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This article describes the structural transition undergone by a vesicle forming diblock copolymer made of 

a hydrophobic poly(-benzyl-L-glutamate) sequence with helical secondary structure and of a hydrophilic 

poly[2-(dimethylamino)ethyl methacrylate] block when inserting hydrophobic iron oxide nanoparticles to 

impart magnetic properties in addition to pH- and temperature-responsiveness. Dispersed within the 

hydrophobic rod-like polymer domains, the quasi-spherical particles experience depletion attraction, 10 

leading to microphase separation and finally to transition from vesicles to hybrid core-shell micelles. 

Such combination of self-assembly with excluded-volume effects, also present in living systems and 

giving rise to such a large structural diversity and functionality, can be integrated in materials science 

towards the design of original nanostructures. 

1. Introduction 15 

Most of the biological materials are soft with a structure and 

function resulting from self-assembly of multiple components 

differing by their molecular weight, size, shape, amphiphilicity 

and elasticity. In first approximation, such complex systems can 

be analysed using soft matter physics approaches.1 Among others, 20 

rod-like molecules such as actin filaments or DNA are important 

in many biological systems where steric effects, due to the high 

local concentration resulting from compartmentalization, are 

known as “macromolecular crowding”.2 Because osmotic forces 

are not restricted to particular components and length scales, the 25 

underlying principle of depletion interaction that is well-known in 

macromolecular science and physics is also applicable to 

biological systems. While the understanding of depletion forces 

in bi-modal spherical colloids3 and colloid-polymer systems4 is 

advanced, less is known when colloidal rods are used as depletion 30 

agent.  

 Amphiphilic block copolymers are known to self-assemble 

into well-defined structures depending on their hydrophilic-to-

hydrophobic weight ratio. In particular, a hydrophilic fraction in a 

range of 30 – 40% leads to the formation of vesicles referred to as 35 

polymersomes.5 Recently, we reported the synthesis of block 

copolymers featuring, on the one hand, a rigid poly(-benzyl-L-

glutamate) (PBLG) polypeptide sequence exhibiting -helical 

secondary structure and, on the other hand, a hydrophilic block 

poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA), which 40 

displays a dual responsiveness to both pH (pKa=7.7) and 

temperature (LCST=39°C).6 More generally, the propensity of 

amphiphilic copolymers based on PBLG blocks to self-assemble 

into polymersomes is well-documented.7 The formation of 

polymer vesicles is indeed facilitated by the two-dimensional 45 

stacking of rod-like PBLG helices into planar membranes. 

 
Scheme 1 Amphiphilic diblock copolymer made of a hydrophilic 

thermosenstitive block (PDMAEMA) and a hydrophobic rod-like 

polypeptide block (PBLG) 50 

 Ultra-small superparamagnetic iron oxide particles (USPIO) 

are individual nanoparticles made of either γ-Fe2O3 or Fe3O4 used 

as negative contrast-enhancing agents in magnetic resonance 

imaging under the brand names of Sinerem or Ferumoxtran. To 

achieve improved properties (proton relaxivity in MRI, 55 

biodistribution, specific absorption rate in radio-frequency 

hypethermia...), SPIO particles which can be viewed as controlled 

clusters of USPIOs of size typically below 200 nm are generally 

preferred to USPIOs.8 Relatively well-controlled clusters are 

obtained by using strong adsorbing hydrophilic homopolymers 60 

such as Dextran,9 or with copolymers forming micelles,10 

coacervates11 or microgels.12 Formation of polymersomes 

confining USPIOs between the leaflets of their hydrophobic 

membrane was reported in the case of a few amphiphilic 

copolymers, namely poly(butadiene)-b-poly(L-glutamic acid) 65 

(PB-b-PGA),13 poly(isoprene)-b-poly(ethylene oxide) (PI-b-

PEO),14 poly(styrene)-b-poly(acrylic acid) (PS-b-PAA),15 and 

poly(trimethylene carbonate)-b-poly(L-glutamic acid) (PTMC-b-

PGA).16 

 In this paper, we report on the self-assembly of amphiphilic 70 

block copolymers comprising a rod-like segment in the presence 

of quasi-spherical nanoparticles. We aim at demonstrating that 
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depletion forces can strongly influence the self-assembly 

properties in such binary systems and can be presented as an 

original trigger to drive the equilibrium structures. 

