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Intrinsic to family based dispatching is the grouping of similar types of jobs in front of a machine for joint processing. Machine flow times may be improved in this way, as less time is spent on set-ups. Our observations in practice, however, suggest that family based dispatching may result in a bulky arrival pattern for successor manufacturing stages, thereby causing additional delay. So far, literature seems to neglect this effect. To explore this issue we develop queueing theoretical approximations of flow times for a simple two-stage shop. It appears that the optimal batch size for the shop is typically smaller than the optimal batch size for the batch machine. Furthermore, we propose extensions to existing dispatching rules by using information on successor stages. Existing and new extended rules are tested by an extensive simulation study. In line with the queueing theoretical analysis the outcomes indicate that exhaustive rules -assuming batch size to be equal to family queue length -are clearly outperformed by non-exhaustive rules -allowing for smaller batches. Moreover, results show that the inclusion of local information on successor stages in rule decision making improves shop flow times.

In a globalising world manufacturers are under constant pressure to cut costs, while improving delivery speed, product quality, flexibility and delivery reliability at the same time [START_REF] Richards | Agile manufacturing: Beyond lean? Production and Inventory[END_REF]. Group Technology (GT) provides one of the answers to meet these challenges. It suggests exploiting similarities in product and process design to meet the diversity of customer demand in an economic way. Family based dispatching rules supports the GT concept. Jobs sharing similar requirements with respect to machine set-up, are grouped into families and jointly dispatched. Since set-up frequencies are reduced the flow time performance of the specific (batch) machine might be improved.

In this article we study the application of family based dispatching rules in multi-stage manufacturing networks, as they are reflected in, for example, job shops or flow shops. Our research is motivated by a case study concerning the manufacturing of centrifugal pumps (Nomden andSlomp 2006, Bokhorst et al. 2008). In deciding on what to produce next on a machine, the operators apply family based dispatching rules. Hence the time spent on set-ups is reduced. However, at the same time, the operators observe that family based dispatching may cause bulky arrivals at successor stages. As a net effect, flow time for the respective stages could significantly be increased. In order to mitigate this effect, operators adapt batch size taking into account the local status of the successor manufacturing stages. More generally, this practice suggests that possible benefits of family based dispatching should be assessed in a shop-wide context. Surprisingly, influences of successor stages on batch forming at a batch machine and consequences on the overall shop performance receive no attention in literature. Partly this may be explained by the shop configuration studied. Several authors study a single machine shop (for example, [START_REF] Wemmerlov | Fundamental insights into part family scheduling: the single machine case[END_REF], Nomden et al. 2008), thereby neglecting influences of other machines. Other authors study the use of family based dispatching rules within flow [START_REF] Frazier | An evaluation of group scheduling heuristics in a flow-line manufacturing cell[END_REF][START_REF] Shambu | Performance evaluation of cellular manufacturing systems: a taxonomy and review of research[END_REF]. However, the rules studied within these contexts focus on batch machine operation only. Moreover, their performance evaluation does not isolate effects on follow-up stages.

Starting from the above observations we distil (i) a need for a better understanding of the way family based dispatching rules influence overall shop performance, and (ii) a potential for improving current (use of) rules. We address both issues starting from an incremental approach. Firstly, we use queueing theory to analyse the effects follow-up stages may have on the perceived benefits of family based dispatching. More in particular, we study influence of a fixed batch size at the batch machine on overall shop performance. Next, we propose extensions to existing dispatching rules. Basically, the extended rules relate their choice of batch size and job family to both local information on the batch stage and follow-up stages.

Finally, the potential of existing and extended rules is evaluated by a simulation study.

In order to exclude other influencing factors we chose to study a simple two-stage flow shop. The first stage concerns a batch machine, whereas the second stage represents the remainder shop. The latter stage is made up of one or multiple machines in parallel, each being dedicated to a subset of job families. The shop performance is studied varying work loads, set-up to run-time ratios and number of job families.

The paper is structured as follows. In Section 2, we review existing rules for family based dispatching and the shop configurations being studied. A control framework is used as a generic format to describe the existing and extended rules for family based dispatching. In Section 4, we use queueing theory to explore effects successor stages may have on the perceived benefits of family based dispatching. Next, we propose extensions to existing dispatching rules that use local information on successor manufacturing stages (Section 5).

The potential of existing and extended rules for use in manufacturing networks is evaluated by a simulation study (Sections 6,7). Finally, main conclusions are summarized in Section 8. 

LITERATURE REVIEW

Family based dispatching rules received significant attention in literature. This is not surprising given their direct relevance for practice, thereby building on the simple intuition that job similarities may be exploited for reducing machine set-up frequencies. Our literature review starts from a framework for characterizing family based dispatching rules, as proposed by Mosier et al. (1984). We focus on rules adopting the minimization of mean flow time as an objective. See Mosier et al. (1984), [START_REF] Mahmoodi | A comparison of exhaustive and non-exhaustive group scheduling heuristics in a manufacturing cell[END_REF], and [START_REF] Ponnambalam | Analysis of group-scheduling heuristics in a manufacturing cell[END_REF] for rules addressing due date related criterions. (c) Job sequencing: Which job is to be selected from the chosen family.

Two alternative ways for determining a new switching moment (a) are mentioned in literature, following from the notion of rules being exhaustive or not [START_REF] Mahmoodi | A comparison of exhaustive and non-exhaustive group scheduling heuristics in a manufacturing cell[END_REF]. Exhaustive rules assume switching to another family only if all jobs within the current family, including arrivals during the processing, have been processed. Alternatively, nonexhaustive rules do not apply a suchlike restriction.

Existing non-exhaustive rules rely on time fences or local information on the batch stage in deciding on a next switching moment. The AVE rule proposed by Mosier et al. (1984) suggests a choice of family if batch size equals the queue length observed at the previous switching moment. Alternatively, the ECON rule (Mosier et al. 1984, Ruben et al. 1993) allows for a switching decision after each job being completed. Furthermore, Russell (1982) and [START_REF] Chang | Ranking dispatching rules by data envelopment analysis in a job shop environment[END_REF] for overviews.

From this literature review three observations might be drawn:

• Performance evaluation: Structural insights on the flow time performance of rules are lacking.

• Use of information on successor stages: Current rules neglect local information on successor stages in decision making. This suggests a potential for their improvement.

• Rule testing: Promising new non-exhaustive rules (Van der Zee 2010) have only been tested for single machine environments. Their usefulness for manufacturing networks is yet to be explored.

In this article we address the need for a better understanding of family based dispatching rules by:

• Developing queueing theoretical approximations of shop flow times to explore the way successor manufacturing stages influence perceived benefits of family based dispatching.

More in particular, we are interested in the question whether a tailoring of batch size -as allowed for by non-exhaustive rules -would contribute to overall system performance.

• Extending existing family based dispatching rules by including shop floor information on successor manufacturing stages.

• Evaluating existing and extended rules for family based dispatching for their flow time performance in alternative manufacturing network configurations using simulation. 

