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New efficient algorithm for the calculation of energy levels of AB3 type molecules

I. INTRODUCTION

The theory and computational modeling of molecular vibrations is on the top of interest in the molecular spectroscopy and related fields. Advances in computation of vibration-rotation spectra of three-atomic molecules (see ref. [1][2][3] and references therein) resulted in an interest to computations of spectra for polyatomic molecules . For more information on this subject, the reader is referred to the recent review [21]. An important part of polyatomic molecules are high symmetry molecules [4][5][6][7][8][9][10][11][12][13][14][18][19][20][21][22][23][24][25][26][27]. For the ABC 3 type molecules variational calculations using a finite basis representations and full C 3v symmetry have been applied to CH 3 F [10,11] and CH 3 Cl [27] molecules. In this paper C 3v and T d point groups are considered to be isomorphic to finite permutation groups (permutations of three or four atoms). In spite of a considerable number of publications devoted to computation of vibration-rotation spectra of the AB 4 and the AB 3 type molecules, they often do not completely use the molecular symmetry [4,5,8,9,19,25,26]. One variational method for calculating excited bending states of symmetric tetrahedral pentaatomic molecules based on the use of Radau coordinates and Jacobi polynomials as the basis functions has been presented in [30,31]. Only the technique based on the normal or symmetry coordinates does not result in special difficulties related to a construction of the symmetry basis [13,17,18,21]. See also rovibration calculations by Rey et al. [24] using rectilinear normal coordinates and the normal mode Hamiltonian expressed in terms of irreducible tensor operators.

When using the internal coordinates, such as three angles between the H-P-H bonds in PH 3 , in the general case, the basis functions constructed on the base of these coordinates are not orthogonal, even though those angles are independent. The construction of the symmetry basis using the q ij angles is a trivial task, but a problem is to work out an effective technique for calculations of multidimensional integrals using this basis. In the present work, a finite basis representations approach was applied for the AB 3 type molecules and simple formulas for calculations of the matrix elements of the KE operator and PES are reported . As a rule, we will consider only the angular part of the matrix elements, because the symmetry properties of radial part are obvious. Here we also assume that the molecule has only one deep minimum.

Tennyson et al. [32], Gatti et al. [33,34], Mladenovic´ [35][36] have presented derivations of kinetic energy operators for treating rotations and vibrations of polyatomic molecules using polyspherical coordinates. In these coordinates, the N nuclear position vectors are transformed to N-1 internal vectors and the nuclear center of mass vector, and the internal vectors are parametrized by spherical polar coordinates: Ri , θi , φi , i=1,...,N-1. Then, a body-fixed coordinate system is introduced, defined by aligning the body-fixed z axis along the first vector, and placing the second vector in the body-fixed xz plane. The remaining angles θi, φi are either referenced with respect to the body-fixed z axis, or other vectors.

At the same time, the symmetric form of vibration KE operators is known [30,31,37,38].

Instead of using the torsion angle, symmetric form use additional angles between molecular bonds. This form of KE operators is more tailored to our basis functions, and so we use it in the present work. Symmetric form is especially interesting because it has no sin(q) -2 singularity while the KE operator of Ref. [35] contains this singularity. When constructing the vibration basis set using the products of functions that depend on the bending q and torsion t angles, the angular basis f n (q) must be chosen to be vanishing at sin(q)=0. From a physical point of view, this choice of f n (q) is not always correct because in some vibration states, a molecule can be in a geometric configuration with the angle q=π with rather high probability.

Described in this work algorithm of calculation of vibrational energy levels uses nonorthogonal basis set of three interbond angles q ij . Of course, the non-orthogonal basis is not always easy-to-use, but this type of basis is used, for example, in the chemical reactions theory [39]. When calculating the matrix elements of PES, whenever possible, we try to keep the symmetrical form with respect to three angles. We transform to polar coordinates only at the final phase of the calculations. Similarly, when calculating the matrix elements of the KE operator in symmetric form, we first calculate the derivatives with respect to angles using matrix element symmetry, and only after this, we calculate the matrix element by using polar coordinates.

