
HAL Id: hal-00669032
https://hal.science/hal-00669032v1

Submitted on 10 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MKPM: A multiclass extension to the kernel projection
machine

Sylvain Takerkart, Liva Ralaivola

To cite this version:
Sylvain Takerkart, Liva Ralaivola. MKPM: A multiclass extension to the kernel projection machine.
IEEE Computer Vision and Pattern Recognition, Jun 2011, Colorado Springs, France. pp.2785-2791,
�10.1109/CVPR.2011.5995657�. �hal-00669032�

https://hal.science/hal-00669032v1
https://hal.archives-ouvertes.fr


MKPM: a Multiclass extension to the Kernel Projection Machine

Sylvain Takerkart
Institut de Neurosciences Cognitives de la Méditerranée. CNRS - Aix-Marseille Université
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CMI, 39 rue Frédéric Joliot Curie, 13013 Marseille, France
liva.ralaivola[@]lif.univ-mrs.fr

Abstract

We introduce Multiclass Kernel Projection Machines
(MKPM), a new formalism that extends the Kernel Projec-
tion Machine framework to the multiclass case. Our formu-
lation is based on the use of output codes and it implements
a co-regularization scheme by simultaneously constraining
the projection dimensions associated with the individual
predictors that constitute the global classifier. In order to
solve the optimization problem posed by our formulation,
we propose an efficient dynamic programming approach.
Numerical simulations conducted on a few pattern recog-
nition problems illustrate the soundness of our approach.

1. Introduction
Many real world problems of pattern recognition pose

the question of having at hand efficient and effective meth-
ods to tackle multiclass learning problems. In this paper, we
propose a very simple yet effective new mutliclass kernel
machine, meaning that the predictors f we are to consider
are functions like

f(x) = f>φ(x), (1)

defined on input space X , where φ : x 7→ φ(x) = k(·,x)
is the mapping from X to H associated with some positive
definite kernel k : X × X → R [14]; here f>φ(x) denotes
the inner product between f ∈ H and φ(x) ∈ H.

Our approach rests on the idea of kernel methods regu-
larized by finite-dimensional projections, methods that we
broadly refer to Kernel Projection Machines1 (KPM) [1, 16,

1Here, we pervert the name Kernel Projection Machine as, when intro-
duced in [1], it was specifically associated with the binary classification
problem and the hinge loss. We provide the name with a broader meaning.

18]. Given a training sample Z = {(xn, yn)}Nn=1 where
the data xn’s are from some space X and the targets yn
are in Y , the strategy implemented by these machines is
the following. First, compute a family Ψ = (ψd)d≥1 of
functions inH (by, e.g., performing a Kernel principal com-
ponent analysis of the xn’s) and its associated nested sub-
spaces S0 ⊂ S1 ⊂ . . . ⊂ Sd ⊂ . . ., where Sd denotes
the space spanned by the first d functions ψ1, . . . , ψd – with
S0 = {0}. Then, for each d, solve the unregularized empir-
ical minimization problem

f̂d = argmin
f∈Sd

1

N

N∑
n=1

`(f,xn, yn), (2)

where ` : H × X × Y → R is a loss function, such that
`(f,x, y) accounts for the fact that f does not predicts the
correct target y for x. Finally, select one of the f̂d’s accord-
ing to some criterion: either based on theoretical arguments
or based on an estimate of the generalization error computed
on a validation set. The rationale that supports the use of
unregularized empirical risk minimizer is that the process
of considering nested subset of finite dimension precisely
plays the role of regularization.

The approach that we propose for multiclass classifica-
tion with KPMs builds on the original idea of KPM and
the idea of output coding for multiclass classification [5].
The formulation that we propose amounts to a minimization
problem where several KPMs have to be learned in paral-
lel and simultaneously regularized. This specifically means
that ‘optimal’ projection dimensions should be found for
each of the KPM learned and that the total number of di-
mensions retained has to be controlled, which gives rise to
a combinatorial problem. In order to solve this problem, we
propose a dynamic programming approach that allows us to
come up with a very efficient learning procedure.
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To summarize, our contribution is threefold: (i) a new
model of multiclass prediction based on the idea of KPMs
where the regularization parameter is a global dimension
parameter, (ii) an efficient dynamic programming strategy
to solve the combinatorial problem arising from our frame-
work and (iii) numerical simulations conducted on pattern
recognition problems that support the soundness of our ap-
proach. We may notice that, besides its conceptual simplic-
ity, our approach makes it possible to compute the whole
regularization path for free, which renders the validation
procedure of the global regularization parameter quite inex-
pensive.

