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Abstract. This paper aims at obtaining a 3D fundamental solution for unsaturated soils under dynamic 

loadings in Laplace transform domain using the method of Hörmander. These solutions can be used, 

afterwards, in a convolution quadrature method (CQM)-based boundary element formulations in order to 

model the wave propagation phenomena in such media in time domain. 

 

Introduction. In compacted fills or in arid climate areas where soils are submitted to wetting-drying cycles 

such as groundwater recharge, surface runoff and evapo-transpiration, fine-grained soils are not saturated 

with water, and contain some air. Due to capillary effects and soil-clay adsorption, the pore water is no 

more positive, and is submitted to suction. Wave propagation in unsaturated soils and the dynamic response 

of such media are of great interest in geophysics, soil and rock mechanics, and many earthquake 

engineering problems. However, in geomechanics, the behavior of such media including more than two 

phases is not consistent with the principles and concepts of classic saturated soil mechanics. 

From the mechanical point of view, an unsaturated porous medium can be represented as a three-phase (gas, 

liquid, and solid), or three-component (water, dry air, and solid) system in which two phases can be 

classified as fluids (i.e. liquid and gas). The liquid phase is considered to be pure water containing dissolved 

air and the gas phase is assumed to be a binary mixture of water vapor and ‘dry’ air.  

In this paper first of all, a set of fully coupled governing differential equations of hydro-mechanical 

behaviour of unsaturated porous media including the equilibrium, air and water transfer equations subjected 

to dynamic loadings is presented based on the suction-based mathematical model presented by [3,4]. In this 

model, the effect of deformations on the suction distribution in the soil skeleton and the inverse effect are 

included in the formulation via a suction-dependent formulation of state surfaces of void ratio and degree of 

saturation. The linear constitutive law is assumed. The mechanical and hydraulic properties of porous media 

are assumed to be suction dependent. In this formulation, the solid skeleton displacements ��, water 

pressure �� and air pressure �� are presumed to be independent variables. 

Secondly, the associated fundamental solution in Laplace transform domain is presented using the method 

of Hörmander (1963) [5] for 3D �� − �� − �� formulation of unsaturated porous media. In this case that 

the fundamental solution is known only in the frequency domain and it seems too difficult to obtain the 

time-dependent fundamental solution in an explicit analytical form by an inverse transformation of the 

frequency domain results; the convolution integral in the BIE can be numerically approximated by a new 

approach called “Operational Quadrature Methods” developed by [1,2]. In this formulation, the convolution 

integral is numerically approximated by a quadrature formula whose weights are determined by the Laplace 

transform of the fundamental solution and a linear multistep method [6, 7].  

 

Governing Equations. Governing differential equations consist of mass conservation equations of liquid 

and gaseous phases, the equilibrium equation of the skeleton associated with water and air flow equations 

and constitutive relation. The assumption of infinitesimal transformation and incompressibility of solid 

matrix is considered. 



Solid Skeleton. The equilibrium equation and the constitutive law for the soil’s solid skeleton including the 

effect of suction are written [3]: 

, ,( )ij ij a j a i i ip p f uσ δ ρ− + + = ��           (1) 

( ) ( 2 ) ( )s

ij ij a ij kk ij ij a w
p F p pσ δ λδ ε µε− = + − −         (2) 

where ,µ λ  are Lame coefficients, ,w apα =  is the water or air pressure, ijδ  is the Kronecker delta and s
ijF  is 

the suction modulus matrix: 
1.s suc

F D D
−=              (3) 

in which suc
D  is a vector obtained from the state surface of void ratio ( e ) which is a function of the 

independent variables of � − �� and �� − ��. 

