Pooneh Maghoul 
  
Behrouz Gatmiri 
  
Denis Duhamel 
  
Wave Propagation in Unsaturated Poroelastic Media: Boundary Integral Formulation and Three-dimensional Fundamental Solution

Keywords: Boundary element method, Boundary integral equations, Fundamental solution, Singular behavior, Unsaturated soil, Multiphase porous media, Dynamic behavior

published or not. The documents may come   L'archive ouverte pluridisciplinaire

Introduction

In compacted fills or in arid climate areas where soils are submitted to wetting-drying cycles such as ground water recharge, surface runoff and evapo-transpiration, finegrained soils are not saturated with water, and contain some air. Due to capillary effects and soil-clay adsorption, the pore water is no more positive, and is submitted to suction. The dynamic behavior of the saturated soils has been extensively investigated [START_REF] Biot | General Theory of the Three Dimensional Consolidation[END_REF][START_REF] Biot | Theory of Propagation of Elastic Waves in a Fluid Saturated Porous Solid[END_REF]; [START_REF] Zienkiewicz | Dynamic behaviour of saturated porous media, the generalized Biot formulation and its numerical solution[END_REF]]. In the current state of the art, it could be claimed that behavior of the saturated porous media has been well understood. Conversely, the study of the dynamic behavior of the unsaturated porous media is a relatively new area in the field of geotechnical earthquake engineering. Wave propagation in unsaturated soils and the dynamic response of such media are of great interest in geophysics, soil and rock mechanics, and many earthquake engineering problems. However, in geomechanics, the behavior of such media including more than two phases is not consistent with the principles and concepts of classic saturated soil mechanics.

experimental observations and with respect to the poromechanics theory within the framework of the suction-based mathematical model presented by [START_REF] Gatmiri | Analysis of fully Coupled Behaviour of Unsaturated Porous Medium under Stress, Suction and Temperature Gradient[END_REF] and [START_REF] Gatmiri | UDAM: A powerful finite element software for the analysis of unsaturated porous media[END_REF]. In this model, the effect of deformations on the suction distribution in the soil skeleton and the inverse effect are included in the formulation via a suction-dependent formulation of state surfaces of void ratio and degree of saturation. The linear constitutive law is assumed. The mechanical and hydraulic properties of porous media are assumed to be suction dependent. In this formulation, the solid skeleton displacements ݑ , water pressure  ௪ and air pressure  are presumed to be independent variables. Secondly, the Boundary Integral Equation (BIE) is developed directly from those equations via the use of the weighted residuals method for the first time in a way that permits an easy discretization and implementation in a numerical code. The associated 3D fundamental solution in Laplace transformed domain is presented by the use of the method of [START_REF] Hörmander | Linear Partial Differential Operators[END_REF] for ݑ - ௪ - formulation of unsaturated porous media. As these solutions are the basis of BE formulation their singular behavior is also discussed. In this case that the fundamental solution is known only in the frequency domain and it seems too difficult to obtain the time-dependent fundamental solution in an explicit analytical form by an inverse transformation of the frequency domain results; the convolution integral in the BIE can be numerically approximated by a new approach called "Operational Quadrature Methods" developed by Lubich (1988 a, b). In this formulation, the convolution integral is numerically approximated by a quadrature formula whose weights are determined by the Laplace transform of the fundamental solution and a linear multistep method [START_REF] Maghoul | Solutions Fondamentales en Géo-Poro-Mécanique Multiphasique pour l'analyse des Effets de Site sismiques[END_REF]; [START_REF] Maghoul | Boundary Integral Formulation and Two-Dimensional Fundamental Solutions for Dynamic Behaviour Analysis of Unsaturated Soils[END_REF]]. Finally, the derived results are verified analytically by comparison with the previously introduced corresponding fundamental solutions in the elastodynamic limiting case.

Governing equations

Governing differential equations consist of mass conservation equations of liquid and gaseous phases, the equilibrium equation of the skeleton associated with water and air flow equations and constitutive relation. Also to have a fully coupled model of unsaturated soil, the effect of the suction change on the skeleton deformation and on the water and air permeabilities is considered. The state variables are the net total stress ሺߪ - ሻ and matric suction ሺ ௪ - ሻ. The basic assumptions considered in this paper are the following:

1. The medium consists of the superposition of three continuum media.

2. The interconnected porous space is the space through which mass exchanges of fluids occur. 3. The displacement field is defined by the displacements of the solid skeleton u (or u ୧ ) and the displacement of the fluids relative to the solid w (or w ୧

). The absolute displacement of the fluids U (or U ୧

) is defined in such a way that the volume of fluid α displaced through unit area normal to the x ୧ direction is nS U ୧

where n is the porosity and S is the degree of saturation relative to fluid α.

4. The poroelastic medium of the skeleton is isotropic and linear. 5. The solid grains are considered incompressible. 6. The infinitesimal transformation is considered. Then, the volume dilatation of the skeleton is equal to the variation of the porous connected space:

ୢ୬ ୢ୲ = ሺ1 -nሻuሶ ୧,୧
( 1 ) 7. Generalized Darcy's law is valid for motion of water and air. 8. Darcy flow velocity or the Eulerian relative flow vector of fluid volume (with respect to the skeleton) for fluid α can be defined through the relation wሶ = nS ൫U ሶ -uሶ ൯

( 2 ) in which U ሶ is the Eulerian absolute fluid velocity. 9. Void ratio and degree of saturation state surfaces are suction-dependent.

Solid skeleton

The equilibrium equation and the constitutive law for a non-isothermal isotropic and linear medium can be written as follows,

2.1.1 Equilibrium equation ൫σ ୧୨ -δ ୧୨ p ୟ ൯ ,୨ + p ୟ,୧ + f ୧ = ρuሷ ୧ ( 3 ) 
where ߩ = ሺ1 -݊ሻߩ ௦ + ݊ܵ ௪ ߩ ௪ + ݊ܵ ߩ is the total density of the mixture. In this equation, the relative acceleration terms of the fluids ሺwሷ ୵ , wሷ ୟ ሻ are omitted.

Constitutive law:

Under the assumption of small deformations, the constitutive law for the solid skeleton of an unsaturated soil, which is under suction effect, can be written as

൫σ ୧୨ -δ ୧୨ p ୟ ൯ = ൫λδ ୧୨ ε ୩୩ + 2με ୧୨ ൯ -F ୧୨ ୱ ሺp ୟ -p ୵ ሻ ( 4 ) 
where λ, μ are Lame coefficients, ߜ is the Kronecker delta and F ୧୨ ୱ is the suction modulus matrix:

F ୧୨ ୱ = D ୧୨୩୪ ሺD ୩୪ ୱ ሻ ିଵ ( 5 ) 
in which D ୩୪ ୱ is a vector obtained from the state surface of void ratio ሺ݁ሻ which is a function of the independent variables of ሺߪ - ሻ and ሺ - ௪ ሻ.

