fp(x̄ı, u) is positive (resp. negative). For every real number
a, set a+ = max(a, 0) = a+|a|

2 , a− = min(a, 0) = a−|a|
2 . For every p ∈ {1, . . . , n}, denote by

ep = (0, . . . , 1, . . . , 0), the ”1” being in p-th position. We get the explicit scheme

0 =
Sı̄,k+1 − Sı̄,k

k
+ max

u∈U

( n∑
p=1

(
fp(x, u)+

Sı̄,k − Sı̄−ep,k

hp
+ fp(x, u)−

Sı̄+ep,k − Sı̄,k

hp

)
− f0(x̄ı, u)

)
.

There exist many discretization processes. The previous explicit finite difference scheme is the
most simple, but it is not much efficient. We can choose schemes of larger order. Notice the
existence of level set methods (see [96]), which consist of computing at each step of the iteration
process the level set of the value function S solution of the Hamilton-Jacobi equation. Very
efficient in low dimension, these methods consist of making evolve the wave front of the value
function, starting from an initial point or set. The algorithmic complexity is a linear function of
the number of discretization points. These methods have been implemented in a very efficient
way for problems of low dimension (typically 3). The construction of such schemes is however
not easy, and, in function of the equation, one should be able to elaborate a stable and consistant
scheme, see [96] for examples.

Notice that, as previously, taking into account some state constraints is not a problem. One
should indeed impose to the value function to take an infinite (numerically, very large) value on
the forbidden domain.

Once switching curves have been localized, one can refine the discretization in the neighbor-
hood of these curves, in order to get a better accuracy.

2.4.2 Indirect methods

The idea is as follows. Consider the optimal control problem (3)-(4) and assume, at first, that
the final time tf is fixed. The Pontryagin Maximum Principle provides a necessary condition
for optimality, and states that every optimal trajectory is the projection of an extremal, as
explained before. After having made explicit the maximization condition, we reduce the problem
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to an extremal system of the form ż(t) = F (t, z(t)), where z(t) = (x(t), p(t)), and initial, final,
transversality conditions, are of the form R(z(0), z(tf )) = 0. Finally, we get the boundary value
problem (BVP)

ż(t) = F (t, z(t)), R(z(0), z(tf )) = 0. (15)

Denote by z(t, z0) the solution of the Cauchy problem ż(t) = F (t, z(t)), z(0) = z0, and set
G(z0) = R(z0, z(tf , z0)). The boundary value problem (15) is then equivalent to solving G(z0) =
0, that is, one should determine a zero of the function G. This can be achieved in practice by
using a Newton like method.

If the final time tf is free, one can reduce the problem to the previous formulation by consid-
ering tf as an auxiliary unknown. We thus augment the dimension of the state by considering
the additional equation dtf

dt = 0. The same trick can be used if the control is bang-bang, in order
to determine switching times. It may be however better to use the transversality condition on
the Hamiltonian function, when the final time is free.

This method sketched above is called the shooting method. It has many possible refinements,
among which the multiple shooting method. The latter method consists of subdividing the time
interval [0, tf ] in N intervals [ti, ti+1], and of considering as unknowns the values z(ti). One
should then take into account gluing conditions at every time ti (continuity conditions). The
aim is actually to improve the stability of the method. A classical reference as to the multiple
shooting algorithm is [79].

More precisely, applying the maximum principle reduces the problem to a BVP problem of
the form

ż(t) = F (t, z(t)) =


F0(t, z(t)) if t0 6 t < t1

F1(t, z(t)) if t1 6 t < t2
...

Fs(t, z(t)) if ts 6 t 6 tf

(16)

where z = (x, p) ∈ IR2n (p is the adjoint vector), and t1, t2, . . . , ts ∈ [t0, tf ] are either switching
times, or, in case of state constraints, junction times with a boundary arc, or contact times
with the boundary. Moreover, there are some continuity conditions on the state and on the
adjoint vector at switching times. In case of state constraints, one has jump conditions on the
adjoint vector, and conditions on the constraint at junction or contact points, see [41, 97, 9,
35, 36, 98, 99]). Moreover, there are some limit conditions on the state, on the adjoint vector
(transversality conditions), and on the Hamiltonian if the final time is free.

Note that the final time is a priori unknown. Moreover, in the multiple shooting method, the
number s of switchings has to be fixed; it is determined if possible by a preliminary geometric
study of the problem.

The multiple shooting method consists in subdividing the interval [t0, tf ] in N subintervals,
the value of z(t) at the left side of each subinterval being unknown. More precisely, let t0 < σ1 <
· · · < σk < tf be a fixed subdivision of [t0, tf ]. At each point σj , the function z is continuous.
One can consider σj as a fixed switching point, at which there holds z(σ+

j ) = z(σ−j ). Now define
the nodes {τ1, . . . , τm} = {t0, tf} ∪ {σ1, . . . , σk} ∪ {t1, . . . , ts}. Finally, we arrive at the BVP
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problem

• ż(t) = F (t, z(t)) =


F1(t, z(t)) if τ1 6 t < τ2

F2(t, z(t)) if τ2 6 t < τ3

...
Fm−1(t, z(t)) if τm−1 6 t 6 τm

• ∀j ∈ {2, . . . ,m− 1} rj(τj , z(τ−j ), z(τ+
j )) = 0

• rm(τm, z(τ1), z(τm)) = 0

(17)

where τ1 = t0 is fixed, τm = tf , and the rj represent interior or limit conditions.
The stability of the method is improved by augmenting the number of nodes. It is the

advantage of the multiple shooting method, contrary to the simple shooting one, in which errors
may grow exponentially in function of tf−t0 (see [79]). Of course, there are much more unknowns
in the multiple shooting method as in the simple shooting method, but note that the numerical
integration of the system (16) can be parallelized.

Set z+
j = z(τ+

j ), and denote by z(t, τj−1, z
+
j−1) the solution of the Cauchy problem ż(t) =

F (t, z(t)), z(τj−1) = z+
j−1. There holds z(τ−j ) = z(τ−j , τj−1, z

+
j−1). Interior and limit conditions

are written as

∀j ∈ {2, . . . ,m− 1} rj(τj , z(τ−j , τj−1, z
+
j−1), z+

j ) = 0,

rm(τm, z+
1 , z(τ

−
m, τm−1, z

+
m−1)) = 0.

(18)

Set Z = (z+
1 , τm, z

+
2 , τ2, . . . , z

+
m−1, τm−1)T ∈ IR(2n+1)(m−1) (where z ∈ IR2n). Then, conditions

(18) hold if

G(Z) =


rm(τm, z+

1 , z(τ
−
m, τm−1, z

+
m−1))

r2(τ2, z(τ−2 , τ1, z
+
1 ), z+

2 )
...

rm−1(τm, z(τ−m−1, τm−2, z
+
m−2), z+

m−1)

 = 0. (19)

Hence, this amounts to determining a zero of the function G, which is defined on a vector
space whose dimension is proportional to the number of switching and subdivision points. The
equation G = 0 is then iteratively solved by using a Newton type method.

From the practical implementation point of view, note on the one hand that there exist many
variants of Newton methods, among which the Broyden method or the Powell hybrid method
are quite competitive (see [79]). On the other hand, note that, as for direct methods, the
shooting methods can be combined with automatic differentiation. Here, the use of automatic
differentiation can help to generate the Hamiltonian equations of extremals. This is particularly
useful when one works on a problem whose model is not completely fixed. In [23] the authors
provide the description for the package COTCOT (Conditions of Order Two and COnjugate Times),
available for free on the web (http://www.n7.fr/apo/cotcot/), implementing the following issues:

• automatic generation in Fortran of the equations of the Pontryagin Maximum Principle
(automatic differentiation with Adifor);

• automatic creation of mex files for Matlab;
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• Fortran codes for the numerical integration, the shooting method, and the computation
of conjugate times, interfaced with Matlab.

Remark 9. It must be noted that, when implementing a shooting method, the structure of the
trajectory should be known in advance, particularly in the case where the trajectory involves
singular arcs (see e.g. [100, 101]). This remark shows the importance of being able to determine
at least locally the structure of optimal trajectories: this is one of the main issues of geometric
optimal control theory, as explained further in this article (see sections 3.2 and 3.3).

Remark 10. Proving that the shooting method is feasible amounts to proving that the Jacobian
of the mapping G defined by (19) is nonzero. To simplify, if one considers the simplified situation
of section 2.3, in this case the (single) shooting method is well-posed at time t, locally around
p0 if and only if the exponential mapping expx0

(t, ·) is an immersion at p0. In other words,
according to Theorem 4, the shooting method is feasible (well-posed) if and only if the final
time under consideration is not a conjugate time.

This argument can be generalized to far more general situations. First of all, if the initial
and final sets are not restricted to single points, the above argument still holds except that the
notion of focal point has to be used instead of conjugate point (see section 2.3.3). Note that a
modification of the shooting method is proposed in [102], which consists in adding unknowns to
the method (so that there are more unknowns than equations) to overcome partially the problem
of a priori structure determination, and then the Newton method must be adapted with the use
of pseudo-inverse. In [38, 103] it is shown that the shooting method is well-posed also in the
presence of control and state constraints, provided that a certain second-order coercivity holds;
this second-order condition is not translated in terms of conjugate points but this could be
probably done if the corresponding conjugate point theory would exist (see section 2.3.3).

2.4.3 An open problem

If we summarize the main issues of the previous direct and indirect approaches, we realize that
direct methods consist of

1. discretizing first the differential system, the cost, in order to reduce the optimal control
problem to an usual nonlinear minimization problem with constraints (the dimension being
as larger as the discretization is finer),

2. and then dualizing, by applying e.g. a usual Lagrange-Newton method to the nonlinear
minimization problem (applying Kuhn-Tucker and then a Newton method to solve the
resulting optimality system),

whereas indirect methods consist of

1. first dualizing the optimal control problem, by applying the Pontryagin Maximum Principle
(or, equivalently, the Lagrange multipliers necessary condition for optimality in infinite
dimension),

2. and then discretizing, by applying a shooting method (that is, a Newton method composed
with a numerical integration method).
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In shorter words, direct methods consist of 1) discretize, 2) dualize, and indirect methods consist
of the converse: 1) dualize, 2) discretize. It is natural to wonder whether this diagram is
commutative or not, under usual approximation assumptions.