The present paper comprises seven sections. Section II describes an algorithm for constructing contracted angular basis set that uses three angles q ij between three identical atoms, and the norm calculation for this basis set. Sections III and IV are devoted to algorithm of Section V briefly outlines the general tree-like coupling scheme of PES and basis functions, a construction of the symmetry-adapted angular basis set, and algorithm for calculation of vibrational matrix elements for AB 3 molecules. In section VI we report the tests of the convergence of calculated vibrational PH 3 levels in the 0-7000 cm -1 range. Section VII is devoted to discussion and conclusion.

II. CONTRACTED ANGULAR BASIS FOR THREE IDENTICAL ATOMS AND NORM

CALCULATION

In the present work, the following coordinates were chosen as independent ones: three bond lengths {r 1 , r 2 , r 3 } and three interbond angles {q 12 , q 13 , q 23 }. For one-dimensional basis functions, the following functions were used:
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, where Y are spherical harmonics written in the form of Ref. [START_REF] Varshalovich | Quantum theory of Angular momentum[END_REF] that ensures that
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This basis is not orthogonal one. The norm is calculated using the following three-dimensional integral:
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, where t 23 is the torsion angle.

To calculate the integral 
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Therefore, from Eqs. (2, 3), we get:
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Let us denote the one-dimensional integral by 
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Using Eq. ( 2) and taking into account that spherical harmonics Y lm with the same m are orthogonal we get:
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Using Eqs. (5,6), one can derive

( ) ( ) ∑ + >= < L L k n L k n L k n J J J L k k k n n n 0 , , 0 , , 0 , , 3 3 2 1 3 2 1 3 3 2 2 1 1 1 2 1 2 | π π (7) 
For example, if q q q P P P . Due to simple recursive formulas [START_REF] Varshalovich | Quantum theory of Angular momentum[END_REF] for
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If s=0, similarly to Eqs. (5,6), we get the following expression for the matrix element:
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In comparison with Eq. ( 5), this expression contains an additional summation over the l 3 index and the <l 3 |cos p |l 2 > matrix element. Using the expression
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one can write the matrix element in the form:
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Taking into account that q 23 is independent of q 12 and q 13 , it is easy to obtain the following general expression for the PES matrix elements:
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IV. CALCULATION OF MATRIX ELEMENTS OF KE

In this section, we use the mass-dependent orthogonal coordinates{
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r ,r ,r ,q ,q ,q . The polar coordinates are defined in a standard way via three vectors { } 
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The most convenient expression for the kinetic energy can be obtained in terms of these coordinates, while the analytical representation using internal polar coordinates includes additional terms in the kinetic energy operator [35]. Mass-dependent coordinates (10) keep the same symmetry properties as initial polar coordinates. Let us use the KE operator in the form Ref. [30,31,37] where the KE operator does not comprise the singular terms of the sin(q) -2 form.

Therefore one can use the ) 0 , ( 0 , q Y n spherical harmonics as basis functions that do not vanish at q=π. The kinetic energy of the AB 4 -and AB 3 -type molecules can be expressed in the form [37]:
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The angular diagonal coefficients of the g matrix are written in the form:
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. For AB 4 molecules, the summation in ( 11) is performed over four radial coordinates r i and six angles q ij , while for AB 3 molecules, only three radial coordinates r i and three angles q ij are used. In this 
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Note that only the full sum of all diagonal and off-diagonal angular terms results in symmetric matrix elements, while each of these sums, e.g. the summation only over the diagonal or offdiagonal terms, results in asymmetric matrix elements. In the present paper, to calculate matrix elements, we use the following property of the reduced matrix elements [START_REF] Zhilinskii | Method of Irreducible Tensorial Operators in the Theory of Molecular Spectra[END_REF][START_REF] Champion | Spherical top spectra in Spectroscopy of the Earth's Atmosphere and Interstellar Medium[END_REF]:
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ˆ where P -is an element of the molecular symmetry group. Due to this property, for AB 3 molecules, it is not mandatory to calculate all three diagonal and offdiagonal angular matrix elements. It is sufficient to calculate only one simplest diagonal and one off-diagonal angular matrix element. We calculate the matrix element for the sum of three diagonal operators using the expression:
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we can write the diagonal matrix element it the following form:
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It is more convenient to calculate the off-diagonal matrix element using the polar coordinates.