ሺD ୩୪ ୱ ሻ ିଵ = ଵ ଵାୣ பୣ பሺ୮ ି୮ ౭ ሻ ሾ1 1 0ሿ ( 6 ) 
The elasticity matrix ൫ܦ ൯ can be presented by using the bulk modulus and the tangent modulus

ܦ ሺߣ, ߤሻ = ܦ ሺܭ , ܧ ௧ ሻ = ܦ ሺߪ - ,  - ௪ ሻ ( 7 )
where E ୲ is tangent elastic modulus which can be evaluated as

E ୲ = E ୪ + E ୱ ( 8 ) E ୪
is the elastic modulus in absence of suction and

ܧ ௦ = ݉ ௦ ሺ - ௪ ሻ ( 9 )
m ୱ being a constant, E ୱ represents the effect of suction on the elastic modulus. K is the bulk modulus of an open system and evaluated from the surface state of void ratio

ܭ ିଵ = ଵ ଵା డ డሺఙି ೌ ሻ ( 10 )
Considering the strain-deformation relation:

ε ୧୨ = ଵ ଶ ൫u ୧,୨ + u ୨,୧ ൯ ( 11 ) 
The final equation, stating the equilibrium of solid skeleton becomes

ሺλ + μሻu ୨,୧୨ + μu ୧,୨୨ + F ୱ p ୵,୧ + ሺ1 -F ୱ ሻp ୟ,୧ -ρuሷ ୧ + f ୧ = 0 ( 12 )

Mass conservation of water

The conservation law for the mass of water is written:

wሶ ୧,୧ ୵ = -S ୵ εሶ ୧୧ + C ୵୵ pሶ ୵ + C ୵ୟ pሶ ୟ ( 13 
)
where C ୵ୟ = -ng ଵ and C ୵୵ = ሺng ଵ -C ୵ nS ୵ ሻ in which C ୵ = dρ ୵ /ሺρ ୵ dp ୵ ሻ is the compressibility of water and g ଵ = dS ୵ /dሺp ୟ -p ୵ ሻ.

The degree of saturation in unsaturated soil S ୵ depends on the net stress level ሺσ -p ୟ ሻ and variation of suction ሺp ୟ -p ୵ ሻ. Numerous relations have been introduced to define the degree of saturation of unsaturated soils, but the exponential form based on suction variations is one of the most common and reliable ones. The exponential form of the degree of saturation is presented here by omitting the dependency to the net stress in the original equation [START_REF] Gatmiri | Analysis of fully Coupled Behaviour of Unsaturated Porous Medium under Stress, Suction and Temperature Gradient[END_REF]]:

S ୵ = 1 -൛1 -exp൫β ୵ ሺp ୟ -p ୵ ሻ൯ൟ ( 14 ) 
in which β ୵ is constant. By assuming a negative β ୵ , one can see that any increase in suction results in a decrease in S ୵ and any decrease in suction results in the approach of S ୵ to one (saturated).

Mass conservation of air

With the same approach presented for the water mass conservation, the mass conservation equation of the air can be written as

ݓሶ , = -ܵ ߝሶ + ܥ ௪ ሶ ௪ + ܥ ሶ ( 15 ) 
where C ୟ୵ = -ng ଵ and ܥ = ሺ݊݃ ଵ -ܥ ݊ܵ ሻ in which C ୟ = dρ ୟ /ሺρ ୟ dp ୟ ሻ is the compressibility of air.

Flow equation for the water

Based on generalized Darcy's law for describing the balance of the forces acting on the liquid phase of the representative elementary volume, the water velocity in the unsaturated soil takes the following form:

-p ୵,୧ = ρ ୵ uሷ ୧ + ୵ ሶ ౭ ୩ ౭ -ρ ୵ g ୧ ( 16 ) 
where

k ୵ = a ୵ 10 ୣ ౭ ቀ ୗ ౭ ିୗ ౭౫ ଵିୗ ౭౫ ቁ ୢ ౭
denotes the water permeability in an unsaturated soil in which e is the void ratio, a ୵ , α ୵ , d ୵ and S ୵୳ are constants depending on the soil studied.

In this equation, the relative acceleration terms of the water is omitted.

Flow equation for the air

With the same approach presented for the water based on generalized Darcy's law, the air velocity in the unsaturated soil takes the following form:

- , = ߩ ݑሷ + ௪ሶ ೌ ೌ -ߩ ݃ ( 17 ) 
where

k ୟ = ୡ ஓ ஜ ൫eሺ1 -S ୵ ሻ൯
ୢ is the air permeability in an unsaturated soil in which μ ୟ is the air viscosity, e is the void ratio, c ୟ and d ୟ are constants depending on the soil studied).

Summary of the field equations

By introducing (4) into ( 3), ( 16) into ( 13) and ( 17) into ( 15), we have

ሺߣ + ߤሻݑ ఉ,ఈఉ + ݑߤ ఈ,ఉఉ + ܨ ௦  ௪,ఈ + ሺ1 -ܨ ௦ ሻ ,ఈ -ߩݑሷ ఈ + ݂ ఈ = 0 ( 18 ) -S ୵ uሶ , + ρ ୵ k ୵ uሷ , + k ୵ p ୵, + C ୵୵ pሶ ୵ + C ୵ୟ pሶ ୟ = 0 ( 19 ) -S ୟ uሶ , + ρ ୟ k ୟ uሷ , + k ୟ p ୟ, + C ୵ୟ pሶ ୵ + C ୟୟ pሶ ୟ = 0 ( 20 )

Governing equations in the Laplace transformed domain

The Laplace transformation is used to eliminate the time variable of a partial differential equation. Therefore, by applying the Laplace transform with the assumption of zero initial conditions,

u ሺ୲ୀሻ = w ሺ୲ୀሻ ୵ = w ሺ୲ୀሻ ୟ ( 21 ) p ୵ሺ୲ୀሻ = p ୟሺ୲ୀሻ = 0 ( 22 ) 
we can rewrite compactly the transformed coupled differential equation system into the following matrix form:

B ෩ u p ୵ p ୟ ൩ + f ሚ 0 0 ൩ = 0 ( 23 )
with the not self-adjoint operator B ෩ :

B ෩ = ሺμ∆ -ρs ଶ ሻδ ஒ + ሺλ + μሻ ∂ ∂ ஒ F ୱ ∂ ሺ1 -F ୱ ሻ ∂ -sθ ଵ ∂ ஒ k ୵ ∆ + C ୵୵ s C ୵ୟ s -sθ ଶ ∂ ஒ C ୵ୟ s k ୟ ∆ + C ୟୟ s ( 24 ) 
where

θ ଵ = ሺS ୵ -ρ ୵ k ୵ sሻ and θ ଶ = ሺS ୟ -ρ ୟ k ୟ sሻ.
In equations ( 23) and ( 24), α, β = 1,3 തതതത in three dimensional problems. Also in (24), the partial derivative ሺ1ሻ , is denoted by ∂ and ∆= ∂ is the Laplacian operator.

Based on this equation in the next section, the boundary integral equation and fundamental solutions are derived.

Boundary integral equation

We aim at reaching the boundary integral equations for dynamic unsaturated poroelasticity at such a level that it allows application to physical meaningful problem.

