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ABSTRACT 

This paper illustrates a method for the construction of a symmetry-adapted contracted 

angular basis set for AB3 molecules.  Simple formulas that use this basis set for calculations of 

the angular matrix elements of the kinetic energy (KE) operator and angular matrix elements of 

potential energy surface (PES) are reported. The efficient recursive algorithm based on the 

tensorial formalism is used for the calculation of vibrational matrix elements. The symmetric 

form of vibration KE operators without the sin(q)
-2

 type singularity is applied. A good basis set 

convergence for the calculations of vibrational levels of the PH3 molecule is demonstrated.  
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I. INTRODUCTION 

The theory and computational modeling of molecular vibrations is on the top of interest in the 

molecular spectroscopy and related fields. Advances in computation of vibration-rotation spectra 

of three-atomic molecules (see ref. 1-3 and references therein) resulted in an interest to 

computations of spectra for polyatomic molecules [4-31]. For more information on this subject, 

the reader is referred to the recent review [21]. An important part of polyatomic molecules are 

high symmetry molecules [4-14,18-27]. For the ABC3 type molecules variational calculations 

using a finite basis representations and full C3v symmetry have been applied to CH3F [10,11] and 

CH3Cl [27] molecules. In this paper C3v and Td point groups are considered to be isomorphic to 

finite permutation groups (permutations of three or four atoms). In spite of a considerable number 

of publications devoted to computation of vibration-rotation spectra of the AB4 and the AB3 type 

molecules, they often do not completely use the molecular symmetry [4,5,8,9,19,25,26]. One 

variational method for calculating excited bending states of symmetric tetrahedral pentaatomic 

molecules based on the use of Radau coordinates and Jacobi polynomials as the basis functions 

has been presented in [30,31]. Only the technique based on the normal or symmetry coordinates 

does not result in special difficulties related to a construction of the symmetry basis 

[13,17,18,21].  See also rovibration calculations by Rey et al.
 
[24] using rectilinear normal 

coordinates and the normal mode Hamiltonian expressed in terms of irreducible tensor operators.  

When using the internal coordinates, such as three angles between the H-P-H bonds in 

PH3, in the general case, the basis functions constructed on the base of these coordinates are not 

orthogonal, even though those angles are independent. The construction of the symmetry basis 

using the qij angles is a trivial task, but a problem is to work out an effective technique for 

calculations of multidimensional integrals using this basis. In the present work, a finite basis 

representations approach was applied for the AB3 type molecules and simple formulas for 

calculations of the matrix elements of the KE operator and PES are reported . As a rule, we will 

consider only the angular part of the matrix elements, because the symmetry properties of radial 

part are obvious. Here we also assume that the molecule has only one deep minimum. 

Tennyson et al.[32], Gatti et al.
 
[33,34], Mladenovic´

 
[35-36] have presented derivations of 

kinetic energy operators for treating rotations and vibrations of polyatomic molecules using 

polyspherical coordinates. In these coordinates, the N nuclear position vectors are transformed to 
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N-1 internal vectors and the nuclear center of mass vector, and the internal vectors are 

parametrized by spherical polar coordinates: Ri , θi , φi , i=1,...,N-1. Then, a body-fixed coordinate 

system is introduced, defined by aligning the body-fixed z axis along the first vector, and placing 

the second vector in the body-fixed xz plane. The remaining angles θi, φi  are either referenced 

with respect to the body-fixed z axis, or other vectors.  

At the same time, the symmetric form of vibration KE operators is known [30,31,37,38]. 

Instead of using the torsion angle, symmetric form use additional angles between molecular 

bonds.  This form of KE operators is more tailored to our basis functions, and so we use it in the 

present work.  Symmetric form is especially interesting because it has no sin(q)
-2

 singularity 

while the KE operator of Ref. [35] contains this singularity. When constructing the vibration 

basis set using the products of functions that depend on the bending q and torsion t angles, the 

angular basis fn(q) must be chosen to be vanishing at sin(q)=0.  From a physical point of view, 

this choice of fn(q) is not always correct because in some vibration states, a molecule can be in a 

geometric configuration with the angle q=π  with rather high probability.   

Described in this work algorithm of calculation of vibrational energy levels uses non-

orthogonal  basis set of three interbond angles qij. Of course, the non-orthogonal basis is not 

always easy-to-use, but this type of basis is used, for example, in the chemical reactions theory 

[39]. When calculating the matrix elements of PES, whenever possible, we try to keep the 

symmetrical form with respect to three angles. We transform to polar coordinates only at the final 

phase of the calculations. Similarly, when calculating the matrix elements of the KE operator in 

symmetric form, we first calculate the derivatives with respect to angles using matrix element 

symmetry, and only after this, we calculate the matrix element by using polar coordinates.    

The present paper comprises seven sections. Section II describes an algorithm for 

constructing contracted angular basis set that uses three angles qij between three identical atoms, 

and the norm calculation for this basis set. Sections III and IV are devoted to algorithm of 
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calculations of the angular matrix elements of PES and KE in contracted angular basis set.  