It happens that, even under usual assumptions of consistency and stability (Lax scheme), it
is not. Although it is very simple to see that, under these classical assumptions, the indirect
approach is convergent, the direct method may diverge, whenever it was not conveniently de-
signed. That is, although one chooses a convergent method in order to integrate the system, a
convergent method in order to discretize the cost, the consistency and stability properties of the
numerical schemes are not sufficient to ensure the convergence of the resulting direct method.
Very simple counterexamples are provided in [104].

It is not obvious to obtain simple conditions on the schemes ensuring the convergence of
the resulting direct method, and up to now there exist only few positive results. The results of
[104] assert the convergence for ”smooth” problems provided that the underlying discretization
method be based on a Runge-Kutta method whose all coefficients are positive. The smoothness
assumptions mean that the optimal controls under consideration take their value in the interior
of the authorized domain of control (so that the maximization condition of the Pontryagin Max-
imum Principle reduces to ∂H

∂u = 0) and that coercivity second-order conditions hold, ensuring
the smoothness of the optimal controls (as in Section 2.3), in the continuous case as well as in
the discrete case. This is for instance the case for linear quadratic problems. We refer also the
reader to [105] for further comments on this result and for other considerations on symplectic
integrators. The class of Legendre pseudospectral methods is up to now the other one for which
the commutation issues have been proved (see [87, 88, 89, 106] and see [107] for a detailed
discussion on the commutation properties).

Apart from those few results, up to our knowledge the situation is still open in the general case
and there do not exist any simple criteria or any systematic method to build adapted numerical
schemes for discretizing the differential system and the cost in order to ensure the convergence of
the resulting direct method. As explained above, since in the smooth case the conditions ensuring
the commutation of the diagram rely on second-order conditions, the problem is clearly related
to the theory of conjugate points, in the sense that, in order to handle the general case, there
is need for a general conjugate point theory involving all possible situations (smooth, bang,
singular arcs, state constraints). The, numerical schemes should be designed in such a way to
ensure coercivity properties in the discretized second-order conditions under consideration.

It can be noted that this discrepancy in the dualization-discretization diagram arises as
well in the infinite dimensional setting e.g. when one is interested to carry out practically the
so-called HUM method (Hilbert Uniqueness Method), which is roughly speaking the optimal
control problem of steering an infinite dimensional linear control system from a given point to
a final point by minimizing the L2 norm of the control (linear quadratic problem in a Hilbert
space). In the case of the wave equation a phenomenon of interference of highfrequencies with
the mesh has been put in evidence, that causes the divergence of the method (see [108] and
references therein for more details and more possible remedies, see also [109] for a general result
of convergence in the parabolic case). The literature is quite abundant for this commutation
problem in the infinite dimensional framework, however the situation is still not well understood,
in particular for hyperbolic equations where the question is raised as well of deriving a systematic
way to build adapted shemes so that discretization and dualization commute.
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2.4.4 Comparison between methods

We can sketch a brief comparison between both direct and indirect approaches, although such
comments are a bit of caricatural. Anyway, it can be said that direct methods have the following
advantages on indirect methods: they do not require any a priori theoretical study, in particular,
one does not have to know a priori the structure of switchings; they are more robust, the model
can be easily modified, and they are less sensitive to the choice of the initial condition. Moreover
it is easy to take into account some constraints of any possible kind. However, it is difficult to
reach with direct methods the precision provided by indirect methods. The direct discretization
of an optimal control problem often causes several local minima. Direct methods require a large
amount of memory, and thus may become inefficient if the dimension of the space is too large
or if the problem cannot be easily parallelized or does not have an evident sparse structure.

The advantages of indirect methods are their extremely good numerical accuracy. Indeed
since they rely on a Newton method they inherit of the very quick convergence properties of the
Newton method. Moreover the shooting methods can, by construction, be parallelized, and their
implementation can thus be achieved on a cluster of parallel computers. They however suffer
from the following drawbacks: the optimal controls are computed in an open-loop form; they are
based on the maximum principle, which gives a necessary condition for optimality only, and thus
one should be able to check, a posteriori, the optimal status of the computed trajectory (with
conjugate point theory); the method is not soft, in the sense that for instance the structure of
switchings has to be known a priori. Furthermore it is not easy to introduce state constraints,
because, on one hand, this requires to apply a maximum principle with state constraints, and
on the other hand, the presence of state constraints may imply a very intricate structure of the
optimal trajectory, in particular the structure of switchings. The main drawback of the shooting
methods is that they are difficult to make converge. Indeed since they are based on a Newton
method, they suffer from the usual drawback of the Newton method, that is, they may be very
difficult to initialize properly. In other words, to make converge a shooting method one should
be able to guess good initial conditions for the adjoint vector. Indeed the domain of convergence
of the Newton method may happen to be very small, depending on the optimal control problem.

There exist many solutions to overcome the different flaws of both approaches. There is
however no universal answer and the choice of the method should be guided by the practical
problem under consideration and by the experience (note again the excellent surveys [82, 83,
99, 110]). Speaking however in a general way, a first idea for a reasonable solution consists of
combining both direct and indirect approaches, thus obtaining a so-called hybrid method. When
one addresses an optimal control problem, one could indeed try at first to implement a direct
method. In such a way, one can hope to get a first (maybe rough) approximation of the optimal
trajectory and a good idea of the structure of switchings and of the associated adjoint vector. If
one wishes more numerical accuracy, one can then carry out an indirect method, hoping that the
result provided by the direct method gives a sufficient approximation, thus providing an initial
point hopingly belonging to the domain of convergence of the shooting method. Combining in
such a way both direct and indirect methods, one can take benefit of the extremely good accuracy
provided by the shooting method, reducing considerably the drawback due to the smallness of
the domain of convergence. Applying first a direct method, one can obtain an approximation
of the adjoint vector. Indeed, the total discretization method consists of solving a nonlinear
programming problem with constraints. The Lagrange multipliers associated to this problem
give an approximation of the adjoint vector (see [9, 110, 111]).
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By the way, among the many variants of direct and indirect approaches, we mention here
the possibility of designing hybrid methods, neither direct or indirect, consisting of solving the
boundary value problem resulting from the application of the PMP, not by a Newton method,
but by an optimization method, in which the unknowns may for instance only consist of the
initial adjoint vector, and the minimization functional is the cost, seen as a function of the initial
adjoint vector (there are many possible various formulations for such problems). Furthermore we
should quote the so-called direct multiple shooting method (see [112, 113]), based on constrained
nonlinear programming, where the optimization variables are, similarly to the multiple shooting
method, the states at some nodes, and where the controls are parametrized over the intervals
between the nodes by well chosen functions. The advantage of such an approach is that it can
be efficiently parallelized and it has nice sparsity features (see [114, 83] for variants).

In the present article it is our aim to focus on applications of optimal control to aerospace,
and in such problems indirect methods are often priviledged because, although they are difficult
to make converge, they offer a very good numerical accuracy. Hence in the sequel of that article
we will describe several optimal control problems in aerospace, providing some methods in order
to make converge the shooting method:

• a geometric insight (geometric optimal control tools) for the problem of atmospheric reen-
try of a space shuttle (section 3),

• the continuation method for orbit transfer problems (section 4),

• dynamical systems theory for interplanetary mission design (section 5).

3 Geometric optimal control and applications to the atmospheric
re-entry problem

In this section we focus on the problem of the atmospheric re-entry of a space shuttle controlled
by its bank angle, and where the cost to minimize is the total thermal flux. The engine is
moreover submitted to state constraints on the thermal flux, the normal acceleration and the
dynamic pressure. It is our aim here to show how results of geometric optimal control can help
to make converge the shooting method.

3.1 The atmospheric re-entry problem

The precise problem under consideration is the following. We call atmospheric phase the period
of time in which the altitude of the engine is between around 20 and 120 kilometers. It is indeed
in this range that, in the absence of any motor thrust, the aerodynamic forces (friction with
the atmosphere) can be employed to adequately control the space shuttle to as to steer it to a
desired final point and meanwhile satisfying the state constraints in particular on the thermal
flux. Thus, during this phase the shuttle can be considered as a glider, only submitted to the
gravity force and the aerodynamic forces. The control is the bank angle, and the minimization
criterion under consideration is the total thermal flux. The model of the control system is
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standard (see e.g. [98, 115]) and is written as
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Here, r denotes the distance of the center of gravity of the shuttle to the center of the Earth, v is
the modulus of its relative velocity, γ is the flight angle (or path inclination, that is, the angle of
the velocity vector with respect to an horizontal plane), L is the latitude, l is the longitude, and
χ is the azimuth (angle between the projection of the velocity vector onto the local horizontal
plane measured with respect to the axis South-North of the planet).

The gravitational force appears with a usual model g(r) = µ0

r2
, where µ0 is the gravitational

constant. The aerodynamic forces consist of the drag force, whose modulus is 1
2ρSCDv

2, which
is opposite to the velocity vector, and of the lift force, whose modulus is 1

2ρSCLv
2, which is

perpendicular to the velocity vector. Here, ρ = ρ(r) = ρ0e
−βr is the air density, S is some

positive coefficient (reference area) featuring the engine, and CD and CL are the drag and the
lift coefficients; they depend on the angle of attack and on the Mach number of the shuttle.
Notice that more specific models can be used and that in general the gravity, the air density
and the aerodynamic coefficients are tabulated (we refer to [42] for precise tabulations used in
the study).

The control is the bank angle µ; it acts on the orientation of the lift force and thus its effect
may be to make the shuttle turn left or right but also to act on the altitude. It is a scalar control
that is assumed to take values in [0, π]. Note that the mass m of the engine is constant along
this atmospheric phase since it is assumed that there is no thrust.

Finally, Ω is the angular rotation speed of the planet. In the above model the terms linear
in Ω represent the Coriolis force, and the terms proportional to Ω2 are due to the centripetal
force.