SHOP DESCRIPTION AND DECISION FRAMEWORK

In this section we describe shop characteristics, and consider a decision framework for its control. The decision framework is meant to facilitate the discussion on rule construction. An overview of the notation and the rules introduced in this section, can be found in the Appendix and Van der Zee et al. (2011a) respectively.

Shop description

We consider a two-stage shop, see Figure 1. The first stage concerns a batch machine (B), whereas the second stage is made up of parallel machines m S ∈ . Buffers are used to store incoming jobs and to decouple both stages. For all buffers unlimited storage capacity is assumed. We associate each job with a single product. Each job belongs to a certain family j J ∈ . A job family requires a specific, sequence dependent, machine set-up at the batch machine. This so-called major set-up is associated with a set-up time 0 , j j s . The length of the set-up time is determined by the current set-up -for family 0 j -and the required set-up for family j . Obviously, 0 , 0 j j s = for 0 j j = . Job related, so-called minor set-ups, are assumed to be included in job processing times ( , ,1 i j p ) for the batch machine, with i identifying individual jobs being available within a family j . Parallel machines m S ∈ are assumed to be identical with respect to processing times ( , ,2 i j p ). However, each machine m S ∈ is dedicated to a subset of job families ( m J J ⊂ ). For simplicity reasons we assume subsets ( m J ) to be non-overlapping.

[Insert Figure 1 

Decision framework

In this section we define a decision framework. The framework builds on the notion that family based dispatching rules may be characterized according to three ordered decisions, cf. Mosier et al. (1984). Also see Section 2. Here we will discuss main implementation issues, using existing rules as vehicles for discussion. Before doing so, we will consider the scope of the framework, as defined by the shop configuration, and the objective.

Scope

The shop control concerns both stages of the shop, cf. 

1 i j j J i i j i j i j i j i j j J i ft T N ft w p w p N ∈ = ∈ = = = + + + = ∑ ∑ ∑ ∑ [1]
In computing flow time for a job i belonging to family j ( , i j ft ) we distinguish between waiting times ( , ,1 , ,2 , i j i j w w ) and job processing times ( Essentially, two types of events govern shop dynamics: job arrivals and job completions (compare Figure 1). As such the events correspond to elementary switching moments. At switching moments a planner is triggered to select the job family to be processed next (cf. b).

Typically, family based dispatching rules consider a subset of switching moments.

Exhaustive rules only allow family selection in case all jobs within the current family have been processed, including jobs arriving during processing. Non-exhaustive rules do not implement such a restriction. Here switching moments are related to static parameters, like time fences for processing a specific family (Russell and Philipoom 1991), or dynamic parameters building on local information, such as queue length (Mosier et al. 1984).

(b) Family type selection: Which of the families to process next

In order to select the family to process next, each family is assigned a priority. In principle, family priorities may be pre-defined. For example, family sequencing may follow a rotational scheme. Also thresholds may be implemented for family selection, such as, for example, a minimum batch size. Furthermore, in case of non-exhaustive rules, family selection may be combined with a decision on batch contents, in terms of, batch size or a pre-selection of available jobs. Again, such decisions may rely on dynamic parameters, i.e., local information, or static parameters, such as, for example, a fixed batch size. Most existing rules, however, tend not to put a-priori restrictions on the choice of family or batch contents. Two important examples will be discussed below.

A basic, benchmark rule for family priority setting is the so-called FCFAM rule (Flynn 1987). This rule prioritizes families by considering the earliest entry moment ( , 

i j t ) of
FCFAM i j j J q j t ∈ > = [2]
Most definitions for family priority setting aiming at mean flow time performance can be related to the well-known concept of the weighted shortest processing time rule (WSPT), see, for example, Pinedo (1995). A good illustration of such a rule for the single machine case is the Minimum Average Set-up and Processing time rule (MASP), see Russell and Philipoom (1991). According to this rule, system set-up is related to the choice of family * j for which a minimum weighted work load is foreseen. Hereby work load is estimated by the sum of family set-up time ( 0 , j j s ) and cumulative processing time ( , ,1 f n p ). Weights are related to queue length at the batch stage ( ,1

j q ): ,1 , 0 ,1 , ,1 * 1 ; 0 ,1 arg min j j j j q i j i MASP j J q j s p j q = ∈ > + = ∑ [3]
Alternative priority rules following the WSPT scheme are typically found by leaving out shop data from the above equation. For example, the so-called MAP, and MAS rules (Mosier et al. 1984, Nomden et al. 2008) can be found by omitting set-up times, and processing times respectively. Furthermore, Van der Zee (2010) proposes the MASP_AD, and MASP_HY rules. These rules extend the MASP rule by allowing for alternative choices of batch size,

,1 1.. j k q =
, within a family j. Note that alternative choices of batch size characterize MASP_AD and MASP_HY as being non-exhaustive. Also see Section 5 for further details.

(c) Job sequencing: Which job is to be selected from the chosen family.

Job sequencing is realized by employing conventional dispatching rules, such as, for example, the first come first serve rule (FCFS) and shortest processing time rule (SPT). The details of the approach including analytical expressions of the operational characteristics are given in Van der Zee et al. (2011b). Equations in Van der Zee et al. (2011b) will be referenced as [Zx], with x being an integer identifying the respective equation. To calculate the (mean) flow times we will use numerical data similar to the data used in the simulation study (Sections 6, 7). See Table 1, and the Appendix for definitions of the parameters and variables.

[Insert Table 1 about here]

Note that for the chosen parameters values the utilization of the batch machine for

1 k = is 1 0.97 U =
. This means that a batch size of one job is theoretically allowed.

The section is split into three parts: 4.1 focuses on characteristics of the first stage; 4.2 considers the total system (first and second stage), and finally in 4.3 conclusions are drawn. Table 1.

[Insert Figure 2 about here]

The (normalized) process flow time as function of the batch size (see Figure 2) shows a well-known behaviour: first decreasing and then increasing, with a unique minimum (Karmarkar 1987, Hopp andSpearman 2000). In contrast with Karmarkar (1987) ) and optimal batch sizes ( opt k ) for alternative numbers of job families ( J ). In parentheses the % change is calculated with respect to 1 J = , as a benchmark. From Figure 2 and Table 1 it can also be observed that the optimal batch size ( opt k ) reduces for a larger number of families ( J ), while the minimum flow time increases. If the optimal batch determination is based on the myopic minimization of the process flow time, deviations from the minimum stage flow times happen. Table 2 shows the flow times for alternative settings for the number of families ( 1, 4,8

J = ) at 4.2 k =
(the optimal batch size). The % increase with respect to the minimum stage flow time shows the potential or urgency to optimize the total flow time of this stage.