Section V briefly outlines the general tree-like coupling scheme of PES and basis functions, a 

construction of the symmetry-adapted angular basis set, and algorithm for calculation of 

vibrational matrix elements for AB3 molecules. In section VI we report the tests of the 

convergence of calculated vibrational PH3 levels in the 0-7000 cm
-1 

range. Section VII is devoted 

to discussion and conclusion.  

 

II. CONTRACTED ANGULAR BASIS FOR THREE IDENTICAL ATOMS AND NORM 

CALCULATION  

In the present work, the following coordinates were chosen as independent ones: three bond 

lengths {r1, r2, r3} and three interbond angles {q12, q13, q23}.  For one-dimensional basis functions, 

the following functions were used: ∑=
l

slnln qYcqf )0,(2)( ,π , where Y are spherical harmonics 

written in the form of Ref. [40] that ensures that 
π4

1
)0,(0,0 =qY  and 1)cos()0,(2

0

2

, =∫ qdqY sl

π

π . 

The normalized eigenfunctions 1)cos()( 2323

0

2 =∫ qdqfn

π

   of one-dimensional angular problem can 

be used to obtain fn. Initial angular basis can be written in the form:                                                     

   )()()( 231312321 321
qfqfqfnnn nnn= .     (1) 

This basis is not orthogonal one. The norm is calculated using the following three-dimensional 

integral: 

∫ ∫ ∫>=<
π π π

0 0

2

0

231312232313131212321321 )cos()cos()()()()()()(|
332211

dtqdqdqfqfqfqfqfqfkkknnn knknkn , 

where t23 is the torsion angle.  

To calculate the integral   2323,

2

0 ,

23

*

,232323

2

0

* ),(),(2)()(
2

21

121
dtsqYsqYccdtqfqf sl

ll

slmlnlmn ∫∑∫ =
ππ

π     

the following expressions [40] were used: 

∑ +
++

=
LM

LMslsl qYLMslslCLllC
L

ll
qYqY )0,(),,()0,0,0(

)12(4

)12)(12(
)0,()0,( 23221121

21
2323 2211 π

  (2) 
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and 

∑+
=+

m

lmlml tqYqY
l

tqqqqY ),()0,(
12

4
))cos()sin()sin()cos()(cos( 23131223131213120,

π
   (3) 

Therefore, from Eqs. (2, 3), we get:  

  ∑ ∑=
L m

LmLmLllll tqYqYKqYqY ),()0,()0,()0,( 231312230230 2121
,    (4) 

where 2

21

21
)0,0,0(

12

)12)(12(

21
LllC

L

ll
K Lll +

++
= , and ),,( 2211 LMmlmlC  is Clebsch-Gordan 

coefficient. Using Eq. (4) we get 

( ) )cos()cos()0,()0,(2

)()()()(|

1312130120

2

0 0

13131212321321

21

21

2313

2211

qdqdqYqYKсс

qfqfqfqfkkknnn

L

LLLll

ll

lkln

knkn

∑∑

∫∫>=<

π

π π

.    (5) 

Let us denote the one-dimensional integral by  

∫∑∫ ==
π

ν

π

νν π
0

1212120120

0

12121212,,, )cos()0,()0,()0,(2)cos()0,()()(
21

21

21111111
qdqYqYqYccqdqYqfqfJ Lll

ll

lklnLknLkn

Using Eq. (2) and taking into account that spherical harmonics Ylm with the same m are 

orthogonal we get: 

( )
Lll

ll

lkln

ll

lklnLkn KccLLllC
L

ll
ccJ ,,

2

21
21

0,,, 21

21

2111

21

211111
12

4

1
)0,0,0(

)12(4

)12)(12(
∑∑ +=

+
++

=
ππ

      (6) 

Using Eqs. (5, 6),  one can derive  

 ( )
( )∑

+
>=<

L

LknLknLkn JJJ
L

kkknnn 0,,0,,0,,

3

321321 332211

12

1
2|

π
π    (7) 

For example, if nlnlc δ=  we get: π>=< 000|000 , 
25

33
111|111

π
>=< , 

35

43
112|112

π
>=< . 

 

III. CALCULATION OF MATRIX ELEMENTS OF PES FOR THREE IDENTICAL 

ATOMS 
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For majority of molecules, the angular PES can be expressed in terms of a sum of product 

functions: )(cos)(cos)(cos 231312
231312 qqq

PPP
 . Due to simple recursive formulas [40] for 

)()cos( 0, qYq n , this considerably facilitates the calculation of matrix elements. Therefore, 

 ∑ ><=
32

32
)0,(|)(cos|2)()(cos ,23

ll

sl

P

klk

P
qYslqslcqfq π . 