The optimal control problem under consideration is to steer the vehicle from initial conditions
to final conditions stated in Table 1, in free final time, and moreover the system is submitted to
three state constraints:

• a constraint on the (instantaneous) thermal flux: ϕ = Cq
√
ρv3 6 ϕmax,

• a constraint on the normal acceleration: γn = γn0ρv
2 6 γmaxn ,
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Initial conditions Final conditions
altitude (h) 119.82 km 15 km
velocity (v) 7404.95 m/s 445 m/s
flight angle (γ) -1.84 deg free
latitude (L) 0 10.99 deg
longitude (l) free 166.48 deg
azimuth (χ) free free

Table 1: Boundary conditions

• a constraint on the dynamic pressure: 1
2ρv

2 6 Pmax,

where Cq, ϕmax, γn0 , γmaxn and Pmax are positive constants. They are drawn on figure 1 in the
flight domain, in terms of the drag d = 1

2
SCD
m ρv2 and of v. The minimization criterion is the

total thermal flux along the flight

J(µ) =
∫ tf

0
Cq
√
ρv3dt. (21)

Figure 1: Constraints, and Harpold-Graves strategy

Note that, if we approximate v̇ ' −d, then J(µ) = K
∫ vf
v0

v2√
d
dv (with K > 0), and hence

for this approximated criterion the optimal strategy is to maximize the drag d all along the
flight. This strategy, described in [116] and usually employed, reduces the problem to the
problem of finding a trajectory tracking the boundary of the authorized domain in the following
order: thermal flux – normal acceleration – dynamic pressure, as drawn on figure 1. The
advantage of this method is that along the boundary arcs the control can be easily expressed
in closed-loop (feedback), which is greatly convenient for stabilization issues and for real-time
embarked implementation. Anyway this strategy is not optimal for the minimization criterion
(21), and it was the aim of [42, 41, 97, 117] to solve this optimal control problem with geometric
considerations.

A version of the Pontryagin Maximum Principle can be applied to that problem but it is
then difficult to make converge the resulting shooting method, due to the fact that the domain
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of convergence is very small and getting a good initial condition of the adjoint vector is a real
challenge. Of course, many numerical refinements can be proposed to overcome this initialization
problem, and similar optimal control problems have been considered in a number of articles (see
e.g. [82, 83, 99, 118, 119, 120] with various approaches (direct or indirect). This is indeed a
classical problem, but we insist on the fact that our objective is here to show how a result of
geometric optimal control can be of some help in order to guess a good initial condition to make
converge the shooting method (rather than making it converge through numerical refinements).
Note that, without the aid of such a tool, solving this problem with a shooting method is nearly
intractable.

3.2 Geometric optimal control results and application to the problem

In this section, instead of providing a solution with computational or numerical refinements, our
goal is to provide a rough analysis of the control system and show how geometric control can
be of some help in order to provide a better understanding of the structure of the system and
finally lead to a precise description of the optimal trajectories, then reducing the application of
the shooting method to an easy exercise.

Before that, let us first explain what is geometric control. As explained in the introduction of
this article, modern optimal control theory combines classical techniques developed in the 60’s,
typically the Pontryagin Maximum Principle, with other powerful mathematical techniques in
order to provide results on the structure of optimal trajectories for general classes of nonlinear
control systems. Literally, geometric optimal control is the combination of classical optimal
control with geometric methods in system theory. More precisely, it can be described as the
combination of the knowledge inferred from the Pontryagin Maximum Principle with geometric
considerations such as the use of Lie brackets, of subanalytic sets, of differential geometry
on manifolds, of symplectic geometry and Hamiltonian systems, with the ultimate objective
of deriving optimal synthesis results, permitting to describe in a precise way the structure of
optimal trajectories. In other words, the objective is to derive results saying that, according to
the class of control systems we are considering, the optimal trajectories have a precise structure
and are of such and such kind. Geometric optimal control has furnished a modern and uniform
framework to realize this objective.

The foundations of geometric control can be dated back, first, to the important Chow’s
Theorem (see [121]) on reachable sets of integral curves of families of vector fields, which was not
part of the classical calculus of variations theory, and second, to the articles [122, 123], where
Brunovsky discovered that it was possible to derive regular synthesis results using geometric
considerations for a large class of control systems, yielding a precise description of the structure
of optimal trajectories. Since then, many different tools from differential geometry have been
introduced in optimal control, forming gradually a package of techniques and knowledge now
identified as geometric optimal control :

• the use of differentiable manifolds, extending the field of applications of the Pontryagin
Maximum Principle to optimal control problems naturally posed on a manifold or on a
Lie group (see e.g. [17, 124]), very much encountered in mechanics, robotics, aerospace,
quantum control theory, etc;

• Lie brackets and Lie algebras, used to derive important results on accessibility and con-
trollability properties, to derive higher order optimality conditions (see [125, 126, 127,
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128, 129]) permitting as mentioned above to restrict the set of optimal candidates, and to
derive local regularity and optimal synthesis results (see [130, 61, 131, 132]);

• stratification and real analyticity theory considerations (see [133, 134, 135]), used as well
for regularity and optimal synthesis issues;

• singularity theory, providing a starting point to the classification of extremals (see [136,
137, 138, 19, 41, 139]) et permitting to study how trajectories may lose optimality (see
[140, 141, 142]);

• the use of the Miele clock form (see [143, 144]), widely generalized with the framework of
symplectic geometry and methods, the latter being used to provide sufficient conditions
for optimality either in terms of conjugate points, Maslov index, envelope theory, extremal
field theory, or of optimal synthesis (see [60, 68, 19, 17, 69, 66]);

• fine considerations from differential geometry, e.g. the concepts of conjugate or cut locus,
of Jacobi curves or of curvature, used to provide global optimality results (see e.g. [145,
146, 147]);

• sub-Riemannian metrics (see e.g. [148, 149, 150]), much used for applications to robotics
and more recently to aerospace problems;

• and many other notions and mathematical concepts, borrowed from differential geometry
and related areas.

Typically, one should keep in mind the following idea. The aim of using these geometric tools
is to provide a complement to the Pontryagin Maximum Principle whenever its application
alone happens to be insufficient to adequately solve an optimal control problem, due to a lack of
information. As explained in details in section 2, the PMP is a first-order condition for optimality
and its aim is to select a set of trajectories that are candidate to be optimal. Apart from the
ultimate goal of providing a complete optimal synthesis, one of the objectives of geometric control
is to derive higher order optimality conditions in order to restrict more the set of candidate
optimal trajectories. Second-order conditions have been briefly reviewed in section 2.3 and their
connection to conjugate point theory has been put in evidence. More generally the objective of
higher order conditions, in terms of conjugate points, Maslov index techniques, envelope theory,
Miele clock form or more generally symplectic tools, is to select among the extremals derived
from the PMP, those who are candidates to be indeed optimal. When this selection is achieved
in a so nice way that there exists only one possible way to steer the system from the initial to the
final prescribed conditions, one speaks of an optimal synthesis, although this wording underlies
some more regularity properties, in particular regularity properties of the selected extremals
ensuring that they form an extremal field (see e.g. [122, 123, 134]).

We refer the reader interested in a deeper insight on geometric control issues to the survey
[151] and to the textbooks [17, 19, 124, 145, 152, 153, 154] and the many references therein.
Note that we do not mention here the many geometric issues related with stabilization, that are
outside of the scope of this article.

Let us now show how, starting from a simple remark on the structure of the control system
(20), results from geometric control theory can be applied and then help to guess the precise
structure of optimal trajectories, and ultimately make the application of a shooting method
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much easier. In a first step, let us assume that the rotation of the planet can be neglected, that
is, Ω = 0. Note that, at the end, this is not the case and the effect of the Coriolis force happens
to be necessary to reach the desired final conditions. Anyway, assuming that Ω = 0, the control
system (20) gets simpler and in particular the three first differential equations become
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Setting u = cos(µ), x=(r, v, γ), and defining the vector fields in IR3
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the system (22) can be rewritten as the single-input control-affine system in IR3

ẋ(t) = f0(x(t)) + u(t)f1(x(t)), |u| 6 1. (23)

Ignoring the coordinates (L, l, χ), the induced optimal control problem is to steer the above
three-dimensional control system, from a given x(0) to a final target (γ(tf ) is free but the two
first coordinates are fixed), with a control satisfying the constraint |u| 6 1, and moreover, under
the three state constraints on the thermal flux, normal acceleration and dynamic pressure (which
depend only on x), by minimizing the cost (21).

Reparametrizing by the instantaneous cost (that is, dividing the equations (22) by ϕ =
Cq
√
ρv3, and setting as a new time s = ϕt), we end up with the minimal time problem for a

single-input control-affine system, with the constraint |u| 6 1 on the control, and with pure
state constraints of the form ci(x) 6 0, i = 1, 2, 3.

Besides, there exist results coming from geometric optimal control theory, providing a quali-
tative description of minimal time trajectories for control systems of the form (23), within small
time, in small dimension (two and three), and under generic assumptions. We refer the reader
to [131, 145, 61, 155, 130, 156] for precise results. For instance, in dimension three, in the
absence of state constraint, it has been derived in [61] that, if the vector fields of the system
are such that f0, f1 and their Lie bracket [f0, f1] are linearly independent at x0, then minimal
time trajectories starting from x0 are locally bang-bang with at most two switchings. Moreover,
denoting by x+ (resp., x−) an arc corresponding to the control u = 1 (resp., u = −1), the small
time accessible set is homeomorphic to a cone whose boundary consists of all trajectories of the
form x+x− and x−x+ (i.e., concatenations of two bang arcs). Furthermore, using the Miele
clock form (see [143, 144, 157, 42] for the use of this form in the plane, and see [17, 19] for a
generalization in a symplectic context), according to the sign of some coefficient only depending
on the Lie structure of the vector fields at x0, it can be shown that, locally around x0, trajec-
tories x+x−x+ (starting from x0) are minimal time whereas trajectories x−x+x− are maximal
time (or conversely according to that sign).
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Motivated by the atmospheric re-entry problem, this kind of result has been extended in [41]
to the case where there are state constraints. Actually in this reference local optimal syntheses
are derived for systems in dimension two and three, with one or several state constraints. This
classification involves many cases, depending on the order of the state constraints under consid-
eration and cannot be sketched in few words. In the case of the atmospheric re-entry problem,
all state constraints are of order two, since one has to differentiate two times with respect to
t the relations characterizing a boundary arc to make appear the control. The results of [41],
combined with numerical simulations, then lead to the following result.

Proposition 1. The optimal trajectory for the simplified three-dimensional model (22) is of the
kind x−x+xfluxx+xaccx+, where x+ (resp., x−) is an arc corresponding to the control u = 1
(resp., u = −1), and xflux (resp., xacc) denotes a boundary arc saturating the constraint on the
thermal flux (resp. on the normal acceleration).