The paper is organized as follows. Section 2 introduces
the notation that is used throughout the paper, briefly re-
calls the approach of output coding for multiclass problem
and presents our new Multiclass Kernel Projection Machine
(MKPM). Section 3 discusses several interesting features of
our learning procedure, such as large-scale learning, model
selection and generalization properties. In Section 4, re-
sults from numerical simulations conducted on benchmark
datasets are reported as well as very positive results for a
task of classifying images from a functional magnetic reso-
nance imaging (fMRI) experiment; all the numerical results
support the soundness of our proposed model.

2. Multiclass Kernel Projection Machines
From here on, the following notational conventions hold.

For a positive integer N , [N ] denotes the set {1, . . . , N}
and [N ]0 the set {0, . . . , N}. For a vector x, x> denotes its
transpose, the same notation being used for matrices.

The input space X where the data to classify live is pro-
vided with a positive kernel function k : X × X → R (see,
e.g., [14] for a detailed account on kernel functions/kernel
machines). The reproducing kernel Hilbert spaceH associ-
ated with k is such that, ∀f ∈ H (note thatH is a functional
space):

f(x) = 〈f, k(·,x)〉H = f>φ(x), ∀x ∈ X , (3)

where 〈·, ·〉H is the inner product ofH and the notation f>g
is a shorthand for 〈f, g〉H. The mapping φ : X → H is such
that φ(x) = k(·,x).

The set of labels is denoted by Y , and, to simplify no-
tation, we further suppose that for a categorization problem
with Q classes, the set of labels is Y = {1, . . . , Q}. A
training set Z = {(xn, yn)}n∈[N ] is made of N labeled
pairs (xn, yn) such that yn ∈ Y is the class of xn ∈ X ;
as commonly assumed in statistical learning, these pairs are
independent realizations of a random variable (X,Y ) dis-
tributed according to an unknown and fixed distribution D
on Z := X × Y .

Given Z, Φ denotes the (possibly infinite dimensional)
matrix

Φ = [φ(x1) · · ·φ(xN )] (4)

such that the Gram matrix K = (k(xi,xj))i,j∈[N ] of the
data with respect to k may be written as

K = Φ>Φ. (5)

Finally we will consider loss functions ` : H×X ×Y →
R+ that are convex in their first argument. An example of
such a loss function is the square loss `square defined as:

`square(f,x, y) =
(
f>φ(x)− y

)2
= (f(x)− y)

2
, (6)

which we will subsequently make extensive use of.

2.1. Multiclass Learning with Output Codes

Multiclass prediction is a machine learning problem on it
own, which raises questions related to modelling, as well as
statistical and algorithmic issues. A very powerful and ef-
fective way to address this problem is to make use of output
codes, which is thoroughly described in [5]. Output coding
consists in associating a unique binary code cq ∈ {−1, 1}L
of length L to each category q of Y . Given these codes, the
traning set can be rewritten as Z = {(xn,yn)}n∈[N ], where
yn ∈ {−1, 1}L is one of the Q codewords cq . The initial
learning problem is then converted to L learning problems
defined with respect to the sequence of training sets

Zl = {(xn, ynl)}n∈[N ], l ∈ [L], (7)

where, with a slight abuse of notation, we have reused the
notation y and where ynl ∈ {−1, 1} is the l-th entry of yn.

Given these L training sets, a usual strategy is to in-
dependently learn L predictors f1, . . . , fL such that each
fl : X → R is inferred from Zl. The prediction ŷ(x)
for a new instance x is then computed from the vector
f(x) = [f1(x) · · · fL(x)]> as

ŷ(x) = argmin
q∈[Q]

dist(f(x), cq), (8)

where dist : RL × RL → R is some predefined divergence
measure; for instance, this divergence measure may be the
usual Euclidean distance, which we make use of later on.