If s=0, similarly to Eqs. (5, 6), we get the following expression for the matrix element:  

( )

)cos()cos()0,()0,(0|cos|0

)()()()(2)cos(

131213012023

0 0

13131212

2

32123321

31

321

2313

2211

qdqdqYqYKllсс

qfqfqfqfkkkqnnn

L

LLLll

P

lll

lkln

knkn

P

∑∑

∫∫
><

>=<
π π

π
    

In comparison with Eq. (5), this expression contains an additional summation over the l3 index 

and the <l3|cos
p
|l2> matrix element.   Using the expression 

  
π

π
4

12
0|cos|02

31

321

231333 230,,,

+
><= ∑

L
KllccJ Lll

lll

P

lkln

P

Lkn
     (8)  

one can write the matrix element in the form: 

( )

( )
( )∑

∑∑

+

=><>=<

L

LknLkn

P

Lkn

LknLkn

L

Lll

P

lll

lkln

P

JJJ
L

JJKllссkkkqnnn

0,,0,,0,,

3

0,,0,,23

2

32123321

332211

221131

321

2313

12

1
2

0|cos|02)cos(

π
π

π

 

Taking into account that q23 is independent of q12 and q13, it is easy to obtain the following 

general expression for the PES matrix elements: 

( )
( )∑

+
>=<

L

P

Lkn

P

Lkn

P

Lkn

PPP
JJJ

L
kkkqqqnnn 23

33

13

22

12

11

231312

0,,0,,0,,

3

321231312321
12

1
2)cos()cos()cos(

π
π   (9) 

 

IV. CALCULATION OF MATRIX ELEMENTS OF KE 

In this section, we use the mass-dependent orthogonal coordinates{ }′ ′ ′ ′ ′ ′
1 2 3 12 13 23r ,r ,r ,q ,q ,q . The polar 

coordinates are defined in a standard way via three vectors { }rir  (i=1,2,3) linking the centre of 

mass with three identical atoms. Three stretching coordinates ri are the lengths of these vectors 
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and { }ij
q  are interbond angular coordinates.  The mass-dependent orthogonal coordinates [35] 

{ }′ ′ ′ ′ ′ ′
1 2 3 12 13 23r ,r ,r ,q ,q ,q  are defined in a similar way via three vectors { }′rir : 

 ∑
=

+=
3

1

'
j

jii rdrr
rrr

, where 
c

d
µ313

1

3

1

−
+−=  with 

PH

H
c

mm

m

+
=

3
µ , (10) 

The most convenient expression for the kinetic energy can be obtained in terms of these 

coordinates, while the analytical representation using internal polar coordinates includes 

additional terms in the kinetic energy operator [35]. Mass-dependent coordinates (10) keep the 

same symmetry properties as initial polar coordinates. Let us use the KE operator in the form Ref. 

[30,31,37] where the KE operator does not comprise the singular terms of the sin(q)
-2

 form. 

Therefore one can use the )0,(0, qYn  spherical harmonics as basis functions that do not vanish at 

q=π.  The kinetic energy of the AB4- and AB3–type molecules can be expressed in the form [37]: 

   
j

N

j

j

kj

N

jk

jk

V hghT
ℜ

+
ℜℜ

=− ∑∑
−−

∂
∂

∂∂
∂ 63263

2 )
2

1
/( .    (11)  

For radial coefficients 
i

ijij

m
g

δ
= . The angular diagonal coefficients of the g matrix are written in 

the form: 
)cos(

11
)(sin

2

2

22

2

ijjjii

ij
qrmrm

q
∂

∂










+ . For a pair of angles qijqlk , the angular off-diagonal 

elements of the g matrix vanish unless i=l or j=k:  

)cos()cos(

)cos()cos()cos( 2

2

)cos(),cos(

jkijjj

ikjkijqq

qqrm

qqq
g jkij

∂∂
∂+−

= . Note, that in the g matrix, all 

off-diagonal radial-angular elements vanish. The radial and angular coefficients of the h matrix 

are correspondingly 
ii

i

rm
h

2
=  and 

)cos(

11
)cos(2

22

)cos(

ijjjii

ij

q

qrmrm
qh ij

∂
∂











+−= . For AB4 

molecules, the summation in (11) is performed over four radial coordinates ri and six angles qij, 

while for AB3 molecules, only three radial coordinates ri and three angles qij are used. In this 
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paper, the sums over the diagonal and angular first derivative 
i

i
h
∂ℜ
∂

 terms are referred to as a 

diagonal term. It is easy to calculate the diagonal matrix element using the following equality 

[40]: )0,()1()0,()( 0,0,2

2

ijlijl

ij

ij

ij

qYllqY
q

qctg
q

+−=










∂
∂

+
∂
∂

.  