Let us show, that the off-diagonal matrix element can be expressed in the following form:
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If we denote the one-dimensional integrals in the right-hand member of this expression via
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One can simplify the expression for the 
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For even values of l 1 +l 2 +L, it can be shown [START_REF] Varshalovich | Quantum theory of Angular momentum[END_REF] that:
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V. FULL SYMMETRY BASIS AND CALCULATION OF VIBRATIONAL LEVELS

The initial angular basis (1) can be easily symmetrized and tailored for calculations that use a symmetrical basis. Using the standard operators, one can construct the full symmetry basis set of functions: 
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, respectively. The vibrational basis functions and the PES operators are expressed in terms of irreducible tensor operators [START_REF] Zhilinskii | Method of Irreducible Tensorial Operators in the Theory of Molecular Spectra[END_REF][START_REF] Champion | Spherical top spectra in Spectroscopy of the Earth's Atmosphere and Interstellar Medium[END_REF]. Each tensor is associated to a binary tree [START_REF] Nikitin | [END_REF]. The binary trees of vibrational coupling for AB 3 molecules are shown in Fig. 1. Each branch of the tree is characterized by its symmetry.

The binary tree of the PES parameters is shown in the left part of the figure while the binary tree of the vibrational basis coupling is shown in the right part of this figure. In order to determine the PES operators of the A 1 symmetry type, formed from the symmetrized coordinates [24,25] b a
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we used the two step procedure. In first step, we construct the symmetrized power of the coordinates 
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. The complete vibrational basis functions can be constructed by coupling the symmetrized basis functions of all coordinates into binary trees. For AB 3 and AB 4 molecules [26,27] (18) and the recoupling matrix elements formula:
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where the indices C and Γ denote point group irreducible representations (all other indices are omitted for the sake of simplicity) a multi-dimensional matrix element can be expressed as a sum of the one-dimensional matrix elements products.

The use of a nonorthogonal angular basis does not complicate the procedure for obtaining eigenvalues. There are two methods of solution eigenvalue vibrational problem. In first method, one can solve the eigenvalue angular problem, and then use the resulting orthogonal eigenvectors to construct the symmetrized orthogonal angular basis. In second method, one can use a nonorthogonal vibrational basis set. To solve the symmetric-definite generalized eigenvalue problem, standard computational programs, such as programs available in LAPACK library can be applied. Note that this technique does not consume too much additional main memory because 

VI. EXAMPLE OF APPLICATION TO PH 3 MOLECULE

In the present work, we employ potential in the mass-dependent orthogonal coordinates that has been determined in the paper Ref. [25]. One-dimensional eigenfunctions were computed from the multi-dimensional PES by fixing all other coordinates to the equilibrium values. For the stretching coordinates, the following Morse type function was used:

)] ' ' ( exp[ 1 ) ; ' ( e i r r a a r f - - - = (20) 
where a=1.9. This value of the a parameter ensures that the second order term of the potential provides a reliable representation for the one-dimensional stretching cut. The terms of higher orders result in relatively small corrections. For the interbond angular coordinates, the following functions were used: e ( ) cos( ) cos( ) gives a final set of the 6D expansion terms. Two types of localized one-dimensional wave functions were constructed: Q n (q ij ) -functions of bending angles q ij , and R n (r i ) -functions of radial coordinates r i . One can obtain the symmetrized vibrational basis set by coupling the
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basis functions using Clebsch-Gordan coefficients of the C 3v symmetry group.

To ensure a rapid computation of the irreducible matrix elements, we applied the following technique. We first calculate all J-coefficients (6,8,12,15). After this, we calculate angular and radial three-dimensional matrix elements and store results into main memory. It is not necessary to use an optimization of calculations to get the radial matrix elements. At the same time, one needs to use an optimization of calculations to get the angular irreducible matrix elements.