[Insert Table 2 about here]

In sum, jobs arriving at a batch machine might be grouped into batches according to family characteristics, thereby causing wait-to-batch times. These wait-to-batch times have a relatively large impact on the stage flow time. Increasing the number of families increases the flow times for each given batch size. Moreover, the minimum flow time increases, while the corresponding optimal batch size decreases. Note how we focused on non-integer optimal batch sizes. In practice the batch sizes can be realized by using a mix of integer batch sizes [Insert Figure 3 about here]

For large batch sizes ( k ) the system flow time will approximately be equal to the line ( )

1.6 9.4 1.2 2 k J S   + +    
, which can be derived from adding [Z11] and [Z19]. This line indicates a stronger influence of the number of machines ( S ) compared with the number of families ( J ). In Figures 4 and5 we consider several combinations of settings for J and S .

[Insert Figures 4, 5 The number of parallel machines in stage 2 not only effects the system flow time, but also the optimal batch size. Table 3 gives the minimum system flow time and the optimal batch size for the selected settings of J and S . Results indicate an increase of the minimum flow time and a reduction of the optimal batch size for higher values of J and S . The number of parallel machines has a relatively strong influence upon that, but this influence diminishes for larger number of families. The % reduction of the optimal batch size calculated with respect to the optimal batch size of the first stage (see Table 2) confirms this. If the optimal batch size of the first stage is used instead of the optimal system batch size the system flow time ( n T ) increases relative to the minimum system flow time ( ,min n T

). For low number of families and number of parallel machines the differences are small. Significant improvements are possible for high values of J and S .

As can be observed in Figures 4 and5 the sensitivity for deviations of the batch size around the optimum value depends on both the number of families and the number of parallel machines, i.e., higher values for J and/or S increase the sensitivity.

[Insert Table 3 about here] All in all this subsection shows the influence of the second stage on the on optimal batch sizes of the batch machine in the first stage. The influence becomes important for large numbers of parallel machines in combination with large number of families.

Conclusions

Because of the impact of forming of batches of families in front of a batch machine the extra caused waiting (wait-to-batch) time should be accounted for in the (system) flow time.

Characteristics of the second stage can also have influence on the system flow times, the These findings hold for a specific non-exhaustive rule, and one might wonder whether the insights are valuable for exhaustive rules. Assume that the average batch size of an exhaustive rule can be compared with the fixed batch size policy of the queueing model.

Then if the average batch size of the exhaustive rule is larger than the optimal batch size improvement options might exist. However, because the batch size is not adapted, the second stage might have a negative effect on the relative flow time performance. Note that differences in priority settings between the rules may influence this reasoning.

The flow times expressions used here are two-moment parametric decomposition approximations. A simulation is used to verify the results in the Sections 4.1 and 4.2. The simulation outcomes show similar behaviour, though the influence of the number of parallel machines is less strong.

EXTENDING RULES FOR MANUFACTURING NETWORK CONTROL

In this section we discuss extensions to existing family based dispatching rules in an attempt to (further) improve their performance in network environments. The extensions enable the respective rules to adapt their choice of family and batch size to the status of successor manufacturing stages.

Motivated by their good performance in previous research (Nomden et al. 2008, Van der Zee 2010) we chose to extend rules MASP (Russell and Philipoom (1991), MAS (Nomden et al. 2008) Essentially, the extensions proposed for existing rules address the setting of the family priorities (compare Section 3.2). Priority settings are adapted by accounting for the estimated waiting time at the second stage. Two alternative approaches are considered:

(1) Rough-cut approach: Families associated with machines that are starved (zero delay) are preferred over other families.

(2) Refined approach: Family priority settings are adjusted by including expected delay at the second stage.

Application of the first "intuitive" rule (1) results in the creation of two subsets of familiesthose referring to starved and non-starved machines respectively. Families within a subset compete on the basis of the original priority settings. For example, MAS is extended as

follows, cf. [3]: , 0 ,1 ,2 0 ( ) * _ ; 0 ,1 2, ( ) , ,2 , 1, ,1 1 arg min ( ) 0 0 a big number j j j j m j MAS S j j J q j q m j i j j j j n J i j s j WL q with M r p s p WL else M ∈ > ∈ = = +  + - + >  =    = ∑ ∑ [4]
Two subsets of job families (low priority, high priority) are created by distinguishing among two work load levels for the machine m in the second stage associated with a family j ( ( ) m j ). In case the machine has not starved before the first job in the batch arrives, work load ( j WL ) is set to a big number ( M ). The machine status is checked by considering queue contents ( ,2 

( ) , ,2 1 j m j q i j j J i p ∈ = ∑ ∑ ),

MASP_N

The MASP rule relates its decision on family selection to weighted flow times for jobs in queue , cf. [3]. For MASP_N we extend this logic by including the estimated delay ( j WL ) of the respective batch at the second stage:

,1 , 0 ,1 ,2 0 ( ) , ,1 * 1 _ ; 0 ,1 2, ( ) , ,2 , 1, ,1 1 arg min ( ) j j j j j m j q i j i MASP N j j J q j q j m j i j j j j n J i s p j WL q with WL r p s p = ∈ > ∈ = + = + = + - + ∑ ∑ ∑ [6]
The first and second term of ). The third term corrects work load for the fact that the first job in the batch will arrive at the second stage not before completing set-up and processing at the batch stage ( 0 , 1, ,1 j j j s p +

).

MASP_AD_N

The non-exhaustive MASP_AD rule extends MASP by allowing for alternative choices of batch size. MASP_AD bounds batch size by considering the highest priority partial batch:

0 min ,1 ,1 0 , , ,1 1 _ ; .. ; 0 * * _ min , 1 arg min ( , ) ( / (1/ )) j j j k j j i j i MASP AD j J k k q q MASP AD j j j T s p F k with F j k k round s p λ = ∈ = > + = = = - ∑ [7]
Formation of partial batches is realized by setting the batch size ( k ). 

j j j j m j k j j i j i MASP AD N j j J k k q q MASP AD N j j j T q j m j i j j j j n J i s p F WL k with F j k k round s p WL r p s p λ = ∈ = > ∈ = + = + = = - = + - + ∑ ∑ ∑ [8]
MASP_HY_N MASP_HY is characterized by a three stage approach. The initial stage is an application of MASP_AD. The second stage for MASP_HY addresses the possibility for increasing set-up efficiency by extending batch size for the chosen family ( * j ):

1. Set * c k = .
2. Determine the priority ( II P ) for the next best family: The above procedure checks whether a further increase of the batch in the same family ( * j ) is possible (step 3), and priority found for the next-best family ( II P ), cf. steps 2, 4, 5. This is reflected in the choice of batch size ( *ex k ), cf. step 6. Finally, in the third stage, a decision is made on whether an exhaustive policy is followed or not. In case the (extended) batch size ( *ex k ) is equal to queue length for the chosen family ( * j ), an exhaustive policy is adopted. In all other cases the next switching moment is determined by the partial batch size, similar to MASP_AD. respectively.

DESIGN OF THE SIMULATION STUDY

A simulation study was designed to consider the potential of existing and new family based dispatching rules. In this section we discuss research questions, the experimental design, and simulation details.