Note that only the full sum of all diagonal and off-diagonal angular terms results in symmetric 

matrix elements, while each of these sums, e.g. the summation only over the diagonal or off-

diagonal terms, results in asymmetric matrix elements.  In the present paper, to calculate matrix 

elements, we use the following property of the reduced matrix elements [41,42]: 

>>=<< RLRL PFOPPFFOF ˆˆ  where P –is an element of the molecular symmetry group. Due to 

this property, for AB3  molecules, it is not mandatory to calculate all three diagonal and off-

diagonal angular matrix elements. It is sufficient to calculate only one simplest diagonal and one 

off-diagonal angular matrix element.  We calculate the matrix element for the sum of three 

diagonal operators using the expression: 

( ) { }

23131223023

*

0,13013

*

0,12012

*

0,

0 0

2

0

33

3

321

23

23
23

2

2

321

)cos()cos()0,()0,()0,()0,()0,()0,(

)1(2)(

3
'

32
'

21
'

1

332221

333322221111

dtqdqdqYqYqYqYqYqY

llcccccckkk
q

qctg
q

nnn

llllll

llllll

lklnlklnlkln∫ ∫ ∫ ∑
′′′

′′′ +′′=
∂
∂

+
∂
∂ π π π

π
 

Using the designation 

   ( )[ ]
π4

12
1

33

33

333333 33

2

0,,,

+
+′′= ′

′
′∑

L
KllccJ Lll

ll

lkln

D

Lkn
 ,    (12)  

we can write the diagonal matrix element it the following form: 

( )
( )∑

+
=

∂
∂

+
∂
∂

L

D

LknLknLkn JJJ
L

kkk
q

qctg
q

nnn
2

0,,

0

0,,

0

0,,

3

321

23

23
23

2

2

321 33221112

1
2)(

π
π   (13) 

It is more convenient to calculate the off-diagonal matrix element using the polar coordinates.   

Let us show, that the off-diagonal matrix element can be expressed in the following form: 

( ) ∑
+

=
∂
∂

∂
∂

L

Lkn

D

Lkn

D

Lkn
L

JJJkkk
qq

tnnn
)12(

1
2)cos( 0,,,

1

1,,,

1

1,,,

3

321

1312

23321 332211 π
π ,  (14) 

 where 1

1,11

D

LknJ  is a coefficient similar to the coefficients used in Eqs. (6), (8), (12). 
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To prove the formula (14), we use Eq. (4) for product of J functions depending on q23, integrate 

Eq. (14) over t23, and using the known formula for spherical harmonics [40] 

),()1(),( ,, ϕϕ −−=− qYqY ml

m

ml , we get:  

( )

)cos()cos()0,()0,()()()()(

2)cos()cos()()()()cos()()()(

1312131,121,1312

13120 0

13121

2

231312

0 0

2

0

231312

1312

23231312

21

21

2121233

321321

qdqdqYqYqfqf
qq

Kqfqfcc

dtqdqdqfqfqf
qq

tqfqfqf

LLkk

ll L

Lllnnlkln

kkknnn










∂
∂

∂
∂

×=








∂
∂

∂
∂

∑ ∫ ∫ ∑

∫ ∫ ∫
π π

π π π

π
 

If we denote the one-dimensional integrals in the right-hand member of this expression via 

)cos()0,()()( 12121,12

12

12

1

1, 1111
qdqYqf

q
qfJ Lkn

D

Lkn ∫ 








∂
∂

= , we get Eq. (14).  

One can simplify the expression for the 1

1,11

D

LknJ  coefficient using the following formula [40]: 

)()1()1()()()( 1,,, qYmmllqYqmctgqY
q

mlmlml ++−++=
∂
∂

, we get: 

)cos()0,()0,()1()0,()2( 12121,12122120

1

1, 21

21

221111
qdqYqYllqYccJ Lll

ll

lklk

D

Lkn ∫∑ += π . Using Eq. (2) with s1=0, s2=1,  

and taking into account the orthogonality of spherical harmonics, we get 

)1,,1,,0,()0,,0,,0,(
)12(4

)12)(12(
)1( 2121

21
22

1

1,

21

221111
LllСLllС

L

ll
llccJ

ll

lklk

D

Lkn +
++

+=∑ π
    

For even values of l1+l2+L, it can be shown [40] that: 

2/1

22

1122
2121

)]1()1([2

)1()1()1(
)0,,0,,0,()1,,1,,0,(

++

+−+++
=

llLL

llLLll
LllСLllС  

Since the )0,,0,,0,( 21 LllС  coefficients are not equal to zero only at even values of l1+l2+L , one 

can simplify the expression obtained for J in the following way:  

2/1

2/1

11221

1, ]12[
)]1([4

)1()1()1(
21

21

221111
+

+
+−+++

=∑ L
LL

llLLll
KccJ Lll

ll

lklk

D

Lkn π
    (15) 

 

V. FULL SYMMETRY BASIS AND CALCULATION OF VIBRATIONAL LEVELS 

The initial angular basis (1) can be easily symmetrized and tailored for calculations that use a 

symmetrical basis.  Using the standard operators, one can construct the full symmetry basis set of 

functions:  

SkGS nnnPkGnnn ...ˆ|... 2121 σσ =  .       (16) 
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For example, for AB3 molecules, we use the following six projection operators (17) to construct 

symmetrized three-dimensional angular AAAGknnn σ,231312  and radial  RRRGknnn σ,321  basis 

sets:  