( )1 (1 ) ( )suc

a w
D e e p p− = ∂ + ∂ −/           (4) 

The elasticity matrix ( D ) can be presented by using the bulk modulus and the tangent modulus 

0
( ) ( )

t a a w
D D K E D p p pσ= = − −, ,          (5) 

where 
t

E  is tangent elastic modulus which can be evaluated as 

t l s
E E E= +             (6) 

in which 
l

E  is the elastic modulus in absence of suction and 

( )
s s a w

E m p p= −            (7) 

s
m  being a constant, 

s
E  represents the effect of suction on the elastic modulus. 

0
K  is the bulk modulus of 

an open system and evaluated from the surface state of void ratio 
1

0
(1 ) ( )

a
K e e pσ− = + ∂ ∂ −/           (8) 

Mass Conservation of Water. The mass of the water in a representative elementary volume can be written as  

,

w

i i w ii ww w wa a
w S C p C pε= − + +�� � �           (9) 

where 1 1( );ww w w wa awC ng C n S C C ng= − = = − .  

In this equation, ,w a
iwα =  is the displacement of water or air relative to solid, ,w aSα =  is the degree of 

saturation relative to water or air, Cα  is the compressibility of water or air , d / ( d )w aC pα α α αρ ρ= =  and 

�	 = ���/���� − ���.                                                 
Mass Conservation of Air. With the same approach presented before, the mass conservation of the air can 

be written as 

,

a

i i a ii wa w aa a
w S C p C pε= − + +�� � �                     (10) 

where 
1 1

( );
aa a a wa aw

C ng C n S C C ng= − = = − . 

Flow Equation for the Water. Based on generalized Darcy’s law for describing the balance of the forces 

acting on the liquid phase of the representative elementary volume, the water velocity in the unsaturated soil 

takes the following form: 

, /
w i w w w

p kρ ρ− = + −w
u w g�� �                                                (11) 

in which wk  denotes the water permeability in an unsaturated soil. 

Flow Equation for the Air. With the same approach presented for the water based on generalized Darcy’s 

law, the air velocity in the unsaturated soil takes the following form: 

, /
a i a a a

p kρ ρ− = + −a
u w g�� �                                                (12) 

in which 
a

k  denotes the air permeability in an unsaturated soil. 

Summary of the Governing Differential Equations in Laplace Domain. By introducing (2) into (1), (11) into 

(9) and (12) into (10) and by applying the Laplace transform assuming ������� = �������
� = �������

� = 0 and 

������� = ������� = 0, we obtain the final set of governing equations in  Laplace transform domain: 

,

2

, , ,( ) (1 ) . . 0s s

w au u F p p u fsFβ αβ α ββ α α α αλ µ µ ρ+ + + + − − + =�� � � � �                                                                         (13) 

1 , ,
. . . . . 0.

w w ww w wa a
u k p C ps Cs s pα α ααθ− + + + =� � � �                                                                                                   (14) 

2 , ,
. . . . . . 0

wa w a a aa a
u Cs s sp k p C pα α ααθ− + + + =� � � �                                                                                                    (15) 

where 
1 ( . . )w w w sS kθ ρ= −  and 

2 ( . . )a a a sS kθ ρ= − . 



We would like to rewrite compactly the transformed coupled differential equation system Eqs. (13), (14) 

and (15) into the following matrix form: 

[ ], , ,0,0 0
TT

w a
u p p fα α

∗  + = B �� � � �                                                                                                                       (16) 

with the not self-adjoint operator ∗B� : 

1

2

2

( ) ( ) (1 )s s

i j i j i i

j w ww wa

j wa a aa

s

s s s

s s s

F F

k C C

C k C

µ ρ δ λ µ
θ
θ

∗

 ∆ − + + ∂ ∂ ∂ − ∂
 = − ∂ ∆ +
 − ∂ ∆ + 

B�                                                                                 (17) 

In equation (16), the partial derivative ,( ) i  is denoted by i∂  and i i∆ = ∂  is the Laplacian operator. Note the 

operators ∗B�  in (17) are not self adjoint. Therefore, for the deduction of fundamental solutions, the adjoint 

operator to ∗B�  has to be used: 

1 2

2( ) ( )