Research issues

In our simulation study we aim to gain an insight in the potential of new and existing rules for family based dispatching for manufacturing network control. More in particular, we study test them in an initial series of experiments. However, the measured performance gains are relatively small. Also these rules are consistently outperformed by the "more refined" rules, i.e., MASP_N, MASP_AD_N, and MASP_HY_N.

Shop configurations

As a starting point for a more detailed discussion of the experimental design, we use Table 4 to specify fixed and experimental factors. Basically, our choice of fixed factors, experimental factors and their ranges are in line with literature on family based dispatching, see, for example, reviews by [START_REF] Frazier | An evaluation of group scheduling heuristics in a flow-line manufacturing cell[END_REF], [START_REF] Shambu | Performance evaluation of cellular manufacturing systems: a taxonomy and review of research[END_REF], and Nomden et al. (2006).

[Insert Table 4 about here]

All configurations studied concern a two-stage shop, see Figure 1. The first stage concerns a batch machine, whereas the second stage is made up of multiple identical machines in parallel, compare Section 3.1. The latter machines are dedicated to non-overlapping subsets of job families of equal size. Jobs are assumed to arrive according to a negative exponential distribution. Batch formation assumes jobs belonging to the same family to be ordered according to shortest processing time (SPT). Further, all job families have an equal share in the product mix. Job processing and set-up times for the batch machine are drawn from a negative exponential distribution, with mean of 1. (1996) for an overview.

The set-up to run-time ratio equals mean set-up time divided by mean processing time.

Set-up times are drawn every time a set-up is executed. For the set-up to run-time ratio two settings are considered: 0.125, and 0.5. Many other authors adopt similar settings; see, for example, [START_REF] Wemmerlov | Fundamental insights into part family scheduling: the single machine case[END_REF], [START_REF] Frazier | An evaluation of group scheduling heuristics in a flow-line manufacturing cell[END_REF], Russell and Philipoom (1991), [START_REF] Andrés | Group Technology in a hybrid flowshop environment: a case study[END_REF]. The relevance of this factor follows from its foreseen impact on set-up frequency.

Alternative work load levels for the batch stage are chosen by adapting the mean interarrival time. The levels have been determined using FCFAM as a control rule. This benchmark configuration was used to determine two levels of work load for each setting of the number of job families and the set-up to runtime ratio. The levels correspond with 75%, and 90% machine utilization, respectively, which includes both processing times and set-ups.

Previous research indicates that shop load has a major impact on (relative) performance of family based dispatching rules [START_REF] Wemmerlov | Job and family scheduling of a flow-line manufacturing cell: a simulation study[END_REF]. Work load levels for the parallel machines in the second stage are realized by simply adjusting their mean processing times.

Simulation modelling

Plant Simulation TM 8.2 (Siemens PLM Software 2008) is used to carry out the simulation experiments. The principles of object oriented design underlying this language make it a flexible and efficient tool for model building. The performance for each rule is estimated using the replication deletion method [START_REF] Hoover | Simulation: a problem solving approach[END_REF]Perry 1986, Law and[START_REF] Law | Simulation modeling and analysis[END_REF]. A total of 60 runs is considered for each experiment. The length of the warm-up period is determined using the Welch procedure [START_REF] Law | Simulation modeling and analysis[END_REF]. In accordance with the outcomes of the procedure the warm up period and run length are set at 10,000 and 110,000 time units, respectively. 

ANALYSIS OF SIMULATION RESULTS

In this section we will analyse the outcomes of the simulation study, starting from the research issues identified in Section 6.

Family based dispatching -no local information on second stage available

The first research issue concerns the potential of existing family based dispatching rules for use in manufacturing networks, see Table 5. The table shows normalized stage waiting times and normalized overall flow time performance for each rule across all shop configurations.

Results are normalized by considering rule performance relative to the FCFAM rule (FCFAM=100). Outcomes for best performing rules are printed in bold. Performance differences for the rules are tested for statistical validity using a paired t-approach, cf. [START_REF] Law | Simulation modeling and analysis[END_REF]. The tests point out that differences greater than 0.25% should be considered significant.

[Insert Table 5 about here]

Table 5 shows that the exhaustive rules (FCFAM, MAS, MASP) are outperformed by the non-exhaustive rules (MASP_AD, MASP_HY) by up to 20% (overall average flow time).

Best overall flow time performance is found for MASP_AD. This is in line with our hypothesis (Section 6.1). Whereas the results for MASP_AD for the first stage confirm our previous research (Van der Zee 2010), results when including the second stage are in line with the queueing analysis (Section 4). Remark that a small batch size for MASP_AD relative to the exhaustive rules (Table 6) goes together with a good performance in the second stage.

[Insert Let us now consider effects of shop configuration on flow time performance. The number of parallel machines making up the second stage does influence normalized waiting times for the second stage (Table 5). Figures on waiting times indicate how the second stage performance of non-exhaustive rules relative to exhaustive rules is improved for a higher number of parallel machines. This is in line with findings from the queueing theoretical analysis (Section 4), suggesting an enlarged room for performance improvement at a higher number of parallel machines (compare Table 3). Remark, how increasing the number of parallel machines causes an increase of the second stage waiting times. Therefore, gains reported in terms of normalized overall flow time figures tend to be more like the -lowergains reported for the second stage.

Table 5 shows how an increase of the number of job families reduces relative gains of non-exhaustive rules over exhaustive rules. This may be explained by the fact that an increase of the number of job families tends to correspond with smaller batch sizes (compare Section 4.1; Figures 4,5). Hence less room is left for flow time improvement by reducing the batch size.

Other factors to consider are the set-up to run-time ratio, and work loads for both stages.

Typically, best performance for non-exhaustive rules, especially MASP_AD, is found for low set-up to run-time ratio, high work loads for the batch machine, and low work loads for the second stage. This may be explained by the presence of longer queues at the batch stage (high work loads), which allow for forming small batches (containing jobs requiring short processing times) at low cost (short set-up times). Furthermore, alternative settings for set-up to run-time ratio, and/or work loads reduce relative gains of non-exhaustive rules over FCFAM, and exhaustive rules to about 0.5 -2%. As far as computational efficiency is concerned, we found that computation times for heuristics are typically small. They range from about 0.11 milliseconds (FCFAM, MASP, MAS) to 0.12 milliseconds (MASP_AD and MASP_HY) for a shop configuration concerning 8 product families, 4 parallel machines for the second stage, and 90% work loads for both stages. Note how computational performance for the extended heuristics (see Sections 5 and 7.2) ranges from 0.12 milliseconds (FCFAM, MASP, MAS) to 0.13 milliseconds (MASP_AD and MASP_HY) for a similar type of shop configuration. Experiments are carried out on an Intel Dual Core 6300 -1.86 GHz computer. Of course, for larger shops computation times may go up. However, the computation times indicated by the simulation experiments leave a lot of room for practical settings.

Family based dispatching -local information on the second stage available

The second series of experiments concerns the extended rules proposed in this article (Section 5). The outcomes of the experiments are shown in Table 7. Just like for the first series of experiments FCFAM is used as a benchmark for normalizing average stage waiting times per stage and average overall flow times.