12/))23()(2)13()12((,2/))23())(12()13((

,2/))23())(12()13((,12/))23()(2)12()13((

,6/))23())(13()12((,6/))23())(13(12((

22

11

21

−−−−=−−=

+−=+−+=

−−−=+++=

eePeP

ePeeP

eePeeP

ba

ba

EE

EE

AA

,  (17) 

Note that in the present work, the angular AAAGknnn σ,231312  and radial  RRRGknnn σ,321  basis 

sets also are referred to as ),,( 231312,3 qqqf
G

BABD  and  ),,( 321,3 rrrf
G

ABD , respectively. The vibrational 

basis functions and the PES operators are expressed in terms of irreducible tensor operators 

[41,42]. Each tensor is associated to a binary tree [43]. The binary trees of vibrational coupling 

for AB3 molecules are shown in Fig.1. Each branch of the tree is characterized by its symmetry. 

The binary tree of the PES parameters is shown in the left part of the figure while the binary tree 

of the vibrational basis coupling is shown in the right part of this figure. In order to determine the 

PES operators of the A1 symmetry type, formed from the symmetrized coordinates [24,25] 

ba EEAbEaEA SASASASRSRSR ,,,,,
11

 we used the two step procedure. In first step, we construct the 

symmetrized power of the coordinates 43

1

21

1
][,][,][,][

P

E

P

A

P

E

P

A SASASRSR . In second step, we 

couple the symmetrized powers of different symmetrized coordinates into irreducible trees. A set 

of all possible trees of the A1 symmetry type gives a final set of trees. The potential function was 

developed in power series of irreducible tensors ∑=
i

niin rrRKrrV ),...(),...( 11 . The complete 

vibrational basis functions can be constructed by coupling the symmetrized basis functions of all 

coordinates into binary trees. For AB3 and AB4 molecules [26,27], it is necessary to perform only 

one coupling of stretching basis function and bending basis function ( AGnnn ,231312  and  
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RGnnn ,321  in Fig 1). We used the following standard definition of the direct product of 

irreducible tensors [41,42]: 

 [ ] ( )' '' ' '' ' ''

' '' ' ''

' ''

( )C C C C C C C CT T C F T Tσ σ σ σ σ σ
σ σ

× = ∑ , 

where C,C′,C′′ are irreducible representations, σ, σ′, σ′′ are their rows, and ( )' ''

' ''

C C CF σ σ σ  are 3G 

symbols corresponding to Clebsch-Gordan coefficients of the C3v symmetry group. Here [C] 

stands for the dimension of C. The recoupling scheme used for calculations of matrix elements is 

similar to one described in ref. [43]. Using the standard definition of the reduced matrix elements 

[41,42]: 









=

'''

'''

'''
'''

)''(

''

)()'(

')''()()'(

σσσ

ψψ
ψψ

σσσ

CCC
F

V
V

CCC

CCC                                           (18) 

and the recoupling matrix elements formula: 

 
''

22
'
2

''
11

'
1

''
2

''
121

'
2

'
1

222111

''

2

''

1

21

'

2

'

1

''

2121

'

21

''

'

]''][]['[

)()()(

CCCC

CCCCCC

VV

CCC

CCC

CC

VV

ψψψψ

ψψψψ

ΓΓ

ΓΓΓ

















ΓΓΓΓ

=

,              (19) 

where the indices C and Γ denote point group irreducible representations (all other indices are 

omitted for the sake of simplicity) a multi-dimensional matrix element can be expressed as a sum 

of the one-dimensional matrix elements products.  

The use of a nonorthogonal angular basis does not complicate the procedure for obtaining 

eigenvalues. There are two methods of solution eigenvalue vibrational problem. In first method, 

one can solve the eigenvalue angular problem, and then use the resulting orthogonal eigenvectors 

to construct the symmetrized orthogonal angular basis. In second method, one can use a 

nonorthogonal vibrational basis set. To solve the symmetric-definite generalized eigenvalue 

problem, standard computational programs, such as programs available in LAPACK library can 

be applied. Note that this technique does not consume too much additional main memory because 
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the norm matrix is used only to transform the V(PES)+T(KE) matrix. The eigenvalues can be 

obtained then from the transformed V+T matrix. As a rule, the use of the full symmetry 

properties allows one to considerably decrease the dimension of the V+T matrices. The general 

technique used for the vibrational energy levels calculation includes several steps. Step 1: the 

solving of one-dimensional vibrational problems and calculation of the J coefficients like 

(6,8,12,15) for angular problem.  Step 2: the symmetrization of wave functions and calculation of 

irreducible matrix elements for angular and radial trees in terms of a sum of products of one-

dimensional integrals. Step 3: Eq. (19) is recursively used for obtaining sub trees of basis 

functions until the subsequent sub tree becomes a tree representing only the same type 

coordinates or a leaf. The 9G symbols are saved in the memory. Vibrational reduced matrix 

elements are stored on disk separately for each type of symmetry. Step 4: the solution of the 

generalized eigenvalue problem.  

