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Introduction

Let º = [0, 1] × 1 be the closed annulus and T be a homeomorphism isotopic to the identity. The rotation set of T measures the asymptotic speeds of rotation of the orbits of T around the annulus. It generalizes the notion of rotation number of a circle homeomorphism, introduced by Poincaré. T is an irrational pseudo-rotation if its rotation set is reduced to a single irrational number α, called the angle of T . A broad question is raised by Béguin et al. [START_REF] Béguin | Pseudo-rotations of the closed annulus: variation on a theorem of J Kwapisz[END_REF]: what are the similarities between the dynamics of the rigid rotation S α of angle α and the dynamics of an irrational pseudo-rotation T of angle α?

From a topological viewpoint, a similarity between S α and T has been shown by Béguin et al. [START_REF] Béguin | Pseudo-rotations of the closed annulus: variation on a theorem of J Kwapisz[END_REF]: the rotation S α is in the closure of the conjugacy class of T . Their result is analogous to a theorem by Kwapisz [11] on the torus 2 (in this case, the angle of a pseudo-rotation is an element of 2 ). Jäger [START_REF] Jäger | Linearization of conservative toral homeomorphisms[END_REF] and Wang [START_REF] Wang | A generalization of the line translation theorem[END_REF] also investigated this broad question. However, there are also possible differences between S α and T . From a metric viewpoint, Anosov and Katok [START_REF] Anosov | New examples in smooth ergodic theory. Ergodic diffeomorphisms[END_REF] constructed a smooth pseudo-rotation of º that is metrically isomorphic to an ergodic translation of 2 . Béguin et al. [START_REF] Béguin | Construction of curious minimal uniquely ergodic homeomorphisms on manifolds: the Denjoy-Rees technique[END_REF] constructed on 2 a pseudo-rotation that is minimal, uniquely ergodic, but with positive entropy. In this paper, we construct a smooth pseudo-rotation of angle α that is metrically isomorphic to an irrational rotation R β with α ±β. This is a construction of a non-standard smooth realization, based on the method of approximation by successive conjugations (see [START_REF] Fayad | Constructions in elliptic dynamics[END_REF] for a presentation), a method that is often fruitful in smooth realization problems.

We recall that a smooth realization of an abstract system (X, f, ν) is a triplet (M, T, µ), where M is a smooth compact manifold, µ a smooth measure on M and T a smooth µ-preserving diffeomorphism of M, such that (M, T, µ) is metrically isomorphic to (X, f, ν) (when (M, µ) and (X, ν) are implied, we just say that T is metrically isomorphic to f ). Moreover, a smooth realization is non-standard if M and X are not diffeomorphic.

Suppose there exists an ergodic pseudo-rotation T of angle α that is a non-standard smooth realization of a rotation R β on the circle. Then the couple (α, β) is called a nonstandard couple of angles. In this paper, we show that there exists non-standard couple of angles (α, β), such that α ±β, with α and β chosen either rationally dependent or rationally independent.

Anosov and Katok [START_REF] Anosov | New examples in smooth ergodic theory. Ergodic diffeomorphisms[END_REF] showed the existence of an angle α such that (α, α) is a non-standard couple of angles. Fayad et al. [START_REF] Fayad | Non-standard smooth realizations of Liouville rotations[END_REF] showed that for any α Liouville, (α, α) is a non-standard couple of angles. The question arises about the existence of a nonstandard couple of angles (α, β) with α β.

It is worthy to recall that two ergodic rotations R α and R β on the circle are metrically isomorphic if and only if β = ±α. If β = α, the isomorphism is the identity, and if β = -α, an isomorphism is given by a symmetry of axis going through the center of the circle. Therefore, by applying the result of Fayad et al. [START_REF] Fayad | Non-standard smooth realizations of Liouville rotations[END_REF], it becomes trivial to find a non-standard couple of angles (α, -α). Our result shows that if, instead of considering metric automorphisms of the circle, we consider metric isomorphisms between the circle and the annulus, the situation becomes richer: we can have α ±β, with α and β either rationally dependent or rationally independent. However, α needs to be Liouville. Indeed, a result by Herman (with a proof published by Fayad and Krikorian [START_REF] Fayad | Herman's last geometric theorem[END_REF]) implies that if a smooth quasi-rotation T of the closed annulus has Diophantine angle (i.e. non-Liouville), then T cannot be ergodic (and a fortiori, T cannot be metrically isomorphic to an ergodic rotation). However, the situation where α is Liouville and β is Diophantine, though not addressed in this paper, is not excluded yet. The existence of this situation would reply positively to the open question about the existence of a non-standard smooth realization of a Diophantine circle rotation [START_REF] Fayad | Constructions in elliptic dynamics[END_REF].

More generally, let M be a smooth compact connected manifold of dimension d, on which there exists an effective smooth circle action S t preserving a positive smooth measure µ. Let A α be the smooth conjugation class of the rotation S α , and Āα its closure in the smooth topology. If M = 1 and if α is Diophantine, then Āα = A α by Herman-Yoccoz theorem [START_REF] Yoccoz | Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne[END_REF] (indeed, by continuity, the rotation number of a diffeomorphism T ∈ Āα is α). On the other hand, when α is Liouville, Āα A α . In this paper, if M has a dimension d ≥ 2, then for some Liouville α, we show that Āα contains non-standard smooth realizations of circle rotations R β , with α ±β, and with α and β chosen either rationally dependent or rationally independent. In this case, (α, β) is still called a non-standard couple of angles. More precisely, we show the following theorem:

Theorem 1.1. Let M be a smooth compact connected manifold of dimension d ≥ 2, on which there exists an effective smooth circle action (S t ) t∈ 1 preserving a positive smooth measure µ. For any u, v ∈ 1 , for any > 0, there exist (α, β) ∈ 1 × 1 in a -neighborhood of (u, v), T ∈ Diff ∞ (M, µ), such that T ∈ Āα and such that the rotation R β of angle β on 1 is metrically isomorphic to T . Moreover, β can be chosen either rationally dependent or rationally independent of α.

Theorem 1.1 generalizes the particular case

M = [0, 1] d-1 × 1 : Theorem 1.2. Let d ≥ 2, M = [0, 1] d-1 × 1 ,
µ the Lebesgue measure. For t ∈ 1 , let S t : M → M defined by S t (x, s) = (x, s + t). For any u, v ∈ 1 , for any > 0, there exist (α, β) ∈ 1 × 1 in a -neighborhood of (u, v), T ∈ Diff ∞ (M, µ), such that for any j ∈ , (D j T ) |∂M = (D j S α ) |∂M and such that the rotation R β of angle β on 1 is metrically isomorphic to T . Moreover, β can be chosen either rationally dependent or rationally independent of α.

In the case of the closed annulus M = [0, 1] × 1 , we obtain:

Corollary 1.3. Let M = [0, 1] × 1 , µ the Lebesgue measure. For t ∈ 1 , let S t : M → M defined by S t (x, s) = (x, s + t). For any u, v ∈ 1 , for any > 0, there exist (α, β) ∈ 1 × 1 in a -neighborhood of (u, v), T ∈ Diff ∞ (M,
µ) a pseudo-rotation of angle α, such that the rotation R β of angle β on 1 is metrically isomorphic to T . Moreover, β can be chosen either rationally dependent or rationally independent of α.

To show these results, we suitably modify one of Anosov and Katok's constructions. In [START_REF] Anosov | New examples in smooth ergodic theory. Ergodic diffeomorphisms[END_REF], they constructed ergodic translations on the torus h , h ≥ 2, of coordinates (β 1 , ..., β h ), translations that admit non-standard smooth realizations on [0, 1] d-1 × 1 , d ≥ 2, such that T |∂M is a rotation of angle α. Moreover, in his construction, α β i , i = 1, ..., h. In our paper [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF], we show that one β i can be an arbitrarily chosen Liouville number. However, this construction does not apply directly to the one-dimensional case. This is why, to obtain our result, though we essentially follow [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF], we still need some substantial modifications.

Definitions

Let Diff ∞ (M, µ) be the class of smooth diffeomorphisms of M preserving the Lebesgue measure µ. For B ∈ Diff ∞ (M, µ) and j ∈ * , let D j B be the j th derivative of B if j > 0, and thej th derivative of B -1 if j < 0. For x ∈ M, let |D j B(x)| be the norm of D j B(x) at x. We denote B k = max 0<| j|≤k max x∈M |D j B(x)|.

A finite measurable partition ξ of a measured manifold (N, ν) is the equivalence class of a finite set ξ of disjoint measurable subsets of N whose union is N, modulo sets of ν-measure zero. In most of this paper, we do not distinguish a partition ξ with its equivalent class ξ modulo sets of ν-measure zero. In these cases, both are denoted ξ. Moreover, all partitions considered in this paper are representatives of a finite measurable partition. The distance between two finite measurable partitions ξ and ξ is defined by:

d(ξ, ξ ) = inf c∈ξ,c ∈ξ ν(c∆c )
A partition ξ is subordinate to a partition ξ if any element of ξ is a union of elements of ξ , modulo sets of ν-measure zero. In this case, if B(ξ) denotes the completed algebra generated by ξ, then B(ξ) ⊂ B(ξ ). The inclusion map i : B(ξ) → B(ξ ) will be denoted ξ → ξ . This notation also means that ξ is subordinate to ξ. A sequence of partitions ξ n is monotonic if for any n, ξ n → ξ n+1 . These definitions and properties are independent of the choice of the representatives ξ and ξ of the equivalence classes ξ and ξ .

A measure-preserving bijective bimeasurable map T : (M 1 , µ 1 , B 1 ) → (M 2 , µ 2 , B 2 ) induces an isomorphism of measure algebras, still denoted T : (µ 1 , B 1 ) → (µ 2 , B 2 ). If ξ 1 , ξ 2 are partitions, and if B 1 = B(ξ 1 ) and B 2 = B(ξ 2 ), we denote T : ξ 1 → ξ 2 this induced isomorphism of measure algebras. If M 1 = M 2 , µ 1 = µ 2 and B 1 = B 2 , then T is a measure-preserving transformation. Its induced isomorphism is an automorphism (see [8, p.43] and [START_REF] Weiss | The isomorphism problem in ergodic theory[END_REF]).

A metric isomorphism L of measure-preserving transformations

T 1 : (M 1 , µ 1 , B 1 ) → (M 1 , µ 1 , B 1 ), T 2 : (M 2 , µ 2 , B 2 ) → (M 2 , µ 2 , B 2 ) is a measure-preserving bijective bimea- surable map L : (M 1 , µ 1 , B 1 ) → (M 2 , µ 2 , B 2 ) such that LT 1 = T 2 L
a.e. For convenience, when the measure is the Lebesgue measure and the algebra is the Borelian algebra, we omit to mention the measures and algebras, and we simply say that

L : (M 1 , T 1 ) → (M 2 , T 2 ) is a metric isomorphism.
Let ξ be a measurable partition and ξ a representative of this equivalent class modulo sets of µ-measure zero. For x ∈ M, we denote ξ(x) the element of the partition ξ such that x ∈ ξ(x). A sequences of partitions ξ n of measurable sets generates if there is a set of full measure F such that for any x ∈ F,

{x} = F n≥1 ξ n (x)
This property of generation is independent of the choice of the representatives ξ n of the equivalent class ξn and therefore, we will say that the sequence of measurable partitions ξn generates. Let M/ξ denote the equivalent class of the algebra generated by ξ, modulo sets of µ-measure zero. M/ξ is independent of the choice of the representative ξ of the equivalent class ξ. If T : M 1 → M 2 is a measure-preserving map such that T (ξ 1 ) = ξ 2 µ-almost everywhere, we can define a quotient map:

T/ξ 1 : M/ξ 1 → M/ξ 2 .
An effective action of a group G on M is an action such that there is a set of full measure F ⊂ M such that for any x ∈ F, there is g ∈ G such that gx x. A smooth effective circle action (S t ) t∈ 1 on M can be seen as a 1-periodic smooth flow (S t ) t≥0 , we denote

A α = {B -1 S α B, B ∈ Diff ∞ (M, µ)}. When M = [0, 1] d-1 × 1 ,
we consider the periodic flow S t defined by:

S t : [0, 1] d-1 × 1 → [0, 1] d-1 × 1 (x, s) → (x, t + s mod 1)
For a, b ∈ 1 , let [a, b[ be the positively oriented circular sector between a and b, with a included and b excluded. A sequence T n of µ-preserving maps weakly converges to T if, for any measurable set E, µ(T n E∆E) → 0, where A∆B = (A -B) ∪ (B -A).

For γ ∈ , we denote: |γ| mod 1 = min k∈ |k + γ| For t ∈ 1 or , and A ⊂ I × 1 , we denote

t + A = {(x, t + s mod 1), (x, s) ∈ A} Suppose M = [0, 1] × 1 is the closed annulus. Let M = [0, 1]
× be the universal covering of M and p 2 : [0, 1] × → the second coordinate projection. Let T be a homeomorphism of M isotopic to the identity and T its lift to M. The rotation set Rot( T ) of T is defined by:

Rot( T ) = k≥0 n≥k p 2 ( T ( x)) -p 2 ( x) n / x ∈ M
We let the rotation set of T , Rot(T ), be the equivalent class modulo 1 of Rot( T ). If Rot(T ) = {α} is a singleton, and if T is isotopic to the identity, then T is a pseudorotation. Note that, if T |∂M = S α|∂M , then T is isotopic to the identity. Indeed, t ∈ [0, 1] → S tα is a continuous path between the identity map and S α , and by Alexander's trick, any homeomorphism equal to the identity on the boundary is isotopic to the identity. In this paper, all the diffeomorphisms that we construct are equal to a rotation on the boundary and therefore, they are all isotopic to the identity.

Basic steps of the proof

The metric isomorphism of theorem 1.2 is obtained as the limit of isomorphisms of finite algebras: indeed, we use the lemma [1, p.18]: Lemma 1.4. Let M 1 and M 2 be Lebesgue spaces and let ξ (i) n (i = 1, 2) be monotonic and generating sequences of finite measurable partitions of M i . Let T (i) n be automorphisms of M i such that T (i) n ξ (i) n = ξ (i) n and T (i) n → T (i) in the weak topology. Suppose there are metric isomorphisms L n : M 1 /ξ (1) n → M 2 /ξ (2) n such that L n T (1) n /ξ (1) n = T (2) n /ξ (2) n L n and L n+1 ξ (1) n = ξ (2) n then (M 1 , T 1 ) and (M 2 , T 2 ) are metrically isomorphic.

Said otherwise, if we have generating sequences of partitions and sequences of automorphisms T (i) n weakly converging towards T (i) , and if, for any integer n, the following diagram commutes:

ξ (1) n T (1) n S S L n G G _ ξ (2) n T (2) 
n i i _ ξ (1) n+1 T (1) n+1 P P L n+1 G G ξ (2) n+1 T (2) n+1 l l then (M 1 , T 1 ) and (M 2 , T 2 ) are metrically isomorphic.
The proof of theorem 1.2 is in two steps. In the first step (lemma 1.5), we determine sufficient conditions on a sequence (R pn qn b n ) n≥0 of periodic rotations of 1 such that there exists sequences of finite partitions and automorphisms satisfying the assumptions of lemma 1.4 with M 1 = 1 , M 2 = M, T (1) n = R pn qn b n , T (2) n = T n , where T n is also smooth diffeomorphism, and such that the limit T in the smooth topology of the sequence T n is smooth, and T ∈ Āα for α = lim p n /q n .

In the second step (lemma 1.6), we construct sequences of integers satisfying the conditions of the first step, such that p n /q n → α, b n p n /q n → β, with (α, β) that can be chosen arbitrarily close to any (u, v) ∈ 1 × 1 , and with (α, β) either rationally dependent or rationally independent. Lemma 1.5. There exists an explicit sequence of integers R 1 (n) ≥ n, such that, if there exist increasing sequences of integers p n , q n , a n , b n ∈ * , and a sequence s n ∈ * such that, for any integer n, 1. (primality) a n b ns n q n = 1.

2. (monotonicity) q n divides q n+1 and q n < q n+1 . 3. (isomorphism) q n divides a n+1a n .

4. (convergence of the diffeomorphism, generation)

0 < p n+1 q n+1 - p n q n ≤ 1 (b n+1 q n ) R 1 (n)
then all these assumptions imply that there are α, β ∈ 1 such that

p n q n → mod1 α, p n q n b n → mod1 β
and there is a smooth ergodic measure-preserving diffeomorphism T of M such that for any j ∈ , (D j T ) |∂M = (D j S α ) |∂M and such that ( 1 , R β , Leb) is metrically isomorphic to (M, T, µ).

Lemma 1.6. For any u, v ∈ 1 , for any > 0, there exist (α, β) ∈ 1 × 1 in aneighborhood of (u, v), such that there exist sequences of integers p n , q n , a n , b n ∈ * , s n ∈ * satisfying the assumptions of lemma 1.5, such that

p n q n → mod1 α, p n q n b n → mod1 β
Moreover, β can be chosen either rationally dependent of α or rationally independent of α.

We divide the proof of lemma 1.5 in two main parts. In the first part of the proof, we elaborate sufficient conditions on

B n ∈ Diff ∞ (M, µ), where M = [0, 1] d-1 × 1 , so that if T n = B -1
n S pn qn B n weakly converges towards an automorphism T , then there exists a metric isomorphism between ( 1 , R β , Leb) and (M, T, µ). To that end, we apply lemma 1.4: we construct a monotonous and generating sequence of partitions ξ ∞ n of M and a sequence of isomorphisms K∞

n : 1 /ζ n → M/ξ ∞ n , where ζ n = {[i/q n , (i + 1)/q n [, i = 0, ..., q n -1}, such that K∞ n R pn qn = T n K∞ n and K∞ n+1|ζ n = K∞ n .
In the construction of this isomorphism, assumption 3 is important. Moreover, we will see that the elements of ξ ∞ n are not the most elementary, because they must be chosen in a way that ensures the monotonicity of the sequence K∞ n . This condition of monotonicity induces combinatorial constraints on the elements of the partition ξ ∞ n . Though it follows a similar scheme, the construction of the sequence K∞ n differs from [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF], especially because the assumption 1 is new.

In the second part of the proof, we construct diffeomorphisms

T n = B -1 n S pn qn B n on M stabilizing ξ ∞
n , obtained by successive conjugations from the rotation S pn qn . The conjugacy B n is constructed explicitly. In this second part, we essentially follow [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF] (which elaborated on [START_REF] Fayad | Non-standard smooth realizations of Liouville rotations[END_REF]), except for the obtention of the generation of the sequence of partitions (ξ ∞ n ) n≥1 , for which we need to slightly modify the construction. Another change with respect to [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF] is in the construction of the limit angles α and β, i.e. in the proof of lemma 1.6.

1.3 Construction of the limit angles α and β: proof of lemma 1.6.

The case β = pα

Let u, v ∈ 1 and > 0. Let p 0 , q 0 , b 0 be positive integers such that gcd(b 0 , q 0 ) = 1, and such that:

p 0 q 0 -u mod 1 ≤ 2 , p 0 b 0 q 0 -v mod 1 ≤ 2 
By the Bezout theorem, there are integers a 0 , s 0 , with a 0 > 0, such that a 0 b 0 -s 0 q 0 = 1.

Suppose we have defined p k , q k , a k , b k , s k , satisfying the assumptions of lemma 1.5, up to the rank k = n, and let us define p n+1 , q n+1 , a n+1 , b n+1 , s n+1 . (we will have

s n = 1 for n ≥ 1). Let b n+1 = b n .
Let c n be an integer sufficiently large so that c n ≥ (b n+1 q n ) R 1 (n) and c n ≥ b n+1 2 n+1 / (b n = b 0 is constant here, but this more general definition is used for the case (α, β) rationally independent). Let

a n+1 = a n + s n c n q n
Therefore, assumption 3 holds. Let also

q n+1 = q n s n (1 + c n b n )
Therefore, assumption 2 holds. Moreover, we have:

a n+1 b n+1 -q n+1 = 1
Therefore, assumption 1 holds, with s n+1 = 1. Moreover, let p n+1 = p n q n+1 q n + 1. Since q n+1 ≥ (b n+1 q n ) R 1 (n) , we have:

0 < p n+1 q n+1 - p n q n = 1 q n+1 ≤ 1 (b n+1 q n ) R 1 (n)
Therefore, assumption 4 holds. Moreover,

p n q n b n = p 0 q 0 b 0 + n-1 k=0 p k+1 q k+1 b k+1 - p k q k b k = mod 1 p 0 q 0 b 0 + n-1 k=0 p k+1 q k+1 - p k q k b k+1 = p 0 q 0 b 0 + n-1 k=0 b k+1 q k+1
Since 1/q n+1 ≤ /(2 n+1 b n+1 ), we get:

p n q n b n - p 0 q 0 b 0 ≤ 2 Therefore, p n q n b n → β with |β -u| ≤ Likewise, p n q n → α
with |α -v| ≤ . Moreover, we have β = b 0 α.

The case (α, β) rationally independent

The beginning of the construction is the same as in the case β = pα, except that we take:

b n+1 = b n + q n q n+1 = s n q n (1 + c n b n + c n q n + a n )
This ensures that b n → +∞ as n → +∞, and that

a n+1 b n+1 -q n+1 = 1
It only remains to show that the limit angles (α, β) are rationally independent. To that aim, it suffices to show that the translation of vector (α, β) on the torus 2 is ergodic. We follow the proof of the ergodicity of the limit translation in [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF], with a slight modification. We recall a theorem by Katok and Stepin [START_REF] Katok | Approximations in ergodic theory[END_REF]: Theorem 1.7 (Katok-Stepin [START_REF] Katok | Approximations in ergodic theory[END_REF]). Let U be an automorphism of a Lebesgue space (N, ν), let (U n ) n≥1 be a sequence of measure-preserving transformations, and let (χ n ) n≥1 be a sequence of finite partitions of N with measurable elements. Suppose that:

• U n permutes the elements of χ n cyclically.

• (χ n ) n≥1 generates. 2 , where T tγ (n) is the translation of vector tγ (n) . Note that the diameter of

• c∈χ n ν (U(c)∆U n (c)) = o(1/|χ n |) (where |χ n | is the cardinal of χ n ). then U is ergodic. Let γ (n) = (1, b n ), g n = gcd(p n , q n ). Let Γ (n) ⊂ 2 a fundamental domain of the flow (T tγ (n) ) t≥0 on
Γ (n) is less than 1/b n . Let Γ 0,n = 0≤t< gn qn T tγ (n) Γ (n)
We have the lemma: Lemma 1.8. Let ζn be the partition defined by:

ζn = Γ i,n = T i gn γ (n) qn Γ 0,n , i = 0, ..., q n g n -1 T pn qn γ (n)
is a cyclic permutation on ζn , and ζn generates.

Proof. T pn qn γ (n)
is a cyclic permutation on ζn because g n = gcd(p n , q n ). To the vector space 2 , we give the norm (x 1 , x 2 ) = max 1≤i≤2 |x i | and we consider its induced norm on 2 . Since p n+1 -q n+1 q n p n = 1 then p n+1 and q n+1 q n are relatively prime. Since g n+1 divides p n+1 and q n+1 , then g n+1 divides q n . In particular, g n+1 ≤ q n (this is the slight difference with the proof in [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF]: in [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF], we do not have: gcd(p n+1 , q n+1 q n ) = 1. But on the other hand, in [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF], we have: gcd(p n+1 , q n+1 q n ) = gcd(p n+1 , q n+1 ). The important point is that in both cases, g n is small enough).

Moreover, by assumption 3 of lemma 1.5,

b n+1 q n q n+1 ≤ 1 (b n+1 q n ) R 1 (n)-1 → n→+∞ 0 Therefore, diam(Γ 0,n ) ≤ max 1 b n , g n γ (n) q n ≤ max 1 b n , q n-1 b n q n → n→+∞ 0
It shows that ζn generates.

It remains to estimate c∈ ζn µ 2 T α c∆T pn qn γ (n)
c , where µ 2 is the Lebesgue measure on 2 . We have the lemma: Lemma 1.9. We have:

c∈ ζn µ 2 T (α,β) c∆T pn qn γ (n) c = o(g n /q n ) = o(1/| ζn |)
Proof. We have:

c∈ ζn µ 2 T (α,β) c∆T pn qn γ (n) c = k≥n c∈ ζk µ 2 T p k+1 q k+1 γ (k+1) c∆T p k q k γ (k) c = k≥n c∈ ζk µ 2 T p k+1 q k+1 γ (k+1) - p k q k γ (k)
c∆c Let τ n be the (h -1)-volume of the border of an element of ζn . We have:

µ 2 T p k+1 q k+1 γ (k+1) - p k q k γ (k) c∆c ≤ τ k p k+1 q k+1 γ (k+1) - p k q k γ (k) = τ k p k+1 q k+1 - p k q k γ (k+1) = τ k b k+1 q k+1
Moreover,

τ n ≤ 2 1 b n + g n b n q n ≤ 2 1 b n + q n-1 b n q n Therefore, c∈ ζn µ 2 T (α,β) c∆T pn qn γ (n) c = o(g n /q n )
By combining lemmas 1.8 and 1.9, and by applying theorem 1.7, we obtain that the translation of vector (α, β) is ergodic with respect to the Lebesgue measure.

This completes the proof of lemma 1.6.

Let us make one remark. We were not able to show our theorem for any α Liouville, because conditions 1-3 of lemma 1.5 introduce arithmetical constraints on the denominators of the convergents of α. These conditions are analogous to those, in [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF], which limit the set of possible translations of the h-dimensional torus, h ≥ 2, that admit a non-standard smooth realization.

A sufficient condition for α Liouville to belong to a non-standard couple of angles (α, β) with α ±β, is the following: if, for the sequence p n , q n of convergents of α, there exist positive integers c n , d n , with d n ≤ q R(n) n for a fixed sequence R(n), such that we can write:

q n+1 = 1 + c n b n + d n a n + c n d n q n
then there is β ±α such that (α, β) is a non-standard couple of angles. (in this construction, we take b n+1 = b n + d n q n , with d n ∈ )

The rest of the paper is dedicated to the proof of lemma 1.5. Part of lemma 1.5 is straightforward, namely, the convergence modulo 1 of p n q n and p n q n b n towards α and β respectively:

Partial proof of lemma 1.5. By assumption 2, for n ≥ 2, q n ≥ 2. By assumption 3, and since R 1 (n) ≥ n, p n /q n is Cauchy, and converges.

To show the convergence modulo 1 of p n q n b n , we note that assumptions 1 at ranks n and n + 1, and assumption 3 at rank n imply that q n divides b n+1b n . Indeed, let us write b n+1 = b n + k, with k integer, and let us show that q n divides k. By the assumption 3 at rank n, a n+1 = a n + c n q n , with c n integer. Therefore,

1 + s n+1 q n+1 = a n+1 b n+1 = (a n + c n q n )(b n + k) = a n b n + a n k + q n (c n b n + c n k) Therefore, q n s n+1 q n+1 q n -s n -c n b n -c n k = a n k
Thus, q n divides a n k. Since q n is relatively prime with a n , then q n divides k. Therefore, b n /q n = b n+1 /q n mod 1. Therefore,

p n+1 b n+1 q n+1 - p n b n q n = mod1 p n+1 q n+1 - p n q n |b n+1 | ≤ 1 (b n+1 q n ) R 1 (n)-1 Since for n ≥ 1, q n ≥ 2 and R 1 (n) -1 ≥ n -1, then the sequence p n b n q n mod 1 n≥1
is Cauchy, and converges.

To show lemma 1.5, it remains to show that there is a smooth ergodic measurepreserving diffeomorphism T of M such that T ∈ Āα and such that ( 1 , R β , Leb) is metrically isomorphic to (M, T, µ).

The metric isomorphism

In this section, our aim is to elaborate sufficient conditions on B n ∈ Diff ∞ (M, µ), where

M = [0, 1] d-1 × 1 , so that if T n = B -1
n S pn qn B n weakly converges towards an automorphism T , then there exists a metric isomorphism between ( 1 , R β , Leb) and (M, T, µ).

To that end, we use lemma 1.4: we construct a monotonous and generating sequence of partitions ξ ∞ n of M and a sequence of isomorphisms K∞

n : 1 /ζ n → M/ξ ∞ n , where ζ n = {[i/q n , (i + 1)/q n [, i = 0, ..., q n -1}, such that K∞ n R pn qn = T n K∞ n and K∞ n+1|ζ n = K∞ n .
ζ n is a partition of 1 that is monotonic (because q n divides q n+1 ) and that generates (because q n → +∞). Let η n = {I ×[ j/q n , ( j+1)/q n [, j = 0, ..., q n -1}. η n is a monotonic partition of M.

The following lemma is straightforward, but important:

Lemma 2.1. Let a n and q n two relatively prime integers, and let

K n : ζ n → η n i q n , i+1 q n → I × ia n q n , ia n +1 q n
K n is a metric isomorphism such that K n R 1 qn = S an qn K n . In other words, the following diagram commutes:

ζ n R 1 qn V V K n G G η n S an qn g g
This lemma is related with two basic observations: the first is that both R 1 qn and S an qn are isomorphic to cyclic permutations of {0, ..., q n -1} (this set is given the counting measure, i.e. µ(A) = #A); the second observation is that two cyclic permutations of the same order are always conjugated.

The following lemma combines lemma 2.1 with the facts that ζ n → ζ n+1 and η n → η n+1 :

Lemma 2.2. Let a n , a n+1 , q n , q n+1 ∈ such that gcd(a n , q n ) = gcd(a n+1 , q n+1 ) = 1, such that q n divides q n+1 and such that q n divides a n+1a n . There exists a partition 

ζ n R 1 qn V V K n G G Id η n S an qn g g C n+1 n ζ n R 1 qn V V K n+1 n G G _ η n+1 n S an qn l l _ ζ n+1 R 1 q n+1 P P K n+1 G G η n+1 S a n+1 q n+1 h h
Proof. Since gcd(a n+1 , q n+1 ) = 1, then by lemma 2.1, K n+1 is an isomorphism. Moreover, since q n divides q n+1 , then ζ n → ζ n+1 . Therefore, we can define the isomorphism

K n+1 n = K n+1|ζ n . Let η n+1 n = K n+1 n (ζ n ). We have η n+1 n → η n+1 . It remains to show that K n+1 n R 1 qn = S an qn K n+1 n
(it automatically implies that η n+1 n is stable by S an qn , and that there is C n+1 n : η n → η n+1 n such that C n+1 n S an qn = S an qn C n+1 n ). Let 0 ≤ i ≤ q n -1. We have:

K n+1 n R 1 qn i q n , i + 1 q n = K n+1 R 1 qn            q n+1 qn -1 k=0 i q n + k q n+1 , i q n + k + 1 q n+1            = K n+1            q n+1
qn -1

k=0 i + 1 q n + k q n+1 , i + 1 q n + k + 1 q n+1            = q n+1 qn -1 k=0 K n+1 1 + i q n + k q n+1 , 1 + i q n + k + 1 q n+1 = I × q n+1 qn -1 k=0 a n+1 q n + a n+1 i q n + a n+1 k q n+1 , a n+1 q n + a n+1 i q n + a n+1 k q n+1 + 1 q n+1
Since a n+1 /q n = a n /q n mod 1, we get:

K n+1 n R 1 qn i q n , i + 1 q n = I × q n+1 qn -1 k=0 a n q n + a n+1 i q n + a n+1 k q n+1 , a n q n + a n+1 i q n + a n+1 k q n+1 + 1 q n+1
Therefore,

K n+1 n R 1 qn i q n , i + 1 q n = q n+1 qn -1 k=0 S an qn I × a n+1 i q n + a n+1 k q n+1 , a n+1 i q n + a n+1 k q n+1 + 1 q n+1 = S an qn            I × q n+1 qn -1 k=0 a n+1 i q n + a n+1 k q n+1 , a n+1 i q n + a n+1 k q n+1 + 1 q n+1            = S an qn K n+1 n i q n , i + 1 q n
Let us denote R (n) = K n+1 n 0, 1 q n . We also denote R n+1 i,n = S ian qn R (n) , i = 0, ..., q n -1. R (n) is a fundamental domain of S an qn . Moreover, we have:

C n+1 n : η n → η n+1 n ia n q n , ia n + 1 q n → R n+1 i,n , i = 0, ..., q n+1 -1
Note also that C n+1 n R an qn = R an qn C n+1 n . Moreover, by assumption 1 of lemma 1.5, a n b n /q n = 1/q n mod 1. Therefore, we get:

C n+1 n R 1 qn = C n+1 n R an bn qn = R an bn qn C n+1 n = R 1 qn C n+1 n
By iterating lemma 2.2, we get a corollary that is important for the construction of the isomorphism: 

ζ m n R 1 qn U U K m n G G _ η m n S an qn h h _ ζ n+1 R 1 q n+1 P P K m n+1 G G η m n+1 S a n+1 q n+1 l l
Proof. The proof is similar to the corollary 3.2 in [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF].

For any n fixed, the sequence of partitions (η m n ) m≥n must converge when m → +∞, in order to obtain a full sequence of monotonic partitions. Moreover, the possible limit sequence (i.e. a possible η ∞ n ) must generate. Indeed, these assumptions are required to apply lemma 1.4. However, we can check that none of these assumptions are satisfied, in general. Therefore, to obtain these assumptions, we pull back the partition η m n by a suitable smooth measure-preserving diffeomorphism B m . The following lemma, already proved in [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF], gives the conditions that B m must satisfy:

Lemma 2.4 ([1],[4]). Let B m ∈ Diff ∞ (M, µ). Let A m+1 = B m+1 B -1 m . 1. If A m+1 S 1 qm = S 1 qm A m+1 and if m≥0 q m µ ∆ 0,q m ∆A -1 m+1 R (m) < +∞
then for any fixed n, when m → +∞, the sequence of partitions ξ m n = B -1 m η m n converges. We denote ξ ∞ n the limit. The sequence ξ ∞ n is monotonous and T n = B -1 n S pn qn B n stabilizes each ξ ∞ n .

2. If, moreover, the sequence ξ n = B -1 n η n generates, then so does ξ ∞ n .

C m+1 m is not continuous in general, and A m+1 is its differentiable approximation. Lemma 2.4 is the reason why we need for M a manifold of dimension d ≥ 2. Indeed, if we took M = 1 , we could not find a diffeomorphism B m satisfying the assumptions of this lemma, except for a n = 1 or a n = q n -1. The choice a n = 1 gives that the rotation R α on the circle is isomorphic to itself. The choice a n = q n -1 gives that R α is isomorphic to R -α . The existence of these two isomorphisms are consistent with the fact, mentioned in the introduction, that R α and R β are isomorphic, with α irrational, if and only if α = ±β.

By adding to lemma 2.4 the convergence of the sequence T n , we obtain the required isomorphism: 

ζ n R bn pn qn V V K m n G G _ η m n S pn qn × × B -1 m G G _ ξ m n T n g g _ ζ n+1 R b n+1 p n+1 q n+1 P P K m n+1 G G η m n+1 S p n+1 q n+1 B -1 m G G ξ m n+1 T n+1 l l Let K∞ n : ζ ∞ n → ξ ∞ n defined by K∞ n = P ∞ n B -1 n K n (Q ∞ n ) -1 .
As in the proof of corollary 3.4 in [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF], we can show that K∞ n R b n pn qn = T n K∞ n and that K∞ n+1|ζ n = K∞ n . This allows to apply lemma 1.4, which gives the required metric isomorphism.

Let us make one remark. We consider the isomorphism between R bn pn qn and

T n = B -1
n S pn qn B n , instead of the isomorphism between R pn qn and Ťn = B -1 n S an pn qn B n (which seems to be a more "natural" choice), because in the latter case, we are not able to show the convergence of Ťn towards a smooth diffeomorphism Ť . Indeed, we have:

d k ( Ťn+1 , Ťn ) ≤ B n+1 k p n+1 a n+1 q n+1 - p n a n q n mod 1 = B n+1 k a n+1 p n+1 q n+1 - p n q n (1) 
In the next section, we show that B n+1 k ≤ (b n+1 q n ) R 1 (n) for some fixed sequence R 1 (n) (and we are not able to improve this estimate). Estimate (1) becomes:

d k ( Ťn+1 , Ťn ) ≤ a n+1 (b n+1 q n ) R 1 (n) p n+1 q n+1 - p n q n
Moreover, by assumption 1 of lemma 1.5, a n+1 b n+1 ≥ q n+1 . Since p n+1 q n+1 -p n q n ≥ 1 q n+1 , estimate [START_REF] Anosov | New examples in smooth ergodic theory. Ergodic diffeomorphisms[END_REF] does not allow to show that Ťn is Cauchy. On the other hand, applying this reasoning to show the convergence of T n will be successful.

In order to construct the diffeomorphism A n+1 with suitable estimates of its norm, we need to control the width of the connected components of R (n) . A priori, R (n) consists of q n+1 /q n "slices" of width 1/q n+1 . However, this fact does not ensure the convergence of T n , because it only implies that B n+1 j ≤ (q n+1 ) R(n) for some fixed sequence of integers R(n). In order to apply the reasoning above successfully, we need a better estimate. The following lemma shows that "slices" of R (n) of width 1/q n+1 stack on each other, which gives b n+1 connected components to R (n) , each having a width of order 1/(q n b n+1 ). This will allow an estimate of the form B n+1 j ≤ (q n b n+1 ) R(n) , which will ensure the convergence of T n . Lemma 2.6. Let

m n = q n+1 q n -1 -b n+1           q n+1 q n -1 b n+1           and for 0 ≤ l ≤ b n+1 -1, let k n (l) = la n+1 q n q n+1
r n (l) = la n+1 -q n+1 q n k n (l)

We have: 

R (n) = b n+1 -1 l=0 R (n),l with, if 0 ≤ l ≤ m n : R (n),l = I ×              k n (l) q n + r n (l) q n+1 +              0, q n+1 qn -1 b n+1 + 1 q n+1                           and if m n + 1 ≤ l ≤ b n+1 -1: R (n),l = I ×              k n (l) q n + r n (l) q n+1 +              0, q n+1 qn -1 b n+1 q n+1                           Figure 1: The set R (n) = K n+1 n (I × [0, 1/q n [) for q n = 2, q n+1 = 20, a n+1 = 7, b n+1 = 3. R (n) = R (n),0 ∪ R (n),1 ∪ R (n),
(0) = k n (1) = 0, k n (2) = 1, r n (0) = 0, r n (1) = 7, r n (2) = 4.
Proof. We have:

R (n) = I × q n+1 /q n -1 i=0 a n+1 i q n+1
, a n+1 i q n+1 + 1 q n+1

For i = 0, ..., q n+1 /q n -1, we make the Euclidean division of i by b n+1 . We get:

i = k i b n+1 + r i with 0 ≤ r i ≤ b n+1 -1 and 0 ≤ k i ≤ q n+1
qn -1 b n+1 . Since a n+1 b n+1 /q n+1 = 1/q n+1 mod 1, we get:

R (n) = I × q n+1 /q n -1 i=0 a n+1 r i + k i q n+1 , a n+1 r i + k i q n+1 + 1 q n+1
Moreover, we have:

{0, ..., q n+1 /q n -1} = {0, ..., b n+1 -1} (b n+1 + {0, ..., b n+1 -1}) ... ... b n+1 q n+1 q n -1 /b n+1 -1 + {0, ..., b n+1 -1} b n+1 q n+1 q n -1 /b n+1 + {0, ..., m n } Therefore, R (n) = I × ( q n+1 qn -1)/b n+1 -1 k i =0 b n+1 -1 r i =0 a n+1 r i + k i q n+1 , a n+1 r i + k i q n+1 + 1 q n+1 m n r i =0          a n+1 r i + ( q n+1 q n -1)/b n+1 q n+1 , a n+1 r i + ( q n+1 q n -1)/b n+1 q n+1 + 1 q n+1          R (n) = I × m n l=0            a n+1 l q n+1 + ( q n+1 qn -1)/b n+1 k i =0 k i q n+1 , k i q n+1 + 1 q n+1            b n+1 -1 l=m n +1            a n+1 l q n+1 + ( q n+1 qn -1)/b n+1 -1 k i =0 k i q n+1 , k i q n+1 + 1 q n+1            R (n) = I× m n l=0          a n+1 l q n+1 +          0, ( q n+1 q n -1)/b n+1 + 1 q n+1                   b n+1 -1 l=m n +1          a n+1 l q n+1 +          0, ( q n+1 q n -1)/b n+1 q n+1                  
Finally, the Euclidean division of la n+1 by q n+1 /q n gives:

la n+1 = k n (l)q n+1 /q n + r n (l) with k n (l) = la n+1 q n q n+1
r n (l) = la n+1 -q n+1 q n la n+1 q n q n+1

We get:

R (n) = I × m n l=0 k n (l) q n + r n (l) q n+1 +              0, q n+1 qn -1 b n+1 + 1 q n+1              b n+1 -1 l=m n +1 k n (l) q n + r n (l) q n+1 +              0, q n+1 qn -1 b n+1 q n+1             
The next section is dedicated to the construction of the sequence of diffeomorphisms B n satisfying the conditions of lemma 2.4.

The sequence of conjugacies

In this section, we construct a sequence of diffeomorphisms B n on M satisfying the conditions of lemma 2.4, such that B n n ≤ (q n-1 b n ) R 2 (n-1) for some R 2 (n), and such that B n = Id on a neighborhood of ∂M, in order to ensure that (D j T ) |∂M = (D j S α ) |∂M for any j ∈ . Proposition 3.1. There exists a sequence of diffeomorphisms B n ∈ Diff ∞ (M, µ) such that B n and A n+1 = B n+1 B -1 n satisfy the following conditions:

1. (convergence of the partition

ξ m n to ξ ∞ n ) m≥0 q m µ ∆ 0,q m ∆A -1 m+1 R (m) < +∞ 2. (generation) There is a set E n+1 ⊂ M such that n≥0 µ(E c n+1 ) < +∞ and such that diam A -1 n+1 ∆ 0,q n+1 E n+1 ≤ 1 2 n B n 1 3. (equivariance) A n+1 S 1 qn = S 1 qn A n+1 4. (polynomial estimation) There is a fixed sequence R 2 (n) ∈ such that A n+1 n+1 ≤ (q n b n+1 ) R 2 (n)
5. (identity on a neighborhood of the boundary) B n = Id on a neighborhood of ∂M.

Remark 3.2. Specification 2 above implies that ξ n generates (and so ξ ∞ n , by lemma 2.4), see [START_REF] Fayad | Non-standard smooth realizations of Liouville rotations[END_REF][START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF].

We construct B n recursively. We suppose that B n exists and satisfies these specifications, and we construct A n+1 .

The diffeomorphism A n+1 is constructed in three steps, each step giving a smooth, measure-preserving, equivariant and polynomially controlled map. In the first step, lemma 3.3, we construct a smooth map A 1 n+1 that "quasi-cuts" I × [0, 1/q n [ into b n+1 vertical slices, and then rotates each slice Γ l by an angle k n (l)/q n along the periodic flow S t .

In the second step, we construct a second map A 2 n+1 that "quasi-sends" each vertical slice A 1 n+1 (Γ l ) into a suitable connected component of R (n) (see lemma 2.6 for the decomposition of R (n) into connected components). These two steps ensure that A n+1 "quasi-sends" I × [0, 1/q n [ to R (n) . It ensures that ξ n converges.

In the third step, we obtain the generation of ξ n . We use A 3 n+1 to quasi-rotate slices inside each connected component of R (n) . These slices are chosen sufficiently thin to ensure that the diameter of A -1 n+1 (I × [l/q n+1 , (l + 1)/q n+1 [) is small, but these slices are not too thin to ensure that A n+1 n+1 ≤ (b n+1 q n ) R 2 (n) , which enables the convergence of T n . This last step completes the construction.

Let l 0 , ..., l b n+1 -1 integers such that 0 = r n (l 0 ) < ... < r n (l b n+1 -1 ) ≤ q n+1 /q n -1. Let l b n+1 = b n+1 and r n (l b n+1 ) = q n+1 /q n .

Construction in dimension 2

We suppose M = [0, 1] × 1 . The first step is based on the following lemma, which is analogous to [4, lemma 4.2]: Lemma 3.3. Let 1 b n+1 > 1 > 0, and Γ i = r n (l i ) q n q n+1 , r n (l i+1 ) q n q n+1 -1 × 0, 1 q n for 0 ≤ i ≤ b n+1 -1. There is a smooth measure-preserving diffeomorphism A 1 n+1 of [0, 1] × 1 such that:

1. A 1 n+1 S 1 qn = S 1 qn A 1 n+1 2. A 1 n+1 (Γ i ) = S kn (l i ) qn Γ i 3. A 1 n+1 j ≤ 1 j 1 φ j
where φ is a fixed smooth diffeomorphism, independent of n and 1 .

We take 1 = 1 2 n b n+1 and we let:

E 1 n+1 = b n+1 -1 i=0 r(l i ) q n q n+1 , r(l i+1 ) q n q n+1 -1 × 1
We have:

µ E 1c n+1 = b n+1 1 = 1 2 n
In the second step, we shrink A 1 n+1 (Γ i ) horizontally by a factor q n , we expand it vertically by the same factor, and we rotate it by a π/2 angle (except in a neighborhood of the border of I × [0, 1/q n [). Thus, A 1 n+1 (Γ i ) is quasi-sent to a connected component of R (n) .

We have the lemma (see [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF]):

Lemma 3.4. For 0 ≤ i ≤ b n+1 -1, let Γ i = r n (l i ) q n q n+1 , r n (l i+1 ) q n q n+1 × [0, 1 q n ]. There exists a smooth measure-preserving diffeomorphism A 2 n+1 of [0, 1] × 1 , equivariant by S 1 qn and a measurable set E 2 n+1 that is globally invariant by S 1 qn and A 2 n+1 such that:

A 2 n+1 Γ i E 2 n+1 = I × r n (l i ) q n+1 , r n (l i+1 ) q n+1 E 2 n+1
Moreover, there is an explicit function R 2 ( j), depending only on j, such that:

A 2 n+1 j ≤ (q n ) R 2 ( j)
and such that if Γ ⊂ M with diam(Γ) ≤ x, then:

diam (A 2 n+1 ) -1 Γ E 2 n+1 ≤ q n x
Combined with lemma 3.3, lemma 3.4 gives the following corollary, which implies the convergence of the partition ξ n to ξ ∞ n (see [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF]):

Corollary 3.5. We have the estimation:

µ A 2 n+1 A 1 n+1 I × 0, 1/q n ∆R (n) ≤ 8 2 n q n
In the third step, it remains to obtain the generation of the sequence of partitions ξ ∞ n , without affecting the properties obtained in the first two steps. In particular, we cannot exactly proceed as in [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF], because b n+1 can be a bounded sequence (while in [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF], the sequence k n , analogous to b n+1 , is larger than q n ). We need to refine the approach of [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF]. This third step is based on the following lemma and its corollary: Lemma 3.6. For any integer w ≥ 1, there is a smooth, measure-preserving, and S 1 qnequivariant diffeomorphism A 3 n+1 , and an explicit sequence of integers R 3 (n), such that:

A 3 n+1 n+1 ≤ q n+1 w R 3 (n)
and there exists a S 1 qn -invariant and A 3 n+1 -invariant set E 3 n+1 such that µ(E 3c n+1 ) ≤ 4/2 n , and such that for any i = 0, ..., q n+1 -1, we have:

diam (A 3 n+1 ) -1 [0, 1] × i/q n+1 , (i + 1)/q n+1 ∩ E 3 n+1 ≤ max 1 w , 2w q n+1
We obtain the corollary:

Corollary 3.7. There exists an explicit sequence of integers R 4 (n) depending only on n, there is a smooth, measure-preserving, and S 1 qn -equivariant diffeomorphism A n+1 , such that:

A n+1 n+1 ≤ (b n+1 q n ) R 4 (n)
and there exists a S 1 qn -invariant and A n+1 -invariant set E n+1 such that µ(E c n+1 ) ≤ 4/2 n , and such that for any i = 0, ..., q n+1 -1, we have: Proof of lemma 3.6. We define A 3 n+1 on R (n) , and since R (n) is a fundamental domain of S 1 qn , we can extend it to all M by S 1 qn -periodicity. To that aim, we define A 3 n+1 on each connected component of R (n) (see figure 3

diam (A n+1 ) -1 [0, 1] × i/q n+1 , (i + 1)/q n+1 ∩ E n+1 ≤ 1 2 n B n 1
.1). Let f n (l) = q n+1 qn -1 b n+1 + 1 if 0 ≤ l ≤ m n and f n (l) = q n+1 qn -1 b n+1 if m n + 1 ≤ l ≤ b n+1 -1 ( f n (l)/q n+1 is
the width of a connected component of R (n) , see lemma 2.6). We perform the Euclidean division of f n (l) by w:

f n (l) = h n (l)w + t n (l) with 0 ≤ t n (l) ≤ w -1.
We also need to recall the definition of a "quasi-rotation" by π/2 [7]:

Proposition 3.8. For any n ≥ 1, there is a smooth measure-preserving map

φ n : [0, 1] 2 → [0, 1] 2 (called "quasi-rotation") such that φ n = R π/2 on [ 1 2 n , 1 -1 2 n ] 2 and φ n = Id on a neighborhood of the boundary of [0, 1] 2 .