The approach we propose builds on the framework of
output codes and differs from the usual learning strategy in
that the L classifiers inferred are simultaneously regularized
or, in other words, co-regularized. This essentially means
that their learning are no longer independent.

2.2. Proposed Learning Model

As briefly recalled in the introduction, Kernel Projection
Machines work in the following way. Given an integer D
and a family Ψ = (ψd)d≥1 of linearly independent func-
tions of H, defining Sd = span(ψ1, . . . , ψd) as the space
spanned by the first d vectors of Ψ (with S0 = {0}), KPMs
implement a two-step strategy:
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1. For each dimension d ∈ [D]0, solve the empirical risk
minimization problem

f̂d = argmin
f∈Sd

1

N

∑
n∈[N ]

`(f,xn, yn). (9)

2. Pick the optimal dimension d̂ and corresponding clas-
sifier f̂d̂ according to some model selection criterion.

As stated above, ` is a convex loss function. For classifi-
cation as well as regression, it has been showed that con-
straining the search of a function f in a finite-dimensional
subspace Sd incurs some kind of regularization and that the
pivotal parameter of regularization is precisely d [1, 16].
This explains why there is no explicit regularization term in
the empirical risk functional of (9).

The approach that we propose pushes the idea of KPM
learning one step further. Namely, if we assume the same
family Ψ as before and an output coding scheme with code
length L for the multiclass learning problem. The two-
step learning process based on the training sample Z =
{(xn,yn)}n∈[N ] is the following.

1. For each d ∈ [D]0, solve the empirical minimization
problem

δ̂(d) = argmin
d1,...,dL∈[d]0∑

l∈[L]
dl=d

R(d1, . . . , dL) (10)

where the empirical risk R(d1, . . . , dL) is defined as

R(d1, . . . , dL) := min
fl∈Sdl

1

N

∑
n∈[N]
l∈[L]

`(fl,xn, ynl).

(11)

2. Pick the (global) dimension d̂, the corresponding vec-
tor δ̂(d̂) = [δ̂1(d̂) · · · , δ̂L(d̂)] of dimension L and the
corresponding L predictors f̂1,d̂, . . . , f̂L,d̂ that realize

R(δ̂(d̂)) according to some model selection criterion.

We now elaborate more precisely on how the first step of the
procedure is performed: this comes down to studying how
Equations (10) and (11) interplay with each other. As for the
second step, we will assume that estimates of the genere-
lization performances achieved for models associated with
different values of d are computed on an held-out validation
set or via a cross-validation procedure.

Viewing (11) as a sum of precomputed terms. First note
that the objective function of minimization problem (11)
that defines R may be rewritten as:

1

N

∑
n∈[N]
l∈[L]

`(fl,xn, ynl) =
∑
l∈[L]

Gl(fl), (12)

where
Gl(f) :=

1

N

∑
n∈[N ]

`(f,xn, ynl). (13)

Hence, according to (11) and (12), the convex minimization
problem that defines R has an objective that is the sum of
L convex functions (the Gl’s) defined on independent vari-
ables (the fl’s). In order to evaluateR(d1, . . . , dL) for some
d1, . . . , dL, it therefore suffices to independently solve the
L convex minimization problems

G∗l (dl) := min
f∈Sdl

Gl(f), l ∈ [L], (14)

where the G∗l (dl) are uniquely defined since the Gl’s are
convex. In other words,

R(d1, . . . , dL) =
∑
l∈[L]

min
f∈Sdl

Gl(f, Zl) (15)

=
1

L

∑
l∈[L]

G∗l (dl), (16)

and, if all the G∗l (d) for l ∈ [L] and d ∈ [D] are computed
beforehand, i.e., each problem (14) is solved for all values
of l and dl, R(d1, . . . , dL) is merely a sum of L precom-
puted terms.