 

VI. EXAMPLE OF APPLICATION TO PH3 MOLECULE 

 In the present work, we employ potential in the mass-dependent orthogonal coordinates 

that has been determined in the paper Ref. [25]. One-dimensional eigenfunctions were computed 

from the multi-dimensional PES by fixing all other coordinates to the equilibrium values. For the 

stretching coordinates, the following Morse type function was used: 

)]''(exp[1);'( ei rraarf −−−=                                                      (20) 

where a=1.9. This value of the a parameter ensures that the second order term of the potential 

provides a reliable representation for the one-dimensional stretching cut. The terms of higher 

orders result in relatively small corrections. For the interbond angular coordinates, the following 

functions were used: 

e( ) cos( ) cos( )ij ijq q qφ = −                                                                (21) 
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The above defined elementary functions (20-21) were used to build six symmetrized 

linear combinations of 
ba EEAbEaEA SASASASRSRSR ,,,,,

11
[24,25] by using three projection 

operators 
bEaEA PPP 11 ,,

1
 from six existing projection operators (17) for the group of permutations 

of three H-atoms.   The subindices correspond to irreducible representations of the C3V point 

group. In order to determine the six-dimensional (6D) expansion terms of the A1 symmetry type, 

we applied the two step procedure described above. First step corresponds to the construction of 

the symmetrized powers, and second step to the coupling of the symmetrized powers of different 

symmetrized coordinates in irreducible trees. A set of all possible trees of the A1 representation 

gives a final set of the 6D expansion terms.  Two types of localized one-dimensional wave 

functions were constructed: Qn(qij) - functions of bending angles qij, and Rn(ri) – functions of 

radial coordinates ri. One can obtain the symmetrized vibrational basis set by coupling the 

AAGnnn σ,231312  and  RRGnnn σ,321  basis functions using Clebsch-Gordan coefficients of the 

C3v symmetry group.  

To ensure a rapid computation of the irreducible matrix elements, we applied the 

following technique. We first calculate all J-coefficients (6,8,12,15). After this, we calculate 

angular and radial three-dimensional matrix elements and store results into main memory. It is 

not necessary to use an optimization of calculations to get the radial matrix elements. At the same 

time, one needs to use an optimization of calculations to get the angular irreducible matrix 

elements.  

 Several convergence tests involving calculated vibration levels have been already 

performed using various analytical PES representations and C2v symmetry [25]. A good 

agreement between vibration levels calculated using two PES fitted in orthogonal mass-

dependent coordinates (10) and in internal mass-independent coordinates have been already 

reported in Ref. [25]. In this section, we check only the full symmetry nonorthogonal vibrational 

basis set convergence in orthogonal mass-dependent coordinates (10). Calculations with 
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increasing dimensions for the basis cut-off suggest that our vibration energies up to 7000 cm
-1

 are 

converged in average to 0.01 cm
-1

 or better. The corresponding residuals increase gradually with 

energies. Similarly to Ref. [25], in the present paper, we use the nonsymmetrized vibrational 

basis dimension as the basis dimension. All calculations have been performed using a full 

symmetry-adapted set of basis functions. The used basis functions have been grouped into the A1, 

A2, and E symmetry classes. Let us consider four basis sets referred to as I, II. III, IV. The 

dimensions of those basis sets are 14643, 16047, 17889, and 19230 functions, respectively. The 

standard deviation between energy levels calculated using the basis sets I-IV, I-IV, III-IV is 

0.034482, 0.002616, and 0.000571 cm
-1

, respectively, up to 7000 cm 
-1

. Because all lower 

calculated energy levels show a slight difference with respect to those obtained in Ref. [25] only 

four observed band centers in the region 6700-7000 cm
-1

 were considered. Comparison of these 

observed band centres of PH3 molecule and calculated from PES[25] in four basis sets I, II, III, 

IV given in Table 1. The deviations between vibration levels calculated using vibrational basis set 

IV and basis sets I, II, and III are shown in Fig. 2. Similarly to the results of calculations using 

internal coordinates [25], the main contribution to this standard deviation results from two levels 

above 6500 cm
-1

 shifted to 0.3 and 0.5 cm
-1

 (these levels are not shown in Fig. 2) and without 

these levels the standard deviation between all set is less 0.01 cm
-1

. It is possible, that the 

considerable deviation for these two levels is resulted from wrong asymptotic behavior of the 

potential when the molecule is far from its equilibrium geometry.  In general, one can come to the 

conclusion that calculations using the nonorthogonal C3v basis and the basis reported in the Ref. 

[25] result in the similar convergence behavior. For example, according to results from Ref. [25], 

the standard deviation between two vibrational calculations using 12000 and 15000 non-

symmetrised basis functions is 0.048 cm
-1

. At the same time, the use of the full symmetry 

provides that the computation speed of vibration levels is several times faster than for 
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computations using the C2v basis. In addition, the computations using the full symmetry require 

less memory space that allows us to work with big basis sets.   