Note that, since the abovementioned geometric results are of local nature, to make them
global they must be combined with numerical simulations and possibly with conjugate point
arguments, as it was done for the atmospheric re-entry problem in [97]. In this latter reference,
it was also shown, using perturbation arguments, how this result in dimension three could be
used in order to provide an approximation of the optimal trajectory for the true problem in
dimension six. In this perturbation argument, the parameter Ω is in some sense viewed as a
small parameter, but to justify properly the argument it must also be observed that the simplified
three-dimensional system is almost a projection onto IR3 of the complete system in dimension
six (we refer to [97] for details). Anyway, what is important is that the strategies announced in
Proposition 1 provide a good approximation of the optimal trajectories of the complete problem
in dimension six.

Now, the point is that it is very easy to make converge a shooting method for the simplified
problem in dimension three. Indeed, since one knows precisely the structure of the optimal
trajectory, the trajectory to be determined can be parametrized only with its switching times,
and hence the shooting problem reduces to a problem with only five unknowns (which are
the switching times). The resulting optimal trajectory can then serve as a good initial guess
for seeking the optimal trajectory of the complete problem in dimension six. Moreover, it is
possible to derive as well a good approximation of the initial adjoint vector in dimension six,
by completing the Lagrange multiplier of the optimal solution in dimension three with zeros
(it is shown in [97, 117] that it is indeed a good approximation because for Ω = 0 the optimal
trajectory of the three-dimensional problem can be viewed as a singular trajectory of the six-
dimensional problem with corank three).

3.3 Open challenges

It has been shown previously how a result of geometric optimal control theory on local optimal
syntheses can help to make converge a shooting method, or at least can simplify its implemen-
tation by describing precisely the structure of the optimal trajectory (e.g. as a succession of
bang, singular or boundary arcs, in a precise order). As briefly surveyed previously, these re-
sults exist only for control-affine systems in small dimension (essentially, two and three). Note
that, in dimension three, more general situations have been considered in [131] for single-input
control-affine systems, providing a precise local structure of optimal trajectories having a finite
number of switching times and involving possible singular arcs. These results have been gener-
alized in the deep article [158], in which the author studies the local structure of minimal time
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trajectories for single-input control-affine systems with a starting point in a submanifold S. It
is shown that, if the codimension of S is less than or equal to four, then generic minimal time
trajectories starting from S are concatenations of at most seven between bang and singular arcs.
This result can be applied to four-dimensional systems when S is a point.

For larger dimensions the situation is far more intricate, not only due to the possible oc-
curence of singular trajectories, but also to the generic occurence of Fuller phenomena (see
[138, 159, 43]) in which case an infinite number of switchings may occur in a compact time
interval.

It would be however useful to derive such local optimal synthesis results for systems in
larger dimensions, however necessarily under strong assumptions in particular to avoid the Fuller
phenomenon, for instance in view of providing alternative ways of making converge the shooting
method for the orbit transfer problem. Concerning the latter problem note that, in order to
generate the accessible set for the orbit transfer problems, the authors of [147] have used tools
of Riemannian geometry to determine the cut and conjugate loci on a complete two-surface of
revolution in order to infer the global structure of the extremals of the problem.

Note that the results of geometric optimal control mentioned in the previous section essen-
tially rely on a careful analysis of the extremal flow using second-order conditions or a Hamil-
tonian approach and hence are strongly related to the concept of conjugate time (surveyed
previously in this paper). Hence, the methods e.g. of [68, 62, 69, 65, 66, 77, 67] that are applica-
ble to bang-bang situations in any dimension should permit to derive local optimal syntheses in
larger dimension under additional assumptions, and as well for control-affine systems with more
than one control (although it can be expected that the situation is much more complicated).
Note however that, according to the results of [45, 46, 47], generic (in the Whitney sense) control-
affine systems do not admit any minimizing singular trajectory whenever the number of controls
is more than two (more precisely it is shown in these references that such generic control-affine
systems do not admit any trajectories satisfying the Goh necessary condition derived in [160]).
For a first result concerning the classification of extremals for control-affine systems with two
controls, we quote the recent article [139], with an application to the minimum time control of
the restricted three-body problem.

4 The continuation method and applications

4.1 The continuation method

The objective of continuation or homotopy methods is to solve a problem step by step from a sim-
pler one by parameter deformation. There exists a well-developed theory and many algorithms
and numerical methods implementing these ideas, and the field of applications encompasses
Brouwer fixed point problems, polynomial and nonlinear systems of equations, boundary value
problems in many diverse forms, etc. We refer the reader to the survey articles [161, 162, 163, 164]
or to the textbook [165] for a complete report on these theories and methods.

Here we will use the continuation or homotopy approach in order to solve the shooting
problem resulting from the application of the Pontryagin Maximum Principle to an optimal
control problem. More precisely, the method consists of deforming the problem into a simpler
one that we are able to solve (without any careful initialization of the shooting method), and
then of solving a series of shooting problems, step by step, to come back to the original problem.
In practice the choice of an adapted parameter deformation of the problem is done according
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to an intuition or an heuristics with respect to the physical meaning of the different parameters
entering into the problem, and thus may require considerable physical insight into the problem.
The homotopic parameter λ can be a physical parameter (or several) of the problem, or an
artificial one. Some examples are provided in the sequel. The deformation should also be chosen
in such a way to enjoy sufficient regularity conditions, making the homotopy method converge.
Notice that not only the simpler problem should be chosen according to an heuristics, but also
the path between the simpler problem and the original problem. When the homotopic parameter
λ is a real number and when the path is linear in λ (meaning that, in some coordinates, the path
consists of a convex combination of the simpler and of the original problem, with λ ∈ [0, 1]), the
homotopy method is rather called a continuation method in the literature. The continuation
method consists then of tracking a set of zeros, as the parameter λ is increased monotonically
from 0 to 1 (starting from the simpler known solution). Numerical continuation is well-known
in numerical analysis and has been applied to a wide field of various problems. It can fail
whenever the path of zeros which is tracked has bifurcation points or more generally singularities,
or whenever this path fails to exist globally and does not reach λ = 1. Homotopy methods
generalize continuation methods, in the sense that the parameter λ is not necessarily increased
monotonically from 0 to 1, dealing with the possible occurence of bifurcations or singularities,
and in the sense that the parameter λ is not necessarily a real number but can be considered
in more general spaces (it can be a real number, or a vectorial number, or even a parameter
evolving in some general Banach space); furthermore, in general homotopy methods the path
can be nonlinear and considered in various spaces.

For the moment, for the sake of simplicity we focus on the continuation method and consider
a real parameter λ ∈ [0, 1] (we comment further on homotopy methods). Let us provide shortly
the basic arguments showing the feasibility of the continuation method. From the theoretical
point of view, regularity properties require at least that the optimal solution be continuous, or
differentiable, with respect to the parameter λ that is expected to increase monotonically in
[0, 1]. This kind of property is usually derived using an implicit function argument, which is
encountered in the literature as sensitivity analysis. Let us explain what is the general reasoning
of sensitivity analysis, in the simplified framework of section 2.2.1, that is, assuming that M0 =
{x0}, M1 = {x1} and U = IRm. We are faced with a family of optimal control problems,
parametrized by λ, that can be as in (6) written in the form of

min
Ex0,T,λ(uλ)=x1

CT,λ(u). (24)

According to the Lagrange multipliers rule, if uλ is optimal then there exists (ψλ, ψ0
λ) ∈ IRn×IR\

{0} such that ψλdEx0,T,λ(uλ)+ψ0
λdCT,λ(u) = 0. Assume that there are no minimizing abnormal

extremals in the problem. Under this assumption, since the Lagrange multiplier (ψλ, ψ0
λ) is

defined up to a multiplicative scalar we can definitely assume that ψ0
λ = −1. Then, we are

seeking (uλ, ψλ) such that F (λ, uλ, ψλ) = 0, where the function F is defined by

F (λ, u, ψ) =
(
ψdEx0,T,λ(u)− dCT,λ(u)

Ex0,T,λ(u)− x1

)
=

(
∂LT,λ
∂u (u, ψ)

Ex0,T,λ(u)− x1

)
,

where LT,λ(u, ψ) = ψEx0,T,λ(u) − CT,λ(u) is the Lagrangian, as defined in section 2.2.1. Let
(λ̄, uλ̄, ψλ̄) be a zero of F . Assume that F is of class C1. If the Jacobian of F with respect to
(u, ψ), taken at the point (λ̄, uλ̄, ψλ̄), is invertible, then according to a usual implicit function
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argument one can solve the equation F (λ, uλ, ψλ) = 0, and the solution (uλ, ψλ) depends in a
C1 way on the parameter λ. Note that this standard argument from sensitivity analysis is at
the base of the well-known Lagrange-Newton method in optimization.

Let us now analyze the invertibility condition of the Jacobian of F with respect to (u, ψ).
This Jacobian matrix is (

QT,λ dEx0,T,λ(u)∗

dEx0,T,λ(u) 0

)
, (25)

where QT,λ is the quadratic form considered in section 2.3.1, defined by

QT,λ =
∂2LT,λ
∂2u

(u, ψ, ψ0)
| ker

∂LT,λ
∂u

,

and dEx0,T,λ(u)∗ is the transpose of dEx0,T,λ(u). The matrix (25) (which is a matrix of operators)
is called sensitivity matrix in sensitivity analysis. It is an easy exercise to prove that this
sensitivity matrix is invertible if and only if the linear mapping dEx0,T,λ(u) is surjective and
the quadratic form QT is nondegenerate. Having in mind the definitions given previously in
this article, the meaning of these assumptions is the following. The surjectivity of dEx0,T,λ(u)
exactly means that the control u is not singular (see Definition 2). The nondegeneracy of QT,λ
is exactly related with the concept of conjugate point (see Definition 4). Note that, as long as
we do not encounter any conjugate time along the continuation path, the extremals that are
computed are locally optimal. It follows that, to ensure the surjectivity of dEx0,T,λ(u) along
the continuation process, it suffices to assume the absence of singular minimizing trajectory.
Note that, in the simplified problem that we considered, where the controls are unconstrained,
singular trajectories are exactly the projections of abnormal extremals.