Problem (10) and dynamic programming. This view of
R as a sum of L terms, makes it easier to observe that the
problem posed by our learning strategy is a combinatorial
minimization problem. Indeed, problem (10) rewrites as:

δ(d) = argmin
d1,...,dL∈[d]0∑

l∈[λ]
dl=d

∑
l∈[L]

G∗l (dl). (17)

A direct enumeration procedure to solve this problem would
require to scan all the combinations d1, . . . , dL ∈ [d]0 of
L integers such that

∑
l dl = d, which is obviously pro-

hibitive. Henceforth, a more clever way than enumeration
should be devised to solve (17) and it turns out a dynamic
programming [15] approach may be implemented to this
end.

Indeed, let us consider the following minimization prob-
lem

∆λ(d) := min
d1,...,dλ∈[d]0∑

l∈[λ]
dl=d

∑
l∈[λ]

G∗l (dl). (18)

When λ is set to L, then we observe that ∆L(d) is directly
linked to δ(d) of (10) and (17) by

∆L(d) = R(δ̂(d)). (19)

Therefore, being capable of computing ∆L(d) is equivalent
to being able to solve (17), and we therefore focus on deal-
ing with (18). We have the following proposition, which
gives us the dynamic programming scheme, i.e., a recursive
formulation, to efficiently solve (18).
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Proposition 1. If we define the series
(

∆̂λ(d)
)

λ∈[L]
d∈[D]0

such

that

∆̂λ(d) :=

G
∗
1(d) if λ = 1,

min
δ∈[d]0

{
∆̂λ−1(δ) +G∗λ(d− δ)

}
otherwise.

(20)
then, ∀λ ∈ [L], ∀d ∈ [D]0,

∆̂λ(d) = ∆λ(d). (21)

Proof. Let us fix d ∈ [D]0 and proceed by induction on λ.
For λ = 1, Equation (18) gives

∆1(d) = min
d1∈[d]0∑
l∈[1]

dl=d

∑
l∈[1]

G∗l (dl) = G∗1(d). (22)

And, by definition of (∆̂λ(d)) in (20)

∆̂1(d) = G∗1(d). (23)

Hence for λ = 1 assertion (21) holds.
Assume that (21) is valid for λ− 1, that is

∀d ∈ [D]0, ∆̂λ−1(d) = ∆λ−1(d). (24)

By construction, it is straightforward to see that ∆̂λ(d)
writes as

∆̂λ(d) =
∑
l∈[λ]

G∗l (d̂l), (25)

for some d̂1, . . . , d̂λ such that
∑
l∈[λ] d̂l = d. Hence, ac-

cording to the definition of ∆λ(d) (see (18)):

∆̂λ(d) ≥ ∆λ(d). (26)

Conversely, for all d1, . . . , dλ ∈ [d]0 such that
∑
l∈[λ] dl =

d,∑
l∈[λ]

G∗l (dl) =
∑

l∈[λ−1]

G∗l (dl) +G∗λ(dλ) (27)

≥ ∆λ−1(d− dλ) +G∗λ(dλ) (28)

= ∆̂λ−1(d− dλ) +G∗λ(dλ) (29)

≥ min
dλ∈[d]0

{
∆̂λ−1(d− dλ) +G∗λ(dλ)

}
(30)

= ∆̂λ(d), (31)

where (28) comes from (18) and (29) comes from induction
assumption (24). Taking the minimum of the left-hand side
of (27) with respect to d1, . . . , dλ such that

∑
l∈[λ] dl = d

gives

∆λ(d) = min
d1,...,dΛ∈[d]0∑

l∈[λ]
dl=d

∑
l∈[λ]

G∗l (dl) ≥ ∆̂λ(d), (32)

which, combined with (26), gives that ∆̂λ(d) = ∆λ(d) and
finishes the proof.

Proposition 1 provides us with a way to compute ∆λ(d)
for all λ ∈ [L] and d ∈ [D]0. As a matter of fact, note that
the computation of ∆L(D) directly implies the computation
of all the values of ∆λ(d) for all λ ∈ [L] and d ∈ [D]0. If
the G∗λ(d) are precomputed, then the space complexity of
evaluating ∆L(D) is O(LD) and the time complexity is
O(D2L).

Algorithm 1 summarizes the learning algorithm of
MKPMs in the case of a generic convex loss function ` and
a predefined family Ψ = (ψd)d≥1 of linearly independent
functions fromH.

Algorithm 1 MKPM with output codes of length L
Require:
Z = {(xn,yn)}n∈[N ] (training set),
Z ′ = {(x′n,y′n)}n∈[N ′] (validation set),
Ψ = (ψd)d≥1, D ≥ 1

Ensure: d̂, d̂1, . . . , d̂L ∈ [D]0, f̂1, . . . , f̂L ∈ H

for l = 1 to L do
for d = 0 to D do
G∗l (d) = minf∈Sd

1
N

∑N
n=1 `(f

>φ(xn), ynl)
end for

end for
for d = 0 to D do

∆1(d) = G∗1(d)
end for
for λ = 2 to L do

∆λ(d) = minδ∈[d]0 {∆λ−1(δ) +G∗λ(d− δ)}
end for
Choose and return d̂ (and the corresponding d̂1, . . . , d̂L ∈
[D]0, and f̂1, . . . , f̂L ∈ H) according to an estimate of
the generalization error computed on Z ′.

2.3. Least-Squares MKPM and KPCA

So far, we have described our new model with an abstract
convex loss function and we have assumed that the family Ψ
of vectors fromH was predefined. In this section, we detail
the computations that need be implemented for two particu-
lar choices for the setting presented in the previous section.
Namely, we make use of the square loss function (6) and
the family of vectors that we use corresponds to the princi-
pal components of the vectors φ(x1), . . . φ(xN ).

Computing the family Ψ with Kernel PCA. Here, we
just briefly recall how to perform a kernel PCA. Further de-
tails can be found in [13]. The computation of the prin-
cipal components ψ1, . . . , ψD starts by observing that they
are defined as the eigenvectors of the (empirical) covariance
matrix C (we do not consider the problem of centering the
data):

C =
1

N
ΦΦ>. (33)
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A quick analysis shows that in order to compute these vec-
tors, it suffices to extract the eigenvectors A = [a1 · · ·aD]
of the Gram matrix K, with corresponding strictly positive
eigenvalues γ1, . . . γD, to have

ψd :=
1
√
γd

Φad, (34)

or, in matrix form

Ψ := ΦA
√

Γ−1, (35)

where Γ is the diagonal matrix with diagonal elements
γ1, . . . γD.

Combining the square loss and the KPCA basis. We
now recall how Kernel PCA and least-square regression
gently combine to evaluate the values of the coefficients
G∗l (d). Suppose that we are interested in the lth subproblem
Zl = {(xn, ynl)}n∈[N ] (among the L possible problems).
Searching for f ∈ Sd := span(ψ1, . . . , ψd) that solves the
least square problem

min
f∈Sd

{
Gl(f) :=

N∑
n=1

(
f>φ(xn)− ynl

)2}
, (36)

may be achieved by parameterizing f as f = Ψ[d]α, where
α ∈ Rd and Ψ[d] is the matrix made of the first d columns of
Ψ (cf. (35)), and by noting that Gl can be written in matrix
form as:

Gl(f) = f>ΦΦ>f − 2f>Φy1 + ‖yl‖2. (37)

where yl = [y1l · · · ynl]>. Thus,

Gl(Ψ[d]α) = α>Ψ>[d]ΦΦ>Ψ[d]α− 2α>Ψ>[d]Φyl + ‖yl‖2.
(38)

According to the definition of Ψ (and thus Ψ[d]),

Ψ>[d]Φ =
√

Γ[d]A
>
[d], (39)

where Γ[d] is the upper left d× d block of Γ and A[d] is the
matrix made of the first d columns of A. This gives

Gl(Ψ[d]α) = α>Γ[d]α−2α>
√

Γ[d]A
>
[d]yl+‖yl‖

2. (40)

Computing the gradient ofGl(Ψ[d]α) with respect to α and
having it be equal to 0 leads to:

α∗ =
√

Γ−1[d]A
>
[d]yl. (41)

This is then straightforward to compute G∗l (d) =
G∗l (Ψ[d]α

∗) by

G∗l (d) = −‖A>[d]yl‖
2 + ‖yl‖2 (42)

This means that when using the square loss, it suffices
to extract the eigenvectors and eigenvalues of K to get a
very simple expression for the fl’s and the G∗l (d). This is
the reason why we have chosen to implement this specific
strategy in the numerical simulations presented below.