The corresponding fundamental solutions will be derived in section 4. Thank to the Boundary Element Method an easy discretization and implementation can be done in a numerical code. To that end the present section is dedicated to the derivation of a set of the boundary integral equations for dynamic multiphase poro-elasticity using the weighted residuals method. In this method, the poro-elasto-dynamic integral equation is derived directly by equating the inner product of Eq. ( 23) and the matrix of the adjoint fundamental solutions G ෩ * implying that

B ෩ * G ෩ * + Iδሺx -ξሻ = 0 ( 25 ) to a null vector, i.e.  B ෩ ஐ u p ୵ p ୟ ൩ G ෩ * dΩ = 0 with G ෩ * = ൦ G ෩ ஒ * G ෩ ସ * G ෩ ହ * G ෩ ସஒ * G ෩ ସସ * G ෩ ସହ * G ෩ ହஒ * G ෩ ହସ * G ෩ ହହ * ൪ = ۏ ێ ێ ۍ U ෩ ஒ ୗ * U ෩ ୵ * U ෩ ୟ * P ෩ ஒ ௪ௌ * ܲ ෨ ௪ௐ * ܲ ෨ ௪ * P ෩ ஒ ௌ * ܲ ෨ ௐ * ܲ ෨ * ے ۑ ۑ ې ( 26 ) 
where the integration is performed over a domain Ω with boundary Γ and vanishing body forces and sources are assumed. By this inner product, essentially, the error in satisfying the governing differential equations ( 23), is forced to be orthogonal to G ෩ * [START_REF] Schanz | Application of 3D time domain boundary element formulation to wave propagation in poroelastic solids[END_REF]]. This yields, after some algebraic manipulations, the following system of integral equations in index notation as ( 27)

නൣ൫ߣݑ , -ܨ ௦ ሺ - ௪ ሻ +  ൯݊ ఉ ߜ ఈఉ + ߤ൫ݑ ఉ,ఈ + ݑ ఈ,ఉ ൯݊ ఉ ൧ܩ ෨ ఈ * ݀Γ -නݑ ఈ ൣ൫ߣܩ ෨ , * + ߠݏ ଵ ܩ ෨ ସ * + ߠݏ+ ଶ ܩ ෨ ହ * ൯݊ ఉ ߜ ఈఉ + ߤ൫ܩ ෨ ఈ,ఉ B ෩ * = ሺμ∆ -ρs ଶ ሻδ ஒ + ሺλ + μሻ ∂ ∂ ஒ sθ ଵ ∂ sθ ଶ ∂ ܨ- ௦ ߲ ఉ k ୵ ∆ + C ୵୵ s C ୵ୟ s -ሺ1 -F ୱ ሻ ∂ ஒ C ୵ୟ s k ୟ ∆ + C ୟୟ s ( 33 ) 
By substituting Eq (30) into (32) and using the property of Dirac's delta function ߜሺݔ -ߦሻ, we reach the transformed dynamic unsaturated poroelastic boundary integral representation for the transformed internal displacements and pressures given in matrix form, i.e., 

ݐ ̃ = ߪ ఈఉ ݊ ఉ = ൣ൫ߣݑ , -ܨ ௦ ሺ - ௪ ሻ +  ൯ߜ ఈఉ + ߤ൫ݑ ఉ,ఈ + ݑ ఈ,ఉ ൯൧݊ ఉ ( 35 ) ݍ ୵ = -݇ ௪ ൫ ௪, + ߩ ௪ ݏ ଶ ݑ ఈ ݊ ఈ ൯ ( 36 ) ݍ = -݇ ൫ , + ߩ ݏ ଶ ݑ ఈ ݊ ఈ ൯ ( 37 ) 
The coefficient ܿ has a value ߜ for points inside Ω and zero outside Ω. The value of ܿ for points on the boundary Γ is determined from the Cauchy principal value of the integrals. It is equal to 0.5ߜ for points on Γ where the boundary is smooth.

Also the ܂ ෩ ௌ * , ۿ ෩ ௪ௌ * and ۿ ෩ ௌ * in Eq (34) can be interpreted as the adjoint terms to the traction vector ݐ ̃, the water flux ݍ ୵ and the air flux ݍ ୟ as follows:

ܶ ෨ ஒ ௌ * = ൣ൫ߣܷ ෩ ఉ, ௌ * + ܵݏ ௪ P ෩ ఉ ௪ௌ * + ܵݏ P ෩ ఉ ௌ * ൯ߜ ఈ + ߤ൫U ෩ ஒ, ௌ * + U ෩ ஒ,ఈ ௌ * ൯൧݊ ( 38 ) ܶ ෨ ௐ * = ൣ൫ߣܷ ෩ , ௐ * + ܵݏ ௪ ܲ ෨ ௪ௐ * + ܵݏ ܲ ෨ ௐ * ൯ߜ ఈ + ߤ൫U ෩ , ௐ * + U ෩ ,ఈ ௐ * ൯൧݊ ( 39 ) ܶ ෨ * = ൣ൫ߣܷ ෩ , * + ܵݏ ௪ ܲ ෨ ௪ * + ܵݏ ܲ ෨ * ൯ߜ ఈ + ߤ൫U ෩ , * + U ෩ ,ఈ * ൯൧݊ ( 40 ) ܳ ෨ ఈ ௪ௌ * = ݇ ௪ P ෩ ఈ, ௪ௌ * ( 41 ) ܳ ෨ ௪ௐ * = ݇ ௪ P ෩ , ௪ௐ * ( 42 ) ܳ ෨ ௪ * = ݇ ௪ P ෩ , ௪ * ( 43 ) ܳ ෨ ఈ ௌ * = ݇ P ෩ ఈ, ௌ * ( 44 ) ܳ ෨ ௐ * = ݇ P ෩ , ௐ * ( 45 ) 
ܳ ෨ * = ݇ P ෩ , *

( 46 ) Eq (34) can be compacted in index notation for the 3D case as follows

ܿሺߦሻ۷ݑ ሺߦ; ݏሻ =  ܩ ෨ * ሺ,ݔ ߦ; ݐ‪ሻݏ ̃ሺ;ݔ ݏሻ -ܨ ෨ * ሺ,ݔ ߦ; ݑ‪ሻݏ ሺ;ݔ ݏሻ ( 47 ) 
where ݐ ̃ = ሾ̃ݐ ݍ ୵ ݍ ሿ ் , ݑ = ሾݑ  ୵  ሿ ் and also

ܩ ෨ * = ۏ ێ ێ ۍ U ෩ ஒ ௌ * -P ෩ ఈ ௪ௌ * -P ෩ ఈ ௌ * U ෩ ఉ ௐ * -ܲ ෨ ௪ௐ * -ܲ ෨ ௐ * U ෩ ఉ * -ܲ ෨ ௪ * -ܲ ෨ * ے ۑ ۑ ې ( 48 ) ܨ ෨ * = ۏ ێ ێ ۍ ܶ ෨ ஒ ௌ * ܳ ෨ ఈ ௪ௌ * ܳ ෨ ఈ ௌ * ܶ ෨ ఉ ௐ * ܳ ෨ ௪ௐ * ܳ ෨ ௐ * ܶ ෨ ఉ * ܳ ෨ ௪ * ܳ ෨ * ے ۑ ۑ ې ( 49 ) 
with ݅, ݆ varies from one to five and ߙ, ߚ, ݇ varies from one to three. The time dependent boundary integral equation for the unsaturated soil is obtained by a transformation to time domain.