(1 )

i j i j i j
s

j w ww wa
s

j wa a aa

F k

s s s

s sC C

F C C sks

µ ρ δ λ µ θ θ ∆ − + + ∂ ∂ ∂ ∂
 = − ∂ ∆ +
 

− − ∂ ∆ +  

B�                                                                                  (18) 

 
Fundamental Solutions. Here, the fundamental solution associated with the operator (18) is derived in the 

Laplace transform domain. Mathematically spoken a fundamental solution is a solution of the equation 
( ) ( )x y tδ δ τ+ − − =BG I 0  where the matrix of fundamental solutions is denoted by G , the identity matrix 

by I  and the matrix differential operator by B . These solutions can be used in a time-dependent 

convolution quadrature-based BE formulation which needs only Laplace transform fundamental solutions. 

In this study, because the operator type of the governing equations is an elliptical operator, the explicit 3D 

Laplace transform domain fundamental solution can be derived by using the method Hörmander [5]. The 

idea of this method is to reduce the highly complicated operator given in (18) to simple well known 

operators. In this method, in the Laplace transform domain, the first stage is to find the matrix of cofactors 
coB�  to calculate the inverse matrix of B�  (

1 co / det( )− =B B B� � � ). For the second stage, we assume that ϕ  is a 

scalar solution to the equation 
codet( ) ( ) ( )x xϕ δ ξ ϕ δ ξ+ − = ↔ + − =B I I 0 BB 0� � �                                                                                       (19) 

Consequently, we get 
coϕ=G B� �                                                                                                                                   (20) 

Following Hörmander’s idea, first, the determinants of the operator ∗B�  are calculated: 
2 2 2 2 2 2

1 2 3 4
det( ) ( 2 ) ( ) ( )( )( )

w a
k kµ λ µ λ λ λ λ∗ = + − ∆ ∆ − ∆− −∆B�                                                                       

(21) 

in which the coefficients 2 2 2

1 2 3
λ λ λ, ,  and 2

4λ  are the roots, where one of its roots is the 22

1 sλ ρ µ= /  which is 

related to the shear wave velocity propagating through the medium. The remained three roots 2 2 2

2 3 4
λ λ λ, ,  

must be determined as these which satisfy 

2 2 2
4

2

2 3

2 2(1 ) (1 )

( 2 ) ( 2 ) ( 2 )

s s s
w a aa ww w s a

a w w a

s s s s s sF F C C S F S F

k k k

s

k

ρ
λ λ

ρ ρ

λ µ λ µ λ µ
λ

+ + − −
= − − − −

+ +
+ +

+
               

2 2 2 2 2 2

2 3 2 4 3 4

3 3 3 2

3

2

2 2

( (1 ) ) ( )

( 2 ) ( 2 ) ( 2 )

( (1 ) ) ( (1 )) ( (1 ))

( 2 ) ( 2 ) ( 2 )

s s

aa ww w aa wa ww aa wa

a w a w a
s s s s s s

a wa ww w aa wa a wa ww

w w a w a

C C F C F C C C C

k k k k k

F C F C S F C C F S F C C F

k k k

s s

k

s s s

k

s sρ ρ ρ

λ µ
λ λ λ λ λ λ

λ µ λ µ
ρ

λ µ λ µ λ µ

− − − −
= − − +

+ + +
− +

+

− − − − + −

+

− + +
+ + +

          (22) 

2 2 2

2 3 4

42( )

( 2 )

ww aa wa

w a

sC C C

k k

ρ

λ
λ

µ
λ λ

−
=

+
                                                                                                   

These three roots correspond to the three compressional waves which are affected by the degree of 

saturation and the spatial distribution of fluids within the medium. 

Secondly, by introducing the determinant, the scalar equation corresponding to (19) is given by 
2 2 2 2

1 2 3 4( )( )( )( ) ( ) 0xλ λ λ λ δ ξ−∆ ∆ ∆ ∆− − − Φ + − =                                 (23) 

in which Φ  is an interim operator, i.e. 