2. Experimental 

A. Synthesis and coupling of polymer blocks 5 

As described in a previous report,17 the poly(-benzyl-L-

glutamate)-b-poly[2-(dimethylamino)ethyl methacrylate] (PBLG- 

b-PDMAEMA) block copolymer was synthesized by the 

Huisgen’s 1,3-dipolar cycloaddition (“click chemistry”) from the 

PBLG and PDMAEMA homopolymers containing azide and 10 

alkyne antagonist functionalities. 

B. Synthesis and coating of the magnetic nanoparticles 

USPIOs made of γ-Fe2O3 iron oxide were synthesized by alkaline 

co-precipitation of iron salts in water.18 Using a size sorting 

procedure,19 the distribution of diameters was narrowed so as to 15 

be described by a Log-normal distribution of median value d0=6.3 

nm and width =0.22 as measured by magnetometry (Fig. S1 in 

SI). Then the USPIOs were coated by an anionic surfactants 

mixture of alkylethoxyphenol mono- and diesters of phosphoric 

acid (Beycostat NB09, CECA, Arkema group),20 enabling a 20 

perfect dispersed state in dichloromethane (RH= 9.4 nm). 

C. Self-assembly processes 

i. Direct dissolution 

The hydrophilic-lipophilic balance allowed a direct dissolution of 

the copolymer (1 g/L) by simple stirring for 48h in distilled water 25 

(pH 6.5) at 25°C or 105°C under reflux ).21 

 

ii. Solvent injection or “nano-precipitation” 

Unlike with molecular surfactants readily forming mesophases at 

thermodynamic equilibrium when poured into water, the self-30 

assembly of amphiphilic copolymers can be hampered by kinetic 

issues when using glassy or semi-crystalline blocks such as in the 

PDMAEMA-b-PBLG used here. In that case, a solvent injection 

(displacement) method is generally preferred to direct dissolution. 

An intermediate solvent is used to solubilise the copolymer while 35 

being miscible with water.22 By tuning the mixing conditions, the 

inter-diffusion kinetics between the two solvents is controlled, 

which maintains the chains in a dynamical state all along the self-

assembly process, improving the control of the sizes of the 

resulting nanoparticles. The PDMAEMA-b-PBLG copolymer 40 

was dissolved at 10 g/L in THF or in DMSO. Then an aqueous 

solution buffered at pH 6.5 was added at constant flow rate (0.1 

mL/mn with a syringe pump) under vigorous stirring (400 rpm 

with a magnetic bar) until reaching a volumetric ratio 9/1 of 

water to solvent and a copolymer concentration of 1 g/L. The 45 

organic solvent was removed from the suspension by extensive 

dialysis in water (pH 6.5), except for the samples used in SANS 

experiments to avoid the use of a large volume of D2O. For the 

preparation of hybrid objects, a dispersion of USPIOs at 95 g/L in 

CH2Cl2 was added to the organic solution in DMSO at a feed 50 

weight ratio of 10 or 20 wt. % relatively to the copolymer (0.1 or 

0.2 g/L). After rapid evaporation of CH2Cl2, the nanoprecipitation 

was conducted as described before.  

D. Methods 

Size exclusion chromatography (SEC) was used to determine 55 

molar masses (calibrated with linear PS standards) and their 

dispersities in DMF + LiBr (1g/L) at 60°C (0.8 mL/min) with a 

Waters system (Alliance GPCV2000) equipped with three TSK 

columns (7.8×30 cm, 5 μm of respective pores’ sizes 250, 1500 

and 10000 Å) and a differential refractometer (Jasco, RI-1530). 60 

NMR 1H and 13C spectra were done on a 400 MHz Bruker 

AC400 spectrometer. 

Differential Scanning Calorimetry (DSC) curves were acquired 

on a Q100 DSC setup (TA Inst.) under helium flow. Temperature 

ramps between -50°C and 150°C were done at 10°C/min. 65 

Transmission electronic microscopy (TEM) micrographs were 

obtained on a Hitachi H7650 microscope operating at 80kV and 

grabbed with a Gatan Orius 11 Mpixels camera. Samples were 

prepared by spraying aqueous solutions at 1mg/mL with a home-

made nitrogen nebulizer on carbon films of 400 mesh grids and 70 

then dried under air at room temperature. 