ܿሺߦሻ۷ݑ ሺߦ; ݐሻ =   ൣܩ * ሺ,ݔ ߦ; ݐ -߬ሻݐ ሺ;ݔ ߬ሻ -ܨ * ሺ,ݔ ߦ; ݐ -߬ሻݑ ሺ;ݔ ߬ሻ൧݀Γ ୲ ( 50 )

Fundamental solutions

The objective of this section is to derive the fundamental solutions for the unsaturated poroelastodynamic governing equation ( 23) in the Laplace transform domain. These solutions are used in the time-dependent convolution quadrature-based BE formulation which needs only Laplace transformed fundamental solutions. The physical interpretation of the fundamental solutions for the system of equations ( 23) is the response of the medium in the point ݔ to, respectively, a unit point excitation

F ෨ ୧୨ = F ෨ ୧ e ୨ = δሺx -ξሻδ ୧୨
in the solid skeleton domain with infinite boundaries, represented by U ෩ ஒ ௌ , P ෩ ஒ ௪ௌ and P ෩ ஒ ௌ , as well as a unit source in the water fluid γ ୵ = δሺx -ξሻ represented by U ෩ ୵ , ܲ ෨ ௪ௐ , ܲ ෨ ௐ and a unit source in the air fluid γ ୟ = δሺx -ξሻ represented by U ෩

ୟ , ܲ ෨ ௪ , ܲ ෨ . Here, U ෩ , ܲ ෨ ௪ and ܲ ෨ denote, respectively, the displacement of the solid skeleton in the ߙ direction, the water and air pressures and the superscripts ܵ, ܹ, ܣ designs the applied force in, respectively, solid skeleton, water and air fluids. Also, the second subscript β presents the direction of applied force in the solid skeleton. Mathematically speaking a fundamental solution is a solution of the equation BG + Iδሺx -ξሻδሺt -τሻ = 0 where the matrix of fundamental solutions is denoted by G, the identity matrix by I and the matrix differential operator by B. As in a 3D unsaturated poroelastic problem there are five unknowns ሺu ଵ , u ଶ , ݑ ଷ , p ୵ , p ୟ ሻ per each observation point therefore, the dimension of the fundamental solution matrix is 5 × 5 per each point:

۵ ෩ = ൦ ܩ ෨ ఈఉ ܩ ෨ ఈସ ܩ ෨ ఈହ ܩ ෨ ସఉ ܩ ෨ ସସ ܩ ෨ ସହ ܩ ෨ ହఉ ܩ ෨ ହସ ܩ ෨ ହହ ൪ = ൦ ܷ ෩ ఈఉ ௦ ܷ ෩ ఈ ௪ ܷ ෩ ఈ ܲ ෨ ఉ ௪ௌ ܲ ෨ ௪ௐ ܲ ෨ ௪ ܲ ෨ ఉ ௌ ܲ ෨ ௐ ܲ ෨ ൪ ( 51 ) 
In this study, because the operator type of the governing equations is an elliptical operator the explicit 3D Laplace transform domain fundamental solution are derived by using the method of Hörmander [START_REF] Hörmander | Linear Partial Differential Operators[END_REF]]. The idea of this method is to reduce the highly complicated operator given in (24) to simple well known operators. In this method, in the Laplace transform domain, the first stage is to find the matrix of cofactors B ୡ୭ to calculate the inverse matrix of B (B ିଵ = B ୡ୭ / det B). For the second stage, we assume that φ is a scalar solution to the equation detሺBሻ Iφ + Iδሺx -ξሻ = 0 ↭ B B ୡ୭ φ + δሺx -ξሻ = 0 ( 52 ) Consequently, we get G = B ୡ୭ φ ( 53 ) From the mathematical theory of Green's formula, it is known that the fundamental solution should satisfy the adjoint operator [START_REF] Stakgold | Green's functions and boundary value problems[END_REF]]. As shown in equation ( 24), all the operators are elliptic and not self-adjoint. Therefore, for the deduction of fundamental solutions, the adjoint operator B ෩ * has to be used:

B ෩ * = ሺμ∆ -ρs ଶ ሻδ ஒ + ሺλ + μሻ ∂ ∂ ஒ sθ ଵ ∂ sθ ଶ ∂ -F ୱ ∂ ஒ k ୵ ∆ + C ୵୵ s C ୵ୟ s -ሺ1 -F ୱ ሻ ∂ ஒ C ୵ୟ s k ୟ ∆ + C ୟୟ s ( 54 ) 
At first following Hörmander's idea (52) the determinant of the operator B ෩ * are calculated:

݀݁ݐ൫B ෩ * ൯ = ߤ ଶ ሺߣ + 2ߤሻ݇ ௪ ݇ ሺΔ -ߣ ଵ ଶ ሻ ଶ ሺΔ -ߣ ଶ ଶ ሻሺΔ -ߣ ଷ ଶ ሻሺΔ -ߣ ସ ଶ ሻ ( 55 )
in which the coefficients λ ୧ ଶ ሺi = 1,4 തതതത ሻ are the coefficients corresponding to the wave velocity propagating through the medium in a way that λ ଵ ଶ = ρs ଶ /μ is related to the shear wave velocity and λ ଶ ଶ , λ ଷ ଶ and λ ସ ଶ correspond to the three compressional waves which are affected by the degree of saturation and the spatial distribution of fluids within the medium [START_REF] Maghoul | Boundary Integral Formulation and Two-Dimensional Fundamental Solutions for Dynamic Behaviour Analysis of Unsaturated Soils[END_REF]]. These three roots must be determined as these which satisfy:

ߣ ଶ ଶ + ߣ ଷ ଶ + ߣ ସ ଶ = ఘ௦ మ ାி ೞ ఘ ೢ ௦ మ ାఘ ೌ ሺଵିி ೞ ሻ௦ మ ሺఒାଶఓሻ - ೌೌ ௦ ೌ - ೢೢ ௦ ೢ - ௌ ೢ ி ೞ ௦ ሺఒାଶఓሻ ೢ - ௌ ೌ ሺଵିி ೞ ሻ௦ ሺఒାଶఓሻ ೌ ( 56 ) ߣ ଶ ଶ ߣ ଷ ଶ + ߣ ଶ ଶ ߣ ସ ଶ + ߣ ଷ ଶ ߣ ସ ଶ = - ఘ ೌೌ ௦ య ሺఒାଶఓሻ ೌ - ఘ ೢೢ ௦ య ሺఒାଶఓሻ ೢ - ఘ ೢ ሺி ೞ ೌೌ ିሺଵିி ೞ ሻ ೢೌ ሻ௦ య ሺఒାଶఓሻ ೌ - ఘ ೌ ሺିி ೞ ೢೌ ାሺଵିி ೞ ሻ ೢೢ ሻ௦ య ሺఒାଶఓሻ ೢ + ൫ ೢೢ ೌೌ ି ೢೌ మ ൯௦ మ ೢ ೌ + ௌ ೢ ሺி ೞ ೌೌ ିሺଵିி ೞ ሻ ೢೌ ሻ௦ మ ሺఒାଶఓሻ ೢ ೌ + ௌ ೌ ሺିி ೞ ೢೌ ାሺଵିி ೞ ሻ ೢೢ ሻ௦ మ ሺఒାଶఓሻ ೢ ೌ ( 57 ) ߣ ଶ ଶ ߣ ଷ ଶ ߣ ସ ଶ = ఘ൫ ೢೢ ೌೌ ି ೢೌ మ ൯௦ ర ሺఒାଶఓሻ ೢ ೌ
Secondly, by introducing the determinant, the scalar equation corresponding to ( 52) is given by 58) can be expressed as either of four equations ( 60), ( 61), ( 62) and ( 63):