Several convergence tests involving calculated vibration levels have been already performed using various analytical PES representations and C 2v symmetry [25]. A good agreement between vibration levels calculated using two PES fitted in orthogonal massdependent coordinates (10) and in internal mass-independent coordinates have been already reported in Ref. [25]. In this section, we check only the full symmetry nonorthogonal vibrational basis set convergence in orthogonal mass-dependent coordinates (10). Calculations with increasing dimensions for the basis cut-off suggest that our vibration energies up to 7000 cm -1 are converged in average to 0.01 cm -1 or better. The corresponding residuals increase gradually with energies. Similarly to Ref. [25], in the present paper, we use the nonsymmetrized vibrational basis dimension as the basis dimension. All calculations have been performed using a full symmetry-adapted set of basis functions. The used basis functions have been grouped into the A 1 , A 2 , and E symmetry classes. Let us consider four basis sets referred to as I, II. III, IV. The dimensions of those basis sets are 14643, 16047, 17889, and 19230 functions, respectively. The standard deviation between energy levels calculated using the basis sets I-IV, I-IV, III-IV is 0.034482, 0.002616, and 0.000571 cm -1 , respectively, up to 7000 cm -1 . Because all lower calculated energy levels show a slight difference with respect to those obtained in Ref. [25] only four observed band centers in the region 6700-7000 cm -1 were considered. Comparison of these observed band centres of PH 3 molecule and calculated from PES [25] in four basis sets I, II, III, IV given in Table 1. The deviations between vibration levels calculated using vibrational basis set IV and basis sets I, II, and III are shown in Fig. 2. Similarly to the results of calculations using internal coordinates [25], the main contribution to this standard deviation results from two levels above 6500 cm -1 shifted to 0.3 and 0.5 cm -1 (these levels are not shown in Fig. 2) and without these levels the standard deviation between all set is less 0.01 cm -1 . It is possible, that the considerable deviation for these two levels is resulted from wrong asymptotic behavior of the potential when the molecule is far from its equilibrium geometry. In general, one can come to the conclusion that calculations using the nonorthogonal C 3v basis and the basis reported in the Ref. [25] result in the similar convergence behavior. For example, according to results from Ref. [25], the standard deviation between two vibrational calculations using 12000 and 15000 nonsymmetrised basis functions is 0.048 cm -1 . At the same time, the use of the full symmetry provides that the computation speed of vibration levels is several times faster than for 

VII. DISCUSSION AND CONCLUSION

The primary motivation for this study was to demonstrate a good convergence of new angular basis and to check algorithm of the matrix elements calculation. To do this, we dealt only with a solution of vibrational problem using orthogonal coordinates. At the same time, one can calculate the matrix elements of the vibration-rotation and nonorthogonal terms of the Hamiltonian in a similar way. For example, the matrix elements ( 14) have been calculated in polar coordinates. The functions of the torsion angle used to write vibration-rotation and nonorthogonal terms of the Hamiltonian can be expressed in terms of three angles q ij . This allows one to obtain a symmetrical form similar to (11). In addition, the dependence of the PES functions used in Ref. [17] on sin(q ij ) presents no essential difficulties.

The form of angular basis set based on cos(q ij ) product removes the sin(q) -2 singularity from the vibrational kinetic energy operator in polar coordinates [35] also for AB 4 , ABC 3 type molecules. However, the matrix elements calculations are complicated by the presence of a redundancy among the six angles q ij [19,10] for these molecules. On the other hand, symmetrisation of these basis functions can be achieved easily via projector operators technique.

For the CH 4 molecule, the study of spectra in the range higher than 5400 cm -1 is of considerable importance and it is difficult to obtain a good convergence of the calculated high energy levels without using the T d symmetry. The paper [8,9,26] uses the C 3v symmetry. This means that only 6 from 24 permutations in T d point group are in use. In paper [22], only 8 from 24 elements of T d point group were used. Thus, the cited papers do not employ the full symmetry of the molecule.

Of course, one can try to perform a numerical symmetrization of the angular basis, but it is a The calculation of the angular matrix elements for AB 4 molecules is a rather difficult task.