Dynamical Light Scattering was performed using an ALV Laser 

goniometer, which consisted of a 35 mW HeNe linear polarized 

laser with a wavelength of 632.8 nm and an ALV-5000/EPP 

Multiple Tau Digital correlator with 125 ns initial sampling time. 75 

DLS measurements were either mono-angle (90°) or multi-angle 

(ranging from 50°C to 130°). Aliquots of samples (1 mL in a 10 

mm diameter cylindrical glass cell) were immersed in a filtered 

toluene bath regulated at 25 °C. The data were acquired with the 

ALV-Correlator Control software with a counting time between 80 

60 and 300 s depending on the angle. The intensity correlograms 

were treated by the CONTIN fit to obtain the distribution of the 

correlation times and by the cumulants fit to yield the z-average 

hydrodynamic radius (RH) through Stokes-Einstein’s formula and 

the polydispersity index (PDI) from the ratio of the 2nd order 85 

cumulant divided by the square of the 1st order one. 

Small Angle Neutron Scattering measurements were performed 

on the PACE spectrometer of the Laboratoire Léon Brillouin 

(CEA-Saclay, France) equipped with an isotropic BF3 detector 

made of 30 concentring rings of 1 cm width each. We used two 90 

configurations: the first one with a sample-to-detector distance of 

D=4.57 m and a neutron wavelength of λ=17 Å to cover a q range 

of 3.2×10-3 – 2.6×10-2 Å-1; the second one with D=2.87 m and 

λ=6 Å to cover a q range of 1.1×10-2 – 0.1 Å-1. 

 The neutron scattering-length density (SLD) of the hydrophilic 95 

blocks ρPDMAEMA =8×109cm-2 is comparable to the magnetic SLD 

of the USPIOs ρmag
Fe2O3=9×109cm-2. Both of them are far away 

from the nuclear SLDs of the USPIOs ρnucl
Fe2O3=7×1010cm-2 and 

of the hydrophobic blocks of the copolymer ρPBLG =2.3×1010cm-2. 

In pure H2O (ρH2O=-0.56×109cm-2), one observes mainly the 100 

nuclear scattering of USPIOs (ΔρFe2O3 =7.5×1010 cm-2) but also in 

a reduced way (i.e. 7 times lower contrast value Δρ2) of the 

hydrophobic core of the copolymer (ΔρPBLG =2.8×1010 cm-2). The 

solvent of nanoprecipitated samples was a 9:1 mixture of D2O 

and deuterated DMSO (ρD2O/DMSO-d6 =6.2×1010cm-2) leading to a 105 

low contrast ΔρFe2O3 =8.1×109 cm-2 with γ-Fe2O3 and high 

contrasts with both the polymer blocks ΔρPBLG=3.9×1010 cm-2 and 

ΔρPDMAEMA=5.4×1010. To minimize the incoherent scattering, the 

SANS measurements were done in quartz cuvettes of thickness 

respectively 5 mm for D2O/DMSO-d6 and 1 mm for H2O. All the 110 

scattered intensity curves were normalized by the incoherent 

signal delivered by a 1 mm gap water sample in order to account 
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for the efficiency of the detector cells and the incoherent 

backgrounds of the solvents were subtracted. Absolute values of 

the scattering intensity I(q) in cm-1 were obtained from the direct 

determination of the number of neutrons in the incident beam and 

the detector cell solid angle.23 5 

3. Results 

A. Characterisation of the copolymer 

Table 1 Molecular characteristics of the PDMAEMA-b-PBLG copolymer  

Sample Mn,PDMAEMA
a Mn,PBLG

a Mn,copolymer
a PDIa 

PDMAEMA85-b-PBLG41 13300 9000 22300 1.17 

a Determined by SEC in DMF at 60 °C in the presence of LiBr; 

calibration with polystyrene standards. 10 

The characterisation of the copolymer by NMR and SEC reported 

in Table 1 led to a hydrophobic weight fraction fPBLG=40%. The 

glass transition temperatures of both homopolymers and of the 

copolymer assessed by DSC all ranged between 10 and 20°C 

(Fig. S2 in SI). Moreover, a melting transition (from crystal to 15 

liquid-crystal state) was detected around 100°C and ascribed to 

the irreversible conformational change from 7/2 to 18/5 helices of 

the PBLG helices.24 These characteristic transition temperatures 

in bulk are important to tune the self-assembling properties in 

solution. 20 

 

B. Pure block copolymer self-assembly 

i. Direct dissolution 

Table 2 Hydrodynamic radii (RH) and polydispersity indexes (PDI) 

obtained by direct dissolution of PDMAEMA85-b-PBLG41 at 1g/L at 25 

several values of temperature and pH. 