Therefore, we conclude that, as long as we do not encounter any minimizing singular control
nor conjugate point along the continuation procedure, then the continuation method works
locally and the extremal solution (uλ, ψλ) which is locally computed as above is of class C1 with
respect to the parameter λ. These two assumptions are the basic ones ensuring the existence
of a local solution in the continuation procedure. In other words, under these two sufficient
conditions, the continuation method is locally feasible.

Before going to global considerations, let us make an ultimate comment on these two as-
sumptions. The absence of conjugate point can be tested numerically: as explained in section
2.3.2, it suffices to test the vanishing of some determinant along the extremal flow (see [23]
for details, and see section 2.4.2 where the package COTCOT is cited). As long as this test does
not detect any conjugate point along the continuation process, this means that the extremals
that are computed are locally optimal. The assumption of the absence of minimizing singular
trajectories is of a much more geometric nature. Such results exist for some classes of control-
affine systems under some strong Lie bracket assumptions (see [17, 19, 166, 167]). Moreover,
as mentioned in section 3.3, it is proved in [45, 46, 47] that for generic (in the Whitney sense)
control-affine systems with more than two controls, there is no minimizing singular trajectory;
hence for such kinds of systems the assumption of the absence of minimizing singular trajectory
is automatically satisfied.

Remark 11. The implicit function argument given above is on the control, but the continuation
method is usually implemented on the exponential mapping (defined in Definition (3)) and
consists of tracking a path of initial adjoint vectors doing the job. More precisely, instead of
(24), one has to solve

expx0,λ(T, p0,λ) = x1, (26)

30



where the exponential mapping is parametrized by λ. Note that this is the shooting method in
the simplified case. Of course for the method to be locally feasible as above we have the same
sufficient conditions.

The previous implicit function arguments permit to ensure the local feasibility of the con-
tinuation procedure, locally around a given solution (that is, locally around a given parameter
λ). Now to make it global over [0, 1], we ought to ensure that the path of zeros λ 7→ p0,λ is
globally defined on [0, 1] and joins p0,0 to p0,1. It could indeed happen that the path is not
globally defined and either reaches some singularity or wanders off to infinity before reaching
λ = 1. To eliminate the first possibility, since a limit of optimal controls is optimal as well (see
e.g. [25, 21]), we can make the assumption of the absence of minimizing singular trajectory
and of conjugate point over all the domain under consideration (not only along the continuation
path), and for every λ ∈ [0, 1]. As said before, the absence of singular minimizing trajectory
over the whole space is generic for large classes of systems, hence this is a reasonable assump-
tion; however the global absence of conjugate point is a strong assumption. There exist however
some other possibilities to tackle singularities2. To eliminate the second possibility, we ought to
provide sufficient conditions ensuring that the tracked paths remain bounded. In other words,
considering (26), we have to ensure that the initial adjoint vectors p0,λ that are computed along
the continuation procedure remain bounded, uniformly with respect to the homotopic param-
eter λ. This means that we have to ensure that the exponential mapping is proper, uniformly
with respect to λ. The properness of the exponential mapping has been studied in [25], where
it has been proved that, if the exponential mapping is not proper, then there must exist an
abnormal minimizer (see also [168], and see [21, Lemma 2.16] for a more general statement). By
contraposition, if one assumes the absence of minimizing abnormal extremals, then the required
boundedness follows.

Note again that, in the simplified problem that we considered, where the controls are un-
constrained, singular trajectories are exactly the projections of abnormal extremals. Hence we
have obtained the following result.

Proposition 2. In the simplified case where M0 = {x0}, M1 = {x1} and U = IRm, if there is
no minimizing singular trajectory nor conjugate points over all the domain, for every λ ∈ [0, 1],
then the continuation procedure (26) is globally feasible on [0, 1].

We stress again that, as explained before, the assumption of the absence of minimizing sin-
gular trajectory made in this proposition holds generically for large classes of control systems.
Therefore this is a reasonable assumption, contrarily to the assumption of the absence of con-
jugate point over all the domain, which is a too strong assumption. It is however not easy to
weaken this assumption. One possibility is to consider a smaller domain, covering the contin-
uation paths under consideration; in this case however one ought to ensure that the tracked
continuation path remains in the domain, that is, remains far from its boundary. There does
not seem to exist any simple and tractable condition ensuring this fact in general. Note that in
[169] the authors use the concept of injectivity radius in order to provide estimations of domains
in which the continuation method is globally feasible, on an example which is however specific
in Riemannian geometry.

2Singularities due to conjugate points may be either detected and then handled with specific methods, or can
be removed generically by Sard arguments (see comments further, on homotopy methods).
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This simple result stated in Proposition 2 withstands many possible generalizations. For
more general optimal control problems Proposition 2 can be extended quite easily, by adapting
the above arguments, and in particular the implicit function argument (although this may be a
bit technical, for instance whenever there are some state constraints, see [39]).

In any case, this kind of result provides the mathematical foundations ensuring the global
feasibility of the continuation method in optimal control. It can be noted that the feasibility
of the continuation method has been much studied for other less specific issues in numerical
analysis (see e.g. [170, 171, 161, 162, 163] and references therein).

In the more general case of homotopies, the parameter λ is not necessarily increasing mono-
tonically from 0 to 1 and we can encounter turning points (see [164]). One of the methods,
known as differential homotopy (or differential pathfollowing), consists of tracking a path of
zeros s 7→ (λ(s), p0,λ(s)) satisfying (26) for every s. It is then usual to assume that the mapping
F has maximal rank (more precisely, that 0 is a regular value of F ) so that the path of zeros
evolves on a submanifold (see e.g. [165] for the details): this kind of implicit function argument
permits to establish, as before, the local feasibility of the method; but now the difference is
that turning points3 are allowed: the zero p0,λ is not necessarily a local function of λ. The
global feasibility issues require topological considerations such as connectedness features. Note
that, if one does not make this assumption that the mapping F has maximal rank, then one
is faced with the possible occurence of singularities. As explained previously for the continu-
ation method, assuming the absence of singularities is a too strong assumption in general. In
the existing literature there are essentially two approaches to tackle this difficulty. The first
approach, of local type, consists of detecting the possible singularities or bifurcations along the
zero path. There is a huge literature on this problem and we refer to [165] for a survey on
these methods applied to homotopy procedures. The second approach, of global type, consists
of considering a global perturbation of the homotopy function, more precisely, of the simpler
problem under consideration, in order to ensure that, with probability one, 0 is a regular value
of F . This variant of the method that can be proved to be globally convergent is known as
globally convergent probability-one homotopy method. It is based on nontrivial transversality
arguments, combined in [172] with Sard’s Theorem4 and yielding to homotopy methods with a
guarantee of success of probability one with respect to the choice of the simpler problem (see
[164] for a nice survey discussion and the statement of a general result of global convergence).
The ”almost everywhere” statement of such a result is used to avoid the possible singularities
of the curves to be tracked in the homotopy procedure. The last crucial requirement to ensure
global feasibility is as before that the tracked paths remain bounded, in order to ensure that
the zero paths are globally well-defined and do not wander off to infinity. This properness can
be handled as before by assuming the absence of abnormal minimizers (see arguments of the
previous discussion). Having in mind these issues, it is then possible to derive results similar to
Proposition 2, according to the specific homotopy method under consideration.

Note that the mathematical foundations of the differential homotopy method applied to
optimal control are studied in [174], and more deeply in [139] where the relation between turning
points of the path and conjugate points is clearly elucidated. Note that the authors of [139],
studying by homotopy a three-body problem, recommend to stop following a path in case a

3A turning point is a point of the path of zeros at which λ(s) has a local extremum.
4See also [173] where such arguments are applied to derive the global Newton method by homotopy. The

authors of [172] make a good historical survey on the use of Sard arguments in homotopy theories.
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conjugate point (resulting into a turning point) appears, and provide some hints to jump to
another path (these hints are however specific to their problem).

From the numerical point of view there exist many methods and strategies in order to
implement continuation or homotopy methods (see [175]), and one has to distinguish between
differential pathfollowing (see e.g. [176] for applications to orbit transfer problems), simplicial
methods (see e.g. [177] for similar applications), predictor-corrector methods, piecewise-linear
methods, etc. Extensive documentation about path following methods with theoretical and
algorithmic issues can be found in [165]. Also, many codes can be found on the web, such as the
well-known Hompack90 (see [178]) or the recent Hampath (see [174]), just to name a few. Many
others are listed in [165] or can be easily found on internet libraries.

4.2 Application to the orbit transfer problem with low thrust

Let us turn back to the orbit transfer problem (1), (2), mentioned in the introduction as a
motivating example. We show here how the minimal time problem of steering this control
system from any initial position to some final orbit can be solved by combining a shooting
method with a continuation procedure. On this problem one immediately realizes that the main
difficulty is the fact that the maximal authorized modulus of thrust is very low. It is then
not surprising to observe numerically that the lower is the maximal thrust, the smallest is the
domain of convergence of the Newton method in the shooting problem. In these conditions it
is natural to carry out a continuation on the value of the maximal thrust, starting with larger
values of the maximal thrust (for which the problem is no more realistic, but for which the
shooting method is by far easier to make converge), and then decreasing step by step the value
of the maximal thrust, down to low realistic values.

This strategy was implemented in [179] in order to realize the minimal time 3D transfer of a
satellite from a low and eccentric inclinated initial orbit towards the geostationary orbit, for an
engine of around 1500 kg. Their continuation procedure starts with the orbit transfer problem
with the value Tmax = 60 N, for which the domain of convergence of the shooting function is
large enough so that the shooting method can be initialized easily. Then they decrease the value
of Tmax step by step in order to reach down the value Tmax = 0.14 N. Along this continuation
procedure, the authors observe (and prove) that the minimal time tf is right-continuous with
respect to the maximal thrust Tmax, hence, in theory, it could be expected that the minimal
time tf obtained at the step k of the continuation procedure is a good initial guess for the step
k+ 1. However, they note that this strategy is not so much efficient numerically for low thrusts,
in the sense that, for low values of Tmax, the value of Tmax has to be decreased with very small
steps to ensure convergence. The authors then use the remarkable heuristics tfTmax ' Cst,
which permits to significantly improve the efficiency of their continuation procedure and to
reach down the low value of Tmax = 0.14 (for which the resulting time of transfer is more than
six months).