 

VII. DISCUSSION AND CONCLUSION 

 The primary motivation for this study was to demonstrate a good convergence of new 

angular basis and to check algorithm of the matrix elements calculation. To do this, we dealt only 

with a solution of vibrational problem using orthogonal coordinates. At the same time, one can 

calculate the matrix elements of the vibration-rotation and nonorthogonal terms of the 

Hamiltonian in a similar way. For example, the matrix elements (14) have been calculated in 

polar coordinates. The functions of the torsion angle used to write vibration-rotation and 

nonorthogonal terms of the Hamiltonian can be expressed in terms of three angles qij. This allows 

one to obtain a symmetrical form similar to (11). In addition, the dependence of the PES 

functions used in Ref. [17] on sin(qij)  presents no essential difficulties.  

The form of angular basis set based on cos(qij) product removes the sin(q)
-2 

singularity 

from the vibrational kinetic energy operator in polar coordinates[35] also for AB4, ABC3 type 

molecules. However, the matrix elements calculations are complicated by the presence of a 

redundancy among the six angles qij [19,10] for these molecules. On the other hand, 

symmetrisation of these basis functions can be achieved easily via projector operators technique. 

For the CH4 molecule, the study of spectra in the range higher than 5400 cm
-1

 is of considerable 

importance and it is difficult to obtain a good convergence of the calculated high energy levels 

without using the Td symmetry. The paper [8,9,26] uses the C3v symmetry. This means that only 6 

from 24 permutations in Td point group are in use. In paper [22], only 8 from 24 elements of Td 

point group were used. Thus, the cited papers do not employ the full symmetry of the molecule. 

Of course, one can try to perform a numerical symmetrization of the angular basis, but it is a 
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difficult task, because an accurate solution of the vibration problem requires the use of the high 

excited angular basis functions. 

The calculation of the angular matrix elements for AB4 molecules is a rather difficult task. 

The calculation procedures for the AB3 matrix elements employ only the (l1,0,l2,0|L,0) 

coefficients, while the calculations of the AB4 matrix elements employ the (l1,0,l2,M|L,M) 

coefficients. For high values of L and M, the calculation of the (l1,0,l2,M|L,M) coefficients 

becomes a difficult problem [45,46,29]. For the AB4 type molecules the same coupling scheme 

(Fig 1) as for the AB3 type molecules could be applied. For ABC3 molecules [27], the complete 

angular basis function could be received by coupling the three-dimensional symmetrized angular 

function ),,( 141312,3 qqqf
G

ABCD  and the two-dimensional angular symmetrized function 

),,( 342423,2 qqqf
G

CBCD  or two-dimensional wave function ),( 2423,2 ttf
G

CBCD  of two torsion angles 

[26,27]. The symmetrized form of the PES used in the present paper contains much less terms 

than a nonsymmetrized form. For example, the 6
th

 order PES expansion for AB3, AB4 and ABC3 

molecules contains only 196, 287 and 967 parameters, respectively.  At the same time, the 

number of terms in nonsymmetrized forms [27] is 20-40 times greater than that in symmetrized 

forms. This proves that computations using symmetry-adapted forms of PES are very important. 

In our future works, we will try to apply these computations to AB4 and ABC3 molecules. 
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Figure captions 

Figure 1 

Binary tree of vibrational coupling for AB3 molecules. In the left part: tree of the PES parameters. 

In the right part: tree of the basis function coupling. 

 

Figure 2 

Deviations between vibration levels of PH3 molecule calculated in various vibrational basis sets.  

 

 

 

 

Table I. Comparison of some observed band centers of PH3 and calculated from PES[25] in 

four basis sets I, II, III, IV. All values are in cm
-1

. 

PH3 band Obs.† I II III IV 

3ν3(E) 6714.60 6714.769 6714.771 6714.766 6714.766 

2ν1+ν3(E)  6883.73 6886.345 6886.348 6886.344 6886.344 

ν1+2ν3(E) 6890.86 6890.122 6890.125 6890.121 6890.120 

3ν3(A1) 6971.16 6971.360 6971.362 6971.359 6971.358 

† See Ref [44].  
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Special characters 

†  footnote 

ν  lower case nu 
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Binary tree of vibrational coupling for AB3 molecules. In the left part: tree of the PES parameters. 
In the right part: tree of the basis function coupling.  
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Deviations between vibration levels of PH3 molecule calculated in various vibrational basis sets.  
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Reply to the Reviewer 1 (R1) of the manuscript TMPH-2010-0349 

 
by  A.V. Nikitin 

 

 

In the Introduction (and possibly later) the reference list [4-27] might include the papers 

of Kozin et al (2003-5) which also consider and apply some of the topics considered in 

this paper (orthogonal coordinates, contracted angular basis functions, efficient 

calculation of matrix elements ...) in the context of 4-atomic molecules. 

Reply> I added two references [28,29] 

 

Also in the first paragraph of the Intro, references [34,35] could be cited in the context of 

the symmetry of AB4 systems. 

 

Reply> I added next sentence to the introduction: One variational method for calculating 

excited bending states of symmetric tetrahedral pentaatomic molecules based on the use 

of Radau coordinates and Jacobi polynomials as the basis functions has been presented in 

[30,31]. 