Ta Tb pHa pHb RH PDI 
25°C 25°C 6.5 6.5 107 0.43 

105°C 25°C 6.5 6.5 58 0.44 

105°C 25°C 2.5 2.5 46 0.19 
105°C 25°C 2.5 7.2 46 0.31 

105°C 25°C 2.5 11.4 43 0.43 

a during dissolution; b during DLS measurement. 

 The hydrodynamic radius RH of the objects formed by direct 

dissolution (Fig. 1 and Table 2) in water at pH 6.5 decreased from 

107 nm at 25°C (just above glass transition of the copolymer) to 30 

58 nm at 105°C (just above the melting temperature of PBLG). 

However, size distributions remained very large (PDI=0.43). An 

attempt was made to narrow the size distribution by saturating the 

positive charge of PDMAEMA during dissolution at pH 2.5 well 

below the pKa=7.7 of the ammonium moiety, promoting 35 

electrostatic repulsions between the objects. This enabled to 

decrease both RH and PDI down to 46 nm and 0.19 respectively. 

However, the PDI returned to high values by progressively rising 

up the pH, presumably due to the apparition of a slight portion of 

aggregates. As a result, due to the intrinsic rigidity of PBLG and 40 

its crystalline behaviour below 100°C, the direct self-assembly of 

the copolymer leads to unstable and poorly defined structures. 
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Fig. 1 DLS correlograms at a scattering angle of 90° and distributions of 

the correlation times P() for PDMAEMA85-b-PBLG41 directly dispersed 45 

in water at 25°C and pH6.5 (a) and at 105°C and varying pH (b). 

ii. Solvent injection or “nano-precipitation” 

In order to better control the self-assembly process, we 

implemented the nanoprecipitation method using two different 

intermediate solvents. 50 
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Fig. 2 DLS correlogram at a scattering angle of 90° and distribution of the 

correlation times for PDMAEMA85-b-PBLG41 nano-precipitated objects 

for a) water-to-THF injection; b) water-to-DMSO injection; c) multi-55 

angle DLS illustrating the low PDI with water-to-DMSO injection by the 

perfect linearity of the mean decay rate < with the square of the 

scattering vector, q2; d) DLS correlogram at 90° and distribution of the 

correlation times for hybrid objects made of PDMAEMA85-b-PBLG41 and 

γ-Fe2O3 USPIOs (10 wt. %) prepared by water-to-DMSO injection. The 60 

pH value was 6.5 for all the preparations. 

 In the case of water-to-THF injection (Fig. 2a), a bimodal 

distribution of relaxation times associated to large size dispersity 

was ascribed to the rather poor solubility of PBLG helices in 

THF.25 Larger sizes were also found when this solvent was used 65 

to prepare PTMC-b-PGA polymersomes by nanoprecipitation.26 

On the contrary, water-to-DMSO injection leads to objects of 

same order of magnitude of size (RH=95 nm) than direct 

dissolution, but with a much lower PDI=0.20 (Fig. 2b). The 

variation of the scattering angle of the goniometer between 50° 70 

and 130° led to a perfect linearity of the 1st order cumulant of the 

correlogram (z-average decay rate) vs. the square of the scattering 

vector (Fig. 2c), indicating the presence of isotropic scatterers 

with narrow size dispersity. To get an insight of the structure of 

the nanoparticles at a much lower scale, we used much higher 75 
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resolution techniques such as TEM (Fig. 3) and SANS (Fig. 4). 

 
Fig. 3 TEM pictures of PDMAEMA85-b-PBLG41 vesicles prepared by 

water-to-DMSO nanoprecipitation at two magnifications (see scale bars). 