[Insert Table 7 about here]

Results in Table 7 largely confirm findings for the initial series of experiments. A striking difference is found for configurations which start from 4 parallel machines in the second stage. For these configurations the use of extended rules pays off, allowing for improvements of overall flow time performance of up to 7%. Workings of the extended rules are illustrated by the worsening of waiting times for the batch stage, and a reduction of waiting times for the second stage. Furthermore, a slight increase of average batch size ( 

CONCLUDING REMARKS

In this article we studied family based dispatching rules for use in manufacturing networks.

Family based dispatching rules strive to reduce machine set-up frequencies by grouping similar type of jobs, i.e., families, for joint dispatching. Hence shop flow times may be improved. Starting points for this research are observations from a case study (Nomden andSlomp 2006, Bokhorst et al. 2008). The observations suggest how the use of family based dispatching rules for one stage may result in a bulky arrival pattern for successor stages.

Consequently, overall shop flow time performance may be worsened. We observed how operators manage to avoid this effect to some extent, by adapting batch size to the local status of successor stages. Surprisingly, literature acknowledges the performance gains of family based dispatching for the batch stage, but neglects influence of successor stages.

The initial step in our research concerns improving understanding the effects of successor stages may have on the perceived benefits of family based dispatching. Therefore, we develop queueing theoretical approximations of shop flow times for a simple two-stage shop.

Results indicate that a batch size which is optimal for the batch stage, should be adjusted, i.e., In this article we considered family based dispatching for its use in manufacturing networks.

To foster understanding of effects and benefits of (new) rules for family based dispatching our study started from a simple two-stage network system. As such it offers basic insights, underpinning operators' success, as we found it for the aforementioned case study. An interesting avenue may be the study of alternative, more elaborate network configurations, starting from the decision framework, queueing theoretical analysis, and rules as proposed in mean processing time for family j for first stage, ,1

1 j p p = ,1 j q
number of jobs in queue for family j at 0 t at first stage ,2 j q number of jobs in queue for family j at 0 t at second stage 0 , j j s set-up time required for family j at first stage, given current family 0 j ,1 j s mean set-up time for family j at first stage, ,1 1

j s s s = = 0 t
switching moment, i.e., the moment the dispatcher is triggered to make a decision 

QUEUING THEORETICAL ANALYSIS

We will use the two-moment parametric decomposition approximation for the waiting (flow)

times in (open) queueing networks. See, for example, [START_REF] Kuehn | Approximation analysis of general networks by decomposition[END_REF], [START_REF] Shanthikumar | Open queuing network models of dynamic job shops[END_REF], [START_REF] Whitt | Approximating a point process by a renewal process: two basic methods[END_REF][START_REF] Whitt | The Queueing Network analyzer[END_REF], [START_REF] Albin | Approximating a point process by a renewal process, II: Superposition arrival processes to queues[END_REF], and [START_REF] Buzacott | Stochastic Models of Manufacturing Systems[END_REF].

In addition, many papers use the decomposition approximation in case of batch arrivals and batch processing in queuing networks. See, for example, [START_REF] Whitt | The Queueing Network analyzer[END_REF], Shanthikumar and Buzacott (1985), Segal and Whitt (1988), [START_REF] Bitran | Approximations for product departures from a singleserver station with batch processing in multi-product queues[END_REF] Hopp and Spearman (2000), [START_REF] Curry | Renewal approximations for the departure processes of batch systems[END_REF], Meng and Herague (2004).

The system consists of a two-stage (sequential) shop. Stage 1 concerns one (batch) machine and stage 2 is made up of a number of identical machines in parallel ( S ), each with a buffer in front. The system serves a number of job families, with identical characteristics.

Also see Van der Zee et al. (2011) for more details (especially, Section 3 and Figure 1). The notation for the parameters and variables is described in the Appendix.

1 Operational characteristics of the first (batch) stage.

Before individual jobs of a family arrive in the joint queue in front of the machine, batches of j k jobs are formed. This causes a mean wait-to-batch delay of family j :

,

1 1 ,1 1 1 ( 1) 2 2 2 j wtb wtb j j T k k k J w w λ λ λ   -   - -   = = = =               [1]
The wait-to-batch delay is equal for all families because ,1 j λ λ = and increases with the batch size ( j k k = ). Moreover, since we assume that the total arrival rate at the machine remains constant, regardless the number of families (i.e. The family batch arrival rate at stage 1 is:

F o r P e e r R e v i e w O n l y ,1 ,1 1 j B B T j j k k kJ λ λ λ λ λ       = = = =               [2]
The squared coefficient of variation (SCV) of the inter-arrival times of batches of family j at stage 1 satisfies:

,1 , 1 ,1 a a j a B j j C C C k k     = =           [3]
Next the J families with batch sizes k enter the queue of the machine. The total batch arrival rate is:

,1 1 1 J B B T j T j k λ λ λ =   = =     ∑ [4]
For an approximation of the merged SCV we use (see, for example, Bitran and Tirupati 1989):

,

1 , , 1 1 ,1 1 a J j a B a B j j T C C C k λ λ =     = =         ∑ [5]
The waiting batches in queue of the machine will be served using the First Come First Serve (FCFS) rule. In addition, it will be assumed that the chance of two (or more) family batches of the same type succeeding each other, can be neglected. This implies each batch will require a set-up. The mean processing time of a family j batch becomes

,1 ,1 ,1 1 1 B B j j j p s kp s kp p = + = + =
, and is independent of the family type. The SCV of the processing time is:

2 2 , 1 1 1 1 2 2 1 1 var( ) var( ) ( ) ( ) ( ) s p p B s k p s C k p C C s kp s kp     + + = =     + +     [6]
For the batch waiting time of the first machine, a G/G/1 approximation (see, for example, [START_REF] Buzacott | Stochastic Models of Manufacturing Systems[END_REF]) is used: ( )

, , 1 1 1 1 1 1 2 1 a B p B B B C C U w p U     + = ⋅     -     , [ 7] 
B set T U s kp U U λ = + = + , 0 1 1 T U p λ =
Immediately after processing, a batch is split into individual jobs that depart to the second stage. Consequently an extra mean waiting time is caused:

1 1 ( 1) 2 split k p w -   =     [8]
The mean flow time of the batch machine (or process) in the first stage consists of three components, the waiting time of a batch in the queue, the processing time and the batch split time:

, , 1 1 1 1 1 1 1 1 1 1 ( 1) ( ) ( ) 2 1 2 a B p B pr B split C C U k p T w s kp w s kp s U     + +   = + + + = + + +       -      [9]
Adding the wait-to-batch delay [7] gives the total flow time of the first stage:

, , 1 1 1 1 1 1 1 0 1 1 ( 1) ( 1) ( ) 2 2 1 2 a B p B C C U k p k J T p s kp s U U       + + -   = + + + +         -         [10]
For 0 k → the batch waiting time becomes infinite. For k → ∞ the waiting time approaches the waiting time of jobs in case of no set-ups. This type of behaviour is similar to Karmarkar (1987) using a simple M/M/1 queueing model. Also Hopp and Spearman (2000) consider a queueing model for one family with constant (not k dependent) SCV for the batch arrival and processing times. In addition, the authors leave out the wait-to-batch delay. The wait-to-batch delay and the batch split waiting increase linearly in k . Consequently, for large k the flow time approaches the line:

1 0 1 1 2 k J p U       +               [11]
In order to compare the operational characteristics in both stages, we will normalize all expressions with respect to the mean processing time 1 p . Then the SCV of the processing time becomes 

, , 1 1 1 1 1 0 1 1 1 ( 1) ( 1) ( ) 2 2 1 2 a B p B n n n T C C U k J k T s k s p U U         + - +   = = + + + +           -           [12]
For the approximation of the SCV of the inter-departure times of the first stage we follow [START_REF] Curry | Renewal approximations for the departure processes of batch systems[END_REF]. Rewriting the SCV in a more attractive form gives:

, 2 2 , 2 0 0 1 1 1 1 1 { (1 ) } ( 1)(1 ) ( 1)( )(2 ( )) d a B p B C k C U U C k U k U U U U = - + + - - + - - -+ [13]
The first component is the SCV of the inter-departure times of batches. For

1 k = we get 2 2 1 1 1 { (1 ) } d a p C C U U C = - +
, a well known approximation (Whitt, 1984). In case of no set-up Since based on the assumptions the flow times of the parallel machines are equal, we need only to consider only one machine. The mean waiting time is approximated by the expression:

times o U U = , giving , 2 2 , 2 1 1 1 { (1 ) } ( 1)(1 )
2 2 2 2 2 2 2 1 a p C C U w p U     + =     -    [16]
The flow time becomes: ( )

0 2 2 2 1 0 1 2 (1 ) 2 1 U U k U S U U       - +       -       [19]
The total system normalized flow time is denoted by: 

  Mosier et al. typify family based dispatching rules by distinguishing between three ordered decisions: (a) Switching moment: When to select an other family of jobs for servicing. (b) Family type selection: Which of the families to process next -assuming the decision in (a) has been made.

  Family based dispatching rules typically rely on conventional dispatching rules for sequencing of individual jobs within a family (c). Examples include First Come First Serve (FCFS), Shortest Processing Time (SPT), Earliest Due Date (EDD) etc.. SeeBlackstone et al. 

Figure 1 .

 1 For reasons of simplicity and clarity of understanding we assume a First Come First Serve policy (FCFS) for the second stage. Hence, shop control boils down to making dispatching decisions (including release) for the first (batch) stage. As an objective we consider the minimisation of mean flow time per job in the long run. Given N processed jobs, mean flow time per job (T ) is defined as:

  and analyze the (extended) heuristics we explore which insights from queuing theory can be obtained. Queuing theory offers (approximated) analytical (closed form) expressions of the operation characteristics of a system. Here the system is the twostage shop, discussed in Section 3.1 and shown in Figure1. We are interested in the influence of the batch size on the flow time expression. Particularly, we study the behaviour of the optimal batch size, which minimizes the flow time, for several values of the number of families and the number of parallel machines in the second stage. Assuming fixed batch sizes, the applied family based dispatching rule belongs to the class of non-exhaustive rules. The priority setting is FCFS on the family level, which is similar to the FCFAM rule.

  In this section we consider the process flow time (the flow time of the batch machine), as well as the (total) flow time of this stage for different numbers of families ( 1batch size. Alternative definitions of flow time are meant to indicate the influence of the batch forming time, which is frequently ignored in literature. Using the flow time expressions [Z9] and [Z10] (see Van der Zee et al. (2011b)) results in Figure 2 and

  period of time. However the differences with using "best" integer batch sizes are marginal and left out. [Z18]) of the second stage depends on both the batch size ( k ) by means of the squared coefficient of variation of job inter-arrival times ( 2 a C , see [Z15]) and the number of parallel machines ( S ). Since 2 a C increases with k , the flow time will also increase as function of k . Moreover, the flow time is a linear increasing function of S . These characteristics influence the (normalized) system flow time ( demonstrates that n T has similar behaviour as 1 n T : decreasing, increasing as function of k with a unique minimum. The figure also shows that around the optimal batch size the minimum first stage flow time and the second stage flow time are of the same magnitude.

  and the minimum system flow time. If this stage consists of a number of parallel machines the influence might become strong.

j

  WL represent the work load at the switching moment, i.e., the sum of the processing times for items in queue at the second stage (

  MASP_HY is extended for network use similar to MASP and MASP_AD. This boils down to replacing equations [9], [10] by:

  where information on successor manufacturing stages is either available(1) or not (2).The first series of experiments (1) concerns the application of existing rules, i.e., FCFAM, MAS, MASP, MASP_AD, and MASP_HY for shop control. The policies MAS, MASP, MASP_AD, and MASP_HY are considered, because of their good overall performance in our previous work(Nomden et al. 2008, Van der Zee 2010). For MASP this is confirmed in earlier research byRussell and Philipoom (1991). MAS, MASP_AD, and MASP_HY are new rules, introduced by Nomden et al. (2008) and Van der Zee (2010). Finally, FCFAM, serves as a bench mark rule. It concerns an extension of the well-known FCFS rule, see Section 3.2. Whereas FCFAM, MAS, MASP are exhaustive rules, MASP_AD and MASP_HY are non-exhaustive rules. A key difference between both categories of rules (compare Sections 3, 5) is the batch size. Whereas aforementioned exhaustive rules set batch size equal to queue contents, MASP_AD and MASP_HY consider the use of smaller batch sizes. In the initial series of experiments (1) we will consider whether this characteristic makes a difference for shop performance. After all, queueing approximations (Section 4) suggest that the flow time of the successor stage increases with the batch size. Furthermore, Van der Zee (2010) reports good performance of MASP_AD and MASP_HY for single stage environments. Both findings underpin a hypothesis suggesting that non-exhaustive rules (MASP_AD, MASP_HY) will outperform exhaustive rules (MAS, MASP) on shop performance. The second series of experiments (2) addresses potential of the new extended rules, i.e., MAS_S, MASP_N, MASP_AD_N, and MASP_HY_N, as proposed in this paper (Section 5). By including local information on successor manufacturing stages the new rules aim to improve decisions on family selection. Note how rules MASP_S, MASP_AD_S, and MASP_HY_S (see Section 5), are not included in the study in the interest of space. We did

  improve overall shop flow times. If the successor stage consists of a number of parallel machines the influence might become strong. Existing rules rely on local information on the batch stage only. The aforementioned case study, however, indicate potential of including local information on follow-up stages for family based dispatching. Starting from this notion, we propose several extensions to existing rules. The behaviour of existing and extended rules for network use is tested by an extensive simulation study. A first series of experiments concerns settings for which no local information on follow-up stages is available. Two categories of rules are considered, i.e., exhaustive rules, assuming batches to be equal to queue contents for a job family, and nonexhaustive rules, allowing for smaller batch sizes. In line with aforementioned queueing approximations it is shown how the non-exhaustive rules may outperform the exhaustive rules by up to 20%. Highest gains are found for low set-up to run-time ratios, and high work loads for the batch stage. A second series of simulation experiments concerns the new extended rules. The outcomes indicate a further improvement of average overall flow times by up to 7%, resulting from the inclusion of local information of the second stage. As expected the gains are caused by a reduction of waiting times at the second stage.