2 2

1( 2 ) ( )w ak kµ λ µ λ ϕ∆Φ = + −                                (24) 

Equation (23) can be expressed as either of four equations (25), (26), (27) and (28): 
2 2 2 2

1 1 1 2 3 4( ) ( ) 0; ( )( )( )xλ ϕ δ ξ ϕ λ λ λ∆ ∆ ∆− + − = = − − −∆ Φ                              (25) 
2 2 2 2

2 2 2 1 3 4( ) ( ) 0; ( )( )( )xλ ϕ δ ξ ϕ λ λ λ∆ ∆ ∆− + − = = − − −∆ Φ                                       (26) 
2 2 2 2

3 3 3 1 2 4( ) ( ) 0; ( )( )( )xλ ϕ δ ξ ϕ λ λ λ∆ ∆ ∆− + − = = − − −∆ Φ                                       (27) 
2 2 2 2

4 4 4 1 2 3( ) ( ) 0; ( )( )( )xλ ϕ δ ξ ϕ λ λ λ∆ ∆ ∆− + − = = − − −∆ Φ                                (28) 

The above differential equations are of the familiar Helmholtz type. The fundamental solution of Helmholtz 

differential equations for an only r-dependent fully symmetric two-dimensional domain is 

exp( ) / 4 , 1,2,3,4
i i

r r iϕ λ π= − =                                                     (29) 

By definition of 
1

ϕ , 
2

ϕ , 
3

ϕ  and 
4

ϕ , it is deduced: 

3 2 3 1 4 1 4 2

2 2 2 2 2 2 2 2 2 2 2 2

3 4 2 1 3 2 3 1 4 1 4 2

1

( )( )

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

λ λ λ λ λ λ λ λ λ λ λ λ

 − − − −
Φ = − + − 

− − − − − − 
                                                              (30) 

Replacing equation (29) into (30), one obtains 

1 2

2 2 2 2 2 2 2 2 2 2 2 2

1 3 1 4 1 2 2 4 2 3 2 1

3 4

2 2 2 2 2 2 2 2 2 2 2 2

3 2 3 1 3 4 4 1 4 2 4 3

exp( ) exp( )

1 ( )( )( ) ( )( )( )
exp( ) exp( )4

( )( )( ) ( )( )( )

r r

r rr

λ λ

λ λ λ λ λ λ λ λ λ λ λ λϕ λ λπ
λ λ λ λ λ λ λ λ λ λ λ λ

− − 
+ +  − − − − − −

=  − −
+ 

− − − − − −  

                                                           (31) 

in which the argument r x ξ= −  denotes the distance between a load point and an observation point. 

Finally, we can determine the components of fundamental solution tensor by applying the matrix of 

cofactors 
∗B� co

 to the scalar function ϕ  which are: 

Displacement caused by a Dirac force in the solid: 
2 2 2 2 2

21 1 1 2
1 2 1 3 1 12 2 2 2 2 2 2

1 3 1 4 1 2

2 2 2 2 2
22 1 2 2

1 2 2 3 2 22 2 2 2 2 2 2

2 3 2 4 2 1

2 2

3

2

1 ( ) ( )( )
( )exp( )

4 ( )( )( )

( ) ( )( )
( )exp( )

( )( )( )

( ) (

ss ss
ij

ss ss

s

K K
G R R R r

s

K K
R R R r

s

K

s

λ µ λ λ
λ λ λ

πµ ρ λ λ λ λ λ λ

λ µ λ λ
λ λ λ

ρ λ λ λ λ λ λ

λ µ λ

ρ

 − + Λ − −
= + + − +

− − −

− + Λ − −
+ + − +

− − −

− + Λ −

�

2 2 2
21 3 2

1 2 3 3 3 32 2 2 2 2 2

3 2 3 1 3 4

2 2 2 2 2
24 1 4 2

1 2 4 3 4 4 12 2 2 2 2 2 2

4 1 4 2 4 3

)( )
( )exp( )