 The TEM pictures clearly showed hollow spheres with 5 

diameters ranging from 80 to 160 nm with an average around 120 

nm. A close-up view at a larger magnification enabled to measure 

a membrane thickness of about 20±5nm. 
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Fig. 4 a) SANS curve of PDMAEMA85-b-PBLG41 vesicles prepared by 10 

water-to-DMSO nanoprecipitation. In D2O/DMSO-d6, the scattering 

contrast comes from both polymer blocks. The solid curve represents the 

form factor of vesicles of median radius R0=90 nm (radius=0.2) and shell 

thickness =20 nm (thickness=0.3); b) Sketch for a PDMAEMA85-b-

PBLG41 bilayer; c) Sketch of membrane in case of interdigitated helices. 15 

 The experimental SANS intensity exhibit several scaling law 

behaviours in the successive ranges of scattering vector. At low q, 

the intensity does not saturate because the gyration radius is too 

large to be accessible in the SANS q-range. In the intermediate q-

regime, the intensity scaling law as q-2 is typical of flat 20 

membranes’ structure of large vesicles. Then the Porod’s regime 

varying like q-4 turns to q-5/3 at high q presumably due to a rough 

interface of objects covered with Gaussian chains. The form 

factor of a shell of internal and external radii R-/2 and R+/2 

was convolved with two Log-normal distributions of the radius 25 

and thickness (median values R0 and , widths radius and 

thickness) using appropriate averaging of polydispersity.27 The 

median thickness =20 nm of the fitted curve well compares to 

the TEM pictures. As described in the experimental part, the 

neutron SLD contrasts of PDMAEMA and PBLG with 30 

D2O/DMSO-d6 are comparable. Therefore the shell fit reflects the 

total thickness of the membrane. PBLG chains in helical 

conformation can be modelled by cylindrical rods of diameter 

1.25 nm and of length 0.15 nm per -benzyl-L-glutamate 

monomer,28 i.e. 6.15 nm for a degree of polymerization of 41. 35 

Thus we can imagine two extreme possibilities for the membrane 

formation with PDMAEMA85-b-PBLG41: either the copolymers 

form a bilayer with a hydrophobic thickness of 12 nm covered on 

both sides by a compact layer around 4 nm of hydrophilic coils 

(Fig. 4b), or the PBLG helices are interdigitated in a narrower 40 

layer about 6 nm enabling the hydrophilic chains to be in a much 

more stretched conformation around 7 nm (Fig. 4c). The latter 

situation is likely in better agreement with the vesicle geometry 

for the charged PDMAEMA chains in a brush regime due to 

confinement at a locally planar interface  45 

C. Hybrid self-assembled structures 

Compared to previous case of “blank” pure copolymer particles, 

the DLS results for hybrids at 10 wt. % shown in Fig. 2d were 

rather striking due to a lower hydrodynamic size (RH=61 nm) and 

a narrower size distribution (PDI=0.16). This result was 50 

supported by observation of the TEM images, showing much 

more compact objects (Fig. 5 vs. Fig. 3). However, one should be 

aware of artefacts due to the projection effect of TEM onto a 

planar surface and to the lower electron scattering density of the 

copolymer compared to γ-Fe2O3. Therefore SANS measurements 55 

were also necessary to decipher the exact arrangement of USPIOs 

within the hybrid particles. 

 
Fig. 5 TEM pictures of PDMAEMA85-b-PBLG41 / γ-Fe2O3 (10 wt. %) 

hybrid nanoparticles prepared by water-to-DMSO injection at two 60 

magnifications (see scale bars). 

 Unlike previous SANS measurements with pure copolymer 

particles in deuterated solvents mixture, the solvent used for 

hybrid particles was light water in order to benefit from the large 

neutron SLD contrast of iron oxide relatively to H2O (see part 2. 65 

D. Methods). A centrifugation step was also applied to increase 

the concentration and thus the SANS intensity. For two weight 

ratios of γ-Fe2O3 to copolymer, the curves plotted on Fig. 6 were 

well adjusted by the form factor of filled polydisperse spheres of 

radii with a Log-normal distribution law of median R0=18 nm and 70 

width =0.25. The scaling law as q-2 typical of the membrane of 

large vesicles was clearly not observed here, attesting a structural 

change when the copolymer was self-assembled in the presence 

of the inorganic nanoparticles with a hydrophobic coating. While 
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inaccessible by SANS for the pure copolymer vesicles, the radius 

of gyration measured by Guinier’s plots was 19.9 and 19.2 nm 

respectively for 10 and 20 wt. % hybrids. 
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Fig. 6 SANS curve of PDMAEMA85-b-PBLG41 / γ-Fe2O3 hybrid particles 

prepared by water-to-DMSO injection at (a) 10 and (b) 20 wt. %. In both 

cases, the solid curve represents the form factor of polydisperse filled 

spheres with a Log-normal distribution law of radii of median R0=18 nm 

and width =0.25. The sketches in insets represent the nanoscale structure 10 

of core-shell micelles with the USPIOs (in black) closely packed in PBLG 

hydrophobic cores (in grey) wrapped by a hydrated PDMAEMA shell not 

contributing to the SANS contrast in H2O (in red). 