  inter-arrival times of family j at first stage, processing times of family j at first stage, job families ( J )Ntotal number of jobs processed over all families S set of machines at second stage S total number of identical machines at second stage ( S ) .e., minimum weighted work load, for the next best family j J up time for family j at first stage ( inter-arrival times of family j at first stage ( processing times of family j at first stage ( j set-up time at first stage ( times at machine m of second stage ( 2,

Family

  time depends on work load settings and number of machines for second stage b Mean set-up time divided by mean processing time c Mean job arrival intervals have been determined for alternative settings of the number of families, set-up to runtime ratio and work load for the batch stage, assuming FCFAM is chosen as the family based dispatching rule.
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 3 Figure 1 Shop lay-out

  . Thus the last component can be considered as extra term caused by set-up times (given batch processing). For very large k the first component becomes constant We assume that the k jobs of a family when served in stage 1 go to one of S machines in the second stage. Each machine serves an equal number of families, given by the integer ( / ) J S . An arbitrary departing family has a chance (can be shown that using renewal assumptions the approximation of the SCV of the inter-arrival times of the first item of (successive) batches satisfies: -arrival times of the first jobs consists of k job (assumed independent) arrival times the SCV should be multiplied by k giving: squared coefficient of variation 2 a C is a function 1 / S and an increasing function of k .

C

  is assumed to be constant, the flow time increases in k (because 2 a C does). In addition, 2 n T is a linear function of S . For very large k the flow time approaches to the line:

  for family j visiting machine m of second stage, set-up time for family j at first stage, inter-arrival times of family j at first stage, inter-arrival times at machine m of second stage, families J total number of job families ( J ) N total number of jobs processed over all families S set of machines at second stage S total number of identical machines at second stage ( S ) for batch of family j at first stage, for family j at second stage, to-batch delay for family j at first stage,

  Switching moment: When to select an other family of jobs for servicing.
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Table 4

 4 distinguishes among 6 experimental factors. The key factor is the family based dispatching rule. In line with the research issues (Section 6.1) each rule is tested for various shop configurations, as determined by alternative settings for the remainder 5 factors. are chosen in accordance with literature. Many authors choose similar settings, see Frazier
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Two alternative shop lay outs are considered -identified by the number of parallel machines in the second stage, i.e., 1 or 4. Alternative settings for the number of job families

Table 6
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  this paper. As such relevance of findings for practical application may be increased. A relevant example concerns a job shop environment, which is much encountered in small batch discrete parts manufacturing. Such an environment would imply machines in successor phases being shared among product families, instead of being dedicated to a single or fixed subset of families (this paper). Consequently, gains of applying informed non-exhaustive rules may be less. However, for flow shops the opposite may be true.

	APPENDIX NOTATION
	Indexes
	i	job identifier = 1,2,... for jobs in the system, ordered by arrival time
	, j n family identifier = 1,2,...
	, c k	batch size, i.e., number of jobs included in the batch
	m	machine identifier = 1,2…
	Parameters
	0 j * j j k min j k	F o r current family, i.e., the family for which the machine has been set-up family for which a minimum weighted work load is foreseen F batch size for family j at first stage o r lower bound for batch size at first stage
	opt *ex , ,1 i j p k k , ,2 i j p ,1 j p	P e e r R optimal batch size at first stage P maximum batch size at first stage for weighted work load is less than 2 P e processing time of job 1, 2,.. i = belonging to family j for first stage e processing time of job 1, 2,.. i = belonging to family j for second stage r R
		e e
		v i e v i e
		w w
		O n l O n l
		y y

*

k batch size at first stage for which a minimum weighted work load is foreseen

Table 1 Input data for queueing model

 1 

	J	,min (% incr.) 1 n T	opt (% red.) k	n T , 1 (% incr.) k =	4.2
	0	10.6	4.2		
	1	12.1	3.1	12.5 (3.1)	
	4	14.8 (22.3)	2.2 (28.3)	18.1 (22.0)	
	8	17.1 (41.3)	1.8 (40.3)	25.4 (88.8)	

Table 2 First stage -minimum process and flow times with optimal batch sizes

 2 

	S				1					2					4	
	J	T	n	,min	opt (% red.) k	n (% incr.) T	T	n	,min	opt (% red.) k	n (% incr.) T	T	n	,min	opt (% red.) k	n (% incr.) T
	1	22.4	2.9 (5.8)	22.5 (0.1)										
	4	24.9	2.1 (2.6)	25.1 (0.1)	39.3	1.6 (26.2) 40.9 (4.0)	64.5	1.3 (38.9) 73.5 (13.0)
	8	27.1	1.8 (1.8)	27.3 (0.8)	40.6	1.5 (16.7) 41.5 (2.3)	65.3	1.3 (28.1) 70.3 (7.7)

Table 3 Minimum system flow times, optimal batch sizes and system flow time using the first stage optimal batch size, dependent of J and S .

 3 

	Fixed factors			
	Family mix		Equal share per family
	Inter-arrival time distribution				Exp
	Set-up time distribution for batch machine	Exp(Mean=1.00)
	Processing time distribution batch machine	Exp(Mean=1.00)
	Processing time distribution parallel machines			Exp	a
	Job selection in batch formation			SPT
	Experimental factors			
	Number of job families F Number of machines for second stage Set-up to runtime ratio b o r Work load batch stage		4;8 1;4 0.125;0.50 75%;90%
	c Work load batch Mean job inter-arrival times Set-up to runtime ratio stage 0.125 75% 0.125 90% e P Number of job families e 4 4 r 4 0.5 75%	Mean job inter-arrival times 1.42 1.16 1.72
	4	0.5	90%		1.34
	8 8	0.125 R 0.125	75% 90%		1.46 1.19
	8 8 Work load second stage	0.5 e e 75% i 0.5 90% v	1.84 1.44 75%;90%
			w	
			O n l
					y

Table 4 Simulation study -Overview of fixed and experimental factors Page 36 of 55 http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk International Journal of Production Research F o r P e e r R e v i e w O n l y Shop configurations Average waiting times stage I Average waiting times stage II Average flow times (stages I&II)