 

p4, line 43, which "New Algorithm"? The one to be described in This Work? 

Reply> Replaced on "Described in this work algorithm 

 

p5, line 54, has "t23" been defined? 

Reply> I added the definition 

 

p7, line 8, insert "angular" before "PES" 

Reply> OK 

 

p7, line 8, should "the power functions" read "a sum of product functions"? 

Reply> OK 

 

 

p8 (and elsewhere), I think the symbol q is being used in too many different and 

confusing ways: general coordinates with 1 subscript (as in equation 11) and also 

interbond angles with 2 subscripts (as in line 3) or no subscripts (as in line 36). 

Reply> OK, general coordinates changed to R 

 

p8, line 48, should "couple" be just "pair"? 

Reply> OK 

 

p9, line 13, what are "linear in q_ij terms"? 

Reply> Changed to 'first derivative  

 

 

p9, why has "cos(q_ij)" in line 18 become just "q_ij" in line 45? 

Reply> My misprint! Line 18 changed to q  

Page 25 of 28

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

 

p9, line 29, what are the "reduced matrix elements"? (They are defined later, but I think 

need some explanation here or earlier). 

Reply> I just added two references because there are explanation in next paragraph  

 

 

p11, line 3, "The not symmetry-adapted" should be "The initial" (and I think everything 

after "symmetrised" could be deleted in that sentence!). 

Reply> OK, changed 

 

p11, line 21, there are 2 closing brackets missing in the first formula. 

Reply> OK, changed 

 

 

p11 & fig 1, the "binary tree" seems trivial - maybe all is explained in ref [41] but 

perhaps a further sentence of explanation here would make the significance of this 

clearer? 

Reply> I agree that figure 1 is trivial. But readers very often don't understand coupling 

scheme. I added some details in the text. Figure 1 is also updated. 

 

p11, line 46, "the symmetrized coordinates Si" (as distinct from symmetrised basis 

functions) appear suddenly and without definition - again some explanation might help 

the reader. 

Reply> Si replaced and text is changed 

 

 

p13, line 3, "In the sequel" is not clear (does it mean "next" or "in practice" ...?) 

Reply> Text changed 

 

p15, lines 20-27, apparently a sentence is repeated but with different numbers! 

Reply> Deleted one sentence 

 

p15 lines 27-9 and Table 1, why only compare with 4 observed band centres? What 

makes these special? Are there no other observations? 

Also, how do the calculated vibrational levels compare with other variational calculations 

on this PES? 

Reply> I added one sentence to text. Calculated levels are very closed to [25]. The 

purpose of article just demonstrate that the algorithm work. Orthogonal and non 

orthogonal surfaces [25] are a little different so direct comparing is not informative. 

 

 

p15, the speculation about "some peculiarities of the potential" seems very vague - can 

the author be more specific? Can he say at least how the two large deviations vary with 

basis set? 
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Reply> Potential don't adapted for calculation of high exited states (>7000cm-1). Wrong 

asymptotic behavior of PES leads to problems with basis convergence. New PES is under 

construction now. 

 

 

Other minor errors (but NOT an exhaustive list!): 

 

p1, in the title, "of energy levels calculation for the AB3 types molecules" should be "for 

the calculation of energy levels of AB3 type molecules" 

Reply> OK, changed 

 

All through the text the author has trouble with articles ("the" and "a"); for example on 

p2, line 6, "the symmetry-adapted" should be "a symmetry-adapted"; line 10, insert "the" 

before "kinetic" and line 20, insert "the" before "PH3". 

Reply> Changed 

 

p2, line 15, "vibrational matrix elements calculation" should be "the calculation of 

vibrational matrix elements". 

Reply> OK, changed 

 

p3, line 24, should "numbers" be "quantum numbers" or "atoms"? 

Reply> OK, changed to atoms 

 

p4, line 29, "has no the" should be "does not have the" or "has no" 

Reply> OK, changed to has no 

 

p4, line 43, "not orthogonal" should be "non-orthogonal" 

Reply> OK, changed 

 

p4, line 53, "completion" should be "final" 

Reply> OK, changed 

 

p5, line 39, insert "of" after "form" 

Reply> OK, changed 

 

p6, line 55, Should "In a particular case" be "In three particular cases" or "For example"? 

Reply> OK, changed to for example 

 

p7, line 11, the notation "n_ij" is used for the powers of the cos functions but it seems to 

be P_ij thereafter. 

Reply> OK, changed 

 

p11, line 51, "obtained" should be "resulting" 

Reply> OK, changed 

 

p15, line 31, delete "standard" 
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Reply> OK, changed 

 

p15 line 22, "CM" should be lower case. 

Reply> OK, changed 

 

p16, line 13, "approve" should be "demonstrate" 

Reply> OK, changed 

 

p17, line 40, "prominent" should be "important. 

Reply> OK, changed 

 

p21, footnote to Table 1, why not give the original references here? 

Reply> OK, added 
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