 In addition, the curves clearly displayed a structure peak at 

large q values. Its maximum was measured at qmax around 0.069 15 

Å-1 for 10 wt. % and 0.076 Å-1 for 20 wt. %, corresponding to a 

strong correlation of centre-to-centre distances dmax=2/qmax 

around 9.1 and 8.2 nm respectively. Considering the sizes of the 

γ-Fe2O3 cores (Log-normal law of d0=6.3 nm and width =0.22), 

these USPIOs were closely packed inside the objects as observed 20 

on Fig. 5 and sketched in the insets of Fig. 6. More precisely, we 

can calculate that inside the objects, USPIOs have a local volume 

fraction 3
maxwlocal )(6 ddΦ   where dw is the weight averaged 

diameter of the Log-normal law, given by )27exp( 2
0w dd  . 

Numerically, we found dw=7.5 nm, local=29% for 10 wt. % and 25 

local=40% for 20 wt. %. These values are much higher than the 

average volume fractions if the USPIOs were homogeneously 

distributed in the hydrophobic part of the hybrids: from the mass 

density of PBLG (1.44 g/cm3) and γ-Fe2O3 (5.1 g/cm3) and the 

weight fraction of PBLG (60%) in PDMAEMA85-b-PBLG41, we 30 

calculateave=5% for 10 wt. % and ave=10.5% for 20 wt. %. 