 4 

	#Machines 2 nd stage	# Job Families S/R ratio	Work Load 1 st Stage (%)	Work Load 2 nd Stage (%)	FCFAM	MAS	MASP	MASP_AD	MASP_HY	FCFAM	MAS	MASP	MASP_AD	MASP_HY	FCFAM	MAS	MASP	MASP_AD	MASP_HY
	1	4	0.125	75	75	100.00 95.17 85.40 69.57 80.27 100.00 100.89 98.52 95.73 99.27 100.00	98.74 94.53 88.12 93.11
	1	4	0.125	75	90	100.00 95.17 85.40 69.57 80.27 100.00 100.43 99.48 98.35 99.65 100.00	99.51 97.25 93.96 96.64
	1	4	0.125	90	75	100.00 93.62 86.14 64.17 72.49 100.00 101.48 96.48 87.05 99.72 100.00	96.49 90.92 75.55 83.49
	1	4	0.125	90	90	100.00 93.62 86.13 64.17 72.49 100.00 100.79 97.05 92.09 98.29 100.00	98.06 93.39 82.67 88.94
	1	4	0.5	75	75	100.00 86.93 85.96 83.41 83.82 100.00 101.64 99.60 97.07 100.16 100.00	96.71 95.55 93.69 95.14
	1	4	0.5	75	90	100.00 86.93 85.96 83.41 83.82 100.00 100.73 100.00 98.98 100.15 100.00	98.73 98.04 96.98 97.93
	1	4	0.5	90	75	100.00 81.85 84.69 80.83 77.59 100.00 101.94 96.85 91.64 99.18 100.00	91.20 91.22 87.76 88.23
	1	4	0.5	90	90	100.00 81.85 84.68 80.82 77.59 100.00 101.13 98.49 94.92 99.25 100.00	95.49 94.71 91.48 93.15
	1	8	0.125	75	75	100.00 89.25 73.81 64.68 69.70 100.00 101.74 97.49 96.56 98.33 100.00	97.02 90.07 86.58 89.00
	1	8	0.125	75	90	100.00 89.25 73.81 64.68 69.70 100.00 100.77 99.06 98.64 99.32 100.00	98.75 95.00 93.28 94.59
	1	8	0.125	90	75	100.00 83.58 73.43 56.84 60.34 100.00 102.24 92.67 90.49 96.12 100.00	90.59 82.25 71.74 75.14
	1	8	0.125	90	90	100.00 83.58 73.43 56.84 60.34 100.00 101.26 94.51 93.67 96.18 100.00	94.60 87.30 80.76 83.32
	1	8	0.5	75	75	100.00 74.89 73.62 71.56 71.63 100.00 103.56 100.25 99.29 100.82 100.00	93.35 91.56 90.48 91.15
	1	8	0.5	75	90	100.00 74.89 73.62 71.56 71.63 100.00 101.37 100.14 99.73 100.41 100.00	97.33 96.24 95.65 96.14
	1	8	0.5	90	75	100.00 63.40 67.59 61.03 59.59 100.00 105.02 95.85 95.55 99.07 100.00	81.52 81.34 77.70 77.86
	1	8	0.5	90	90	100.00 63.40 67.59 61.03 59.59 100.00 102.40 97.87 97.42 99.29 100.00	90.29 88.96 86.70 87.37
	4	4	0.125	75	75	100.00 95.17 85.40 69.57 80.27 100.00 100.74 98.97 93.22 96.17 100.00	99.86 97.57 92.02 95.19
	4	4	0.125	75	90	100.00 95.17 85.40 69.57 80.27 100.00 100.34 99.68 97.62 98.62 100.00 100.07 99.05 96.59 97.92
	4	4	0.125	90	75	100.00 93.62 86.14 64.17 72.49 100.00 102.59 100.79 73.17 81.87 100.00	99.80 96.76 75.62 82.65
	4	4	0.125	90	90	100.00 93.62 86.13 64.17 72.49 100.00 102.24 101.57 88.11 91.84 100.00 100.97 99.52 86.30 90.23
	4	4	0.5	75	75	100.00 86.93 85.96 83.41 83.82 100.00 99.94 99.38 96.13 98.38 100.00	98.59 98.10 95.76 97.25
	4	4	0.5	75	90	100.00 86.93 85.96 83.41 83.82 100.00 100.04 99.77 98.67 99.43 100.00	99.50 99.24 98.20 98.86
	4	4	0.5	90	75	100.00 81.85 84.69 80.83 77.59 100.00 98.65 99.00 85.55 92.31 100.00	95.41 96.20 87.56 90.82
	4	4	0.5	90	90	100.00 81.85 84.68 80.82 77.59 100.00 99.78 99.87 94.40 97.10 100.00	98.19 98.50 93.74 95.64
	4	8	0.125	75	75	100.00 89.25 73.81 64.68 69.70 100.00 100.30 98.44 96.36 97.40 100.00	98.80 95.74 93.28 94.58
	4	8	0.125	75	90	100.00 89.25 73.81 64.68 69.70 100.00 100.10 99.43 98.70 99.06 100.00	99.56 98.25 97.19 97.74
	4	8	0.125	90	75	100.00 83.58 73.43 56.84 60.34 100.00 100.08 97.15 85.00 88.26 100.00	95.26 90.87 79.79 82.45
	4	8	0.125	90	90	100.00 83.58 73.43 56.84 60.34 100.00 100.32 99.09 93.96 95.22 100.00	98.12 95.86 89.76 91.19
	4	8	0.5	75	75	100.00 74.89 73.62 71.56 71.63 100.00 99.82 99.22 98.03 98.86 100.00	97.03 96.50 95.47 96.04
	4	8	0.5	75	90	100.00 74.89 73.62 71.56 71.63 100.00 99.92 99.70 99.31 99.58 100.00	98.86 98.62 98.21 98.43
	4	8	0.5	90	75	100.00 63.40 67.59 61.03 59.59 100.00 97.69 97.05 91.79 94.09 100.00	90.12 90.76 86.30 87.26
	4	8	0.5	90	90	100.00 63.40 67.59 61.03 59.59 100.00 99.27 99.04 97.00 97.86 100.00	95.79 96.02 93.75 94.32

Table 5 Normalized average job flow times -Series I : No local information on second stage
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		FCFAM	MAS	MASP	MASP_AD	MASP_HY
	Average batch size	1.90	1.79	1.74	1.33	1.60
	F o r					
	P					
	e					
	e r				
		R				
		e			
		v i e		
				w	
					O n l
						y

Table 6 Batch sizes -averages over all configurations (Series I)
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	FCFAM_S	MAS_S	MASP_N	MASP_AD_N	MASP_HY_N
	Average batch size 1.93 1.82 1.81 1.42 1.69
	F o r				
	P				
	e				
	e r				
	R				
	e			
	v i e		
			w	
				O n l
					y

Table 8 Batch sizes -averages over all configurations (Series II)

 8 

			CONTROLLER	
		family release	job release	start	release	start
		(batch)			
	arrival	arrival	ready	arrival		ready
	F o r			
		P	BATCH MACHINE	
		e			
	products	r e BUFFERS	BUFFERS	PARALLEL MACHINES
			R		
			e		
			v i e	
				w	
				O n l
					y
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