The minimal fuel consumption orbit transfer problem has also been solved in [180, 181]. It
consists of minimizing the cost

∫ tf
0 ‖T (t)‖dt, and the problem is more difficult than the minimal

time problem, because the optimal control derived from the Pontryagin Maximum Principle is
no more continuous. This lack of continuity implies difficulties to apply the shooting method. To
overcome this problem, the authors propose to implement a continuation on the cost functional,
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parametrized by λ ∈ [0, 1]. More precisely, they propose to minimize the cost∫ tf

0

(
(1− λ)‖T (t)‖2 + λ‖T (t)‖

)
dt.

The case λ = 0 corresponds to the minimization of the energy, while λ = 1 corresponds to the
original problem (minimization of the consumption). For every λ < 1, the application of the
Pontryagin Maximum Principle leads to smooth controls, for which the shooting method can
be applied successfully. Also, for λ = 0 the shooting problem is easier to intialize. The authors
prove that it is possible to follow a path of solutions starting from λ = 0 and reaching a value of
λ very close to 1, which permits then to initialize successfully the shooting method with λ = 1.

It can be noted that the heuristics tfTmax ' Cst has been understood and clearly explained
in the papers [182, 183]. In these references, based on preliminary results of [184] where the
optimal trajectories of the energy minimization problem are approximated using averaging tech-
niques, the averaged Hamiltonian system is explicitly computed and is shown to be a Riemannian
problem. The geodesics and their integrability properties are investigated and deeply analyzed,
as well as the Riemannian metrics of the averaged system. Since the averaged system is Rieman-
nian, this means, roughly speaking, that optimal trajectories are straight lines up to a change
of coordinates. Since the averaged system can serve as a good approximation of the initial sys-
tem for low values of the maximal thrust (this fact is proved in these references), the heuristics
follows. This is one more example where a geometric insight provides a good understanding of
the problem, leading to an efficient numerical solving.

Remark 12. In [21] it is shown how one can moreover take into account a shadow cone (eclipse)
constraint in the orbit transfer problem. The approach is based on an hybridization of the
problem, considering that the controlled vector fields are zero when crossing the shadow cone.
A regularization procedure consisting of smoothing the system, combined with a continuation,
is also implemented (it is actually the objective of the article to derive convergence properties
of smoothing procedures) and compared with other penalization methods as in [185].

4.3 A continuation approach to the strong thrust orbit transfer problem by
flattening the Earth

In this section we sketch shortly an alternative approach to the strong thrust minimal consump-
tion orbit transfer planification problem developed in [186], consisting of considering at first the
problem for a flat model of the Earth with constant gravity, and then of introducing step by
step (by continuation) the variable gravity and the curvature of the Earth, in order to end up
with the true model.

Of course, the fuel efficient orbit transfer of a satellite has been widely studied (see [187, 2]),
with many possible approaches. For instance in [188, 189, 190] it is solved using impulsive orbit
transfers in which it is considered that the engine makes instantaneous changes of velocity. In
[191] a continuous dynamical approach is considered, taking into account thrust limitations,
and then one must distinguish between low-thrust (as in the previous section) and high-thrust
(as here) problems. Many possible direct methods are described in [83] to solve this problem.
Indirect methods have also been used in spite of the drawback of the initialization difficulty
explained previously. For instance in [192] the impulse transfer solution is used to provide a
good initial guess to the shooting method for nearly circular initial and final orbits, based on the
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intuition that the constrained thrust trajectory should be close to impulsive for strong thrusts
(see [189, 193]). A multiple shooting method is used in [194], where the number of thrust
arcs evolves iteratively. To initialize properly the shooting method, the authors of [181, 195]
implement differential or simplicial homotopies for passing continuously from the easier problem
of minimizing the L2-norm of the control to the initial fuel consumption problem, however for the
low-thrust problem (the approach does not work for strong thrusts). In [196] an impressive and
efficient software for solving the orbit transfer problem is described, combining and smoothing
processes and taking advantage of numerical interpolation formulas derived in [197] whose goal
were to initialize successfully the shooting method within certain ranges of orbit values.

Here we described shortly an alternative approach, based on the remark that the problem
is extremely easy to solve whenever the Earth is flat with a constant gravity. Then we pass
continuously to the initial model. We restrict to the two-dimensional case and consider the
coplanar orbit transfer problem with a spherical Earth and a central gravitational field g(r) = µ

r2
.

Written in cylindrical coordinates, the control system under consideration is

ṙ(t) = v(t) sin γ(t), ϕ̇(t) = v(t)
r(t) cos γ(t),

v̇(t) = −g(r(t)) sin γ(t) + Tmax
m(t) u1(t), γ̇(t) =

(
v(t)
r(t) −

g(r(t))
v(t)

)
cos γ(t) + Tmax

m(t)v(t)u2(t),

ṁ(t) = −βTmax

√
u1(t)2 + u2(t)2

(27)
where the thrust is T (t) = u(t)Tmax (here in the application Tmax is large since we consider a
strong thrust), and the control is u(t) = (u1(t), u2(t)) satisfying the constraint u1(t)2+u2(t)2 6 1.
The optimal control problem under consideration consists of steering the above system from a
given initial configuration r(0) = r0, ϕ(0) = ϕ0, v(0) = v0, γ(0) = γ0, m(0) = m0, to some point
of a specified final orbit r(tf ) = rf , v(tf ) = vf , γ(tf ) = γf (other kinds of final conditions have
been considered in [186]), by maximizing the final mass m(tf ). Note that the final time tf must
be fixed in this problem, otherwise the optimal control problem would not have any solution (see
[180, 194]) since it is always better in terms of consumption to let the engine turn more around
the planet with shorter thrust arcs. The application of the Pontryagin Maximum Principle to
this problem leads to a shooting problem with discontinuous controls (consisting of thrust and
balistic arcs) that is not easy to solve directly because it is difficult to initialize adequately. In
contrast, consider the very simple flat Earth model

ẋ(t) = vx(t), ḣ(t) = vh(t),
v̇x(t) = Tmax

m(t) ux(t), v̇h(t) = Tmax
m(t) uh(t)− g0,

ṁ(t) = −βTmax

√
ux(t)2 + uh(t)2,

(28)

where x denotes the horizontal variable, h is the altitude, and vx and vh are the corresponding
components of the velocity. The control (ux(·), uh(·)) must satisfy the constraint ux(·)2+uh(·)2 6
1. It happens that the problem of maximizing the final mass maxm(tf ) (here, it makes sense to
consider a free final time), with initial conditions x(0) = x0, h(0) = h0, vx(0) = vx0, vh(0) = vh0,
m(0) = m0, and final conditions h(tf ) = hf , vx(tf ) = vxf , vh(tf ) = 0, is extremely simple to
solve. It can even be solved explicitly, analytically, and the shooting method can be simplified
in order to converge automatically and instantaneously, without any careful initialization (see
[186] for details). In view of that it is tempting to try to pass continuously from this simple
model to the initial one by acting on the gravity and on the curvature of the planet. Note that,
since the coordinates used in (28) are Cartesian whereas those in (27) are polar, at the end of
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the continuation procedure a change of coordinates will be required. Evidently, this change of
coordinates is x = rϕ, h = r−rT (where rT is the radius of the Earth), vx = v cos γ, vh = v sin γ,
and for the control, ux = u1 cos γ−u2 sin γ, uh = u1 sin γ+u2 cos γ. When passing from polar to
Cartesian coordinates, note however that we not take into account an obvious physical feature:
in the absence of control (u = 0), in the flat Earth model (28) there do not exist any horizontal
trajectories (for which h(t) is constant), whereas the round Earth model (27) does admit round
(Keplerian) orbits (for which r(t) is constant). This still holds even though we transform the
flat Earth model with a variable gravity. This is of course due to the model that is too much
simplist, and we are going to modify this model accordingly, by introducing some new terms
into the dynamics of the flat Earth model, so that there may exist such horizontal trajectories
with null thrust.

First of all, let us apply the above change of coordinates to the control system (27). This
leads to

ẋ(t) = vx(t) + vh(t) x(t)
rT+h(t) , ḣ(t) = vh(t),

v̇x(t) = Tmax
m(t) ux(t)− vx(t)vh(t)

rT+h(t) , v̇h(t) = Tmax
m(t) uh(t)− µ

(rT+h(t))2
+ vx(t)2

rT+h(t) ,

ṁ(t) = −βTmax

√
ux(t)2 + uh(t)2.

(29)

This control system is exactly the system (27), expressed in cylindrical coordinates. With respect
to the flat Earth model (28), except the fact that the gravity term is variable, we observe the
presence of additional terms in the dynamics of x, vx and vh, which can be viewed for the
flat Earth model as kinds of correcting terms that permit the possible occurence of horizontal
trajectories. In view of that, in order to pass continuously from the flat Earth model (28) to the
(actually round Earth) model (29), we introduce two parameters λ1 and λ2, the first of which
is acting on the gravity, and the second of which permits to introduce the correcting terms.
Finally, we consider the family of control systems

ẋ(t) = vx(t) + λ2vh(t) x(t)
rT+h(t) , ḣ(t) = vh(t),

v̇x(t) = Tmax
m(t) ux(t)− λ2

vx(t)vh(t)
rT+h(t) , v̇h(t) = Tmax

m(t) uh(t)− µ
(rT+λ1h(t))2

+ λ2
vx(t)2

rT+h(t) ,

ṁ(t) = −βTmax

√
ux(t)2 + uh(t)2,

(30)
parameterized by 0 6 λ1 6 1 and 0 6 λ2 6 1. Then, we implement the following continuation
procedure on the resulting family of optimal control problems: implementing a continuation on
λ1, keeping λ2 = 0, we first pass from the simplified flat Earth model (28) with constant gravity
(for λ1 = λ2 = 0) to the intermediate flat Earth model with variable gravity (for λ1 = 1 and
λ2 = 0). Along this first continuation it makes sense to consider free final times. Then, we
implement a second continuation on the parameter λ2, keeping λ1 = 1, to pass continuously to
the initial model (for λ1 = λ2 = 1). Along this second continuation, we fix the final time for
the optimal control problems under consideration to the value obtained at the end of the first
continuation.

The details of the procedure as well as numerical simulations are provided in [186], and
comparisons are led with classical direct methods.

To end this section, it remains to explain how the change of coordinates acts onto the
adjoint vector, in order to come back to the initial cylindrical coordinates after the continuation
procedure. Denoting by F the change of variables from Cartesian to cylindrical coordinates, one
passes from the adjoint vector in Cartesian coordinates to cylindrical coordinates by applying
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the transpose of the inverse of the differential of F . This is indeed a general geometric result
whose proof is provided in the appendix of [186].

4.4 Solving the atmospheric re-entry problem by continuation

Another approach to solve the atmospheric re-entry problem of Section 3.1 by a shooting method,
implemented in [198], consists of carrying out a continuation on the maximal value of the state
constraint on the thermal flux in order to introduce this constraint step by step. The procedure
automatically determines the structure of the optimal trajectory, and permits to start from
the easier problem without state constraint and to introduce the constraints progressively (see
also [199]). The theoretical foundations which permit to take into account the change of the
structure of the trajectory (and hence the number of unknowns in the shooting method) along
the continuation procedure were derived in [39] for first-order state constraints and in [200] for
second-order state constraints, and permit to prove that, under some appropriate assumptions,
the change in the structure of the trajectory is regular is the sense that, when a constraint
becomes active along the continuation, only one boundary arc appears. Note indeed that it could
happen that infinitely many boundary arcs appear; see for instance [43] where this phenomenon
is shown to be typical for constraints of order more than or equal to three. Here however in the
problem under consideration the state constraints are of order two. To take into account this
change of structure along the continuation, the usual continuation procedure must be modified
accordingly. For the atmospheric re-entry problem with a constraint on the thermal flux, this
procedure is described in details in [198], and permits to recover in a nice way the results of [97].

4.5 General Goddard’s problem and singular trajectories

Variants of Goddard’s problems (see [201]) are investigated in [101, 202] for nonvertical tra-
jectories. The control is the thrust force, and the objective is to maximize a certain final cost,
typically, the final mass. Performing an analysis based on the Pontryagin Maximum Principle, it
is proved that optimal trajectories may involve singular arcs (along which the norm of the thrust
is neither zero nor maximal), that are computed and characterized. Numerical simulations are
carried out, both with direct and indirect methods, demonstrating the relevance of taking into
account singular arcs in the control strategy. The indirect method combines a shooting method
with a continuation method. The continuation approach leads to a quadratic regularization
of the problem similar to the one presented in section 4.2 and is a way to tackle with the
problem of nonsmoothness of the optimal control. Note that this quadratic regularization has
also been used in [180, 195]. To tackle the lack of continuity of the optimal control u, which
makes difficult the application of a shooting method, the authors consider a family of optimal
control problems indexed by a continuation parameter λ ∈ [0, 1] with minimization criterion∫ tf

0 ((1− λ)‖u(t)‖2 + λ‖u(t)‖)dt, so that the case λ = 0 corresponds to the minimization of the
energy and λ = 1 to the original problem (minimization of the consumption) under consideration
in their articles.
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5 Dynamical systems theory and applications to mission design

5.1 Dynamics around Lagrange points

Consider the so-called circular restricted three-body problem, in which a body with negligible
mass evolves in the gravitational field of two masses m1 and m2 called primaries and assumed to
have circular coplanar orbits with the same period around their center of mass. The gravitational
forces exerted by any other planet or body are neglected. In the solar system this problem
provides a good approximation for studying a large class of problems. In a rotating frame the
equations are of the form

ẍ− 2ẏ =
∂Φ
∂x

, ÿ + 2ẋ =
∂Φ
∂y

, z̈ =
∂Φ
∂z

with Φ(x, y, z) = x2+y2

2 + (1−µ)((x+µ)2 + y2 + z2)−1/2 +µ((x−1 +µ)2 + y2 + z2)−1/2 + µ(1−µ)
2 .

These equations have the first integral (called Jacobi first integral) J = 2Φ−(ẋ2 + ẏ2 + ż2), hence
the solutions evolve on a five-dimensional energy manifold, the topology of which determines
the so-called Hill’s region of possible motions (see e.g. [203]).

It is well-known that the above dynamics admit five equilibrium points called Lagrange
points, the three first of which, denoted L1, L2 and L3, being collinear points on the axis joining
the centers of the two primaries, and the two last of which, denoted L4 and L5, located in an
equilateral way with respect to the primaries (see [204]). It must be noted that the linearized
system around these equilibrium points admits eigenvalues with zero real part, hence the study
of their stability is not obvious. It follows from a generalization of a theorem of Lyapunov (due to
Moser [205]) that, for a value of the Jacobi integral a bit less than the one of the Lagrange points,
the solutions have the same qualitative behavior as the solutions of the linearized system around
the Lagrange points. It was then established in [206] that the three collinear Lagrange points
are always unstable, whereas L4 and L5 are stable under some conditions (that are satisfied in
the solar system for instance for the Earth-Moon system, or for the system formed by the Sun
and any other planet).

The dynamics around these Lagrange points have particularly interesting features for space
mission design. Using Lyapunov-Poincaré’s Theorem, it is shown that there exists a two-
parameter family of periodic trajectories around every Lagrange point (see [206], see also [2]),
among which the well-known halo orbits are periodic orbits that are diffeomorphic to circles
(see [207]) whose interest for mission design was put in evidence by Farquhar (see [208, 209]).
There exist many other families of periodic orbits (called Lissajous orbits) and quasi-periodic
orbits around Lagrange points (see [210, 211]). The invariant (stable and unstable) manifolds
of these periodic orbits, consisting of all trajectories converging to the orbit (as the time tends
to ±∞), are four-dimensional tubes, topologically equivalent to S3 × IR, in the five-dimensional
energy manifold (see [212]). Hence they play the role of separatrices. Therefore they can be used
for mission design and space exploration, since a trajectory starting inside such a tube (called
transit orbit) stays inside this tube. It can be noted however that the invariant manifolds of
halo orbits (which can be really seen as tubes) are chaotic in large time: they do not keep
their aspect of tube and behave in a chaotic way, far from the halo orbit (see [203]). In con-
trast, the invariant manifolds of eight-shaped Lissajous orbits5 (which are eight-shaped tubes)

5Eight-shaped Lissajous orbits are the Lissajous orbits of the second kind, in the sense that they are diffeo-
morphic to a curve having the shape of an eight. They are chiefly investigated in [213].
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are numerically shown in [213] to keep their regular structure globally in time. Moreover, in
the Earth-Moon system, it is shown that they permit to fly over almost all the surface of the
Moon, passing very close to the surface (between 1500 and 5000 kilometers). These features
are of particular interest in view of designing low-cost space missions to the Moon. Indeed in
the future space exploration the Moon could serve as an intermediate point (with a lunar space
station) for farther space missions.

5.2 Applications to mission design and challenges

The idea of using the specific properties of the dynamics around Lagrange points in order to
explore lunar regions is far from new but has recently received a renewal of interest (see e.g.
[214, 203, 215, 216]). In [203, 217, 218, 219], the authors combine the use of low-thrust propulsion
with the use of the nice properties of invariant manifolds of periodic orbits around Lagrange
points in order to design low-cost trajectories for space exploration. Their techniques consist
of stating an optimal control problem that is numerically solved using either a direct or an
indirect transcription, carefully initialized with the trajectories of the previously studied system
(with no thrust). In such a way they are able to realize a reasonable compromise between fuel
consumption and time of transfer, and design trajectories requiring moderate propellant mass
and reaching the target within reasonable time.

Hence, in these studies the previously studied circular restricted three-body problem approx-
imation is used to provide an appropriate first guess for carefully initializing an optimal control
method (for instance, a shooting method) applied to a more precise model. In view of that,
and having in mind the previous methodology based on continuation, it is natural to develop
an optimal planification method based on the combination of the dynamics of the three-body
problem with a continuation on the value of the maximal authorized thrust. This idea is used in
the recent article [139] where a homotopy procedure is carried out on the maximal value of the
thrust, starting from a zero value (natural dynamics), and ending with a low value of the thrust.
The authors are then able to design minimal time trajectories with low thrust passing from a
geostationary orbit around the Earth to a circular lunar one. This idea opens new directions for
future investigations and is a promising method for designing efficiently fuel low-consumption
space missions. Although the properties of the dynamics around Lagrange points have been
widely used for developing planification strategies, up to now, and up to our knowledge they
have not been combined with continuation procedures that would permit to introduce, for in-
stance, the gravitational effects of other bodies, or values of the maximal thrust that are low or
mild, or other more complex models. This is a challenge for potential future studies.

Note that, in [220], the author implements a numerical continuation procedure to compute
minimal-energy trajectories with low thrust steering the engine from the Earth to the Lagrange
point L1 in the Earth-Moon system, by making a continuation on the gravitational constant of
the Moon. The continuation procedure is initialized with the usual Kepler transfer, in which
the Moon coincides with the point L1, and ends up with a trajectory reaching the point L1 with
a realistic gravitational effect of the Moon.

Another challenge, which is imperative to be solved within next years, is the problem of debris
cleaning. Indeed, recently it was observed a drastic growth of space debris in the space around
the Earth, in particular near the SSO orbit and polar orbits with altitude between 600 and 1200
km (indeed these orbits are intensively used for Earth observation). These debris are due to
former satellites that were abandoned, and now cause high collision risks for future space flights.
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It has become an urgent challenge to clean the space at least from its biggest debris in order to
stabilize the debris population, otherwise it will soon become impossible to launch additional
satellites. At present, all space agencies in the world are aware of that problem and are currently
working to provide efficient solutions for designing space debris collecting missions. One of them,
currently led at EADS (see [221]), consists of deorbiting five heavy debris per year, selected in
a list of debris (in the LEO region) so that the required fuel consumption for the mission is
minimized. The problem to be solved turns into a global optimization problem consisting of
several continuous transfer problems and of a combinatorial path problem (selection of the debris
and of the collecting order). It is not obvious to solve since it must combine continuous optimal
control methods with combinatorial optimization, and other considerations that are specific to
the problem. The results of [221] (which are valuable for high-thrust engines) provide first
solutions in this direction, and open new problems for further investigation. For instance it is an
open problem to design efficient space cleaning missions for low-thrust engines, taking benefit
of the gravitational effects due to Lagrange points and to invariant manifolds associated with
their periodic orbits. Such studies can probably be carried out with appropriate continuation
procedures, carefully initialized with trajectories computed from the natural dynamics of the
three-body problem.

6 Conclusion and final remarks

6.1 Optimal control and trajectory optimization

Although the techniques of optimal control surveyed in this article provide a nice way to design
efficient trajectories in particular in aerospace problems, their applications require a reasonably
simple model. In practice many problems remain difficult due to the complexity of real-life
models. For instance in the problem of low-thrust orbit transfer, many problems remain such as
the one of taking into account the gravitational perturbations due to the Earth or the Moon, the
atmospheric drag, the constraint of crossing the Van Allen barrier as quickly as possible, cone
constraints on the control, eclipse constraints, taking into account the launching phase, and the
insertion of the problem in a more global one, using multidisciplinary optimization. The eclipse
constraint in particular may be viewed as a state constraint and can be handled by modelizing
the system as a hybrid system. This problem is called the shadow cone problem. The objective is
to develop necessary optimality conditions leading to efficient computation algorithms. Classical
approaches are based on penalization methods and there is a challenging problem to use rather
shooting methods, based on a Pontryagin approach, which are potentially more efficient from
the point of view of the convergence. Of course all the constraints mentioned above are of
different nature. Some of them can probaly be treated for instance by using some continuation
procedures, but some others are not so well adapted to the use of indirect methods and then,
according to the problem, one should then rather use direct methods (see discussions in [82, 83]).
There is a compromise to be found between the complexity of the model under consideration,
the robustness of that model, and choice of an adapted numerical method to treat the problem.

The presence of numerous constraints on the controls or on the state makes the trajectogra-
phy problems difficult, and in certain situations as for instance in the problem of atmospheric
re-entry, a preliminary step to optimization is an estimation of the accessible set. A challenging
question is then to combine the tools of numerical optimal control and of stabilization with fine
geometric techniques developed recently in nonlinear control in order to design an estimation
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tool of the accessible set.
In many situations the system under consideration is modeled by infinite dimensional systems

(PDE’s). From the mathematical point of view many difficulties arise, and from the numeri-
cal point of view one has to use sophisticated techniques of numerical analysis (on meshes in
particular). Applicative issues concern for instance motor outflows, fuel optimal management,
the minimization of electromagnetic interferences or other perturbations (acoustic, thermic,
etc). The modelization of these problems uses optimal control of PDE’s. The numerical imple-
mentation of necessary optimality conditions (of Pontryagin Maximum Principle type) causes
numerous difficulties, as put in evidence e.g. in [108]. For hyperbolic equations interference
phenomena appear between the mesh and highfrequency modes. Some remedies do exist, such
as for instance highfrequencies filtering or the use of multigrid methods, and the objective is to
adapt and apply them to the complex systems stemming from aerospace. Note that in certain
cases the system in consideration is made of a finite dimensional system coupled with a ”quite
simple” partial differential equation, for instance the problem of optimizing the trajectories of
planes in order to minimize noise pollution. The model should take into account sound propa-
gation, shock waves, and thus, wave-like PDE’s. Nowadays the control of such coupled systems
is a challenging problem in mathematics and recently some first results have been published,
which show how nonlinear couplings may help to recover controllability properties for the system
(see [222]). Many other problems require complex models based on nonlinear PDE’s: propul-
sion problems, thermics, aerodynamics, etc. Due to the complexity of these problems, every
optimization procedure is in general impossible, and the questions that arise are in general on
nonlinear control, in view of applications concerning in particular the design and dimensioning
of space engines.

6.2 Pluridisciplinary optimization

In celestial mechanics many issues are still to be investigated in the very interesting field of
the dynamics around Lagrange points; in particular it should be done a precise cartography of
all invariant manifolds generated by all possible periodic orbits (not only halo or eight-shaped
orbits) around Lagrange points in order to make them useful for mission design. The existence
of such invariant manifolds indeed makes possible the design of low-cost interplanetary missions.
The design of trajectories taking advantage of these corridors, of gravitational effects of celestial
bodies of the solar system, of ”swing-by” strategies, is a difficult problem related to techniques of
continuous and discrete optimization (multidisciplinary optimization). Is is an open challenge to
design a tool combining refined techniques of nonlinear optimal control, continuation procedures,
mixed optimization, and global optimization procedures.

Many problems are modeled by hybrid systems, that is, systems whose dynamics may evolve
with the time and contain discrete variables. An example is the problem of shadow cone con-
straint, another one is the global launcher problem in which the dynamics change whenever
modules fall down. A certain number of deep theoretical results do exist on Pontryagin Max-
imum Principle in the hybrid case (see [10, 12, 34]) but the question of an efficient numerical
implementation is still open in general (see [21]); indeed when one implements a version of hy-
brid maximum principle, one is then immediately faced with a combinatorial explosion. It is not
clear how to adapt efficiently tools of pluridisciplinary optimization to that difficult problem.

Another optimization problem is to determine the optimal placement of actuators, controls,
in order to minimize or maximize a certain criterion: for instance, where the retrorockets should
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be optimally placed for the attitude control of a satellite, what should be the optimal shape
of tailpipes in order to guarantee the best possible fluid outflow, where should the injectors
be positioned in a motor to maximize combustion, etc. This kind of problem is part of the
thematic of optimal design, in which the unknown is no more a vector but a domain. The
problems of optimal locations of sensors or actuators in linear partial differential equations have
been widely considered in engineering problems (see e.g. [223, 224] and references therein). Usual
popular approaches consist of recasting the optimal location problem for distributed systems as
an optimal control problem with an infinite dimensional Riccati equation and then of computing
approximations with optimization techniques. These techniques rely however on an exhaustive
search over a predefined set of possible candidates and are limited with combinatorial difficulties
due to the selection problem. We thus recover the usual flaws of combinatorial optimization
methods. Many challenging problems fall into this category.

An important problem in aerospace is the optimal design of launchers. The objective is to
optimize both the trajectory and the engine (launcher). In the optimal design of a launcher
one may seek to optimize thrust levels, the number of floors, of tanks, or to know what type
of propellant should be used. Methods classically used consist in splitting the global problem
into sub-problems handled with specific methods like genetic algorithms. The development of
pluridisciplinary optimization tools should provide some breakthroughs in this domain. Another
very important problem which could be treated efficiently with this kind of approach is the
problem of space cleaning mentioned previously. We indeed have at our disposal a precise
catalog of fragments, wreckage, scraps, and one of the top priorities in the next years is to
clean the space from big fragments (essentially coming from old satellites). The problem is to
design optimally a space vehicle able to collect in minimal time a certain number of fragments,
themselves being chosen in advance in the catalog in an optimal way. This problem combines
techniques of continuous optimal control in order to determine a minimal time trajectory between
two successive fragments, and techniques of discrete optimization for the best possible choice of
the fragments to be collected.

6.3 Inverse problems

From a certain number of measures one aims at detecting flaws in the structure of an engine,
which are due to shocks, thermic or electromagnetic problems. This is an inverse problem which
requires a mesh adapted to the engine, adequately placed sensors providing the measures, and
this problem is thus related to the aforementioned ones.

The objective may be also to reconstruct the electromagnetic, thermic or acoustic environ-
ment of a launcher (after take-off or along the flight) from measures, in order to protect efficiently
the fragile, delicate components of the launcher like computers for instance. This is a difficult
inverse problem modeled with nonlinear PDE’s. The challenge is to develop a tool permitting
to design efficiently a launcher in order to make it more robust, less sensitive to environment
perturbations. From the point of view of numerical analysis this requires the development of
mesh methods ir spectral methods that are adapted to this specific problem. It can be noted
that since fractional derivatives appear naturally in fluid mechanics problems (acoustic in par-
ticular), for instance when computing a heat flux getting out from the side of a fluid outflow in
function of the time evolution of the internal source, or in the modeling of viscoelastic materials,
it is important to develop efficient numerical approximation schemes of fractional derivatives
(schemes of Grunwald-Letnikov, or Gear, etc) as in [225]. It is a challenge to improve fractional
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methods with optimal inverse reconstruction procedures and with optimal design issues.
Finally, a last inverse problem is the one of optimal design of sensors. The problem is

to determine where the sensors should be placed in order to ensure an optimal observation
of the system, for instance in view of ensuring the success of online guidance processes. The
applications are numerous in aerospace, and this problem is connected to the previous ones, the
measures serving also for instance to reconstruct the electromagnetic or thermic environment
of an engine, or to detect flaws. This problem enters into the category of shape optimization
problems. In a general way measures are taken to reconstruct an environment. A difficult
question is to determine which measures are required in order to optimize the reconstruction
and to be able to approximate in the best possible way an inverse problem.

Combined with guidance objectives, these inverse problems may probably be recast in terms
of pluridisciplinary optimization, as discussed previously. This results into difficult, complex
problems and raises very interesting challenges for the future.
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[85] A. Wächter, L.T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale
nonlinear programming, Math. Programming 106 (2006), 25–57.

[86] C.R. Hargraves, S.W. Paris, Direct trajectory optimization using nonlinear programming and collocation, J. Guid-
ance Cont. Dynam. 10 (1987), no. 4, 338–342.

[87] G. Elnagar, M.A. Kazemi, Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems,
Comput. Optim. Appl. 11 (1998), 195–217.

[88] Q. Gong, I.M. Ross, W. Kang, F. Fahroo, Connections between the covector mapping theorem and convergence of
pseudospectral methods for optimal control Comput. Optim. Appl. 41 (2008), no. 3, 307–335.

46



[89] I.M. Ross, F. Fahroo, Legendre pseudospectral approximations of optimal control problems, New trends in nonlinear
dynamics and control and their applications, 327–342, Lecture Notes in Control and Inform. Sci., 295, Springer,
Berlin, 2003.
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[95] M.G. Crandall, P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983),
1–42.

[96] J.A. Sethian, Level set methods and fast marching methods, Cambridge Monographs on Applied and Computational
Mathematics, 3, Cambridge University Press, 1999.
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[211] G. Gómez, J. Masdemont, C. Simó, Quasihalo orbits associated with libration points, J. Astronaut. Sci. 46 (1998),
135–176.
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[225] A.C. Galucio, F.-F. Deü, S. Mengué, F. Dubois, An adaptation of the Gear scheme for fractional derivatives,
Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 44-47, 6073–6085.

52