( )( )( )

( ) ( )( )
( )exp( ) exp( )

( )( )( ) 4

s ss

ijss ss

K
R R R r

K K
R R R r r

s r

λ
λ λ λ

λ λ λ λ λ λ

δλ µ λ λ
λ λ λ λ

ρ λ λ λ λ λ λ πµ

−
+ + − +

− − −

− + Λ − −
+ + − + −

− − − 

         (32a) 

with 
5 3

1
3 / /R x x r rα β αβδ= − , 

4 2

2
3 / /R x x r rα β αβδ= − , 

3

3
/R x x rα β= , 

22 ( 2 )sρ λ µΛ = +/  and 

2
2 2

1 2
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s s s
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ss ss
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s s s
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s

k

s

k
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− − − + −
+ = + − + +

+ + + +

( )2

2 2
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s ss s s
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k C

s
F k Fs C

k k k k

s

ρ ρ

λ µ λ µ λ µ λ µ λ µ
ρ ρ

λ µ λ µ

 − + −− + − −
 + + + − + +

+ + + + + =
 − − −

+ 
+ + 

 Water pressure caused by a Dirac force in the solid:                                                                              (32b) 

2 22 2 3 3
2 32 2 2 2 2 2 2 2

2 3 2 4 3 2 3 4,

4 2

24 4
42 2 2 2
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a

C F s

F k

 
 
 
  −   

  

                                                                 

Air pressure caused by a Dirac force in the solid:                (32c) 



2 23 32 2
2 32 2 2 2 2 2 2 2
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 Displacement caused by a Dirac source in the water fluid: 
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(32d) 

where ( )( ) ( ) ( )
w wa a a a aa w w w a w w w

K C S k C Ss k k S ks s s sα ρ ρ ρ= − − − −/ . 

Displacement caused by a Dirac source in the air fluid: 

( ) ( )

( )
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�                       (32e) 

where ( )( ) ( ) ( )
a wa w w w ww a a a w a a a

K C S k C Ss k k S ks s s sα ρ ρ ρ= − − − −/ . 

Water pressure caused by a Dirac source in the water fluid:                                                                   (32f) 
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with ( )32 2 2
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sK C kρ λ µΛ = − +/  and 
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Air pressure caused by a Dirac source in the air fluid:                                                                        (32g) 
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with ( )32 2 2
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Air pressure caused by a Dirac source in the water fluid:                                                                       (32h) 
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Water pressure caused by a Dirac source in the air fluid:                                                                       (32i) 
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Analytical verification of the fundamental solutions. Limiting Case: Elastodynamic: Having derived 

the fundamental solution, at this stage, it is of interest to verify the validity of these solutions in the limiting 

case of elastodynamic. Letting wk  and ak  approach infinity and w aρ ρ,  and sF  equal zero, the unsaturated 

fundamental solutions presented in this study take the form of the elastodynamic fundamental solutions [8]: 
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2
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Conclusion. In this paper, firstly coupled governing differential equations of a porous medium saturated by 

two compressible fluids (water and air) subjected to dynamic loadings are presented based on the 
poromechanics theory in the frame of the suction-based mathematical model presented by Gatmiri [3] and 

Gatmiri et al. [4]. After that, the associated fundamental solution in Laplace transformed domain is 

presented by the use of the method of Hörmander for 3D 
i w au p p− −  formulation of unsaturated porous 

media. The derived Laplace transform domain fundamental solutions can be directly implemented in time 

domain BEM in which the convolution integral is numerically approximated by a new approach so-called 
“Operational Quadrature Methods” developed by Lubich [1, 2] to model the dynamic behaviour of 

unsaturated porous media. This enables one to develop more effective numerical hybrid BE/FE methods to 

solve 3D non-linear wave propagation problems in the near future. 
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