This choice of w determines

A 3 n+1 in lemma 3.6. Let A n+1 = A 3 n+1 A 2 n+1 A 1 n+1 and E n+1 = E 3 n+1 ∩ A 3 n+1 (E 2 n+1 ) ∩ A 3 n+1 A 2 n+1 (E 1 n+1
). By lemma 3.6, we have:

A 3 n+1 n+1 ≤ (q n+1 ) R 3 (n) 2 n+2 q 2 n (b n q n-1 ) R 6 (n-1) q n+1 R 3 (n) ≤ (b n+1 q n ) R 7 (n)
for a fixed sequence R 7 (n). This ensures the existence of R 4 (n) such that:

A n+1 n+1 ≤ (b n+1 q n ) R 4 (n)
Moreover, we have:

w ≤ q n+1 2 n+1 q 2 n B n 1 Since q n divides q n+1 , and by the left-hand side of assumption 3 of lemma 1.5, we have:

p n+1 q n+1 - p n q n ≥ 1 q n+1
Therefore, by the right-hand side of assumption 3, q n+1 ≥ (b n+1 q n ) R 1 (n) . We will choose an explicit sequence R 1 (n) such that:

(b n+1 q n ) R 1 (n) ≥ 2 n+1 q 3/2 n (b n q n-1 ) R 6 (n-1) 2
This choice implies:

q n+1 ≥ 2 n+1 q 3/2 n (b n q n-1 ) R 6 (n-1) 2 Therefore, w ≥ q n+1 2 n+1 q 2 n (b n q n-1 ) R 6 (n-1) -1 ≥ 1 2
2 n+1 q 3/2 n (b n q n-1 ) R 6 (n-1) 2 2 n+1 q 2 n (b n q n-1 ) R 6 (n-1) ≥ 2 n q n B n 1 Therefore, by lemma 3.6, for any i = 0, ..., q n+1 -1, we have:

diam (A 3 n+1 ) -1 [0, 1] × i/q n+1 , (i + 1)/q n+1 ∩ E 3 n+1 ≤ 1 2 n q n B n 1 Therefore, by lemma 3.4, diam (A 2 n+1 ) -1 (A 3 n+1 ) -1 [0, 1] × i/q n+1 , (i + 1)/q n+1 ∩ E 3 n+1 ∩ E 2 n+1 ≤ 1 2 n B n 1
and therefore, we also have:

diam (A 1 n+1 ) -1 (A 2 n+1 ) -1 (A 3 n+1 ) -1 [0, 1] × i/q n+1 , (i + 1)/q n+1 ∩ E 3 n+1 ∩ E 2 n+1 ∩ E 1 n+1 ≤ 1 2 n B n 1

Construction in higher dimensions

The construction in higher dimensions is slightly different of [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF]. The first two steps are the same as in dimension 2 (we make the construction in the plan (x 1 , x d ), see [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF]), and for the third step (generation), we combine all d -1 dimensions. The following lemma generalizes lemma 3.6: Lemma 3.9. For any integers w 1 , ..., w d-1 ≥ 1 such that 2 d-1 i=1 w i ≤ q n+1 , there is a smooth, measure-preserving, and S 1 qn -equivariant diffeomorphism A 3 n+1 , and an explicit sequence of integers R 8 (n), such that:

A 3 n+1 n+1 ≤ q n+1 w 1 R 8 (n)
and there exists a S 1 qn -invariant and A 3 n+1 -invariant set E 3 n+1 such that µ(E 3c n+1 ) ≤ 4/2 n , and such that for any i = 0, ..., q n+1 -1, we have:

diam (A 3 n+1 ) -1 [0, 1] d-1 × i/q n+1 , (i + 1)/q n+1 ∩ E 3 n+1 ≤ max 1 w 1 , ..., 1 w d-1 , 2 d-1 w 1 ...w d-1 q n+1
As in dimension 2, we let

A n+1 = A 3 n+1 A 2 n+1 A 1 n+1 and E n+1 = E 3 n+1 ∩ A 3 n+1 (E 2 n+1 ) ∩ A 3 n+1 A 2 n+1 (E 1 n+1 )
We obtain the corollary:

Corollary 3.10. There exists an explicit sequence of integers R 9 (n) depending only on n, there is a smooth, measure-preserving, and S 1 qn -equivariant diffeomorphism A n+1 , such that:

A n+1 n+1 ≤ (b n+1 q n ) R 9 (n)
and there exists a S 1 qn -invariant and A n+1 -invariant set E n+1 such that µ(E c n+1 ) ≤ 4/2 n , and such that for any i = 0, ..., q n+1 -1, we have:

diam (A n+1 ) -1 [0, 1] d-1 × i/q n+1 , (i + 1)/q n+1 ∩ E n+1 ≤ 1 2 n B n 1
Proof of lemma 3.9. We denote:

Ã3 n+1,w : [0, 1] × 1 → [0, 1] × 1 (x, y) → ( Ã3 n+1,1,w (x, y), Ã3 n+1,2,w (x, y)) the map A 3
n+1 of the 2-dimensional case, given by lemma 3.6, associated with the integer w. For i = 1, ..., d -1, we denote:

A 3,i n+1,w (x 1 , ..., x d ) = (x 1 , ..., x i-1 , Ã3 n+1,1,w (x i , x d ), x i+2 , ..., Ã3 n+1,2,w (x i , x d ))
We let: figures 3, 4, 5). We define E 3 n+1 by analogy with lemma 3.6.

A 3 n+1 = A 3,1 n+1,w 1 A 3,2 n+1,w 1 w 2 ...A 3,d-1 n+1,w 1 ...w d-1 (see
Proof of corollary 3.10. The proof is analogous to the proof of corollary 3.7. We let:

w 1 =          q n+1
2 n+1 q n (b n q n-1 ) R 6 (n-1) d

        
and for i = 2, ..., d -1, w i = 2 n q n (b n q n-1 ) R 6 (n-1) . As in lemma 3.6, there exists R 9 (n) such that:

A n+1 n+1 ≤ (b n+1 q n ) R 9 (n)
For i = 2, ..., d -1, we have:

1 w i ≤ 1 2 n q n (b n q n-1 ) R 6 (n-1) ≤ 1 2 n q n B n 1 Moreover, we have: 2 d-1 w 1 w 2 ...w d-1 q n+1 ≤ 1 2 n+1 q n B n 1

We will choose an explicit sequence R 1 (n) such that: (b n+1 q n ) R 1 (n) ≥ 2 n q n (b n q n-1 ) R 6 (n-1) d+1

This choice implies: q n+1 ≥ 2 n q n (b n q n-1 ) R 6 (n-1) d+1 Therefore, 1 w 1 ≤ 2 n q n (b n q n-1 ) R 6 (n-1) d-1 q n+1 ≤ 1 2 n q n B n 1 By combining lemma 3.9 and lemma 3.4, we obtain the corollary. . Its size is 1 × 1 × 1/q n+1 . [0, 1] 2 × [i/q n+1 , (i + 1)/q n+1 [ E 3 n+1 . Its size is less than 1 × 1/w 1 × w 1 /q n+1 . [0, 1] 2 × [i/q n+1 , (i + 1)/q n+1 [ E 3 n+1 , in the plan (x 1 , x 3 ). [0, 1] 2 × [i/q n+1 , (i + 1)/q n+1 [ E 3 n+1 , in the plan (x 1 , x 3 ). Its size is less than 1/w 2 × 1/w 1 × w 1 w 2 /q n+1 .

3.3 Convergence of the sequence of diffeomorphisms and ergodicity of the limit T . Proof that T is a pseudo-rotation in dimension 2

By combining lemma 2.4, corollary 2.5, and proposition 3.1, and since ξ n generates, then in order to complete the proof of lemma 1.5, it remains to show that T n = B -1 n S pn qn B n converges in the smooth topology, and that the limit T of T n is ergodic. To show the convergence of T n = B -1 n S pn qn B n , by the Cauchy criterion, it suffices to show that n≥0 d n (T n+1 , T n ) converges. We combine the estimation of B n+1 and the assumption 3 of lemma 1.5 of closeness between p n+1 /q n+1 and p n /q n . We recall the lemma [7, p. p n+1 q n+1 -p n q n ≤ (b n+1 q n ) R 10 (n) p n+1 q n+1 -p n q n

For some choice of the sequence R 1 (n) in lemma 1.5, this last estimate guarantees the convergence of T n in the smooth topology. Moreover, the limit T is ergodic, because it is metrically isomorphic to an irrational rotation of the circle, which is ergodic.