ሺΔ -ߣ ଵ ଶ ሻሺΔ -ߣ ଶ ଶ ሻሺΔ -ߣ ଷ ଶ ሻሺΔ -ߣ ସ ଶ ሻΦ + ߜሺݔ -ߦሻ = 0 ( 58 ) in which Φ is an interim operator, i.e. Φ = ߤ ଶ ሺߣ + 2ߤሻ݇ ௪ ݇ ሺΔ -ߣ ଵ ଶ ሻ߮ ( 59 ) Equation (
ሺΔ -ߣ ଵ ଶ ሻ߮ ଵ + ߜሺݔ -ߦሻ = 0; ߮ ଵ = ሺΔ -ߣ ଶ ଶ ሻሺΔ -ߣ ଷ ଶ ሻሺΔ -ߣ ସ ଶ ሻΦ ( 60 ) ሺΔ -ߣ ଶ ଶ ሻ߮ ଶ + ߜሺݔ -ߦሻ = 0; ߮ ଶ = ሺΔ -ߣ ଵ ଶ ሻሺΔ -ߣ ଷ ଶ ሻሺΔ -ߣ ସ ଶ ሻΦ ( 61 ) ሺΔ -ߣ ଷ ଶ ሻ߮ ଷ + ߜሺݔ -ߦሻ = 0; ߮ ଷ = ሺΔ -ߣ ଵ ଶ ሻሺΔ -ߣ ଶ ଶ ሻሺΔ -ߣ ସ ଶ ሻΦ ( 62 ) ሺΔ -ߣ ସ ଶ ሻ߮ ସ + ߜሺݔ -ߦሻ = 0; ߮ ସ = ሺΔ -ߣ ଵ ଶ ሻሺΔ -ߣ ଶ ଶ ሻሺΔ -ߣ ଷ ଶ ሻΦ ( 63 )
The above differential equations are of the familiar Helmholtz type. The fundamental solution of Helmholtz differential equations for an only r-dependent fully symmetric three-dimensional domain is

߮ = ௫ሺିఒ ሻ ସగ , ݅ = 1,4 തതതത ( 64 ) 
By definition of ߮ ଵ , ߮ ଶ , ߮ ଷ and ߮ ସ , it is deduced: ( 65 ) 64) into ( 65), one obtains ( 66 )

Φ = 1 ሺߣ ଷ ଶ -ߣ ସ ଶ ሻሺߣ ଶ ଶ -ߣ ଵ ଶ ሻ ቈ ߮ ଷ -߮ ଶ ߣ ଷ ଶ -ߣ ଶ ଶ - ߮ ଷ -߮ ଵ ߣ ଷ ଶ -ߣ ଵ ଶ + ߮ ସ -߮ ଵ ߣ ସ ଶ -ߣ ଵ ଶ - ߮ ସ -߮ ଶ ߣ ସ ଶ -ߣ ଶ ଶ Replacing equation (
߮ = 1 ݎߨ4 ቊ ߣ-‪ሺݔ݁ ଵ ݎሻ ሺߣ ଵ ଶ -ߣ ଷ ଶ ሻሺߣ ଵ ଶ -ߣ ସ ଶ ሻሺߣ ଵ ଶ -ߣ ଶ ଶ ሻ + ߣ-‪ሺݔ݁ ଶ ݎሻ ሺߣ ଶ ଶ -ߣ ସ ଶ ሻሺߣ ଶ ଶ -ߣ ଷ ଶ ሻሺߣ ଶ ଶ -ߣ ଵ ଶ ሻ + ߣ-‪ሺݔ݁ ଷ ݎሻ ሺߣ ଷ ଶ -ߣ ଶ ଶ ሻሺߣ ଷ ଶ -ߣ ଵ ଶ ሻሺߣ ଷ ଶ -ߣ ସ ଶ ሻ + ߣ-‪ሺݔ݁ ସ ݎሻ ሺߣ ସ ଶ -ߣ ଵ ଶ ሻሺߣ ସ ଶ -ߣ ଶ ଶ ሻሺߣ ସ ଶ -ߣ ଷ ଶ ሻ ቋ
in which the argument ݎ = ݔ| -ߦ| denotes the distance between a load point and an observation point. Finally, we can determine the components of fundamental solution tensor by applying the matrix of cofactors B ෩ * to the scalar function ߮ which are:

-Displacement caused by a Dirac force in the solid ( 67 )

ܩ ෨ ఈఉ * = ܷ ෩ ఈఉ ௌ * = 1 4ߨߤ -ሺߣ + ߤሻΛ ଶ ݏߩ ଶ ቌ ൫ߣ ଶ -ܭ ௦௦ଵ ଶ ൯൫ߣ ଶ -ܭ ௦௦ଶ ଶ ൯ ൫ߣ ଶ -ߣ ାଵ ଶ ൯൫ߣ ଶ -ߣ ାଶ ଶ ൯൫ߣ ଶ -ߣ ାଷ ଶ ൯ ൫ܴ ଵ + ܴ ଶ ߣ + ܴ ଷ ߣ ଶ ൯expሺ-ߣ ݎሻቍ + ߜ ఈఉ ݎߤߨ4 in which λ ହ ଶ = λ ଵ ଶ , λ ଶ = λ ଶ ଶ , λ ଶ = λ ଷ ଶ , ܴ ଵ = ൫ଷ ,ഀ ,ഁ ିఋ ഀഁ ൯ య , ܴ ଶ = ൫ଷ ,ഀ ,ഁ ିఋ ഀഁ ൯ మ , ܴ ଷ = ,ഀ ,ഁ , Λ ଶ = ఘ௦ మ ሺఒାଶఓሻ and ܭ ௦௦ଵ ଶ + ܭ ௦௦ଶ ଶ = - ௌ ೢ ி ೞ ௦ ሺఒାఓሻ ೢ - ௌ ೌ ሺଵିி ೞ ሻ௦ ሺఒାఓሻ ೌ - ሺ ೢ ೌೌ ା ೌ ೢೢ ሻ௦ ೢ ೌ + ఘ ೢ ி ೞ ௦ మ ሺఒାఓሻ + ఘ ೌ ሺଵିி ೞ ሻ௦ మ ሺఒାఓሻ , K ୱୱଵ ଶ K ୱୱଶ ଶ = ൫େ ౭౭ େ ିେ ౭ మ ൯ୱ మ ୩ ౭ ୩ + ୗ ౭ ൫ ౩ େ ିେ ౭ ሺଵି ౩ ሻ൯ୱ మ ሺାஜሻ୩ ౭ ୩ + ୗ ൫ି ౩ େ ౭ ାେ ౭౭ ሺଵି ౩ ሻ൯ୱ మ ሺାஜሻ୩ ౭ ୩ - ౭ ൫ ౩ େ ିେ ౭ ሺଵି ౩ ሻ൯ୱ య ሺାஜሻ୩ - ൫ି ౩ େ ౭ ାେ ౭౭ ሺଵି ౩ ሻ൯ୱ య ሺାஜሻ୩ ౭
.

-Water pressure caused by a Dirac force in the solid

G ෩ ସஒ * = P ෩ ஒ ୵ୗ * = ି ౩ ସሺାଶஜሻ୩ ౭ ,ഁ ୰ మ ሺଵା ሻ௫ሺିఒ ሻ ൫ శమ మ ି మ ൯൫ శభ మ ି మ ൯ ቀλ ୧ ଶ - ሺେ ౭ ሺଵି ౩ ሻି ౩ େ ሻ ౩ ୩ sቁ ( 68 ) in which i = 2,4 തതതത and λ ହ ଶ = λ ଶ ଶ , λ ଶ = λ ଷ ଶ .
-Air pressure caused by a Dirac force in the solid

G ෩ ହஒ * = P ෩ ஒ ୗ * = ିሺଵି ౩ ሻ ସሺାଶஜሻ୩ ೌ ,ഁ ୰ మ ሺଵା ሻ௫ሺିఒ ሻ ൫ శమ మ ି మ ൯൫ శభ మ ି మ ൯ ቀλ ୧ ଶ - ൫େ ౭ ౩ ିେ ೢೢ ሺଵି ౩ ሻ൯ ሺଵି ౩ ሻ ೢ sቁ ( 69 ) in which i = 2,4 തതതത and λ ହ ଶ = λ ଶ ଶ , λ ଶ = λ ଷ ଶ .
-Displacement caused by a Dirac source in the water fluid

G ෩ ସ * = U ෩ * = ሺௌ ೢ ି ೢ ఘ ೢ ௦ሻ௦ ସሺାଶஜሻ ೢ ,ഁ ୰ మ ሺଵା ሻ௫ሺିఒ ሻ ൫ శమ మ ି మ ൯൫ శభ మ ି మ ൯ ൫λ ୧ ଶ -ܭ ఈ௪ ൯ ( 70 ) in which i = 2,4 തതതത , λ ହ ଶ = λ ଶ ଶ , λ ଶ = λ ଷ ଶ and ܭ ఈ௪ = ൫େ ౭ ሺୗ ି ୩ ୱሻିେ ሺୗ ౭ ି ౭ ୩ ౭ ୱሻ൯ ୩ ሺୗ ౭ ି ౭ ୩ ౭ ୱሻ
s.

-Displacement caused by a Dirac source in the air fluid

G ෩ ହ * = U ෩ * = ሺௌ ೌ ି ೌ ఘ ೌ ௦ሻ௦ ସሺାଶஜሻ ೌ ,ഁ ୰ మ ሺଵା ሻ௫ሺିఒ ሻ ൫ శమ మ ି మ ൯൫ శభ మ ି మ ൯ ൫λ ୧ ଶ -ܭ ఈ ൯ ( 71 ) 
in which i = 2,4 തതതത , λ ହ ଶ = λ ଶ ଶ , λ ଶ = λ ଷ ଶ and ܭ ఈ = ൫େ ౭ ሺୗ ౭ ି ౭ ୩ ౭ ୱሻିେ ౭౭ ሺୗ ି ୩ ୱሻ൯ ୩ ౭ ሺୗ ି ୩ ୱሻ s.
-Water pressure caused by a Dirac source in the water fluid

G ෩ ସସ * = P ෩ ୵ * = ଵ ସ୩ ౭ ௫ሺିఒ ሻ ൫ శమ మ ି మ ൯൫ శభ మ ି మ ൯ ൫λ ୧ ଶ -K ୵ ଶ ൯൫λ ୧ ଶ -Λ ୵ ଶ ൯ ( 72 ) in which i = 2,4 തതതത and λ ହ ଶ = λ ଶ ଶ , λ ଶ = λ ଷ ଶ and K ୵ ଶ Λ ୵ ଶ = ିେ ୱ య ሺାଶஜሻ୩ and K ୵ ଶ + Λ ୵ ଶ = ିୗ ሺଵି ౩ ሻୱ ሺାଶஜሻ୩ - େ ୱ ୩ + ୩ ሺଵି ౩ ሻୱ మ ሺାଶஜሻ୩ + ୱ మ ሺାଶஜሻ .
-Air pressure caused by a Dirac source in the air fluid

G ෩ ହହ * = P ෩ * = ଵ ସ ೌ ௫ሺିఒ ሻ ൫ శమ మ ି మ ൯൫ శభ మ ି మ ൯ ൫λ ୧ ଶ -K ଶ ൯൫λ ୧ ଶ -Λ ଶ ൯ ( 73 ) in which i = 2,4 തതതത and λ ହ ଶ = λ ଶ ଶ , λ ଶ = λ ଷ ଶ and K ୟ ଶ Λ ୟ ଶ = ିେ ౭౭ ୱ య ሺାଶஜሻ୩ ౭ and K ୵ ଶ + Λ ୵ ଶ = ିୗ ౭ ౩ ୱ ሺାଶஜሻ୩ ౭ - େ ౭౭ ୱ ୩ ౭ + ౭ ୩ ౭ ౩ ୱ మ ሺାଶஜሻ୩ ౭ + ୱ మ ሺାଶஜሻ .
-Air pressure caused by a Dirac source in the water fluid

( 74 ) G ෩ ହସ * = P ෩ ୟ * = s 4πሺλ + 2μሻk ୵ k ୟ ݎ ൫-ሺλ + 2μሻC ୵ୟ + ሺρ ୵ k ୵ s -S ୵ ሻሺ1 -F ୱ ሻ൯λ ୧ ଶ + ρC ୵ୟ s ଶ ൫λ ୧ାଶ ଶ -λ ୧ ଶ ൯൫λ ୧ାଵ ଶ -λ ୧ ଶ ൯ ݁ݔሺ-λ ୧ rሻ in which i = 2,4 തതതത and λ ହ ଶ = λ ଶ ଶ , λ ଶ = λ ଷ ଶ .
-Water pressure caused by a Dirac source in the air fluid

( 75 ) G ෩ ସହ * = P ෩ ௪ * = s 4πሺλ + 2μሻk ୵ k ୟ ݎ ሺ-ሺλ + 2μሻC ୵ୟ + ሺρ k s -S ሻF ୱ ሻλ ୧ ଶ + ρC ୵ୟ s ଶ ൫λ ୧ାଶ ଶ -λ ୧ ଶ ൯൫λ ୧ାଵ ଶ -λ ୧ ଶ ൯ ݁ݔሺ-λ ୧ rሻ in which i = 2,4 തതതത and λ ହ ଶ = λ ଶ ଶ , λ ଶ = λ ଷ ଶ .
In the derivation of the multiphase poroelastodynamic boundary integral equation ( 34) several abbreviations corresponding to an 'adjoint' traction or flux are introduced (Eqs. ( 38)-( 46)). At first, the 'adjoint' traction solution is presented. However, for simplicity, only parts are given