The calculation procedures for the AB 3 matrix elements employ only the (l 1 ,0,l 2 ,0|L,0) coefficients, while the calculations of the AB 4 matrix elements employ the (l 1 ,0,l 2 ,M|L,M) coefficients. For high values of L and M, the calculation of the (l 1 ,0,l 2 ,M|L,M) coefficients becomes a difficult problem [45,[START_REF] Heim | vibrational matrix elements calculation" should be "the calculation of vibrational matrix elements". Reply> OK, changed p3, line 24, should "numbers" be "quantum numbers" or "atoms"? Reply> OK, changed to atoms[END_REF]29]. For the AB 4 type molecules the same coupling scheme (Fig 1) as for the AB 3 type molecules could be applied. For ABC 3 molecules [27], the complete angular basis function could be received by coupling the three-dimensional symmetrized angular function ) , , ( of two torsion angles [26,27]. The symmetrized form of the PES used in the present paper contains much less terms than a nonsymmetrized form. For example, the 6 th order PES expansion for AB 3 , AB 4 and ABC 3 molecules contains only 196, 287 and 967 parameters, respectively. At the same time, the number of terms in nonsymmetrized forms [27] is 20-40 times greater than that in symmetrized forms. This proves that computations using symmetry-adapted forms of PES are very important.

In our future works, we will try to apply these computations to AB 4 and ABC 3 molecules. Binary tree of vibrational coupling for AB 3 molecules. In the left part: tree of the PES parameters.

In the right part: tree of the basis function coupling.

Figure 2

Deviations between vibration levels of PH 3 molecule calculated in various vibrational basis sets. In the Introduction (and possibly later) the reference list might include the papers of Kozin et al (2003-5) which also consider and apply some of the topics considered in this paper (orthogonal coordinates, contracted angular basis functions, efficient calculation of matrix elements ...) in the context of 4-atomic molecules. Reply> I added two references [28,29] Also in the first paragraph of the Intro, references [34,35] could be cited in the context of the symmetry of AB4 systems.

Reply> I added next sentence to the introduction: One variational method for calculating excited bending states of symmetric tetrahedral pentaatomic molecules based on the use of Radau coordinates and Jacobi polynomials as the basis functions has been presented in [30,31]. p4, line 43, which "New Algorithm"? The one to be described in This Work? Reply> Replaced on "Described in this work algorithm p5, line 54, has "t23" been defined? Reply> I added the definition p7, line 8, insert "angular" before "PES" Reply> OK p7, line 8, should "the power functions" read "a sum of product functions"? Reply> OK p8 (and elsewhere), I think the symbol q is being used in too many different and confusing ways: general coordinates with 1 subscript (as in equation 11) and also interbond angles with 2 subscripts (as in line 3) or no subscripts (as in line 36 , what are the "reduced matrix elements"? (They are defined later, but I think need some explanation here or earlier). Reply> I just added two references because there are explanation in next paragraph p11, line 3, "The not symmetry-adapted" should be "The initial" (and I think everything after "symmetrised" could be deleted in that sentence!).

Reply> OK, changed p11, line 21, there are 2 closing brackets missing in the first formula. Reply> OK, changed p11 & fig 1, the "binary tree" seems trivial -maybe all is explained in ref [START_REF] Zhilinskii | Method of Irreducible Tensorial Operators in the Theory of Molecular Spectra[END_REF] but perhaps a further sentence of explanation here would make the significance of this clearer? Reply> I agree that figure 1 is trivial. But readers very often don't understand coupling scheme. I added some details in the text. Figure 1 is also updated. p11, line 46, "the symmetrized coordinates Si" (as distinct from symmetrised basis functions) appear suddenly and without definition -again some explanation might help the reader. Reply> Si replaced and text is changed p13, line 3, "In the sequel" is not clear (does it mean "next" or "in practice" ...?) Reply> Text changed p15, lines 20-27, apparently a sentence is repeated but with different numbers! Reply> Deleted one sentence p15 lines 27-9 and Table 1, why only compare with 4 observed band centres? What makes these special? Are there no other observations? Also, how do the calculated vibrational levels compare with other variational calculations on this PES? Reply> I added one sentence to text. Calculated levels are very closed to [25]. The purpose of article just demonstrate that the algorithm work. Orthogonal and non orthogonal surfaces [25] are a little different so direct comparing is not informative. p15, the speculation about "some peculiarities of the potential" seems very vague -can the author be more specific? Can he say at least how the two large deviations vary with basis set? 