To show corollary 1.3, let us show that T is a pseudo-rotation when d = 2. Proposition 3.12. When d = 2, the limit T of T n is a pseudo-rotation of angle α.

Proof. Since T |∂M = S α|∂M , then T is isotopic to the identity.

Let > 0 and n 0 > 0 fixed such that for any n ≥ n 0 , |α-p n /q n | < and T -Tn 0 < . For any m ≥ 0, x ∈ M, 

η n+1 n →:

 n η n+1 of M stable by S an qn , and there exists a metric isomorphism K n+1 n . Said otherwise, we have the following commutative diagram:

Corollary 2 . 3 .

 23 For any m > n, there are partitions η m n → η m n+1 of M such that η m n is stable by S 1 qn and there exists an isomorphism K m n : ζ n → η m n otherwise, the following diagram commutes:

Corollary 2 . 5 .n

 25 If both conditions 1. and 2. of lemma 2.4 hold, and if T n = B -1 n S pn qn B n weakly converges towards an automorphism T , then ( 1 , R β , Leb) and (M, T, µ) are metrically isomorphic. Proof. By corollary 2.3, Since a n b n /q n = 1/q n mod 1, then K m n R bn pn qn = S pn qn K m n Therefore, the following diagram commutes:

  Figure 1: The set R(n) = K n+1 n (I × [0, 1/q n [) for q n = 2, q n+1 = 20, a n+1 = 7, b n+1 = 3. R (n) = R (n),0 ∪ R (n),1 ∪ R (n),2 has b n+1 = 3 connected components. The oblique lines represent the graph of the map x → a n+1 x from 1 to itself. In this illustration, k n (0) = k n (1) = 0, k n (2) = 1, r n (0) = 0, r n (1) = 7, r n (2) = 4.

Figure 2 :

 2 Figure 2: Illustration of the third step (generation): a connected component of R (n) with h n (l) = 3.

Figure 3 : 2 n+1,w 1 w 2 - 1 A 3 , 1 n+1,w 1 - 1

 32213111 Figure 3: An element [0, 1] 2 × [i/q n+1 , (i + 1)/q n+1 [ (we take d = 3), before the application of (A 3 n+1 ) -1 = A 3,2 n+1,w 1 w 2

Figure 4 : 1 n+1,w 1 - 1

 4111 Figure 4: The element A 3,1 n+1,w 1

Figure 5 :

 5 Figure 5: A 3,1 n+1,w 1

Figure 6 : A 3, 2 n+1,w 1 w 2 - 1 A 3 , 1 n+1,w 1 - 1

 62213111 Figure 6: A 3,2 n+1,w 1 w 2

Lemma 3 . 11 .

 311 1812]: Let k ∈ . There is a constant C(k, d) such that, for any h ∈ Diff(M), α 1 , α 2 ∈ , we have:d k (hS α 1 h -1 , hS α 2 h -1 ) ≤ C(k, d) h k+1 k+1 |α 1 -α 2 | Since T n = B -1 n S pn qn B n = B -1 n+1 S pn qn B n+1, we obtain, for a fixed sequence R 10 (n) (that depends on n and on the dimension d):d n (T n+1 , T n ) = d n (B -1 n+1 S p n+1 q n+1 B n+1 , B -1 n+1 S pn qn B n+1 ) ≤ C(k, d) B n+1 n+1 n+1

p 2 ( 1 np 2 ( 1 += 1 m p 2

 21212 T m ( x)x) m = p 2 ( T m ( x) -T m n ( x)) m + p 2 ( T m n ( x)x) m Moreover, p 2 ( T m ( x) -T m n ( x)) ≤ T m -T m n 0 and T m -T m n = T m -T m-1 T n + ... + T T m-T m ( x) -T m n ( x)) ≤ T -Tn 0 1 + DT 0 + ... + D(T m-1 ) 0 Let n m ≥ n 0 such that T -Tn m 0 ≤ 1 DT 0 + ... + D(T m-1 ) 0We have, for any x ∈ M:p 2 ( T m ( x) -T m n m ( x)) m → m→+∞ 0Moreover, we have:n m → m→+∞ +∞. Let us estimate (p 2 ( T m n ( x)x))/m. We can write B-1 n = Id + ψ n , with ψ n : [0, 1] × → [0, 1] × [0, 1]1-periodic on the second coordinate. In particular, for any n, ψ n 0 ≤ 1. We have:p 2 ( T m n ( x)x) m S m αn Bn ( x) -Bn ( x) + 1 m p 2 ψ n (S m αn Bn ( x)) -ψ n ( Bn ( x)) p 2 ( T m n ( x)x) m = αn + 1 m p 2 ψ n (S m αn Bn ( x)) -ψ n ( Bn ( x))Since ψ n is uniformly C 0 -bounded, then by denoting α the lift in of α ∈ 1 ,

Let p ≥ 2 a real number and

Let φ n,p = C -1 p φ n C p . The map φ n,p is smooth and measure-preserving. By the Faa-di-Bruno formula, there exists a fixed function R 5 ( j) such that φ n,p j ≤ p R 5 ( j) φ n j Since φ n is fixed, by choosing a larger R 5 (n), we have:

q n + r n (l) q n+1 + 0, w q n+1 , we let A 3 n+1 = φ n,q n+1 /w and

by S w q n+1

-equivariance.

Likewise, for x = 1, ..., h n (l) -2, we define:

, h n (l)w+t n (l) q n+1

, we let

. This completes the construction of A 3 n+1 on R (n) . By S 1 qn -equivariance, we get the definition of A 3 n+1 on the whole manifold M. Moreover, since 0 ≤ t n (l) ≤ w -1, there exists R 3 (n) such that:

Let:

We let

, and E 3 n+1 = q n -1 y=0 y q n + E 3,0 n+1 . This completes the construction of E 3 n+1 . Moreover, we have:

Moreover, since t n (l) ≤ w, then for any i = 0, ..., q n+1 -1, we have:

Proof of corollary 3.7. By the recurrence assumption on B n , there exists R 6 (n) such that B n 1 ≤ (b n q n-1 ) R 6 (n-1) . Let

We conclude that Rot( T ) = { α} and therefore, Rot(T ) = {α}.

Extension to more general manifolds

To extend the construction from [0, 1] d-1 × to a general d-dimensional smooth compact connected manifold M, admitting an effective volume-preserving circle action Ŝ t , we proceed as in [7, p. 1805] and [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF]. We keep denoting S t the circle action on [0, 1] d-1 × . For q ≥ 1, let F q be the set of fixed points of Ŝ 1/q . Let B = ∂M q≥1 F q be the set of exceptional points. We recall the proposition: [START_REF] Fayad | Non-standard smooth realizations of Liouville rotations[END_REF]). Let M be a d-dimensional smooth compact connected manifold, with an effective circle action Ŝ t , preserving a smooth volume µ. Let S t denote the circle action on [0, 1] d-1 × . There exists a continuous surjective map

We use this proposition at each step to apply lemma 1.4. We let Tn : M → M defined by Tn (x) = ΓB -1 n S pn qn B n Γ -1 (x) if x ∈ Γ(]0, 1[ d-1 × ) and Tn (x) = Ŝ pn qn (x) otherwise. To show that Tn is a smooth diffeomorphism (which implies that its limit is also smooth), we use the facts that Γ |]0,1[ d-1 × is a smooth diffeomorphism, than B n = Id on a neighborhood of ∂([0, 1] d-1 × and that Ŝ Γ = ΓS . To construct the metric isomorphism K∞ n = Γ K∞ n , we use the fact that the restriction of Γ to a set of full measure is a metric isomorphism. Details are in [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF].

Finally, to show that T ∈ A α , where T is the limit of Tn in the smooth topology, we let Ĥn : M → M defined by Ĥn (x) = ΓB n Γ -1 (x) if x ∈ Γ(]0, 1[ d-1 × ) and Ĥn (x) = x otherwise. We write

We know that T -Tn → 0 in the smooth topology. We show that Tn -Ĥ-1 n Ŝ α Ĥn → 0 in the smooth topology by proceeding as in the proof of the convergence of T n on [0, 1] d-1 × in subsection 3.3.