3. Discussion
Here we discuss a few interesting points of our proposed

multiclass learning approach.

How does the learning procedure scale? One of the
prominent questions related to kernel methods is to know
whether they can adapt to large-scale datasets, as such types
of datasets are plentiful in realworld applications. In or-
der to answer this question, it is interesting to observe that
the bulk of computations for MKPM is in (i) computing the
family Ψ (for instance, KPCA has a O(N3) time complex-
ity) and (ii) evaluating the G∗l (d)’s. As for the first point,
many efficient methods exist to (help) perform approximate
kernel principal component analysis: among the most pop-
ular, we may cite the Nyström method [6, 17], and, the
incomplete Gram-Schmidt decomposition [4, 10]. These
methods greatly reduce the cost of extracting a family Ψ
as they run in O(v2N) time where v � N is a user defined
parameter; meanwhile, the informativeness of the extracted
family is almost as good as that of the family of principal
components. As for the computations of theG∗l (d)’s, which
essentially depends on the largest dimension D to explore,
we anticipate that this process is not this critical. Indeed, if
the family Ψ is ordered in such a way that the first vectors
explain most of the inertia of the φ(xi)’s, then a warm-start
strategy that uses the solution computed for Sd as a start-
ing point for the optimization procedure when considering
Sd+1 should be very efficient.

What about the regularization path? We have men-
tioned in several occasions that d̂ may be selected accord-
ing to either theoretically-grounded criteria or empirically
based estimates of the generalization error. We would like
to elaborate on the empirical approach – the theoretical ap-
proach is related to the next question. We actually want
to emphasize the fact that with our approach to multiclass
Kernel Projection Machines, the regularization path is auto-
matically computed at the time of learning. This means that
the learning procedure is such that it produces all the mul-
ticlass predictors associated with dimensions 1 to D, even
when only the predictor associated with D is sought. This
comes from the dynamic programming approach described
in Proposition 1 and it is a very nice feature of the learning
process. It makes it possible to implement model selection
procedures based on hold-out sets very easily without hav-
ing to subsample the space of possible dimensions.

What are the generalization properties of MKPMs?
This is a question that goes beyond the scope of this paper.
However, building on results presented in [1, 16], we think
that our model should inherit the nice adaptive properties of
KPMs. On a closely related side, we would like to mention
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that the multiclass predictors learned with large values of
d exhibited overfitting behaviours (not shown here). This
suggests that d is precisely the complexity parameters asso-
ciated with our model, just as it is the case for classical (i.e.
not multiclass) KPMs.

4. Numerical results

For all numerical experiments described in this section,
the model selection criterion used in the learning phase was
to choose the value d̂ that minimized the classification error
rate on the training data. If a leave-one-out cross-validation
was performed, this value was therefore different for each
fold/iteration. Furthermore, we used output codes of length
L = Q, where cq(l) = +1 if q = l and cq(l) = −1 if
q 6= l. Finally, we used the Euclidean distance in the pre-
diction rule defined in (8). The criterion for measuring the
performances of an algorithm was the rate of correct classi-
fication.

4.1. Benchmark datasets

We first applied our algorithm on three multiclass
datasets issued from the Statlog database, the dna, segment
and satimage datasets (downloaded from the libsvm website
[2]), chosen because they are of medium size, thus limit-
ing computing time, and because they were also included
in the benchmarking study [9]. In order to compare our
results with the ones from this study, we limited ourselves
to using the same RBF kernel K(xi, xj) = e−γ||xi−xj ||

2

,
with different values of γ around the ones that were re-
ported to be optimal γo; namely, we used 2−vγo , with v ∈
{−2,−1, 0, 1, 2}. We arbitrarily decided to use N = 1500
to further limit computing time.

The results of the simulations are reported in Table 1,
where the last column represents the median performance
of the five Multiclass SVM methods evaluated in [9]. Over-
all, the classification rates obtained with our MKPM model
were equivalent to the SVM performances, always for v =
0. Those performances might be improved by using more
appropriate and possibly continuous output codes [3, 5] but
the room for improvement on the segment and dna problems
is potentially very small: i) as just noted, the results are
comparable with those of SVM and ii) those SVM results
have been obtained thanks to a very thorough validation
procedure to choose the hyperparameters and they might be
looked at as ‘near optimal’. Finally, note that for the satim-
age dataset, the chosen d̂ was very close to N , suggesting
that considering higher values ofN might entail better clas-
sification rates.

4.2. Functional MRI data

We now focus on one particular problem that can be for-
mulated as a multiclass learning problem: the classification

of functional Magnetic Resonance Imaging (fMRI) spatio-
temporal data. This problem is sometimes refered to as
“brain-reading” since it consists in trying to infer, from the
spatial pattern of brain activity, what the subject was doing
at a certain point in time, among a number of choices (the
classes) defined by the experimental design. We prefer the
more “down-to-earth” Multi-Voxel Pattern Analysis appela-
tion (MVPA, see a review [11]); indeed it calls for using pat-
tern recognition techniques to analyse fMRI data in a mul-
tivariate (multi-voxels) framework, thus possibly revealing
effects that would not be detected with a standard univari-
ate (in the sense that each voxel is processed independently)
SPM-like approach [7]. Despite the exponentially growing
number of studies using this framework, KPMs have never
been used to analyse fMRI data to our knowledge.

We used fMRI data from [8], which is the study that
originally raised the interest of the neuroimaging com-
munity towards these approaches. The data of one of
the six subjects that were scanned is available online
at www.pni.princeton.edu/mvpa/downloads/
nifti_set.tar.gz. It contains ten acquisition ses-
sions, each with examples of the eight categories of vi-
sual stimuli that were presented to the subject, which define
eight classes. The inputs are points in a 577-dimensional
space (the number of voxels in a cortical region defined
anatomically, that was of particular interest for the authors;
note that no feature selection was performed), whose co-
ordinates are the raw activation values measured at single
time-points (no temporal averaging was performed). We fed
those examples both to our MKPM model and to a linear
SVM (which is one of the algorithms giving the best per-
forming according to the comparison study [12]), and per-
formed a leave-one-session-out cross-validation to estimate
the generalization capability of both methods.

In practice, we used the implementation of the linear
SVM available in libsvm ([2]), which uses a “one-against-
one” method for the multiclass problem. We ran it with
C = 10−t (t integer so that −6 < t < 4) and obtained the
best performances for t = −2 (classification rate = 0.681).
To test our MKPM model, we used N = 577 (the num-
ber of features) and tried different standard kernels (linear,
polynomial of different orders, and RBF with different γ).
The best performances were obtained with the linear kernel
(classification rate = 0.734), confirming that it is the most
adapted for fMRI data; it is also to be noted that the order d̂
of the selected model varied significantely across the itera-
tions of the cross-validation (when using the linear kernel, it
varied between 303 and 431, with a mean value of 390). We
believe that our model outperforms the “one-against-one”
SVM mostly because it relies on a true multiclass formu-
lation; this should be tested on one hand with a multiclass
SVM and on the other hand on different datasets, because
if confirmed, the superiority of multiclass models would be
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Dataset N d̂ Kernel MKPM SVM

segment 1500 451 γ = 2−3 0.956 0.974
dna 1500 690 γ = 2−6 0.957 0.956
satimage 1500 1492 γ = 2−0 0.907 0.913

fmri 577 390 linear 0.734 0.681

Table 1. Results obtained with our MKPM model and SVM.

an important result for the fMRI field.

5. Conclusion
In this paper, we have proposed MKPM, a multiclass ex-

tension of the kernel projection machines. The optimization
problem posed by our approach is a combinatorial prob-
lem that can be nicely tackled by means of a dynamic pro-
gramming procedure. We have conducted several numeri-
cal simulation on pattern recognition problems, from which
MKPM appears to be very competitive with state-of-the-art
methods. It seems that the co-regularization scheme im-
plemented by our strategy is very relevant, but theoretical
arguments need still be elaborated to support this feeling.
This is going to be the topic of further research.
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