-ܶ ෨ ஒ ௌ * = ൣ൫ߣܷ ෩ ఉ, ௌ * + ܵݏ ௪ P ෩ ఉ ௪ௌ * + ܵݏ P ෩ ఉ ௌ * ൯ߜ ఈ + ߤ൫U ෩ ஒ, ௌ * + U ෩ ஒ,ఈ ௌ * ൯൧݊ ( 76 ) ൫U ෩ ஒ, ௌ * + U ෩ ஒ,ఈ ௌ * ൯݊ = ݊ ݎߨ2 ቆܥ ௦ௌ ൬ ܴ ହ ݎ ଶ ൬ߣ + 1 ݎ ൰ + ܴ ݎ ߣ ଶ -ݎ ,ఈ ݎ ,ఉ ݎ , ߣ ଷ ൰ ߣ-‪ሺݔ݁ ݎሻቇ - ൫ݎ ,ఈ ݊ ఉ + ݎ , ߜ ఈఉ ൯ ݎߤߨ4 ൬ߣ ଵ + 1 ݎ ൰ ߣ-‪ሺݔ݁ ଵ ݎሻ
where

ܴ ହ = 3൫ݎ ,ఈ ߜ ఉ + ݎ ,ఉ ߜ ఈ + ݎ , ߜ ఈఉ -ݎ5 ,ఈ ݎ ,ఉ ݎ , ൯, ܴ = ൫ݎ ,ఈ ߜ ఉ + ݎ ,ఉ ߜ ఈ + ݎ , ߜ ఈఉ - ݎ6 ,ఈ ݎ ,ఉ ݎ , ൯. U ෩ ஒ, ௌ * ߜ ఈ ݊ = - ,ഁ ഀ ସగ ൬ܥ ௦ௌ ቀߣ + ଵ ቁ ߣ ଶ ߣ-‪ሺݔ݁ ݎሻ൰ - ,ഁ ഀ ସగఓ ቀߣ ଵ + ଵ ቁ ߣ-‪ሺݔ݁ ଵ ݎሻ ( 77 ) -ܶ ෨ ௐ * = ൣ൫ߣܷ ෩ , ௐ * + ܵݏ ௪ ܲ ෨ ௪ௐ * + ܵݏ ܲ ෨ ௐ * ൯ߜ ఈ + ߤ൫U ෩ , ௐ * + U ෩ ,ఈ ௐ * ൯൧݊ ൫U ෩ , ௐ * + U ෩ ,ఈ ௐ * ൯݊ = ଶగ ܥ ିଵ ௦ௐ ܴ ିଵ ߣ-‪ሺݔ݁ ݎሻ ( 78 ) U ෩ , ௐ * ߜ ఈ ݊ = - ഀ ସగ ቀܥ ିଵ ௦ௐ ߣ ଶ ߣ-‪ሺݔ݁ ݎሻቁ ( 79 ) with i = 2,4 തതതത and ܴ = ൫ఋ ഀ ିଷ ,ഀ , ൯ మ + ߣ ൫ఋ ഀ ିଷ ,ഀ , ൯ -ߣ ଶ ݎ ,ఈ ݎ , -ܶ ෨ * = ൣ൫ߣܷ ෩ , * + ܵݏ ௪ ܲ ෨ ௪ * + ܵݏ ܲ ෨ * ൯ߜ ఈ + ߤ൫U ෩ , * + U ෩ ,ఈ * ൯൧݊ ൫U ෩ , * + U ෩ ,ఈ * ൯݊ = ଶగ ܥ ିଵ ௦ ܴ ିଵ ߣ-‪ሺݔ݁ ݎሻ ( 78 ) U ෩ , * ߜ ఈ ݊ = - ഀ ସగ ቀܥ ିଵ ௦ ߣ ଶ ߣ-‪ሺݔ݁ ݎሻቁ ( 79 ) with i = 2,4 തതതത and ܴ = ൫ఋ ഀ ିଷ ,ഀ , ൯ మ + ߣ ൫ఋ ഀ ିଷ ,ഀ , ൯ -ߣ ଶ ݎ ,ఈ ݎ ,
The other explicit expressions are

ܳ ෨ ఈ ௪ௌ * = ݊ ߙ ݎߨ4 ܥ ݅-1 ܵݓ ܴ ݅-1 ߣ-‪ሺݔ݁ ݅ ݎሻ ( 80 ) ܳ ෨ ௪ௐ * = - ݎ ,݊ ݎߨ4 ൬ܥ ݅-1 ܹݓ ቀߣ ݅ + 1 ݎ ቁ ߣ-‪ሺݔ݁ ݅ ݎሻ൰ ( 81 ) ܳ ෨ ௪ * = - ݎ ,݊ ݎߨ4 ൬ܥ ݅-1 ܣݓ ቀߣ ݅ + 1 ݎ ቁ ߣ-‪ሺݔ݁ ݅ ݎሻ൰ ( 82 ) ܳ ෨ ఈ ௌ * = ݊ ߙ ݎߨ4 ܥ ݅-1 ܽܵ ܴ ݅-1 ߣ-‪ሺݔ݁ ݅ ݎሻ ( 83 ) ܳ ෨ ௐ * = - ݎ ,݊ ݎߨ4 ൬ܥ ݅-1 ܹܽ ቀߣ ݅ + 1 ݎ ቁ ߣ-‪ሺݔ݁ ݅ ݎሻ൰ ( 84 ) ܳ ෨ * = - ݎ ,݊ ݎߨ4 ൬ܥ ݅-1 ܣܽ ቀߣ ݅ + 1 ݎ ቁ ߣ-‪ሺݔ݁ ݅ ݎሻ൰ ( 85 ) 
in which i = 2,4 തതതത and the coefficients are presented in Appendix A.

Singular behavior

As shown in part 3, the boundary integral equation is obtained by moving ߦ to the boundary Γ. Then in order to determine the unknown boundary data, it is necessary to know the behaviour of the fundamental solutions when ݎ = |ߦ -ݔ | tends to zero, i.e. when an integration point ݔ approaches a collocation point ߦ. Simple series expansions of the fundamental solutions with respect to the variable ݎ = |ߦ -ݔ | show that the singularity of these solutions in the limit ݎ → 0 is equal to the elastostatic, poroelastostatic or the acoustic fundamental solutions (Table 1). The variable ݎ in the 3D fundamental solutions is in the exponential functions. Then, as ݎ → 0, so does the argument of the modified exponential functions. Consequently, one has:

ߣ-‪ሺݔ݁ ݎሻ = ∑ ሺିఒ ೖ ሻ ! ஶ ୀ = 1 -ߣ ݎ + ℴሺݎ ଶ ሻ ( 86 ) 
Thus, by replacing Eq. ( 86) into the 3D solutions and after some algebraic manipulations one obtains:

ܷ ෩ ఈఉ ௌ * = ଵ ଵగ ଵ ఓሺଵିఔሻ ଵ ቄ ௫ ഀ ௫ ഁ మ + ߜ ఈఉ ሺ3 -4ߥሻቅ ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ ௦௧௦௧௧ ௨ௗ௧ ௦௨௧ + ℴሺݎ ଶ ሻ ( 87 ) P ෩ ୵ * = ଵ ସగ ೢ ଵ ᇣᇤᇥ ௦௧௦௧௧ ௨ௗ௧ ௦௨௧ + ℴሺݎ ଶ ሻ ( 88 ) P ෩ * = ଵ ସగ ೌ ଵ + ℴሺݎ ଶ ሻ ( 89 ) ܷ ෩ ఈ ௐ * = ܷ ෩ ఈ * = ℴሺݎ ଶ ሻ ( 90 ) P ෩ ఉ ௪ௌ * = P ෩ ఉ ௌ * = ℴሺݎ ଶ ሻ ( 91 ) P ෩ ௪ * = P ෩ ௐ * = ℴሺݎ ଶ ሻ ( 
92 ) Also, for adjoint fundamental solutions we have:

( 93 ) 

ܶ ෨ ఈఉ ௌ * = - ଵ ଼గ ଵ ሺଵିఔሻ ଵ మ ቄ డ డ ൣሺ1 -2ߥሻߜ ఈఉ + ݎ3 ,ఈ ݎ ,ఉ ൧ -ሺ1 -2ߥሻ൫ݎ ,ఈ ݊ ఉ -ݎ ,ఉ ݊ ఈ ൯ቅ ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ ௦௧௦௧௧ ௨ௗ௧ ௦௨௧ + ℴሺݎ ଶ ሻ ܶ ෨ ఈ * = ௦ ସగ ೢ ቄ ସగሺௌ ೢ ି ೢ ఘ ೢ ௦ሻ ሺఒାଶఓሻ ݎ , ݎ ,ఈ + ݇ ௪ ߩ ௪ ݊ݏ ఈ ቅ ଵ + ℴሺݎ ଶ ሻ ( 94 ) ܶ ෨ ఈ * = ௦ ସగ ೌ ቄ ସగሺௌ ೌ ି ೌ ఘ ೌ ௦ሻ ሺఒାଶఓሻ ݎ , ݎ ,ఈ + ݇ ߩ ݊ݏ ఈ ቅ ଵ + ℴሺݎ ଶ ሻ ( 95 ) ܳ ෨ ୵ * = ܳ ෨ * = - , ସగ మ ᇣᇤᇥ ௨௦௧ ௨ௗ௧ ௦௨௧ + ℴሺݎ ଶ ሻ ( 96 ) ܳ ෨ ఈ ௪ௌ * = ౩ ସሺାଶஜሻ ଵ ൫݊ ఈ -ݎ2 , ݎ ,ఈ ൯ + ℴ൫ݎ 2 ൯ ( 97 ) ܳ ෨ ఈ ௌ * = ሺଵି ౩ ሻ ସሺାଶஜሻ ଵ ൫݊ ఈ -ݎ2 , ݎ ,ఈ ൯ + ℴ൫ݎ 2 ൯ ( 98 )

Analytical verification of the fundamental solutions

Having derived the fundamental solution, at this stage, it is of interest to verify the validity of these solutions in somewhat more detail. One limiting case is presented here. Investigate the solution form as ݇ ௪ and ݇ approach infinity, ߩ ௪ , ߩ and ܨ ௦ approach zero, to see if they would exactly take the same form as the elastodynamic fundamental solution in the Laplace transform domain.

Limiting case: Elastodynamic

Letting ݇ ௪ and ݇ approach infinity and ߩ ௪ , ߩ and ܨ ௦ equal zero, the roots of the determinant equation ( 55) reduce to two and we will have Eqs. ( 100) to (104) show the fundamental singular solutions in the Laplace transform domain for a point force in 3D solid of infinite extent. This limiting case supports that the Laplace transform domain fundamental solutions of dynamic unsaturated poroelasticity for 3D cases derived in previous sections are likely to be correct.

ߣ ଵ ଶ = ఘ௦ మ ఓ , ߣ ଶ ଶ = ߣ ଷ ଶ =

Conclusion

In this paper, firstly coupled governing differential equations of a porous medium saturated by two compressible fluids (water and air) subjected to dynamic loadings are presented based on the poromechanics theory within the framework of the suction-based mathematical model presented by [START_REF] Gatmiri | Analysis of fully Coupled Behaviour of Unsaturated Porous Medium under Stress, Suction and Temperature Gradient[END_REF] and [START_REF] Gatmiri | UDAM: A powerful finite element software for the analysis of unsaturated porous media[END_REF]. After that, the Boundary Integral Equation (BIE) is developed directly from those equations via the use of the weighted residuals method for the first time. Finally, the associated fundamental solution in the Laplace transformed domain is presented by the use of the method of [START_REF] Hörmander | Linear Partial Differential Operators[END_REF] for 3D ݑ - ௪ - formulation of unsaturated porous media. Also, the singular behavior of the fundamental solutions is studied in order to be able to determine the unknown boundary data. It is observed that the singularity of these solutions is equal to the elastostatic, poroelastostayic or the acoustic fundamental solutions.

The derived Laplace transform domain fundamental solutions can be directly implemented in time domain BEM in which the convolution integral is numerically approximated by a new approach so-called "Operational Quadrature Methods" developed by Lubich (1988 a, b) to model the transient behaviour of unsaturated porous media. This enables one to develop more effective numerical hybrid BE/FE methods to solve 3D nonlinear wave propagation problems in the near future.

Table 1 . Kind of singularity of 3D fundamental solutions

 1 

	Components	Singularity
	U ෩ ஒ ௌ * U ෩ ఉ ௐ * U ෩ ఉ * P ෩ ఈ ௪ௌ * P ෩ ఈ ௌ * ܲ ෨ ௪ௐ * ܲ ෨ * ܲ ෨ ௐ * ܲ ෨ ௪ * ܶ ෨ ஒ ௌ * ܶ ෨ ఉ ௐ * ܶ ෨ ఉ * ܳ ෨ ఈ ௪ௌ * ܳ ෨ ఈ ௌ * ܳ ෨ ௪ௐ * ܳ ෨ * ܳ ෨ ௪ * ܳ ෨ ௐ *	weakly singular ሺ1/ݎሻ regular ሺ1/ݎሻ regular ሺ1/ݎሻ regular ሺ1/ݎሻ regular ሺ1/ݎሻ weakly singular ሺ1/ݎሻ weakly singular ሺ1/ݎሻ regular ሺ1/ݎሻ regular ሺ1/ݎሻ hyper singular ሺ1/ݎ ଶ ሻ weakly singular ሺ1/ݎሻ weakly singular ሺ1/ݎሻ weakly singular ሺ1/ݎሻ weakly singular ሺ1/ݎሻ hyper singular ሺ1/ݎ ଶ ሻ hyper singular ሺ1/ݎ ଶ ሻ regular ሺ1/ݎሻ regular ሺ1/ݎሻ
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