Another calculation aims at estimating the number of USPIOs per 

object in each case according to 3
wcorelocalUSPIO )( ddΦN  , 

where dcore stands for the diameter of hydrophobic core sketched 

in grey on Fig. 6. As only γ-Fe2O3 and PBLG contribute to the 35 

neutron SLD contrast (but not the hydrated shell of PDMAEMA), 

we calculate a core size nm 8.44)27exp(2 2
0core  Rd  using 

R0=18 nm and =0.25 as used to fit the SANS curves. Therefore 

the estimates of average numbers of clustered USPIOs are 

NUSPIO=62 for 10 wt. % and NUSPIO=85 for 20 wt. %. 40 

4. Discussion 

Thermally induced morphology transition from micelles to 

vesicles has been recently described for a diblock copolymer.29 A 

bilayer-to-micelle transition by incorporation of USIPOs has been 

recently described with a PS-b-PAA diblock copolymer.15 In the 45 

latter case, the volume fraction at the onset of the transition was 

located around 12%, whereas the fraction of micelles 

progressively increased for larger . However, true magneto-

polymersomes could be obtained with up to 35.8 wt. % of oleic 

acid coated magnetite USPIOs in PS-b-PAA. For PI-b-PEO, a 50 

phenomenon of bilayer bridging by the USPIOs was observed 

when the weight ratio of iron oxide exceeded 20 – 30 wt. %.14 

Nevertheless, the stable structure still consisted in polymer 

vesicles, in spite of their multi-lamellar structure. In the case of 

PTMC-b-PGA, magnetic membranes were observed up to 70 wt. 55 

%,16 while the limit was pushed further than twice the polymer 

content with a soft elastomeric hydrophobic block such as in PB-

b-PGA.13 On the contrary, this study shows that the 

PDMAEMA85-b-PBLG41 vesicle self-assembling structure cannot 

even withstand to a volume fraction as low as ave=5% of 60 

USPIOs in the PBLG blocks. This phenomenon is reminiscent of 

the phase behaviour of USPIOs of same sizes, nature and 

surfactant coating in the nematic thermotropic liquid crystal 4-

pentyl-4’-cyanobiphenyle:20 while the inorganic nanoparticles are 

properly dispersed in the isotropic phase (up to  =0.83% at 65 

least), they are expelled towards the defect lines as soon as 

temperature is lowered below the nematic-to-isotropic transition, 

even at a fraction as small as  =0.08%. This analogy is worth 

mentioning since PBLG is known itself to exhibit lyotropic liquid 

crystal phases28 and to have a rod-like conformation in such 70 

solvents.30 Thus in the following, we present a discussion in the 

framework of the complex phase behaviour of binary mixtures of 

spherical and rod-like particles driven by the depletion 

interaction.31 

 Entropic in nature, this interaction originates from osmotic 75 

pressure forces acting on hard spheres immersed in a suspension 

of cylindrical rods, the volume excluded to rods being described 

by a depletion layer surrounding the spheres. Referring to a 

model in the literature,32 we calculate the attractive depletion 

potential acting between two hard spheres with their surfaces at a 80 

distance H: )()()( 1
2

rodsBdepl LHKDRLΦTkHU  . Here the 

-helices of PBLG are modelled as rigid cylinders of length 

L=6.15 nm and diameter D=1.25 nm, thus of aspect ratio L/D≈5. 

The USPIOs are quasi-spherical nanoparticles with a typical 

radius R=dw/2=3.75 nm. The binary mixture is thus characterized 85 

by a size ratio of rod length to sphere radius L/R≈1.64. The value 

of the potential when the spheres are at close contact (H=0) is 

given by the value of the function K1(0) calculated numerically in 

this reference and leading to K1(0)=-0.219.‡ Using LR/D2≈14.8 in 

the present geometry and rods=1-ave in the hydrophobic cores, 90 

we calculate Udepl(H=0)/kBT≈-3.1 and -2.9 respectively for 10 and 

20 wt. % of USPIOs in the copolymer. Therefore the depletion 



 

6  |  Soft Matter, 2011, 7, 9744–9750  

attraction between USPIOs is large enough to compete with 

thermal agitation energy and induce a phase separation between 

the quasi-spherical γ-Fe2O3 nanoparticles and the rod-like blocks 

of the copolymer. The same model can predict the maximum size 

of spheres embedded in PBLG helical blocks that would not lead 5 

to phase separation, due to Udepl(H=0)<kBT: we find Rmax=2 nm. 

Although this lower size would significantly decrease the 

properties of the USPIOs for MRI, it would be still interesting to 

use them in hybrids as T1 contrasting agents instead of T2.
33 

 10 

 
Fig. 7 Sketch of the micro-phase separation due to depletion attraction between USPIO spheres in PBLG rods leading to the vesicle-to-micelle transition.   

 The successive steps of the self-assembly of hydrophobically 

coated USPIOs and PDMAEMA85-b-PBLG41 is sketched on Fig. 

7. When water is slowly added in the DMSO solution containing 15 

both the rod-coil copolymer and the quasi-spherical magnetic 

nanoparticles, the solvent quality decreases progressively for 

PBLG and the hydrophobically coated γ-Fe2O3 nanoparticles that 

concentrate in DMSO rich domains, increasing their local 

concentration. At some point, when the solvent mixture becomes 20 

really poor, the system “precipitates” at a nanometric scale, 

leading to very high concentrations of the components locally. 

The depletion forces between γ-Fe2O3 spheres in PBLG rods are 

then so large within the hydrophobic cores that the binary system 

demixes into internal domains. To explain the transition between 25 

the demixed droplet and the final cartoon, we invoke the 

spontaneous curvature of the USPIO favouring a core-shell 

micelle with the close-packed nanospheres in the core and 

expelling the rod-like copolymer at the interface with the 

hydrophilic shell. 30 

Conclusions 

Colloidal suspensions are present in many synthetic materials, 

such as paints, glues, inks, and in biological components like 

cells, bacteria and viruses. In living systems, they exhibit 

important transport and structural properties that mainly depend 35 

on the size, shape, concentration and composition. Depletion 

forces are playing an important role in the equilibrium phases of 

such complex systems, with an important contribution of the 

excluded-volume interaction to the free energy. We have 

demonstrated here that the self-assembled structure of rod-coil 40 

amphiphilic diblock copolymers mixed with quasi-spherical 

nanoparticles is not only governed by their amphiphilic character, 

but also by excluded-volume interactions. This experimental 

demonstration opens an interesting route for the design of 

complex and controlled assemblies of hybrid nanostructures 45 

using depletion effects combined to self-assembly. It is known 

that such entropic effects can produce crystal arrays of colloids,34 

but also affect the function of a cell.35 This means that such 

forces are not only playing an important role in the structural and 

physical properties of such systems, but also in their functions. 50 
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