  New efficient algorithm for the calculation of energy levels of AB3 type molecules

  angular matrix elements of PES and KE in contracted angular basis set.

r

  (i=1,2,3) linking the centre of mass with three identical atoms. Three stretching coordinates r i are the lengths of these vectors angular coordinates. The mass-dependent orthogonal coordinates[35] 

  formula(14), we use Eq. (

  following formula[START_REF] Varshalovich | Quantum theory of Angular momentum[END_REF]:

  For example, for AB 3 molecules, we use the following six projection operators(17) to construct symmetrized three-dimensional angular

  step, we couple the symmetrized powers of different symmetrized coordinates into irreducible trees. A set of all possible trees of the A 1 symmetry type gives a final set of trees. The potential function was developed in power series of irreducible tensors

  , it is necessary to perform only one coupling of stretching basis function and bending basis function (

  is used only to transform the V(PES)+T(KE) matrix. The eigenvalues can be obtained then from the transformed V+T matrix. As a rule, the use of the full symmetry properties allows one to considerably decrease the dimension of the V+T matrices. The general technique used for the vibrational energy levels calculation includes several steps. Step 1: the solving of one-dimensional vibrational problems and calculation of the J coefficients like(6,8,12,15) for angular problem. Step 2: the symmetrization of wave functions and calculation of irreducible matrix elements for angular and radial trees in terms of a sum of products of onedimensional integrals. Step 3: Eq. (19) is recursively used for obtaining sub trees of basis functions until the subsequent sub tree becomes a tree representing only the same type coordinates or a leaf. The 9G symbols are saved in the memory. Vibrational reduced matrix elements are stored on disk separately for each type of symmetry. Step 4: the solution of the generalized eigenvalue problem.

  projection operators(17) for the group of permutations of three H-atoms. The subindices correspond to irreducible representations of the C 3V point group. In order to determine the six-dimensional (6D) expansion terms of the A 1 symmetry type, we applied the two step procedure described above. First step corresponds to the construction of the symmetrized powers, and second step to the coupling of the symmetrized powers of different symmetrized coordinates in irreducible trees. A set of all possible trees of the A 1 representation

  the C 2v basis. In addition, the computations using the full symmetry require less memory space that allows us to work with big basis sets.

  task, because an accurate solution of the vibration problem requires the use of the high excited angular basis functions.

  Figure captions

  Binary tree of vibrational coupling for AB3 molecules. In the left part: tree of the PES parameters.In the right part: tree of the basis function coupling. 215x279mm (600 x 600 DPI)Deviations between vibration levels of PH3 molecule calculated in various vibrational basis sets. 215x279mm (600 x 600 DPI)Reply to the Reviewer 1 (R1) of the manuscript TMPH-2010-0349 by A.V. Nikitin

  

Table I . Comparison of some observed band centers of PH 3 and calculated from PES[25] in four basis sets I, II, III, IV. All values are in cm -1 .

 I 

	PH 3 band	Obs. †	I	II	III	IV
	3ν 3 (E)	6714.60 6714.769	6714.771	6714.766	6714.766
	2ν 1 +ν 3 (E)	6883.73 6886.345	6886.348	6886.344	6886.344
	ν 1 +2ν 3 (E)	6890.86 6890.122	6890.125	6890.121	6890.120
	3ν 3 (A 1 )	6971.16 6971.360	6971.362	6971.359	6971.358
	† See Ref [44].					

1 basis sets:

ψ ψ ψ ψ Γ
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in Fig 1). We used the following standard definition of the direct product of irreducible tensors [START_REF] Zhilinskii | Method of Irreducible Tensorial Operators in the Theory of Molecular Spectra[END_REF][START_REF] Champion | Spherical top spectra in Spectroscopy of the Earth's Atmosphere and Interstellar Medium[END_REF]:

where C,C′,C′′ are irreducible representations, σ, σ′, σ′′ are their rows, and ( )

symbols corresponding to Clebsch-Gordan coefficients of the C 3v symmetry group. Here [C] stands for the dimension of C. The recoupling scheme used for calculations of matrix elements is similar to one described in ref. [START_REF] Nikitin | [END_REF]. Using the standard definition of the reduced matrix elements [START_REF] Zhilinskii | Method of Irreducible Tensorial Operators in the Theory of Molecular Spectra[END_REF][START_REF] Champion | Spherical top spectra in Spectroscopy of the Earth's Atmosphere and Interstellar Medium[END_REF]: