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Parametric �rst-order Edgeworth expansion for Markov

additive functionals. Application to M -estimations.

D.FERRE
∗

février 2012

Abstract

We give a spectral approach to prove a parametric �rst-order Edgeworth expansion for bi-
variate additive functionals of strongly ergodic Markov chains. In particular, given any V -
geometrically ergodic Markov chain (Xn)n∈IN whose distribution depends on a parameter θ,
we prove that {ξp(Xn−1, Xn); p ∈ P, n ≥ 1} satis�es a uniform (in (θ, p)) �rst-order Edge-
worth expansion provided that {ξp(·, ·); p ∈ P} satis�es some non-lattice condition and an
almost optimal moment domination condition. Furthermore, the sequence (Xn)n∈IN need not
be stationary. This result is applied to M -estimations.

1 Introduction

Let (E, E) be any measurable space, and let (Xn)n≥0 be a Markov chain on a general state
space E with transition kernel (Qθ(x, ·); x ∈ E) where θ is a parameter in some set Θ. The
initial distribution of the chain is denoted by µθ. The underlying probability measure is
denoted by Pθ,µθ .

Let {ξp(·, ·); p ∈ P} be a family of measurable functions from E2 into IR, where P is any set.
Let us de�ne the following bivariate additive functionals

∀n ≥ 1, ∀p ∈ P, Sn(p) :=

n∑
k=1

ξp(Xk−1, Xk). (1)

We are interested in appropriate conditions on the model, on the family {ξp(·, ·); p ∈ P} and
on the initial probability measure µθ, under which a �rst-order Edgeworth expansion exists
(also called Esseen theorem), namely there exists a polynomial function Aθ,p(·) such that

sup
(θ,p)∈Θ×P

sup
u∈IR

∣∣∣∣Pθ,µθ { Sn(p)

σθ,p
√
n
≤ u

}
−N (u)− η(u) n−

1
2 Aθ,p(u)

∣∣∣∣ = o(n−
1
2 ), (2)
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whereN is the standard normal distribution function and η is its density. Note that Expansion
(2) holds uniformly in (θ, p) ∈ Θ × P. As illustrated later in M -estimation, the bivariate
and parametric form of (1), as well as the previous uniform control and the possible non-
stationarity of µθ, are required for statistical applications.

Edgeworth expansions in the Markov setting can be established by the two following methods:

1. The regeneration method. This standard method, introduced by [Smi55], was used by
Bolthausen [Bol82] to establish the Berry-Esseen theorem for univariate additive func-
tionals of the form Sn =

∑n
k=1 ξ(Xk), by splitting Sn into a sum of independent blocks.

This method can be applied to the general class of Harris-recurrent chains (Xn)n≥0 which
either possess an accessible atom or satisfy some minorization condition. Bolthausen work
was extended to Edgeworth expansions by Malinovskii [Mal87] and next generalized to
bivariate additive functionals Sn =

∑n
k=1 ξ(Xk−1, Xk) by Jensen [Jen89].

Note that in [Bol82, Mal87, Jen89], neither the distribution of (Xn)n≥0 nor the function ξ
depends on parameters. However a recent work due to Bertail-Clémençon [BC11] provides
a Berry-Esseen theorem adapted to the above mentioned parametric setting, but the ex-
tension to Edgeworth expansions would generate even more di�culties. Furthermore this
statement only concerns univariate additive functionals and the extension of their proof
to the bivariate case (1) induces dependence between the regeneration blocks and hence
provides at least one more di�culty to handle with. For further explanations concerning
extension of Bertail-Clémençon work, see Appendix B.
Moreover all these works are valid under some complex block-moment conditions. If the
strong mixing coe�cient of (Xn)n≥0 decreases at a fast enough rate, then these block-
moment conditions are entailed by some explicit moment condition provided that the
initial probability is dominated by some multiple of the stationary distribution π. When
considering the particular case where the chain possesses an atom A, this simpli�cation
also holds true whenever the initial probability µ is the Dirac distribution δx at some
x ∈ A. Let us note that the resulting moment condition is then almost optimal (with
respect to the independent case). However, to the best of our knowledge, this simpli�-
cation cannot be extended to the case where the initial probability µ is any probability
distribution, in particular where µ is the Dirac distribution δx at some x ∈ E which does
not necessarily belong to an atom. For further explanations concerning conditions on µ,
see Appendix B.

2. The weak Nagaev-Guivarc'h spectral method. This method, based on the Keller-Liverani
perturbation theorem [KL99], enables the statement of limit theorems for additive func-
tionals associated to strongly ergodic Markov chains (Harris recurrence is no more re-
quired). This method has been fully described in [HP10] in the case of univariate additive
functionals. It is specially e�cient for ρ-mixing and V -geometrically Markov chains, as
well as for iterated function systems. In those models, the extension of Berry-Esseen type
results of [HP10] to the case of bivariate additive functionals of the type (1) has already
been obtained in [FHL, HLP]1 with in addition the desired control on the parameters

1and in the paper intitled "Regularity of the characteristic function of additive functionals for iterated
function systems. Statistical applications"', which is to be submitted very soon (authors: D.Guibourg and
D.Ferré).
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(θ, p). The resulting moment conditions on {ξp; p ∈ P} are (almost) optimal with respect
to the independent case. Let us note that they are explicit for these three models and do
not depend on the initial probability (unlike the ones given by the regeneration method).

In this paper, we will state Expansion (2) when concerning with the class of strongly ergodic
Markov chains, and apply Fourier techniques via the perturbation operator theory of Nagaev-
Guivarc'h.

Our work extends the Berry-Esseen type results of [HLP] to the �rst-order Edgeworth ex-
pansion. As in the independent case, the gap from Berry-Esseen to Edgeworth type results
induces at least a new di�culty: the requirement of the non-arithmeticity hypothesis.

In Subsection 2.1, we consider a family of random variables (r.v.) Sn(p) (not necessar-
ily derived from Markovian models) de�ned on a general parametric probabilistic space
(Ω,F , {Pθ; θ ∈ Θ}), and we state hypotheses called R(m) and (N-A) under which Expan-
sion (2) holds true. These hypotheses concern the behavior of the characteristic function
t 7→ φn,p(t) of Sn(p): Hypothesis R(m) focuses on the form and the regularity of φn,p near
t = 0; whereas Hypothesis (N-A), related to the non-arithmeticity assumption, focuses on the
behavior of φn,p outside t = 0.

In Subsection 2.2, we specify the form of Sn(p): from now on, Sn(p) is de�ned by (1) where
(Xn)n≥0 is assumed to be a strongly ergodic Markov chain, and we give a brief review of the
weak Nagaev-Guivarc'h spectral method to check Hypothesis R(m) and (N-A) in this Markov
context. In fact, as already done in [FHL, HLP], Hypothesis R(m) can be investigated thanks
to an easy extension of the results of [HP10].

By contrast, the method developed in [HP10] is not su�cient to study Hypothesis (N-A).
Indeed, the non-arithmeticity condition has to be checked uniformly in both the parameter θ
of the Markovian model and the parameter p of the family {ξp; p ∈ P} involved in (1). The
study of (N-A) in this context is original and constitutes one of the main contributions of this
paper (actually, even in the independent case, this question is far from being obvious). In our
Markov setting, this study is based on the operator perturbation theory, quasi-compactness
arguments and Ascoli theorem. Speci�cally, in Section 3, we give three approaches to reduce
Hypothesis (N-A) to some simple non-lattice conditions in the case of general strongly ergodic
Markov chains.

Section 4 is devoted to V -geometrically ergodic Markov chains. For this instance and more
speci�cally for dominated models, we reduce (N-A) using one of the three approaches presented
in Subsection 3.3. Combining this result together with the su�cient conditions of [HLP] to
check Hypothesis R(m) and the general Edgeworth type statement of Subsection 2.1, provides
Expansion (2) under assumptions close to the ones of the independent case.

Statistical applications are studied in Section 5: a �rst-order Edgeworth expansion for M -
estimators of V -geometrically ergodic Markov chains is derived (Theorem 2) from the results of
Section 4. Theorem 2, which extends Pfanzagl theorem [Pfa73] obtained for independent and
identically distributed (i.i.d.) data under some moment conditions of order 3, is valid under
a natural adaptation of the statistical regularity conditions of [Pfa73], moment domination
conditions of order 3 + ε, and some simple non-lattice condition as well. To the best of our
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knowledge, this result is new. Notice that our moment domination conditions are not only
almost optimal, but also take the same form as the ones used in [DY07] to prove the asymptotic
normality of M -estimators under V -geometrically ergodicity. This result is illustrated with
AR(1) processes in Subsection 5.2.

The adaptation of Pfanzagl proof is developed in Section 6 for general statistical models under
Hypotheses R(3) and (N-A). Note that this adaptation is not straightforward. Finally, the
intermediate results of this section are applied in Subsection 6.4 to M -estimators of AR(d)
processes.

2 Fourier techniques and �rst-order Edgeworth expansion

In this section, we present some results based on Fourier techniques. These results appeal to
the next Hypotheses R(m) and (N-A) that are well-suited for the markovian case as explained
in Subsection 2.2.

2.1 Hypotheses R(m) and (N-A) and �rst-order Edgeworth expansion

Let (Ω,F , {Pθ; θ ∈ Θ}) be any statistical model, where Θ is some parameter space. The
underlying expectation is denoted by Eθ. Consider a family {Sn(p); n ∈ IN∗, p ∈ P} of real
r.v. de�ned on (Ω,F , {Pθ; θ ∈ Θ}), where P is any set. Note that the parameter p may depend
on θ.

Hypothesis R(m), m ∈ IN∗. There exists a bounded open interval I0 ⊂ IR of t = 0 such
that one has for all (θ, p) ∈ Θ× P, n ≥ 1, t ∈ I0

Eθ[eitSn(p)] = λθ,p(t)
n (1 + lθ,p(t)) + rθ,p,n(t), (3)

where λθ,p(·), lθ,p(·) and rθ,p,n(·) are C -valued functions of class Cm on I0 satisfying the
following properties:

λθ,p(0) = 1, λ
(1)
θ,p(0) = 0, lθ,p(0) = 0, rθ,p,n(0) = 0,

and for ` = 0, . . . ,m

sup

{
|λ(`)
θ,p(t)|; t ∈ I0, (θ, p) ∈ Θ× P

}
< +∞,

sup

{
|l(`)θ,p(t)|; t ∈ I0, (θ, p) ∈ Θ× P

}
< +∞,

∃κ ∈ [0, 1), ∃G` > 0, ∀n ≥ 1, sup

{
|r(`)
θ,p,n(t)|; t ∈ I0, (θ, p) ∈ Θ× P

}
≤ G` κn.

Furthermore, the functions λ
(m)
θ,p (·), l(m)

θ,p (·) and r
(m)
θ,p,n(·) are continuous on I00 uniformly in

(θ, p) ∈ Θ× P.
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Hypothesis (N-A) (Non-arithmeticity). For any compact subset K0 of IR∗, there exists
ρ ∈ [0, 1) such that

∀n ≥ 1, sup

{∣∣Eθ[eitSn(p)]
∣∣; t ∈ K0, (θ, p) ∈ Θ× P

}
= O(ρn).

Note that under Hypothesis R(2), the function t 7→ Eθ[eitSn(p)] is of class C2 on I0 for all
(θ, p) ∈ Θ × P. Then by Fatou lemma, for all (θ, p) ∈ Θ × P, one has Eθ[Sn(p)2] < +∞.
Therefore, when considering the derivative of Equality (3), one easily obtains that for all
(θ, p) ∈ Θ×P, limEθ[Sn(p)]/n = 0 when n→ +∞. Note that under Hypothesis R(2), when
considering the derivative of Equality (3), one easily obtains as well

∀n ≥ 1, lim
n→+∞

sup
(θ,p)∈Θ×P

∣∣∣∣Eθ[Sn(p)2]

n

∣∣∣∣ < +∞, (4)

and in a similar way, under Hypothesis R(4),

∀n ≥ 1, lim
n→+∞

sup
(θ,p)∈Θ×P

∣∣∣∣Eθ[Sn(p)4]

n2

∣∣∣∣ < +∞. (5)

Finally, under Hypothesis R(3), we obtain some of the assertions of Proposition 1 below. The
other ones can be proved by borrowing the proof of [Fel71].

Proposition 1 (�rst-order Edgeworth expansion).
If {Sn(p); n ∈ IN∗, p ∈ P} satis�es Hypothesis R(3), then for all (θ, p) ∈ Θ×P, the following
limits

bθ,p := lim
n→+∞

Eθ[Sn(p)], σ2
θ,p := lim

n→+∞

Eθ[Sn(p)2]

n
,

are well-de�ned and bounded in θ ∈ Θ. Furthermore if inf(θ,p)∈Θ×P σθ,p > 0 and if the family
{Sn(p); n ∈ IN∗, p ∈ P} satis�es Hypothesis (N-A) as well, then there exists a polynomial
function Gn,θ,p such that

sup
(θ,p)∈Θ×P

sup
u∈IR

∣∣∣∣Pθ { Sn(p)

σθ,p
√
n
≤ u

}
−Gn,θ,p(u)

∣∣∣∣ = o(n−
1
2 ).

The polynomial function Gn,θ,p is of the type Gn,θ,p(u) = N (u)+
[
a1(θ, p) + a2(θ, p)u2

]
η(u)/

√
n

where the coe�cients satisfy for i = 1, 2, sup(θ,p)∈Θ×P |ai(θ, p)| < +∞. Furthermore, if

Eθ[|Sn(p)|3] < +∞ for all n ≥ 1 and (θ, p) ∈ Θ× P, then the limit

m3
θ,p,3 := lim

n→+∞

Eθ[Sn(p)3]

n
− 3σ2

θ,pbθ,p

is well-de�ned and bounded in θ ∈ Θ, and moreover the polynomial function Gn,θ,p can be
explicitly expressed by

Gn,θ,p(u) := N (u) +
m3
θ,p,3

6σ3
θ,p

√
n

(1− u2) η(u)−
bθ,p

σθ,p
√
n
η(u).



D.Ferré A uniform �rst-order Edgeworth expansion. 6

Remark 1. In the i.i.d. case, Hypotheses R(3) and (N-A) are easily checked. Indeed consider
(Xn)n∈IN∗ a sequence of i.i.d. E-valued r.v. whose common distribution depends on θ ∈ Θ,
and {ξp(·); p ∈ P} a family of measurable functions from E into IR. The following assertions
are obviously equivalent:

(a) The family {
∑n

k=1 ξp(Xk); n ∈ IN∗, p ∈ P} ful�lls Hypothesis R(m) if and only if for all
(θ, p) ∈ Θ× P, Eθ[ξp(X1)] = 0, and sup(θ,p)∈Θ×P Eθ[|ξp(X1)|m] < +∞.

(b) The family {
∑n

k=1 ξp(Xk); n ∈ IN∗, p ∈ P} ful�lls Hypothesis (N-A) if and only if, for
any compact subset K0 of IR∗, one has

sup
t∈K0

sup
(θ,p)∈Θ×P

∣∣Eθ[eitξp(X1)]
∣∣ < 1. (6)

When (6) is considered at (θ, p) �xed, it can be easily relaxed to the usual condition: ξp(X1)
is non-lattice. By contrast, it is not easy to relax the uniform condition (6). Note that this
condition is only discussed in [Pfa73] under the stronger Cramér condition:

lim sup
t→+∞

sup
(θ,p)∈Θ×P

∣∣Eθ[eitξp(X1)]
∣∣ < 1.

Hypotheses R(m) and (N-A) are the tailor-made assumptions to borrow the proof of the �rst-
order Edgeworth expansion in the i.i.d. case 2, and consequently to expand Pθ {Sn(p)/(σθ,p

√
n) ≤ u}

with a polynomial function independent on n. Notice that, under less restrictive conditions,
the results of [Dur80] provide a �rst-order Edgeworth-type expansion but with a polynomial
function depending on n.

2.2 The main lines of the weak spectral method for Markovian models

Consider from now on the following general Markovian setting. Let (E, E) be any measur-
able space, and let (Xn)n≥0 be a Markov chain with state space E and transition kernel
(Qθ(x, ·); x ∈ E) where θ is a parameter in some set Θ. The initial distribution of the chain
is denoted by µθ (i.e. X0 ∼ µθ). The underlying probability measure and the associated
expectation are denoted by Pθ,µθ and Eθ,µθ . We assume that (Xn)n∈IN admits an invariant
probability measure denoted by πθ (i.e. ∀θ ∈ Θ, πθ ◦Qθ = πθ). Notice that we do not require
stationarity for (Xn)n∈IN .

Let {ξp(·, ·); p ∈ P} be a family of measurable functions from E2 into IR, where P is any set.
Let us de�ne the following r.v.

∀n ≥ 1, ∀p ∈ P, Sn(p) :=

n∑
k=1

ξp(Xk−1, Xk). (7)

This kind of (parametric and bivariate) functionals is required when concerning with Marko-
vian M -estimators, as detailed in Section 5.

2One di�erence is that the asymptotic bias bθ,p = 0 in the i.i.d. case.



D.Ferré A uniform �rst-order Edgeworth expansion. 7

Now we are going to study Hypotheses R(m) and (N-A) using the Nagaev-Guivarc'h spectral
method. For all t ∈ IR, (θ, p) ∈ Θ× P and x ∈ E, let us de�ne the Fourier kernel of (Qθ, ξp)
by

Qθ,p(t)(x, dy) := eitξp(x,y)Qθ(x, dy). (8)

As usual, for all bounded measurable C-valued function f on E, we set

Qθ,p(t)f :=

∫
E
f(y)eitξp(·,y)Qθ(·, dy).

It is easy to see that we have from Markov property

∀t ∈ IR, ∀(θ, p) ∈ Θ× P, ∀n ≥ 1, Eθ,µθ [e
itSn(p)f(Xn)] = µθ[Qθ,p(t)

nf ].

In particular, we obtain

∀t ∈ IR, ∀(θ, p) ∈ Θ× P, ∀n ≥ 1, Eθ,µθ [e
itSn(p)] = µθ[Qθ,p(t)

n1E ], (9)

where 1E stands for the function identically equal to 1 on E.

Equality (9) links the characteristic function of Sn(p) to the iterated Fourier operator Qθ,p(t)
n.

Thus, according to Equality (9), Hypothesis R(m) requires to study the behavior of the
application t 7→ Qθ,p(t)

n near 0. A natural assumption to do it is to assume that there exists
a Banach space B which contains the function 1E and on which (Qθ)θ∈Θ acts continuously (i.e.
∀θ ∈ Θ, Qθ ∈ L(B)) and (Qθ)θ∈Θ satis�es the following uniform strong ergodicity properties
(ERG.1)-(ERG.2):

ERG.1. : {πθ; θ ∈ Θ} is bounded in B′.

ERG.2. : The transition kernel (Qθ)θ∈Θ has a spectral gap on B (uniformly in θ), that is

lim
n→+∞

sup
θ∈Θ
‖Qnθ −Πθ‖B = 0,

where Πθ denotes the rank-one projection de�ned on B by Πθf := πθ(f)1E.

More precisely, we use the following equivalent form (ERG.2') of (ERG.2):

ERG.2'. : There exist c0 > 0 and 0 ≤ κ0 < 1 (independent on θ ∈ Θ) such that

∀θ ∈ Θ, ∀n ∈ IN, ‖Qnθ −Πθ‖B ≤ c0κ
n
0 .

Note that under (ERG.2'), for all θ ∈ Θ, the spectrum σ(Qθ |B) of Qθ acting on B belongs to
the set {z ∈ C ; |z| ≤ κ0} ∪ {1}.

Then, to derive the properties of R(m) from (9), we need some spectral perturbation method
to control (uniformly in (θ, p) ∈ Θ × P) the spectrum of Qθ,p(t) acting on B whenever |t| is
small enough. The usual method requires the continuity at t = 0 of the L(B)-valued function
t 7→ Qθ,p(t), but this continuity assumption involves too strong hypotheses (see [HP10, �3] for
details). An alternative method consists in using the Keller-Liverani theorem [KL99, Liv04]
(see also [Bal00, Fer]). Using this method, the regularity of λθ,p(·), lθ,p(·) and rθ,p,n(·) is
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studied in [HP10] in the case of ρ-mixing Markov chains, V -geometrically ergodic Markov
chains and for iterated function systems. More exactly, their results are only established for
additive univariate functionals of (Xn)n∈IN∗ , but the extension to our parametric bivariate case
(7) is quite natural. This work has already been done in [HLP] in the case of V -geometrically
ergodic Markov chains (in Section 4, we will directly use their results).

By contrast, as already mentioned in Introduction, the method developed in [HP10] is not
su�cient to investigate Hypothesis (N-A) in our parametric bivariate case. We can all the same
easily state the following implication: thanks to (9), provided that the following condition is
imposed on (µθ)θ∈Θ:

{µθ; θ ∈ Θ} is bounded in B′ (10)

and that for all t ∈ IR, (θ, p) ∈ Θ × P, the operator Qθ,p(t) belongs to L(B), the fam-
ily {Sn(p) :=

∑n
k=1 ξp(Xk−1, Xk);n ∈ IN∗, p ∈ P} ful�lls Hypothesis (N-A) whenever the

following condition holds:

Hypothesis (N-A)' (Operator-type non-arithmeticity). For any compact subset K0 ⊂
IR∗, there exists ρ < 1 such that

∀n ≥ 1, sup

{
‖Qθ,p(t)n‖B; t ∈ K0, (θ, p) ∈ Θ× P

}
= O(ρn).

In the next section, we replace this condition by some more practical non-lattice conditions.

3 From non-lattice conditions to (N-A)'

We assume that the general Markovian assumptions of the previous Subsection 2.2 hold true.
Furthermore, we also assume that there exists a Banach space B of complex measurable
functions de�ned on E which contains the function 1E , such that for all θ ∈ Θ, πθ ∈ B′ and
such that for all t ∈ IR, (θ, p) ∈ Θ×P, the Fourier operators Qθ,p(t) de�ned in (8) belong to
L(B).

Let us introduce the following non-lattice condition which will be proved (under some addi-
tional conditions) to imply the previous operator-type non-arithmetic condition (N-A)'.

Hypothesis (N-L) (Non-lattice). There exist no (θ0, p0) ∈ Θ × P, no real a = a(θ0, p0),
no closed subgroup H = cZZ with c = c(θ0, p0) ∈ IR∗, no πθ0-full Qθ0-absorbing set3 A =
A(θ0, p0) ∈ E, and �nally no measurable bounded function α = α(θ0, p0) : E → IR such that

∀x ∈ A, ξp0(x, y) + α(y)− α(x) ∈ a+H Qθ0(x, dy)− a.s.. (11)

3.1 Intermediate conditions

The link between (N-L) and (N-A)' is based on the three following operator-type properties.
The �rst one concerns a control of the spectral radius of Qθ,p(t) acting on B denoted by

3A set A ∈ E is said to be πθ0 -full if πθ0(A) = 1 and Qθ0 -absorbing if Qθ0(a,A) = 1 for all a ∈ A.
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r(Qθ,p(t)|B):
∀t 6= 0, ∀(θ, p) ∈ Θ× P, r

(
Qθ,p(t)|B

)
< 1. (i)

The second property consists in assuming that one has for any compact subset K0 ⊂ IR∗

rK0 := sup

{
r
(
Qθ,p(t)|B

)
; t ∈ K0, (θ, p) ∈ Θ× P

}
< 1. (ii)

Notice that, whenever (ii) holds true, for all z ∈ C, |z| > rK0 and for all t ∈ K0, (θ, p) ∈ Θ×P,
the resolvent operator (z−Qθ,p(t))−1 is well-de�ned in L(B). Then the last property consists
in assuming that there exists ρ0 ∈ [rK0 , 1) such that, for all ρ ∈ (ρ0, 1),

sup

{
‖ (z −Qθ,p(t))−1 ‖B; t ∈ K0, (θ, p) ∈ Θ× P, |z| = ρ

}
< +∞. (iii)

Below we study the following implications:

(a) (N-L) ⇒ (i) under some conditions (and even better: (N-L) ⇔ (i) under some more
conditions)

(b) (i) ⇒ (ii)-(iii) under some conditions;

(c) (ii)-(iii) ⇒ (N-A)'.

The main di�culty is the proof of the statement (b). For this part, three methods are proposed
in Subsection 3.3. Notice that the operator-type non-arithmetic condition (N-A)' obviously
implies Property (i).

3.2 From the non-lattice condition (N-L) to Property (i)

The following lemma is an easy extension of [HP10, �12] to our parametric bivariate case.

Lemma 1. Assume that the following assumptions hold true:

1. For all θ ∈ Θ, λ ∈ C such that |λ| ≥ 1, and for all f ∈ B, f 6= 0, we have[
∀n ≥ 1, |λ|n|f | ≤ Qnθ |f |

]
⇒

[
|λ| = 1 and |f | = πθ(|f |) > 0 πθ − a.s.

]
.

2. For all (θ, p) ∈ Θ × P, t ∈ IR∗, there exists 0 ≤ γ = γ(θ, p, t) < 1 such that the
elements of the spectrum of Qθ,p(t) acting on B with modulus greater than γ are isolated
eigenvalues of �nite multiplicity.

Assume that (N-L) holds true as well. Then (i) is ful�lled. Moreover Property (i) is equivalent
to the following condition: there exist no t0 ∈ IR∗, no (θ0, p0) ∈ Θ×P, no λ = λ(θ0, p0, t0) ∈ C
such that |λ| = 1, no πθ0-full Qθ0-absorbing set A = A(θ0, p0, t0) ∈ E and �nally no bounded
w = w(θ0, p0, t0) ∈ B such that |w||A is non-null constant, satisfying

∀x ∈ A, eit0ξp0 (x,y)w(y) = λw(x) Qθ0(x, dy)− a.s..
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The last property of Lemma 1 will not be used later, it is only recalled here for a better
understanding.

Remark 2. In fact, Property (i) is equivalent to (N-L) whenever eiψ ∈ B for all bounded
real measurable function ψ on E. Notice that this assumption is obviously ful�lled in the
V -geometrically ergodic Markovian model to be studied.

Assumption 1. of Lemma 1 is always satis�ed for strongly ergodic models (cf. (ERG.2)) such
that for all x ∈ E, the Dirac distribution δx at x belongs to B′. In particular, this assumption
is satis�ed by the V -geometrically ergodic Markovian model to be studied (other conditions
are given in [HP10] to check Assumption 1.).

Assumption 2. is much more di�cult to be checked. For now, we only mention that it is
equivalent to the following condition: for all (θ, p) ∈ Θ × P, t ∈ IR∗, the essential spectral
radius ress(Qθ,p(t)|B) of Qθ,p(t) acting on B is such that ress(Qθ,p(t)|B) ≤ γ < 1. Recall that
Qθ,p(t) is said to be quasi-compact on B whenever ress(Qθ,p(t)|B) < r(Qθ,p(t)|B).

3.3 Three methods for Condition (i) to imply (ii)-(iii)

To obtain the implication (i) ⇒ (ii)-(iii), we can use one of the following three approaches, in
which the sets Θ and P are assumed to be compact.

• First approach. Using the standard operator perturbation theory, speci�cally the upper-
semi-continuity of the function "spectral radius" (see e.g. [HH01, p 19]), one can prove
the following statement:

Assume that ‖Qθ,p(t)−Qθ0,p0(t0)‖B → 0 when (t, θ, p)→ (t0, θ0, p0). Then the implica-
tions (i) ⇒ (ii) ⇒ (iii) are true.

However, as already mentioned in Subsection 2.2, the last assumption of continuity of t 7→
Qθ,p(t) is too restrictive. That is why we will not apply this approach in this work.

• Second approach. It consists in using the perturbation Keller-Liverani theorem instead
of the standard perturbation theory. The proof of the following proposition is not
provided in this paper since it is an easy extension of [HP10, lem 12.3].

Proposition 2. Assume that there exists some semi normed space B̃ such that for all
t ∈ IR and (θ, p) ∈ Θ × P, Qθ,p(t) belongs to L(B̃) and B ↪→ B̃ (i.e. B ⊂ B̃ and the

identity map is continuous from B into B̃). Furthermore assume that for all t0 ∈ IR∗
and (θ0, p0) ∈ Θ× P, there exists a neighborhood Ĩ0 ⊂ IR of (t0, θ0, p0) such that

(C1) there exist c > 0, 0 ≤ κ < 1 and M > 0 such that for all (t, θ, p) ∈ Ĩ0, f ∈ B,
n ∈ IN , one has
‖Qθ,p(t)nf‖B ≤ c κn‖f‖B + c Mn ‖f‖B̃.

(C2) ‖Qθ,p(t)−Qθ0,p0(t0)‖B,B̃ → 0 when (t, θ, p)→ (t0, θ0, p0).
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Then the implications (i) ⇒ (ii) ⇒ (iii) are true.

This second approach is applied in Subsection 6.4 to some AR(d) processes with d ≥ 2.

Note that Condition (C2) may be di�cult to be checked because of the continuity with
respect to θ. However, under the standard dominated model assumption, Condition (C2) can
be dodged using the following approach.

• Third approach. It consists in using quasi-compactness and Ascoli-type arguments. For
instance, let us give a brief account for the implication (i)⇒ (ii). We assume by absurd
that (ii) does not hold and (i) holds true, namely on the one hand there exists a compact
subset K0 of IR∗ such that rK0 := sup{r(Qθ,p(t)|B); t ∈ K0, (θ, p) ∈ Θ × P} ≥ 1, and

on the other hand rK0 ≤ 1 < +∞. Then there exist some sequences (tk)k∈IN ∈ KIN
0

and (θk, pk)k∈IN ∈ (Θ × P)IN such that lim r(Qθk,pk(tk)) ≥ 1 when k → +∞. Under
the quasi-compactness Assumption 2. of Lemma 1, the previous property implies the
existence of (λk)k∈IN ∈ C IN and (wk)k∈IN ∈ BIN such that Qθk,pk(tk)wk = zkwk and
|λk| = r(Qθk,pk(tk)). Finally, from compactness arguments (in particular by using Ascoli
theorem), there exist some t̃ ∈ K0, (θ̃, p̃) ∈ Θ × P, λ̃ ∈ C, |λ̃| ≥ 1, and w̃ ∈ B such
that Qθ̃,p̃(t̃)w̃ = λ̃w̃, which is in contradiction with (i). Similar arguments can be used
to prove (ii) ⇒ (iii). In practice, it is easier to use Ascoli theorem when the model is
dominated (i.e. ∀x ∈ E, ∀θ ∈ Θ, Qθ(x, dy) = qθ(x, y)µ(dy)) with suitable conditions on
the function (qθ)θ∈Θ and on the dominating positive measure µ.

This approach is detailed in Subsection 4.2 for V -geometrically ergodic Markov chains
and then it is applied in Subsection 5.2 to AR(1) processes with Gaussian noise.

3.4 From Properties (ii)-(iii) to the operator-type non-arithmetic condi-
tion (N-A)'

Lemma 2. Assume that Properties (ii)-(iii) hold true. Then (N-A)' is ful�lled.

Proof of Lemma 2. Let K0 ⊂ IR∗ be any compact set and let Γ denote the oriented circle
de�ned by {z ∈ C ; |z| = ρ} where ρ ∈ (ρ0, 1). From Von Neumann series, we have for all
t ∈ K0 and (θ, p) ∈ Θ× P,

z ∈ C , |z| = ρ ⇒ (z −Qθ,p(t))−1 =

+∞∑
n=0

z−n−1Qθ,p(t)
n

and hence, we obtain

∀t ∈ K0, ∀(θ, p) ∈ Θ× P,∀n ≥ 1, Qθ,p(t)
n =

1

2iπ

∫
Γ
zn (z −Qθ,p(t))−1 dz.

Then (N-A)' can easily be derived thanks to (iii). 2
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3.5 Conclusion

Subsections 3.2, 3.3 and 3.4 give a procedure to derive (N-A)' (and so (N-A)) from the non-
lattice condition (N-L). In some cases, we may need some even more simple condition than
(N-L) to check (N-A). However, notice that this new condition, denoted by (N-L)', is not
equivalent to (N-L).

Assume that the set E is topological and let E := B(E) be the associated Borel algebra.

Hypothesis (N-L)'. For all p ∈ P, there do not exist Ap(·) and Cp such that we have for
all (x, y) ∈ E2, ξp(x, y) = Ap(y)−Ap(x) + Cp.

To connect (N-L)' with (N-L), we need the following hypotheses on both the model and
(ξp)p∈P .

Hypothesis (S). There exists a positive measure µ on E satisfying Supp(µ) = E and such
that we have for any B ∈ E:

[ ∃ (θ, x) ∈ Θ× E, Qθ(x,B) = 0 ] =⇒ [ µ(B) = 0 ].

Hypothesis (C). For all p ∈ P, the application ξp is continuous from E2 into IR.

Lemma 3. Assume that the set E is connex and that Assumptions (S) and (C) hold true. If
the family (ξp)p∈P ful�lls (N-L)', then (N-L) is ful�lled.

Proof of Lemma 3. Assume that (N-L) is not ful�lled, that is we have (11) with some (θ0, p0) ∈
Θ×P, a ∈ IR, some closed subgroupH = cZZ (c ∈ IR∗), some πθ0-fullQθ0-absorbing set A ∈ E ,
and �nally some bounded measurable function α : E → IR. For the sake of simplicity, let us
omit the dependence on (θ0, p0). For all x ∈ A, there exists Ex ∈ E such that Q(x,Ex) = 1
and ∀y ∈ Ex, ξ(x, y) + α(y)− α(x) ∈ a+H. Let x0 ∈ A. One has

∀y ∈ Ex0 , ξ(x0, y) + α(y)− α(x0) ∈ a+H

∀x ∈ Ex0 , ξ(x0, x) + α(x)− α(x0) ∈ a+H.

Thanks to Assumption (S), one has µ(E\Ex0) = 0 and µ(E\A) = 0 (recall that A is Q-
absorbing), and hence µ(E\{A ∩Ex0}) = 0, A ∩ Ex0 ⊃ Supp(µ) = E where A ∩ Ex0 denotes
the closure of A ∩ Ex0 . In particular, A ∩ Ex0 is not empty. Let x ∈ A ∩ Ex0 , then

∀y ∈ Ex0 ∩ Ex, ξ(x, y)− (ξ(x0, y)− ξ(x0, x)) ∈ a+H.

Let us de�ne A(x) := ξ(x0, x) and f(x, y) := ξ(x, y) +A(x)−A(y). Then for all x ∈ A∩Ex0 ,
f(x,Ex0 ∩Ex) ⊂ a+H. Then, by continuity arguments and since E = Supp(µ) = Ex0 ∩ Ex,
one can easily show that f(x,E) ⊂ a + H. In the same way, f(A ∩ Ex0 , E) ⊂ a + H, and
�nally f(E,E) ⊂ a+H. Since f(E,E) is connex and a+H is discrete, f is constant on E2.
2

Remark 3. Let µ be a positive measure on E satisfying Supp(µ) = E. Assume that the follow-
ing dominated model condition holds: for all θ ∈ Θ, there exists a non-negative measurable ap-
plication qθ(·, ·) on (E×E, E⊗E) such that for all x ∈ E, B ∈ E, Qθ(x,B) =

∫
B qθ(x, y) dµ(y)

and for all x ∈ E and for µ-almost all y ∈ E, qθ(x, y) > 0. Then one can show that Assump-
tion (S) holds true.
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4 The case of uniform V -geometrically ergodic Markov chains

In this section, we illustrate the previous results for uniform V -geometrically ergodic Markov
chains. From now on, for the sake of simplicity, we consider that E := IRd (with d ∈ IN∗),
equipped with any norm ‖ · ‖, and µLebd denotes the Lebesgue-measure on E. Let us assume
that Θ is a compact set. We introduce the uniform (in θ ∈ Θ) V -geometrically ergodic
Markovian model, which satis�es Properties (ERG.1)-(ERG.2) on the weighted-supremum
normed space associated with V .

Model (M). For all θ ∈ Θ, there exist both a Qθ-invariant probability measure denoted by
πθ and an unbounded function V : E → [1,+∞) such that

(VG1) supθ∈Θ πθ(V ) < +∞,

(VG2) limn→+∞ sup

{
|Qnθ f(x)− πθ(f)|/V (x); f : E → C measurable, |f | ≤ V, x ∈ E, θ ∈

Θ

}
= 0.

Model (M) has already been considered for statistical investigation, see for instance [Fuh06,
DY07, HLP]. When θ is �xed and when the Markov chain is irreducible and aperiodic, (VG1)
and (VG2) can be checked using the so-called drift-criterion, we refer to [MT93, p 367] for
details. Notice that Condition (10) on initial the distribution is equivalent to the following
one for Model (M):

sup
θ∈Θ

µθ(V ) < +∞. (12)

In the next Subsections 4.1 and 4.2, we consider a family (ξp)p∈P of measurable functions
from E2 into IR, with P assumed to be a compact set, and we successively study Hypotheses
R(m) and (N-A) for Model (M), before applying these results in Section 5 to M -estimators.

4.1 Study of Hypothesis R(m)

Let us recall the following proposition which has already been proven in [HLP, lem 1].

Proposition 3. Let us consider a Model (M). Assume on (ξp)p∈P that for all (θ, p) ∈ Θ×P,
ξp is centered with respect to the invariant measure family (πθ)θ∈Θ (i.e. for all (θ, p) ∈ Θ×P,
Eθ,πθ [ξp(X0, X1)] = 0), and that assume that (ξp)p∈P ful�lls the following moment domination
condition for some m ∈ IN :

∃ε > 0, sup

{
|ξp(x, y)|m+ε

V (x) + V (y)
; (x, y) ∈ E2, p ∈ P

}
< +∞. (Dm)

Finally assume that the initial distribution family (µθ)θ∈Θ satis�es (12). Then the family
{Sn(p) :=

∑n
k=1 ξp(Xk−1, Xk); n ∈ IN∗, p ∈ P} satis�es Hypothesis R(m).

Up to the arbitrarily small real number ε > 0, Condition (Dm) is the expected (with respect
to the i.i.d. case) assumption to obtain Hypothesis R(m) in our model. Indeed, in [DY07],
Condition (D2) is the key assumption to prove the asymptotic normality whereas in [HLP],
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Condition (D3) is the key assumption to prove Berry-Esseen bounds. Here one also needs to
investigate Hypothesis (N-A).

4.2 Study of Hypothesis (N-A) for dominated Models (M)

Further assumptions are required to apply what we called the third approach in Subsection 3.3.
Some of them concern the dominated model and the other ones involve the regularity of the
applications (ξp)p∈P .

Assumption (S ′). For all θ ∈ Θ, there exists an application qθ(·, ·) on E2 such that

∀x ∈ E, Qθ(x, dy) = qθ(x, y)µLebd (dy).

Furthermore for all x ∈ E and for µLebd -almost all y ∈ E, the application θ 7→ qθ(x, y) is
continuous and there exists β > 0 such that

• for all θ0 ∈ Θ, there exists a neighborhood V1 = V1(θ0) of θ0 such that

∀x0 ∈ E, lim
x→x0

sup
θ∈V1

∫
E
V (y)β |qθ(x, y)− qθ(x0, y)| µLebd (dy) = 0.

• for all x0 ∈ E and θ0 ∈ Θ, there exists a neighborhood V2 = V2(x0, θ0) of θ0 such that∫
E
V (y)β sup

θ∈V2
|qθ(x0, y)|µLebd (dy) < +∞.

Assumption (C′). The family (ξp)p∈P satis�es

• for all x ∈ E and for µLebd -almost all y ∈ E, the function p 7→ ξp(x, y) is continuous.

• for all x0 ∈ E and p0 ∈ P, there exist neighborhoods V3 = V3(x0, p0) of x0 and V4 =
V4(p0) of p0, some positive numbers C, υ1 and υ2 such that we have

∀p ∈ V4, ∀x ∈ V3, ∀y ∈ E, |ξp(x, y)− ξp(x0, y)| ≤ C ‖x− x0‖υ1V (y)υ2 .

Theorem 1. Let us consider a Model (M), and assume that the preceding assumptions (S ′)
and (C′) hold true. If the non-lattice condition (N-L) of Section 3 holds true and if the family of
initial distributions (µθ)θ∈Θ satis�es (12), then {Sn(p) :=

∑n
k=1 ξp(Xk−1, Xk); n ∈ IN∗, p ∈

P} satis�es Hypothesis (N-A).

As discussed in Subsection 2.2, to check Hypothesis (N-A), we need a Banach space B com-
posed of complex measurable functions de�ned on E, containing the function 1E , such that
for all θ ∈ Θ, πθ ∈ B′, and such that for all t ∈ IR, (θ, p) ∈ Θ × P, the Fourier operator
Qθ,p(t) belongs to L(B). From (VG2), the natural space for this job is the Banach space B1

composed of measurable functions f : E → C such that

‖f‖B1 := sup
x∈E

|f(x)|
V (x)

< +∞. (13)



D.Ferré A uniform �rst-order Edgeworth expansion. 15

Actually, for a technical reason arising in Lemma 5 below, we need to work with another space.
Let β be given in Assumption (S ′). Without loss of generality, one can suppose that β ∈ (0, 1).
Then we consider the Banach space Bβ composed of measurable functions f : E → C such
that

‖f‖Bβ := sup
x∈E

|f(x)|
V (x)β

< +∞. (14)

Notice that for any Model (M), using the drift-criterion (cf. [MT93]) and Jensen inequality,
we can prove that (see [HP10, �10])

lim
n→+∞

sup
θ∈Θ
‖Qnθ −Πθ‖Bβ = 0. (15)

Then, Assumption (ERG.2) of Subsection 2.2 holds true with B := Bβ . More precisely, we will
use the equivalent form (ERG.2') of (ERG.2): there exist c̃β > 0 and 0 ≤ κβ < 1 (independent
on θ ∈ Θ) such that

∀θ ∈ Θ,∀n ∈ IN, ‖Qnθ −Πθ‖Bβ ≤ c̃βκ
n
β. (16)

Proof of Theorem 1. Let ~ denote ~ := (t, θ, p) ∈ IR×Θ×P and Q(~) := Qθ,p(t). First of all,
notice that, since Bβ is a Banach lattice (i.e. for all (f, g) ∈ Bβ × Bβ , |f | ≤ |g| ⇒ ‖f‖Bβ ≤
‖g‖Bβ ) and using (15), we can apply [RW97, cor 1.6] to prove that the essential spectral radius
of Q(~) satis�es

∃ 0 ≤ κ < 1 such that ∀~0 ∈ IR∗ ×Θ× P, ress(Q(~0)|Bβ ) ≤ κ. (17)

Next, let us sum up the gap from (N-L) to (N-A), specifying their link with all the intermediate
conditions introduced in Subsection 3.1:

• thanks to the previous Inequality (17) on the essential spectral radius of Q(~), Assump-
tion 2. of Lemma 1 holds true (Assumption 1. of Lemma 1 also holds true: see the
comments after Lemma 1). Thus the conclusions of Lemma 1 are satis�ed: (N-L) ⇒
(i);

• thanks to Lemma 2: (ii)-(iii) ⇒ (N-A)' with B := Bβ ;

• from Condition (12): (N-A)' ⇒ (N-A).

Next, it only remains to prove that (i) ⇒ (ii)-(iii). In fact, we show that (i) ⇒ (ii) ⇒ (iii),
using quasi-compactness and Ascoli-type arguments, as announced in the third approach of
Subsection 3.3. The proof of (i) ⇒ (ii) ⇒ (iii) involves the two following Lemmas 4 and 5.

Lemma 4 (Doeblin-Fortet Inequality). For any Model (M), there exist cβ > 0, 0 ≤ κβ < 1,
such that

∀~ ∈ IR×Θ× P, ∀f ∈ Bβ, ∀n ∈ IN, ‖Q(~)nf‖Bβ ≤ cβκ
n
β‖f‖Bβ + cβ‖f‖B1 . (D-F)

Proof of Lemma 4. Doeblin-Fortet Inequality (D-F) is a consequence of ‖Qθ,p(t)n(f)‖Bβ ≤
‖Qnθ (|f |)‖Bβ (since Bβ is a Banach lattice) and (16) and (VG1). Indeed, for all f ∈ Bβ ,
|f | ∈ Bβ , and hence one has ‖Qnθ (|f |)−πθ(|f |)‖Bβ ≤ c̃βκnβ‖f‖Bβ , from which we easily deduce
the desired inequality. 2
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Lemma 5. Let (wk)k∈IN ∈ (Bβ)IN such that ‖wk‖Bβ = 1 for all k ≥ 1. If (wk)k∈IN uniformly
converges to w̃ ≡ 0 on any compact subset of E, then supθ∈Θ ‖wk‖B1 → 0 when k → +∞.

Proof of Lemma 5. Let ε̃ > 0, ε := 1 − β, and let K = Kε̃,ε be a compact subset of E such
that supx∈E\K V (x)−ε ≤ ε̃. Since |wk(x)| ≤ ‖wk‖BβV (x)β = V (x)β , one has

∀k ∈ IN, ‖wk1|E\K‖B1 ≤ ‖V β1|E\K‖B1 = sup
x∈E\K

V (x)β

V (x)
≤ ε̃. (18)

Furthermore supx∈K |wk(x)|/V (x) ≤ supx∈K |wk(x)| →k 0, thus there exists k0 ∈ IN such
that

∀k ≥ k0, sup
x∈K

|wk(x)|
V (x)

= ‖wk1|K‖B1 ≤ ε̃. (19)

By combining (18) and (19), ‖wk‖B1 = max
(
‖wk1|E\K‖B1 , ‖wk1|K‖B1

)
≤ ε̃. 2

We are now ready to complete the proof of Theorem 1.

Lemma 6. We have (i) ⇒ (ii).

Proof of Lemma 6. We assume by absurd that (ii) does not hold and (i) holds true, namely on
the one hand there exists a compact subset K0 of IR∗ such that rK0 := sup{r(Q(~)|Bβ ), ~ ∈
K0×Θ×P} ≥ 1, and on the other hand rK0 ≤ 1 < +∞. Thus there exists (~k)k∈IN ∈ (K0×
Θ×P)IN such that lim r(Q(~k)|Bβ ) = rK0 when k → +∞, and for all k ≥ 0, r(Q(~k)|Bβ ) > κ,
where κ is de�ned in Inequality (17) on the essential spectral radius of Q(~). Then for all
k ≥ 0, there exists an eigenvalue λk such that |λk| = r(Q(~k)|Bβ ). Let wk ∈ Bβ , wk 6= 0,
‖wk‖β = 1, such that

Q(~k)wk = λkwk. (20)

By compacity argument, we can suppose lim ~k := ~̃ = (t̃, θ̃, p̃) and limλk := λ̃ when k → +∞,
with ~̃ ∈ K0 ×Θ× P and |λ̃| = rK0 ≥ 1.

a) (wk)k converges on E to some w̃ ∈ Bβ : Under the �rst point of (S ′) and the second one of

(C′), and using Ascoli theorem, it is easy to see that (Q(~k)wk)k≥k0 is relatively compact in
(C(K, IR), ‖ · ‖∞) for any compact subset K of E. By diagonal extraction, we can suppose
that (Q(~k)wk)k∈IN converges pointwise on E and uniformly on any compact subset of E,
and so does the sequence (wk)k∈IN thanks to Equality (20). Its limit is denoted by w̃ ∈ Bβ .

b) w̃ 6= 0: From Doeblin-Fortet Inequality (D-F), from Equality (20) which impliesQ(~k)nwk =
λnkwk for all n ∈ IN∗, and from ‖wk‖Bβ = 1, one obtains |λk|n ≤ cβκ

n
β + ‖wk‖B1 . Suppose

that w̃ = 0. Then ‖wk‖B1 → 0 when k → +∞ thanks to Lemma 5. Since |λk| → |λ̃| = rK0

when k → +∞, one has for all n ∈ IN , rnK0
≤ cβκ

n
β , which is in contradiction with the fact

that κβ < 1 ≤ rK0 . Consequently w̃ 6= 0.

c) Conclusion: Let x0 ∈ E. From Assumption (S ′), we have

Q(~k)wk(x0) :=

∫
E
wk(y)eitkξpk (x0,y)qθk(x0, y)µLebd (dy).
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Then, under the second point of (S ′) and the �rst one of (C′), and using Lebesgue dominated
convergence theorem, one has Q(~k)wk(x0) →k Q(~̃)w̃(x0). We have just proven that there
exist λ̃ ∈ C, |λ̃| = rK0 ≥ 1, a non-null function w̃ ∈ Bβ and �nally a parameter ~̃ ∈ K0×Θ×P
such that Q(~̃)w̃ = λ̃w̃. This fact implies that λ̃ ∈ σ(Q(~̃)|Bβ ), which is in contradiction with
(i). 2

Lemma 7. We have (ii) ⇒ (iii).

Proof of Lemma 7. Let K0 ⊂ IR∗ be compact. From (ii), we have rK0 := sup{r(Q(~)|Bβ ), ~ ∈
K0×Θ×P} < 1. By absurd, we assume that there exists ρ be such that max(rK0 , κβ) < ρ < 1
(where κβ is de�ned in (D-F)) and such that sup|z|=ρ sup~∈K0×Θ×P{‖ (z −Q(~))−1 ‖Bβ} =

+∞. Thus there exist (~k, zk)k∈IN ∈ (K0 × Θ × P)IN × C IN , |zk| = ρ, such that αk :=
‖ (zk −Q(~k))−1 ‖Bβ → +∞ when k → +∞, which implies by Banach-Steinhaus theorem that

there exists f ∈ Bβ satisfying ‖ (zk −Q(~k))−1 f‖Bβ → +∞. Let wk := (zk −Q(~k))−1 f/αk
and εk := f/αk ∈ Bβ . Then one has

Q(~k)wk = zkwk − εk. (21)

By compacity argument, we can suppose that limk→+∞ ~k := ~̃ = (t̃, θ̃, p̃) and limk→+∞ zk :=
z̃, with ~̃ ∈ K0 ×Θ× P, and |z̃| = ρ.

a) (wk)k converges on E to some w̃ ∈ Bβ : Again from Ascoli theorem, diagonal extraction

and (21), we can suppose that (wk)k converges pointwise on E and uniformly on any compact
set of E, and we denote its limit by w̃ ∈ Bβ .

b) w̃ 6= 0: From (21), one can easily show

∀n ∈ IN, znkwk = Q(~k)nwk +
n−1∑
i=0

zikQ(~k)n−1−iεk. (22)

From (D-F), one has for all ~k = (tk, θk, pk) ∈ IR × Θ × P and n ∈ IN : ‖Q(~k)nεk‖Bβ ≤
Cn‖εk‖Bβ where Cn := cβ(κnβ + b1). Recall that |zk| = ρ. Thus considering again Equality
(22) and (D-F), we obtain

ρn‖wk‖Bβ ≤ cβκ
n
β‖wk‖Bβ + ‖wk‖B1 +

n−1∑
i=0

ρiCn−i−1‖εk‖Bβ .

Suppose that w̃ = 0, then ‖wk‖B1 →k 0 using Lemma 5. Since ‖wk‖Bβ = 1 and ‖εk‖Bβ =
‖f‖Bβ/αk →k 0, one has for all n ∈ IN : ρn ≤ cβκ

n
β , which is in contradiction with the fact

that ρ > κβ . Thus we have just proven that w̃ 6= 0.

c) Conclusion: Using Lebesgue dominated convergence theorem, one has for all x ∈ E:
Q(~k)wk(x) →k Q(~̃)w̃(x). We have just proven that there exist z̃ ∈ C, |z̃| = ρ, a non-
null function w̃ ∈ Bβ and a parameter ~̃ ∈ K0 × Θ × P such that Q(~̃)w = z̃ w̃. This fact

implies that r(Q(~̃)|Bβ ) ≥ ρ, which is in contradiction with the fact that ρ > rK0 . Thus we
have just proven by absurd that (ii) ⇒ (iii). 2
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5 M-estimators associated with V -geometrically ergodic Markov
chains. Examples

Let (Xn)n≥0 be a Markov chain with state space E := IRd and transition kernel (Qθ(x, ·); x ∈
E), where θ is a parameter in some compact set Θ. The probability distribution of X0 is
denoted by µθ. As before, the underlying probability measure and the associated expectation
are denoted by Pθ,µθ and Eθ,µθ .

Let us introduce the parameter of interest α = α(θ) ∈ A where A is an open interval of IR.
To de�ne the so-called true value of the parameter of interest α0 = α0(θ) ∈ A, we introduce
the empirical mean functional

∀α ∈ A, ∀n ∈ IN∗, Mn(α) :=
1

n

n∑
k=1

F (α,Xk−1, Xk), (23)

where F (·, ·, ·) is a real-valued measurable function on A × E2. For instance, −Mn may be
the log-likelihood of data (X0, . . . , Xn). We de�ne α0 as follows

∀θ ∈ Θ, α0(θ) := arg min
α∈A

lim
n→+∞

Eθ,µθ [Mn(α)], (24)

and its M -estimator is supposed to be well-de�ned by

∀n ∈ IN∗, α̂n := arg min
α∈A

Mn(α). (25)

Our goal is to provide an asymptotic expansion of Pθ,µθ {
√
n(α̂n − α0)/σ(θ) ≤ u} uniformly

in θ ∈ Θ and u ∈ IR, where σ is some suitable (asymptotic) standard deviation. As in the
i.i.d. case (see for example [Pfa73]), we assume throughout this section that the following
hypotheses on (α̂n)n∈IN∗ hold true:

HYP.1. ∀n ≥ 1, (∂Mn/∂α) (α̂n) = 0,

HYP.2. ∀d > 0, supθ∈Θ Pθ,µθ
{
|α̂n − α0| ≥ d

}
= o(n−

1
2 ) .

Notice that the uniform consistency property (HYP.2) has already been studied in a Markovian
context, see for example [Bil61, Rou65, Rao72, Gän72, DY07].

Throughout the sequel, we assume that (Xn)n∈IN belongs to the class of Models (M) (namely
(Xn)n∈IN is V -geometrically ergodic uniformly in θ) and that the family of initial distributions
(µθ)θ∈Θ satis�es (12). In particular, this last condition will be satis�ed if µθ ≡ πθ (see (VG1)),
or if µθ ≡ δx, where δx is the Dirac distribution at any x ∈ E. Then, under some further
conditions on the model and on the function F , we prove4 that there exists a polynomial
function Aθ(·) such that

sup
θ∈Θ

sup
u∈IR

∣∣∣∣Pθ,µθ { √nσ(θ)
(α̂n − α0) ≤ u

}
−N (u)− η(u) n−

1
2 Aθ(u)

∣∣∣∣ = o(n−
1
2 ). (26)

4A small part of this work has been announced in [Fer10, note without proof].
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Notice that the true value of the parameter of interest (see (24)) can also be de�ned by

∀θ ∈ Θ, ∀α ∈ A, α 6= α0, Eθ,πθ [F (α,X0, X1)] > Eθ,πθ [F (α0, X0, X1)].

Asymptotic expansions for M -estimators in the Markovian case have already been studied
in several papers. Indeed maximum likelihood estimators are fully studied in [Dah89] and
[LRZ03] in the speci�c case of stationary Gaussian processes. Some M -estimators for general
non-stationary models are also studied in [GH94] and [Fuh06], but each author needs some
additional Cramér-type hypothesis. Here we only need the much weaker non-arithmeticity
condition. Furthermore our moment conditions on F and its derivatives are almost optimal
with respect to the i.i.d. case, see the comments after Theorem 2.

5.1 Edgeworth expansion for M-estimators for dominated models (M)

In addition to the previous assumptions (namely (Xn)n∈IN belongs the class of Models (M)
and (α̂n)n∈IN∗ satis�es (HYP.1) and (HYP.2)), we assume that (Xn)n∈IN is dominated, i.e.
that Condition (S ′) holds true (see its de�nition in Subsection 4.2). Furthermore, we assume
that for all x ∈ E and for µLebd -almost all y ∈ E, we have qθ(x, y) > 0.

Let us introduce the assumptions concerning the real-valued measurable function F involved
in (23). Assume that the map α 7→ F (α, ·, ·) is 3-time-di�erentiable on A and let F (j) :=
∂jF/∂αj denote the derivatives for j = 1, 2, 3. Assume that F (1), F (2), F (3) satisfy the
following moment domination condition (D3):

∃ε > 0 such that ∀j = 1, 2, 3, sup

{
|F (j)(α, x, y)|3+ε

V (x) + V (y)
; (x, y) ∈ E2, α ∈ A

}
< +∞. (27)

We introduce for j = 1, 2, 3

∀θ ∈ Θ, mj(θ) := Eθ,πθ
[
F (j)(α0, X0, X1)

]
, σj(θ)

2 := lim
n→+∞

Eθ,πθ
[
n
(
M (j)
n (α0)− mj(θ)

)2]
,

where Mn(·) is given in (23) and M
(j)
n := ∂jMn/∂α

j , and where πθ is the Qθ-invariant
probability measure given in (M). Then, from (27) and using Proposition 1 and Proposition
3, the functions σj(·) for j = 1, 2, 3 are well-de�ned and bounded in θ ∈ Θ.

We consider the following additional assumptions:

C.1. m1 ≡ 0 and infθ∈Θm2(θ) > 0.

C.2. infθ∈Θ σj(θ) > 0 for j = 1, 2.

C.3. There exists a measurable function W : E → [0,+∞) of the type W = C V η for some
η ∈ (0, 1/2) and C > 0 such that

∀(α, α′) ∈ A2, ∀(x, y) ∈ E2, |F (3)(α′, x, y)− F (3)(α, x, y)| ≤ |α′ − α| (W (x) +W (y)).

Let us introduce some assumptions similar to (C)-(C′) (see de�nitions in Subsections 3.5 and
4.2) concerning the regularity of (F (j))j=1,2,3. The function F is supposed to satisfy
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C.4. For all j = 1, 2, 3 and α ∈ A, F (j)(α, ·, ·) is continuous from E2 into IR.

C.5. For all x0 ∈ E and α ∈ A, there exist neighborhoods V3 = V3(x0, α) of x0 and V4 =
V4(α) of α, positive real numbers C, υ1 and υ2 such that for all α′ ∈ V4, x ∈ V3 and y ∈ E:

∀j = 1, 2, 3, |F (j)(α′, x, y)− F (j)(α′, x0, y)| ≤ C ‖x− x0‖υ1V (y)υ2 .

Theorem 2. Assume that all the preceding assumptions hold true, that Condition (N-L)' (see
de�nition page 12) is satis�ed by the following functions

(a) ∀α ∈ A, ∀j = 1, 2, F (j)(α, x, y)

(b) ∀α ∈ A, ∀υ ∈ IR, F (1)(α, x, y) + υF (2)(α, x, y) + (υ2/2) F (3)(α, x, y)

and that the initial probability measure satis�es (12), namely supθ∈Θ µθ(V ) < +∞. Then for
j = 1, 2, 3,

∀θ ∈ Θ, mj(θ) = lim
n→+∞

Eθ,µθ [M
(j)
n (α0)] , σj(θ)

2 = lim
n→+∞

Eθ,µθ
[
n
(
M (j)
n (α0)− mj(θ)

)2]
and there exists a polynomial function denoted by Aθ such that (α̂n)n∈IN∗ satis�es Expansion
(26) with σ := σ1/m2. Furthermore, the coe�cients of Aθ are bounded, and

Aθ(u) :=

[
− 1

6

m3,1(θ)3

σ1(θ)3
+
b1(θ)

σ1(θ)

]
+

[
1

6

m3,1(θ)3

σ1(θ)3
− σ12(θ)

σ1(θ)m2(θ)
+

σ1(θ)

2m2(θ)2
m3(θ)

]
u2,

where
b1(θ) := limn→+∞ Eθ,µθ [nM

(1)
n (α0) ]

σ12(θ) := limn→+∞ Eθ,πθ
[
nM

(1)
n (α0)

(
M

(2)
n (α0)−m2(θ)

)]
= limn→+∞ Eθ,µθ

[
nM

(1)
n (α0)

(
M

(2)
n (α0)−m2(θ)

)]
m3,1(θ)3 := limn→+∞ Eθ,πθ

[
n2
(
M

(1)
n (α0)

)3 ]
= lim Eθ,µθ

[
n2
(
M

(1)
n (α0)

)3 ]− 3σ2
1(θ)b1(θ).

When comparing with Pfanzagl results [Pfa73] in the i.i.d. case, Expansion (26) proven
in Theorem 2 is a natural substitute of the i.i.d. expansion, with an additional term due
to the asymptotic bias (namely b1(·)). To the best of our knowledge, Theorem 2 is the
most precise statement concerning the �rst-order Edgeworth expansion of real-valued M -
estimators associated with V -geometrically ergodic Markov chains: in fact, the dominated
model condition (S ′) on the model is classical in Markovian statistics, the condition (D3) on
the derivatives of F is the expected one (up to the real number ε > 0), Conditions (C.1)-
(C.5) are the Markovian substitutes of the so-called regularity conditions of the i.i.d. case
and �nally the non-lattice-type conditions (a)-(b) in Theorem 2 are quite general and easy to
check.

The proof of Theorem 2 is postponed to Section 6.

An application to autoregressive models is given in the next subsection.
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5.2 A simple illustration of Theorem 2: a Gaussian linear model

Let us consider a Gaussian linear process (Xk)k≥0 de�ned by

X0 := 0 ∀k ∈ IN∗, Xk := θXk−1 + Zk (28)

where

• θ is a parameter which belongs to a compact set Θ ⊂ (−1, 1)

• (Zk)k∈IN∗ are i.i.d. real valued r.v. whose common distribution is supposed to be the
Gaussian distribution N (m,σ2) with probability density fZ with respect to µLeb.

This simple model allows us to easily illustrate the performance of Theorem 2. For the sake
of simplicity, we have considered a Gaussian noise and the Dirac distribution δ0, but another
probability density fZ > 0 and another initial distribution µθ could be chosen.

The sequence (Xk)k≥0 is a Markov chain with state space E := IR. Its transition kernel Qθ
is given for all Borel set B ∈ B(IR) by

Qθ(x,B) =

∫
IR
1B(θx+ z) fZ(z) dz.

First of all, note that

∀j > k, Xj = θj−kXk +

j−k∑
l=1

θj−k−lZk+l. (29)

Then for all k ≥ 1, the r.v. Xk has distribution N
(
m(1− θk)/(1− θ), σ2(1− θ2k)/(1− θ2)

)
,

and the Markov chain (Xk)k≥0 converges in distribution to πθ := N
(
m/(1− θ), σ2/(1− θ2)

)
,

so that

Eθ,πθ [X0] =
m

1− θ
and Eθ,πθ

[
X2

0

]
=

σ2

1− θ2
+

m2

(1− θ)2
. (30)

For any γ > 8, let us de�ne the following function V

∀x ∈ IR, V (x) := 1 + |x|γ . (31)

Since θ belongs to a compact set Θ ⊂ (−1, 1), supθ∈Θ Eθ,δ0 [|Z1|γ ] < +∞ and fZ > 0, it is
easily checked that (Xk)k≥0 is µ

Leb-irreducible, aperiodic and ful�lls the drift-criterion [MT93]
uniformly in θ ∈ Θ. Therefore, the Markov chain (Xk)k≥0 is an instance of Model (M) with
this function V .

Assume that θ is unknown and has to be estimated (α0(θ) ≡ θ here). The parameters m
and σ > 0 are supposed to be known. The maximum likelihood estimator (MLE) (θ̂n)n∈IN∗

involves the following function F

∀(x, y) ∈ IR2, ∀α ∈ Θ, F (α, x, y) := − ln fZ(y − α x),

and the empirical mean functional (cf. (23))

∀n ∈ IN∗, ∀α ∈ Θ, Mn(α) := − 1

n

n∑
k=1

ln fZ(Xk − αXk−1). (32)
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Let us check that Theorem 2 can be applied to this Gaussian linear model. First we easily

obtain M
(1)
n (θ̂n) = 0 (that is (HYP.1)) from the de�nition of the estimator, and we obtain as

well the following closed-form expression for the MLE

∀n ∈ IN∗, θ̂n =

∑n
k=1 (Xk−1Xk −mXk−1)∑n

k=1X
2
k−1

. (33)

Then uniform consistency Property (HYP.2) holds true. Indeed, write

θ̂n − θ =
∆1n − θ∆2n −m∆3n

∆2n + Eθ,πθ [X2
0 ]

,

where

• ∆1n := (1/n)
∑n

k=1

(
Xk−1Xk − θEθ,πθ [X2

0 ]−mEθ,πθ [X0]
)

• ∆2n := (1/n)
∑n

k=1

(
X2
k−1 − Eθ,πθ [X2

0 ]
)

• ∆3n := (1/n)
∑n

k=1 (Xk−1 − Eθ,πθ [X0]).

Since the families (ξp)p∈P ful�ll Condition (D4) when ξp(x, y) := xy, ξp(x, y) := x2 or
ξp(x, y) := x (because γ > 8), we obtain from Property (5)

∀i = 1, 2, 3, lim
n→+∞

sup
θ∈Θ

Eθ,δ0
[

∆4
in

n2

]
< +∞.

One concludes using Markov inequality and since infθ∈Θ Eθ,πθ [X2
0 ] > 0. Next, the moment

domination conditions (27) are obviously ful�lled (since γ > 6). Concerning Conditions (C.1)
and (C.2), we obtain using the invariant probability (πθ)θ∈Θ:

• m1(θ) = Eθ,πθ
[
X0f

(1)
Z (X1 − θX0)/fZ(X1 − θX0)

]
= Eθ,πθ [X0] Eθ,πθ

[
f

(1)
Z (Z1)/fZ(Z1)

]
,

m1(θ) ≡ 0, and m2(θ) = Eθ,πθ
[
X2

0

]
/σ2, so that infθ∈Θm2(θ) > 0.

• σ1(θ)2 = limn Eθ,πθ
[
(1/n)

(∑n
k=1Xk−1(Zk −m)/σ2

)2 ]
= limn Eθ,πθ

[
(1/n)

∑n
k=1

(
Xk−1(Zk−

m)/σ
)2]

/σ2. Thus σ1(θ) =
√
m2(θ) satis�es infθ∈Θ σ1(θ) > 0.

σ2(θ)2 = limn→+∞ Eθ,πθ
[
(1/n)

(∑n
k=1X

2
k−1/σ

2 − nm2(θ)
)2]

and after some tedious

computations using (29), we obtain infθ∈Θ σ2(θ) > 0.

Conditions (C.3), (C.4) and (C.5) are obviously ful�lled as well. Finally Assumption (S ′) on
the transition kernels (Qθ)θ∈Θ with qθ(x, ·) := fZ(· − θx) is easily checked.

Thus, we apply Theorem 2 to our Gaussian linear model to derive that

sup
u∈IR

sup
θ∈Θ

∣∣∣∣Pθ,δ0 { √nσ(θ)
(θ̂n − θ) ≤ u

}
−N (u)− η(u) n−

1
2 Aθ(u)

∣∣∣∣ = o(n−
1
2 ).
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To illustrate our results, �x θ := 1/2 for example and let us simulate by Monte Carlo methods
the behavior of the MLE. Then we can compare the empirical distribution function at u of√
n (θ̂n − 1/2)/σ(1/2) with the approximations N (u) and N (u) + η(u)A1/2(u)/

√
n of the

distribution function P1/2,δ0{
√
n (θ̂n − 1/2)/σ(1/2) ≤ u}, where the asymptotic standard

deviation σ(1/2) and the polynomial function A1/2(u) are de�ned by

σ
(1

2

)
=

1√
4
3 + 4m

2

σ2

, A 1
2
(u) = c(1 + 5u2) with c :=

8

18

2
3 + 6m

2

σ2(
4
3 + 4m

2

σ2

) 3
2

.

The performance of this Edgeworth expansion is illustrated in the case where m = 0 and
σ = 1. Using a Scilab program, 5000 independent samples of the estimators (θ̂n)n=1,..,50 have
been obtained. For u := −1 and u := 1, we represent the empirical distribution function
of
√
n (θ̂n − 1/2)/σ(1/2), the Gaussian approximation and the �rst-order Edgeworth one on

the same graphs (see page 24). As expected, observe that the quality of the normal and the
�rst-order Edgeworth approximations N (u) and N (u) + η(u)A1/2(u)/

√
n of P1/2,δ0{

√
n (θ̂n−

1/2)/σ(1/2) ≤ u} increases when n grows, but the approximation by the �rst-order expansion
is quickly the best one. The �rst-order Edgeworth expansion greatly improves the rate of
convergence in the approximation of the distribution function of the estimator, in comparison
with the Berry-Esseen type results.
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Figure 1: The Gaussian linear example of �5.2: for u := −1 and u := 1, graphs of
• the empirical distribution of

√
n(θ̂n − 1/2)/σ(1/2), i.e. the estimation by Monte-Carlo

methods of n 7→ P1/2,δ0

{√
n(θ̂n − 1/2)/σ(1/2) ≤ u

}
,

• the Edgeworth expansion n 7→ N (u) + η(u)A1/2(u)/
√
n

• and the Gaussian approximation n 7→ N (u).
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6 Pfanzagl method to prove Theorem 2

In Subsections 6.1 and 6.2, we adapt Pfanzagl results to some general setting. More specif-
ically, some probabilistic Edgeworth expansions are explicitly required in Subsection 6.1,
whereas the general Assumptions R(m) and (N-A) are involved in Subsection 6.2. Thanks to
this work, Theorem 2 is easily proved in Subsection 6.3.

In Subsections 6.1 and 6.2, we denote by (Ω,F , {Pθ; θ ∈ Θ}) a general statistical model, where
Θ is some parameter space (not necessarily compact in these subsections). The underlying
expectation is denoted by Eθ. We assume that the following general statistical assumptions
hold true: let (Mn(α))n∈IN∗ be any general sequence of real observations where α ≡ α(θ) ∈ A
is the parameter of interest and A is an open interval on the real line. Assume that for all
n ≥ 1, the map α 7→ Mn(α) is 3-time-di�erentiable on A and that the derivatives de�ne

r.v. on (Ω,F). We denote them by M
(j)
n := ∂jMn/∂α

j for j = 1, 2, 3. We consider some
α0 ∈ A and assume that the A-valued r.v. α̂n is speci�ed by (HYP.1) and ful�lls the uniform
consistency Property (HYP.2) that we recall below:

HYP.1. ∀n ≥ 1, (∂Mn/∂α) (α̂n) = 0,

HYP.2. ∀d > 0, supθ∈Θ Pθ
{
|α̂n − α0| ≥ d

}
= o(n−1/2) .

Note that, in Subsections 6.1 and 6.2, (Mn(α))n∈IN∗ is not necessarily associated with a
function F as in (23).

6.1 The revisited Pfanzagl method

We appeal to the following conditions:

A.1. For all n ≥ 1, there exists a positive r.v. Wn, independent on α, such that

∀j = 2, 3, ∀(α, α′) ∈ A2, |M (j)
n (α′)−M (j)

n (α)| ≤ |α′ − α|Wn.

Furthermore there exists l: Θ → (0,+∞) bounded on Θ such that supθ∈Θ Pθ
{
Wn ≥ l(θ)

}
=

o(n−1/2).

A. 2. For j = 1, 2, there exist σj(·) > 0 satisfying supθ∈Θ σj(θ) < +∞, infθ∈Θ σ1(θ) > 0,
m2(·) satisfying infθ∈Θm2(θ) > 0, and polynomial functions denoted by Bθ(·) and Cθ(·), such
that

sup
θ∈Θ

sup
u∈IR

∣∣∣∣Pθ{ √nσ1(θ)
M (1)
n (α0) ≤ u

}
−N (u)− η(u)n−

1
2Bθ(u)

∣∣∣∣ = o(n−
1
2 ),

sup
θ∈Θ

sup
u∈IR

∣∣∣∣Pθ{ √nσ2(θ)

(
M (2)
n (α0)−m2(θ)

)
≤ u

}
−N (u)− η(u)n−

1
2Cθ(u)

∣∣∣∣ = o(n−
1
2 ).

Furthermore the coe�cients of Bθ(·) and Cθ(·) are assumed to be bounded.
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Let us de�ne σ(θ) := σ1(θ)/m2(θ). Notice that σ(·) satis�es supθ∈Θ σ(θ) < +∞.

A.3. For all n ≥ 1, u ∈ IR such that |u| ≤ 2
√

lnn, there exist σn,u(·)2 > 0, m3(·) bounded on
Θ, Dθ(·) and Eθ(·) some polynomial functions such that

sup
θ∈Θ

sup
|u|≤2

√
lnn

∣∣∣∣σn,u(θ)−1 −
(
σ1(θ)−1 +Dθ(u)n−

1
2

)∣∣∣∣ = o(n−
1
2 ),

sup
θ∈Θ

sup
v∈IR

sup
|u|≤2

√
lnn

∣∣∣∣Pθ{ √
n

σn,u(θ)
M̃n(θ, u) ≤ v

}
−N (v)− η(v)Eθ(v)n−

1
2

∣∣∣∣ = o(n−
1
2 ),

where M̃n(θ, u) denotes

M̃n(θ, u) := M (1)
n (α0)+

σ(θ)√
n
u

(
M (2)
n (α0)−m2(θ)

)
+

(
σ(θ)√
n

)2 u2

2

(
M (3)
n (α0)−m3(θ)

)
. (34)

Furthermore, the coe�cients of Dθ(·) and Eθ(·) are assumed to be bounded.

Theorem 3. Under Conditions (A.1), (A.2) and (A.3), there exists a polynomial function
Aθ such that one has with σ := σ1/m2

sup
θ∈Θ

sup
u∈IR

∣∣∣∣Pθ { √nσ(θ)
(α̂n − α0) ≤ u

}
−N (u)− η(u)n−

1
2Aθ(u)

∣∣∣∣ = o(n−
1
2 ). (35)

Furthermore

∀θ ∈ Θ, ∀u ∈ IR, Aθ(u) := Dθ(u) σ1(θ) u+
σ(θ)2

2σ1(θ)
m3(θ)u2 − Eθ(−u). (36)

The proof of Theorem 3 is postponed to Appendix A. It consists in adapting the Pfanzagl
method [Pfa73] introduced for i.i.d. observations. Just mention that the Pfanzagl method is
not exactly the one developed in Appendix A, but for convenience this discussion is omitted.

6.2 An alternative statement using Hypotheses R(m) and (N-A)

Below we appeal to the following assumptions involving Hypotheses R(m) and (N-A) of
Subsection 2.1:

B.1. For all n ≥ 1, there exists a positive r.v. Wn, independent on α, such that

∀j = 2, 3, ∀(α, α′) ∈ A2, |M (j)
n (α′)−M (j)

n (α)| ≤ |α′ − α|Wn.

Furthermore there exists l̃: Θ → (−1,+∞) bounded on Θ such that
{
n(Wn − l̃(θ)); n ≥

1, θ ∈ Θ
}
ful�lls Hypothesis R(2).

B.2. The family
{
nM

(1)
n (α0); n ≥ 1, θ ∈ Θ

}
ful�lls Hypotheses R(3) and (N-A). Furthermore

there exists m2(·) on Θ satisfying infθ∈Θm2(θ) > 0 such that
{
n
(
M

(2)
n (α0) −m2(θ)

)
; n ≥

1, θ ∈ Θ
}
ful�lls both Hypotheses R(3) and (N-A).
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Thanks to the last Assumption (B.2) and Proposition 1, we can de�ne the asymptotic vari-
ances

σ1(θ)2 := lim
n→+∞

Eθ
[
n
(
M (1)
n (α0)

)2
]
, σ2(θ)2 := lim

n→+∞
Eθ
[
n
(
M (2)
n (α0)−m2(θ)

)2
]
.

Furthermore we assume that the following conditions on these asymptotic variances hold true

B.3. infθ∈Θ σ1(θ) > 0,

B.4. infθ∈Θ σ2(θ) > 0.

The following additional conditions are also required:

B. 5. There exists m3(·), bounded on Θ, such that
{
n
(
M

(3)
n (α0) − m3(θ)

)
; n ≥ 1, θ ∈ Θ

}
ful�lls Hypothesis R(2), and

{
n M̃n(θ, u); n ≥ 1, θ ∈ Θ, |u| ≤ 2

√
lnn

}
ful�lls both Hypotheses

R(3) and (N-A) as well, where M̃n(θ, u) is de�ned by (34).

Theorem 4. Under Assumptions (B.1) to (B.5), there exists a polynomial function Aθ inde-
pendent on n such that one has (35) with σ := σ1/m2. The polynomial function Aθ is of the
type Aθ(u) = a1(θ) + a2(θ)u2 where, for i = 1, 2, supθ∈Θ |ai(θ)| < +∞. Furthermore if we
suppose that the additional moment condition holds true:

∀j = 1, 2, 3, ∀θ ∈ Θ, ∀n ∈ IN∗, Eθ
[∣∣M (j)

n (α0)
∣∣3 ] < +∞,

then one has more precisely

a1(θ) := −1

6

m3,1(θ)3

σ1(θ)3
+
b1(θ)

σ1(θ)
, a2(θ) :=

1

6

m3,1(θ)3

σ1(θ)3
− σ12(θ)

σ1(θ)m2(θ)
+

σ1(θ)

2m2(θ)2
m3(θ)

with


b1(θ) := lim

n→+∞
Eθ
[
nM (1)

n (α0)
]

σ12(θ) := lim
n→+∞

Eθ
[
nM (1)

n (α0)
(
M (2)
n (α0)−m2(θ)

)]
m3,1(θ)3 := lim

n→+∞
Eθ
[
n2
(
M (1)
n (α0)

)3 ]− 3σ2
1(θ)b1(θ).

Proof of Theorem 4. It is su�cient to show that the assumptions of Theorem 4 imply the
previous ones of Theorem 3.

• From (B.1), (A.1) holds true with l := l̃ + 1. Indeed let Sn(θ) := n(Wn − l̃(θ)).
Thanks to (4) and Markov inequality, one easily obtains supθ∈Θ Pθ{Wn ≥ l(θ)} ≤
(1/n) supθ∈Θ(Eθ[Sn(θ)2]/n) = O(n−1).

• (A.2) is directly implied by (B.2), (B.3), (B.4) using Proposition 1, where

Bθ(u) :=
m3,1(θ)3

6σ1(θ)3
(1− u2)− b1(θ)

σ1(θ)
.

Similar expression holds for Cθ(u).
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• In a more intricate way, to prove (A.3) under (B.2), (B.3), (B.5), let us de�ne

Sn(θ, p, v) := n

[
M (1)
n (α0) + ςp(v, θ)

(
M (2)
n (α0)−m2(θ)

)
+
ςp(v, θ)

2

2

(
M (3)
n (α0)−m3(θ)

)]
where ςp(v, θ) := vσ(θ)/

√
p, so that Sn(θ, n, u) = nM̃n(u, θ) (cf. (34)). From (B.5) and

using Proposition 1, we can de�ne

σp,v(θ)
2 := lim

n→+∞

Eθ[Sn(θ, p, v)2]

n
,

and from (B.3) and using Proposition 1 again, we obtain (A.3) with

Dθ(u) := −σ12(θ)

σ1(θ)3
σ(θ)u, and Eθ(u) :=

m31(θ)3

6σ1(θ)3
(1−u2)− b1(θ)

σ1(θ)
. 2

6.3 Proof of Theorem 2 of Subsection 5.1

Let us go back to our Markovian model (M) and prove that the assumptions of Theorem 4
hold true whenever the assumptions of Theorem 2 are satis�ed.

• Let us de�ne Wn := (1/n)
∑n

k=1(W (Xk−1) + W (Xk)) and l̃(θ) := 2Eθ,πθ [W (X1)],
where W is de�ned in (C.3). Then, using Proposition 3, the Lipschitz condition (B.1)
for j = 3 is true. Indeed the family {ξθ; θ ∈ Θ} obviously ful�lls the moment dom-
ination condition (D2) with ξθ(x, y) := W (x) + W (y) − 2l̃(θ). In the same way, the
remaining part of (B.1) (for j = 2) is checked under (27) (which means that the family
{F (3)(α, ·, ·); α ∈ A} ful�lls (D3) and a fortiori (D2)).

• Firstly, we deduce from Proposition 3 that the part of (B.2) concerning Hypothesis R(3)
is true under (27). Secondly, thanks to Assumption (S ′), we deduce from Lemma 3 and
Theorem 1 that the part of (B.2) concerning Hypothesis (N-A) is true under Condition
(a) of Theorem 2 (see Remark 3 concerning the assumptions of Lemma 3).

• The conditions (B.3) and (B.4) are exactly (C.2).

• We deduce from Proposition 3 that the �rst point of (B.5) follows from (27). For the

second point of (B.5), recall De�nition (34) of M̃n(θ, u), and notice that infθ∈Θm2(θ) >
0 from (C.1) and supθ∈Θ σ1(θ) < +∞, which imply that sup{σ(θ)u/

√
n; n ≥ 1, θ ∈

Θ, |u| ≤ 2
√

lnn} < +∞. Thus the family
3∑
j=1

1

(j − 1)!

(
σ(θ)√
n
u

)j−1 (
F (j)(α0, ·, ·)−mj(θ)

)
; n ≥ 1, θ ∈ Θ, |u| ≤ 2

√
lnn


obviously ful�lls (D3), and we conclude from Proposition 3 that

{
n M̃n(θ, u); n ≥ 1, θ ∈

Θ, |u| ≤ 2
√

lnn
}
ful�lls Hypothesis R(3). Finally, thanks to Assumption (S ′), we easily

check from Lemma 3 and Theorem 1 that the part of (B.5) concerning Hypothesis (N-A)
is true under Condition (b) of Theorem 2. 2
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6.4 Illustration of Theorem 4 in the case of some AR(d) processes

In this subsection, we apply Theorem 4 to linear autoregressive processes of order d, d ≥ 2. In
substance, such a model ful�lls all the assumptions of Theorem 2, except the dominated model
Condition (S ′). Consequently, the non-arithmeticity conditions involved in the assumptions
B.2 and B.5 of Theorem 4 cannot be checked using Theorem 1 any more. Here, by reinforcing
the assumptions on the density of the noise, we apply the second approach of Subsection 3.3
to study these non-arithmeticity conditions.

Let us consider the following autoregressive process of order d ≥ 1 on E := IRd:

∀n ≥ d, Yn := g1(θ)Yn−1 + · · ·+ gd(θ)Yn−d + Zn (37)

where the probability distribution of (Y0, . . . , Yd−1) is denoted by µθ and

• θ ∈ IR is a parameter,

• (g1, . . . , gd) are given real continuous functions,

• and (Zk)k∈IN∗ are i.i.d. real-valued r.v. independent on (Y0, .., Yd−1) with common
distribution which admits some probability density fZ with respect to µLeb.

The parameter θ of the observed AR(d) process is assumed to be in a non-empty compact set
Θ ⊂ IR such that for all θ ∈ Θ the solutions of the equation

zd − g1(θ)zd−1 − · · · − gd−1(θ)z − gd(θ) = 0 (38)

lie in D(0, 1) := {z ∈ C ; |z| < 1}.

Introduce the column vector Xn := (Yn, . . . , Yn−d+1)′ for n ≥ d − 1. Then the process
(Xn)n≥d−1 is a Markov chain with the following �rst-order autoregressive representation

∀n ≥ d Xn = A(θ) Xn−1 + (Zn, 0, . . . , 0)′ (39)

where

A(θ) :=



g1(θ) . . . gd−1(θ) gd(θ)
1 0 . . . 0 0 0
0 1 . . . 0 0 0
...

. . .
...

...
0 0 . . . 1 0 0
0 0 . . . 0 1 0


.

Assuming that the solutions of the equation (38) lie in D(0, 1) is equivalent to assume that
the eigenvalues of A(θ) have moduli strictly less than unity, so that ‖A(θ)‖ < 1 for all θ ∈ Θ
and supθ∈Θ ‖A(θ)‖ < 1.

The initial distribution of (Xn)n≥d−1 is µθ and its transition kernel Qθ is given for all Borel
set B ∈ B(IRd) by

Qθ(x,B) =

∫
IR
1B
(
A(θ)x+ (z, 0, · · · , 0)′

)
fZ(z) dz.
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Note that the transition kernel Qθ has the following representation:

Qθ(x, dy) = fZ
(
yd − 〈g(θ), x〉

)
µLeb(yd) δxd(yd−1) · · · δx2(y1), (40)

where x denotes the column vector (xd, . . . , x1)′ and y denotes the column vector (yd, . . . , y1)′.
Then, as already mentioned, the dominated model Condition (S ′) is not ful�lled in the mul-
tidimensional case (d 6= 1).

Next, let us assume that the probability density fZ of Z1 ful�lls the following conditions:

(A) ∀z ∈ IR, fZ(z) > 0;

(B) for all θ ∈ Θ, Eθ,µθ [Z1] = 0;

(C) for all θ ∈ Θ, Eθ,µθ [|Z1|10] < +∞;

(D) fZ is 4-time-di�erentiable on IR;

(E) for j = 1, . . . , 4, f
(j)
Z /fZ is a bounded function;

(F) for all 9 < γ ≤ 10, there exists 0 < β ≤ 1− 1/γ such that, for all x0 ∈ IR, there exists
a neighborhood Vx0 of x0 and a positive measurable function qx0 satisfying∫

IR

(
1 + |y|

)β
qx0(y) dy <∞ and ∀y ∈ IR, ∀t ∈ Vx0 , fZ(y + t) ≤ qx0(y).

Actually, under (E), it is su�cient to assume in (C) that there exists some ε > 0 such that
for all θ ∈ Θ, Eθ,µθ [Z

9+ε
1 ] < +∞. Furthermore, note that Assumption (E) can be relaxed

provided that the order of the moment of Z1 is increased. However, Assumption (E) as above
is satis�ed in several interesting models and thus it does not need relaxing. Notice that Götze
and Hipp [GH94, th 1.5] assume that, under (E), Z1 admits a moment of order 15.

Finally, the vector g := (g1, . . . , gd)
′ is supposed to have the following properties:

(G) θ 7→ (g1(θ), . . . , gd(θ)) ∈ IRd is 4-time-continuously-di�erentiable on Θ;

(H) infθ∈Θ g
(1)
1 (θ) > 0.

Let us de�ne for all 9 < γ ≤ 10

∀x ∈ IRd, V (x) := 1 + ‖x‖γ . (41)

Lemma 8. Under the previous conditions, (Xn)n≥d−1 belongs the class of Models (M) with
the function V de�ned in (41).

Proof of Lemma 8. Under (C), one has for all θ ∈ Θ and x ∈ IRd,

QθV (x)

V (x)
=

∫
IR

V
(
A(θ)x+ (z, 0, . . . , 0)′

)
V (x)

fZ(z) dz≤
∫
IR

1 +
(
‖A(θ)‖ ‖x‖+ |z|

)γ
V (x)

fZ(z)dz.



D.Ferré A uniform �rst-order Edgeworth expansion. 31

By Fatou lemma,

lim sup
‖x‖→∞

(
sup
θ∈Θ

QθV (x)

V (x)

)
≤ sup

θ∈Θ
‖A(θ)‖γ < 1.

Next, pick % ∈ (supθ∈Θ ‖A(θ)‖γ , 1). There exists s > 0 such that for all ‖x‖ > s and θ ∈ Θ,
QθV (x) ≤ % V (x). Set S := {x ∈ IRd; ‖x‖ ≤ s}. Note that

∀θ ∈ Θ, ∀x ∈ S, QθV (x) ≤ ς := sup
θ∈Θ

∫
IR

(
1 +

(
‖A(θ)‖ ‖s‖+ |z|

)γ)
fZ(z)dz < +∞,

so that
∀θ ∈ Θ, ∀x ∈ IRd, QθV (x) ≤ % V (x) + ς.

Finally, since Condition (A) holds true, it is easily checked that (Xk)k≥0 is µLebd -irreducible,
aperiodic and ful�lls the drift-criterion [MT93] uniformly in θ ∈ Θ. 2

Set e1 := (1, 0, . . . , 0)′ ∈ IRd. Then, let us consider the MLE (θ̂n)n∈IN∗ of the parameter θ
(α0(θ) ≡ θ). We have

∀n ≥ d, 〈e1, Xn〉 = 〈g(θ), Xn−1〉+ Zn.

Maximum likelihood estimation requires to deal with the following function F

∀(x, y) ∈ IRd × IRd, ∀α ∈ Θ, F (α, x, y) := − ln fZ
(
〈e1, y〉 − 〈g(α), x〉

)
,

and the empirical mean functional

∀n ∈ IN∗, ∀α ∈ Θ, Mn(α) := − 1

n

n∑
k=1

ln fZ
(
〈e1, Xk〉 − 〈g(α), Xk−1〉

)
.

Proposition 4. Assume that the previous assumptions on the model hold true and that the
MLE (θ̂n)n∈IN∗ of the parameter θ associated with (Xn)n≥d−1 satis�es the uniform consis-
tency Property (HYP.2). In addition, assume that the initial probability measure satis�es
supθ∈Θ µθ(V ) < +∞ (that is Property (12)) and that the following conditions hold true:

1. ∀α ∈ A, ∀j = 1, 2, F (j)(α, x, y) ful�lls (N-L)' as de�ned page 12

2. ∀α ∈ A, ∀υ ∈ IR, F (1)(α, x, y) + υF (2)(α, x, y) + (υ2/2)F (3)(α, x, y) ful�lls (N-L)'.

Then all the conclusions of Theorem 2 are true.

Proof of Proposition 4. It is easily checked that the family {F (j)(α, x, y); α ∈ A, j = 1, 2, 3}
ful�lls the moment domination condition (D3) (i.e. (27)) mainly thanks to (E) and γ > 3×3.
Next, we claim that Conditions (C.1) to (C.5) of Theorem 2 are satis�ed. Indeed, concerning
Conditions (C.1) and (C.2), and recalling that (πθ)θ∈Θ denotes the invariant probability of
the Markov chain (Xn)n≥d−1, we have

• m1(θ) = Eθ,πθ [〈g(1)(θ), X0〉]Eθ,πθ [f
(1)
Z (Z1)/fZ(Z1)] ≡ 0;

m2(θ) = Eθ,πθ [〈g(1)(θ), X0〉2] Eθ,πθ
[
f

(1)
Z (Z1)2/fZ(Z1)2

]
≥ g

(1)
1 (θ)2Eθ,πθ [Z2

1 ], which im-

plies that infθ∈Θm2(θ) > 0.
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• σ1(θ)2 = m2(θ), hence one has infθ∈Θ σ1(θ) > 0 ;

σ2(θ)2 ≥ C where C > 0 depends on the variances of Z1 and Z2
1 .

Conditions (C.4) and (C.5) are obviously satis�ed. Concerning (C.3), use the fact that the
family {F (4)(α, x, y); α ∈ A} ful�lls (D2) (this statement holds true mainly thanks to As-
sumption (E) and γ > 2× 4).

By using the previous facts and proceeding as in the proof of Theorem 2 (see Subsection 6.3),
one can see that all the assumptions of Theorem 4 but those concerning Hypothesis (N-A) are
ful�lled. Consequently, to deduce Proposition 4 from Theorem 4, it only remains to establish
that the characteristic functions of the following families (ξp)p∈P (involved in Assumptions
B.2 and B.5 of Theorem 4) satisfy Hypothesis (N-A):

(a) {F (j)(α, x, y); α ∈ A} with j = 1, 2,

(b) {F (1)(α, x, y) + υF (2)(α, x, y) + (υ2/2)F (3)(α, x, y); α ∈ A, υ ∈ IR}.

To that e�ect, we make use of the second approach of Subsection 3.3. Below, (i), (ii) and (iii)
refer to the conditions introduced in Subsection 3.1:

Fact1. Families (a)-(b) satisfy Condition (N-L). Indeed, thanks to Conditions (C) and (S)
(use the fact that fZ > 0 to check that (S) holds true), we deduce from Lemma 3 that Fact1
follows from Assumptions 1. and 2. of this Proposition 4.

Fact2. The Fourier operators of Families (a)-(b) satisfy Condition (i). Indeed Assump-
tions 1. and 2. of Lemma 1 are ful�lled (see the comments after Lemma 1 concerning
Assumption 1. and Property (17) concerning Assumption 2.). Then, using Lemma 1, Fact2
follows from Fact1.

Fact3. The Fourier operators of Families (a)-(b) satisfy (ii)-(iii). Indeed notice that the
family {F (j)(α, x, y); α ∈ A, j = 1, . . . , 4} satis�es (D0), and consequently, the assumptions
of Proposition 2 are ful�lled (see Lemma 9 below and apply it to the case where (ξp)p∈P is
any of the above Families (a)-(b)). Then, using Proposition 2, Fact3 follows from Fact2.

Fact4. Finally the Fourier operators of Families (a)-(b) satisfy Hypothesis (N-A'), and so
(N-A) (see Lemma 2 and see also the end of Section 2).

The proof of Proposition 4 is now complete, provided that we give the proof of the next
lemma. 2

Lemma 9. Assume that (ξp)p∈P and its derivative with respect to p ful�ll (Dm0) with some
m0 ∈ IN . Let Qθ,p(t) be the Fourier operator de�ned by (8) where the transition kernel Qθ is
the particular one given in (40). Then, Conditions (C1) and (C2) of Proposition 2 hold true.

Proof of Lemma 9. Let us prove that the family (ξp)p∈P veri�es the assumptions of Propo-

sition 2 with B := Bβ ↪→ B̃ := B1 where β is de�ned in Assumption (F) (see page 15 for the
de�nition of the spaces).
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First, Condition (C1) of Proposition 2 is exactly (D-F). Then, concerning Condition (C2) of
Proposition 2, let us prove that the following properties are valid:

1. the map t 7→ Qθ,p(t) is continuous from IR into L(Bβ,B1) uniformly in (θ, p) ∈ Θ× P;

2. for all t ∈ IR, the map (θ, p) 7→ Qθ,p(t) is continuous from Θ× P into L(Bβ,B1).

Then one obviously has ‖Qθ,p(t) − Qθ0,p0(t0)‖Bβ ,B1 → 0 when (t, θ, p) → (t0, θ0, p0), which
completes the proof of Lemma 9.

Let us �rst introduce the real number Eβ := cβκβ +b1, where b1 := supθ∈Θ πθ(V ) < +∞ from
(VG1) and κβ and cβ are de�ned in (D-F). Then, using (D-F), V ≥ 1 and β > 0, we obtain

∀θ ∈ Θ, QθV
β ≤ EβV β.

On the other hand, let us state the following obvious inequality:

∀a ∈ IR, |eia − 1| ≤ min(2, |a|) ≤ 2|a|α.

Now recall that 0 < β < 1 and let us de�ne 0 < α ≤ 1 such that β + α/(m0 + ε) ≤ 1 where
ε > 0 is de�ned in (Dm0).

1) Let us de�ne ∆ := Qθ,p(t)−Qθ,p(t0). One has for all f ∈ Bβ and x ∈ E:

|∆f(x)| ≤
∫
E

∣∣∣eitξp(x,y) − eit0ξp(x,y)
∣∣∣ |f(y)|Qθ(x, dy)

≤ 2 |t− t0|α ‖f‖Bβ
∫
E
|ξp(x, y)|α V (y)βQθ(x, dy)

≤ 2C
α

m0+ε

ξ |t− t0|α ‖f‖Bβ
∫
E

(V (x) + V (y))
α

m0+ε V (y)βQθ(x, dy)

≤ 2
1+ α

m0+ε C
α

m0+ε

ξ |t− t0|α ‖f‖Bβ
(
V (x)

α
m0+ε QθV

β(x) +QθV
β+ α

m0+ε (x)
)

≤ 2
1+ α

m0+ε C
α

m0+ε

ξ |t− t0|α ‖f‖Bβ
(
Eβ + Eβ+ α

m0+ε

)
V (x)

β+ α
m0+ε

from which we deduce ‖∆f‖B1 ≤ Dξ |t− t0|α ‖f‖Bβ where Dξ does not depend on (θ, p).

2) In the same way, let us de�ne ∆ := Qθ,p(t) −Qθ0,p0(t). Let x denote some d-dimensional
column vector (xd, . . . , x1)′ and xd−1 denote the associated (d−1)-dimensional column vector
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(xd, . . . , x2)′. We have for all f ∈ Bβ and x ∈ E:

∆f(x) =

∫
IR

exp

(
itξp

(
x,

(
〈x, g(θ)〉+ z

xd−1

)))
f

(
〈x, g(θ)〉+ z

xd−1

)
fZ(z) dz

−
∫
IR

exp

(
itξp0

(
x,

(
〈x, g(θ0)〉+ z

xd−1

)))
f

(
〈x, g(θ0)〉+ z

xd−1

)
fZ(z) dz

=

∫
IR

exp

(
itξp

(
x,

(
y

xd−1

)))
f

(
y

xd−1

)
fZ(y − 〈x, g(θ)〉) dy

−
∫
IR

exp

(
itξp0

(
x,

(
y

xd−1

)))
f

(
y

xd−1

)
fZ(y − 〈x, g(θ0)〉) dy

|∆f(x)| ≤
∣∣∣∣∫
IR
f

(
y

xd−1

)
(fZ(y − 〈x, g(θ)〉)− fZ(y − 〈x, g(θ0)〉)) dy

∣∣∣∣
+ 2|t|α

∫
IR

∣∣∣∣(ξp − ξp0)

(
x,

(
y

xd−1

))∣∣∣∣α ∣∣∣∣f ( y
xd−1

)∣∣∣∣ fZ(y − 〈x, g(θ0)〉) dy.

Thus one has |∆f(x)| ≤ ‖f‖Bβ (|θ − θ0| I1 + |t|α |p− p0|α I2) where, thanks to di�erentiation

under the integral sign and Assumptions (E)-(F), I1 satis�es for some θ̃ ∈ IR such that
|θ̃ − θ| ≤ |θ̃ − θ0|

I1 ≤ sup
θ̃∈Θ

|〈x, g(1)(θ̃)〉| sup
z∈IR

∣∣∣∣∣f
(1)
Z (z)

fZ(z)

∣∣∣∣∣
∫
IR
V

(
y

xd−1

)β
fZ(y − 〈x, g(θ̃)〉) dy

= sup
θ̃∈Θ

|〈x, g(1)(θ̃)〉| sup
z∈IR

∣∣∣∣∣f
(1)
Z (z)

fZ(z)

∣∣∣∣∣Qθ̃V β(x)

≤ Eβ V (x)
1
γ

+β
sup
θ̃∈Θ

‖g(1)(θ̃)‖ sup
z∈IR

∣∣∣∣∣f
(1)
Z (z)

fZ(z)

∣∣∣∣∣
and where I2 satis�es on the other hand

I2 ≤ 2

∫
IR

(
V (x) + V

(
y

xd−1

)) α
m0+ε

V

(
y

xd−1

)β
fZ(y − 〈x, g(θ0)〉) dy

= 2
1+ α

m0+ε

(
V (x)

α
m0+εQθ0V

β(x) +Qθ0V
β+ α

m0+ε (x)
)

≤ 2
1+ α

m0+ε

(
Eβ + Eβ+ α

m0+ε

)
V
β+ α

m0+ε (x).

Since 0 < β ≤ 1− 1/γ, one has ‖∆f‖B1 ≤ D′ξ (|θ − θ0|+ |t|α |p− p0|α) ‖f‖Bβ . 2

A Proof of Theorem 3 of Subsection 6.1

The investigation of the case |u| > 2
√

lnn is similar to the one of [HLP], so that the details
are omitted. By contrast, the case |u| ≤ 2

√
lnn is quite di�erent. First let us introduce for

all θ ∈ Θ and u ∈ IR, |u| ≤ 2
√

lnn

τ = τn(u, θ) := α0 +
σ(θ)√
n
u and ςn(u, θ) :=

σ(θ)√
n
u = τ − α0.
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For the sake of simplicity, let us de�ne for all θ ∈ Θ and u ∈ IR, |u| ≤ 2
√

lnn

Pn,θ(u) := Pθ
{ √

n

σ(θ)
(α̂n − α0) ≤ u

}
= Pθ {α̂n ≤ τ} , Qn,θ(u) := Pθ

{
M (1)
n (τ) ≥ 0

}
.

At a �rst stage we prove that

sup
θ∈Θ

sup
|u|≤2

√
lnn

|Pn,θ(u)−Qn,θ(u)| = o(n−
1
2 ) (A)

and then we determine Aθ such that

sup
θ∈Θ

sup
|u|≤2

√
lnn

∣∣∣Qn,θ(u)−
(
N (u) + η(u)n−

1
2Aθ(u)

)∣∣∣ = o(n−
1
2 ) (B)

to complete the proof of Theorem 3.

Let us prove that (A) holds true. It follows from (HYP.1) that there exists some real r.v. α̃′n
such that |α̃′n − τ | < |α̂n − τ | and 0 = M

(1)
n (τ) + (α̂n − τ)M

(2)
n (α̃′n). Next, introducing the

event {M (2)
n (α̃′n) > 0} and its complement, one has

Pn,θ(u) = Pθ
{
M (1)
n (τ) ≥ 0,M (2)

n (α̃′n) > 0
}

+ Pθ
{
α̂n ≤ τ,M (2)

n (α̃′n) ≤ 0
}
,

so that
|Pn,θ(u)−Qn,θ(u)| ≤ 2 Pθ

{
M (2)
n (α̃′n) ≤ 0

}
.

Introducing the events {M (2)
n (α̃′n) < M

(2)
n (α0) − |α̃′n − α0|l(θ)}, {M (2)

n (α0) ≤ m2(θ)/2} and
their complements, where the function l(·) is de�ned in (A.1), one has

Pθ
{
M (2)
n (α̃′n) ≤ 0

}
≤ P1 + P2 + P3,

where (Pi)i=1,2,3 denote

P1 := sup
θ∈Θ

sup
|u|≤2

√
lnn

Pθ
{
M (2)
n (α̃′n) < M (2)

n (α0)− |α̃′n − α0|l(θ)
}

P2 := sup
θ∈Θ

Pθ
{
M (2)
n (α0) ≤ m2(θ)

2

}
P3 := sup

θ∈Θ
sup

|u|≤2
√

lnn

{
m2(θ)

2
− |α̃′n − α0|l(θ) < M (2)

n (α̃′n) ≤ 0

}
.

• Introducing the event {Wn ≥ l(θ)} and its complement, it is easy to check from (A.1)
that P1 = o(n−1/2).

• One has P2 ≤ Pθ
{

(
√
n/σ2(θ))

(
M

(2)
n (α0)−m2(θ)

)
≤ −b

√
n
}
where b := infθ∈Θm2(θ)/2σ2(θ),

b > 0 from (A.2), which implies P2 = o(n−1/2).
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• Introducing the event {|α̃′n−α0| ≥ m2(θ)/2l(θ)} and its complement, it is easily checked
that

P3 ≤ sup
θ∈Θ

sup
|u|≤2

√
lnn

Pθ
{
|α̃′n − α0| ≥ m2(θ)/2l(θ)

}
.

Furthermore α̃′n satis�es |α̃′n−α0| ≤ |α̂n−α0|+2|τ−α0|, where supθ∈Θ sup|u|≤2
√

lnn |τ−
α0| → 0 when n → +∞ (recall that supθ∈Θ σ(θ) < +∞). Thus P3 ≤ supθ∈Θ Pθ{|α̂n −
α0| ≥ d} for n su�ciently large, and where the real number d is de�ned by d :=
infθ∈Θm2(θ)/(4l(θ)) > 0, so that P3 = o(n−1/2).

Therefore the estimate (A) holds true.

In a second and last step, let us determine Aθ such that (B) holds true. There exists some
real r.v. α̃′′n such that |α̃′′n − α0| < |τ − α0| and

M (1)
n (τ) = M (1)

n (α0) + ςn(u, θ)M (2)
n (α0) +

ςn(u, θ)2

2
M (3)
n (α̃′′n).

Let us introduce the r.v.

Zn(u, θ) := M (1)
n (α0) + ςn(u, θ)M (2)

n (α0) +
ςn(u, θ)2

2
M (3)
n (α0),

the event Cn,θ := {Wn < l(θ)} and the positive number c = cn(u, θ) := |ςn(u, θ)|3 l(θ)/2,
where the r.v. Wn and the function l(·) are de�ned in (A.1).

Consider the following events

B1−
n,u,θ := {Zn(u, θ)− c ≥ 0} , B2−

n,u,θ := B1−
n,u,θ ∩ Cn,θ

B̃1
n,u,θ :=

{
M (1)
n (τ) ≥ 0

}
, B̃2

n,u,θ := B̃1
n,u,θ ∩ Cn,θ

B1+
n,u,θ := {Zn(u, θ) + c ≥ 0} , B2+

n,u,θ := B1+
n,u,θ ∩ Cn,θ

and notice that Qn,θ(u) = Pθ{B̃1
n,u,θ} and the following facts

• since supθ∈Θ Pθ{Ccn,θ} = o(n−1/2) from (A.1), one has supθ∈Θ sup|u|≤2
√

lnn |Qn,θ(u) −

Pθ{B̃2
n,u,θ}| = o(n−1/2);

• one obviously has M
(1)
n (τ) = Zn(u, θ) + (ςn(u, θ)2/2) (M

(3)
n (α̃′′n)−M (3)

n (α0)), and hence
from (A.1), one has

∀θ ∈ Θ, ∀u ∈ IR, B2−
n,u,θ ⊂ B̃2

n,u,θ ⊂ B
2+
n,u,θ

• again since supθ∈Θ Pθ{Ccn,θ} = o(n−1/2), one obtains supθ∈Θ sup|u|≤2
√

lnn |Pθ{B
2+
n,u,θ} −

Pθ{B1+
n,u,θ}| = o(n−1/2) and supθ∈Θ sup|u|≤2

√
lnn |Pθ{B

2−
n,u,θ} − Pθ{B1−

n,u,θ}| = o(n−1/2).
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Then it only remains to determine Aθ such that

sup
θ∈Θ

sup
|u|≤2

√
lnn

|Pθ{B1±
n,u,θ} −

(
N (u) + η(u)n−

1
2Aθ(u)

)
| = o(n−

1
2 ).

Let us introduce

∆±n (u, θ) :=

√
n

σn,u(θ)

[
m2(θ)ςn(u, θ) +

ςn(u, θ)2

2
m3(θ)± c

]
− u

= u

(
σn,u(θ)−1

[
σ1(θ) + σ(θ)

m3(θ)

2
ςn(u, θ)± σ(θ) l(θ)

ςn(u, θ)2

2

]
− 1

)
so that

Pθ{B1±
n,u,θ} = 1− Pθ

{ √
n

σn,u(θ)
M̃n(u, θ) < −u−∆±n (u, θ)

}
.

From the last property of (A.3) applied to v = −u−∆±n (u, θ), we obtain

sup
θ∈Θ

sup
|u|≤2

√
lnn

∣∣∣∣Pθ{B1±
n,u,θ} ≤ −u−∆±n (u, θ)

}
−N (u+ ∆±n (u, θ)) + η(u+ ∆±n (u, θ))n−

1
2Eθ(−u−∆±n (u, θ))

∣∣∣∣ = o(n−
1
2 ).

From the �rst property of (A.3), both ∆+
n (u, θ) and ∆−n (u, θ) admit the following expansion:

sup
θ∈Θ

sup
|u|≤2

√
lnn

∣∣∣∣∆±n (u, θ)−
(
σ1(θ)Dθ(u) +

σ(θ)2

2σ1(θ)
m3(θ) u

)
u n−

1
2

∣∣∣∣ = o(n−
1
2 ),

and hence
sup
θ∈Θ

sup
|u|≤2

√
lnn

|Pθ{B1+
n,u,θ} − Pθ{B1−

n,u,θ}| = o(n−
1
2 ).

Finally we de�ne the polynomial function Aθ as follows to obtain (36):

sup
θ∈Θ

sup
|u|≤2

√
lnn

∣∣∣∣(N (u) + η(u)n−
1
2Aθ(u)

)
−

(
N (u+ ∆+

n (u, θ))− η(u+ ∆+
n (u, θ))n−

1
2Eθ(−u−∆+

n (u, θ))
)∣∣∣∣ = o(n−

1
2 ). 2

B The regeneration method versus Fourier techniques (com-
bined with operator perturbation theorems)

This appendix is to convince that the regeneration method cannot easily be applied to our
context.

Recall that in this paper we have studied the behavior of Pθ,µθ {Sn(p)/(σθ,p
√
n) ≤ u} uni-

formly in (θ, p) ∈ Θ× P and u ∈ IR thanks to Fourier techniques, where Sn(p) is de�ned by
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(1), i.e. Sn(p) :=
∑n

k=1 ξp(Xk−1, Xk). In this appendix, we want to highlight the drawbacks
of using the regeneration method to investigate the same issue.

Let us mention that there are mainly two constraints we must deal with: limit theorems must
be obtained uniformly in both the model parameter θ and the technical parameter p, and
they concern bivariate functions ξp (with a view to making statistical inference).

To the best of our knowledge, on the one hand, limit theorems with an e�ective control of
the constants which are obtained thanks to the regeneration method only deal with Berry-
Esseen theorem and only concern univariate additive functionals

∑n
k=1 ξp(Xk) (cf. [BC11,

DM06]). On the other hand, limit theorems concerning bivariate additive functionals which
are obtained thanks to the regeneration method do not control the constants (cf. [Jen89]).

There is one way to bypass the bivariate constraint: we may consider directly the double
sequence (Yn)n≥1 where Yn := (Xn−1, Xn). However, as explained in �B.1, this choice induces
too strong restrictions on the model. In the same way, considering the simple sequence
(Xn)n≥0 as in �B.2 induces very restrictive conditions on the initial probability, excepted for
models with an atom. Moreover note that, in atomic models, the uniform control for bivariate
functionals has not been investigated by regenerative methods.

In the sequel, we drop the parameters (θ, p) for the sake of notational simplicity. Recall that
(Xn)n≥0 is a Markov chain with state space (E, E) and transition kernel Q.

B.1 Application of the results of [BC11] to the sequence (Yn)n≥1

Before explaining why applying the usual regeneration method to the sequence (Yn)n≥1 =
(Xn−1, Xn)n≥1 induces restrictions, let us brie�y explain how it works. The sequence (Yn)n≥1

is a Markov chain with state space (E × E, E ⊗ E) and transition kernel P de�ned by:

∀F ∈ E ⊗ E , P
(
(x, y);F

)
:=

∫
E
1F (y, z)Q(y, dz).

Let us recall that (Yn)n≥1 is said to be ψ-irreducible for some positive measure ψ on (E ×
E, E ⊗ E) if, for all F ∈ E ⊗ E , we have:

ψ(F ) > 0 ⇒ ∀(x, y) ∈ E × E,
+∞∑
n=2

P(x,y)

{
Yn ∈ F

}
> 0,

and (Yn)n≥1 is said to be Harris-recurrent under the ψ-irreducibility assumption if, for all
F ∈ E ⊗ E :

ψ(F ) > 0 ⇒ ∀(x, y) ∈ E × E, P(x,y)

{
+∞∑
n=1

1F (Yn) = +∞

}
= 1.
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B.1.1 Discussion under existence of an atom for (Yn)n≥1

Under the ψ-irreducibility assumption, we suppose that (Yn)n≥1 is Harris-recurrent and re-
generative, i.e. there exists A ∈ E ⊗ E such that ψ(A) > 0 and

∀(x, y) ∈ A, ∀(x′, y′) ∈ A, ∀F ∈ E ⊗ E , P
(
(x, y);F

)
= P

(
(x′, y′);F

)
.

Such a set A is called an accessible atom for the Markov chain (Yn)n≥1. Notice that the
assumption of Harris-recurrence is equivalent to assuming that P(x,y)((Yn)n≥1 ∈ A i.o.) = 1
for all (x, y) ∈ E ×E (cf. [MT93]). The hitting time to A and the successive return times to
A are de�ned as follows

TA(1) := inf{n ≥ 1;Yn ∈ A} and ∀j ≥ 2, TA(j) := inf{n > TA(j − 1);Yn ∈ A},

and we also de�ne the number of visits of (Yn)n≥1 before time n ≥ 1 to the set A by ln :=∑n
i=1 1A(Yi).

Then, since Sn =
∑n

i=1 ξ(Yi) for all n ≥ 1, we have:

Sn =

TA(1)∑
i=1

ξ(Yi) +

ln−1∑
j=1

 TA(j+1)∑
i=1+TA(j)

ξ(Yi)

+

n∑
i=1+TA(ln)

ξ(Yi)

=

TA(1)∑
i=1

ξ(Yi) +

ln−1∑
j=1

ξ̃(Bj) +
n∑

i=1+TA(ln)

ξ(Yi),

where the blocks of observations between consecutive visits to the atom A are denoted by

Bj := (Y1+TA(j), . . . , YTA(j+1)), and where ξ̃(Bj) :=
∑TA(j+1)

i=1+TA(j) ξ(Yi).

Introduce τA(j) := TA(j)−TA(j−1) for all j ≥ 2. Let us remark that (Bj , τA(j+1))j≥1 is an

i.i.d. sequence (this fact follows from the strong Markov property), and thus (ξ̃(Bj), τA(j +
1))j≥1 is also an i.i.d. sequence.

We obtain for all Borel set B

Pµ
{
Sn√
n
∈ B

}
=

n∑
a,b,c=0

Pµ
{∑a

i=1 ξ(Yi) +
∑b−1

j=1 ξ̃(Bj) +
∑n

i=n−c+1 ξ(Yi)√
n

∈ B,

TA(1) = a,
b∑

j=2

τA(j) = n− a− c, τA(b+ 1) > c

}

=

n∑
a,b,c=0

Pµ
{
Z1,a + Z2,b + Z3,c ∈

√
n√

b− 1
B

}
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where Z1,a, Z2,b and Z3,c are independent and distributed according to the following measures

Pµ
{
Z1,a ∈ B

}
:= Pµ

{
1√
b− 1

a∑
i=1

ξ(Yi) ∈ B, TA(1) = a

}

Pµ
{
Z2,b ∈ B

}
:= PA

{
1√
b− 1

b−1∑
j=1

ξ̃(Bj) ∈ B,
b∑

j=2

τA(j) = n− a− c
}

Pµ
{
Z3,c ∈ B

}
:= PA

{
1√
b− 1

c∑
i=1

ξ(Yi) ∈ B, τA(2) > c

}
.

Assume that we can state the asymptotic negligibility of Z1,a and Z3,c. Then it would only

remain to control the behavior of Z2,b. Let us notice that (ξ̃(Bj), τA(j + 1))j≥1 is a two-
dimensional i.i.d. sequence which is lattice in one component. Although this sequence is
lattice in one component, we can establish a limit theorem associated to Z2,b when b→ +∞
by applying the results of [Dub82, Dub84a, Dub84b] as in [BC04, lem. 6.5]. Then, at a �rst
glance, considering the sequence (Yn)n≥1 instead of the sequence (Xn)n≥0 seems helpful.

However, assuming the existence of an atom for the double sequence (Yn)n≥1 induces very
restrictive conditions on the model:

Lemma 10. If (Yn)n≥1 possesses an accessible atom A, then there exists a state b ∈ E such
that A := A1×{b} for some A1 ∈ E. Furthermore, whatever the initial state y ∈ E, the chain
(Xn)n≥0 visits {b} with strictly positive probability, that is:

∀y ∈ E,
+∞∑
n=1

Qn
(
y, {b}

)
> 0.

Proof of Lemma 10. We obviously have

∀(x, y) ∈ E × E, ∀ b ∈ E, P
(
(x, y); {b} × E

)
= δy,b.

Consequently, if (x, y) and (x′, y′) are two elements of the atom A, then we have y = y′. In
other words we have A = A1 × {b} for some A1 ∈ E and b ∈ E. Besides we obtain for all
(x, y) ∈ E × E

+∞∑
n=1

Qn
(
y, {b}

)
=

+∞∑
n=2

P(x,y)

{
(Xn−1, Xn) ∈ E × {b}

}
≥

+∞∑
n=2

P(x,y)

{
Yn ∈ A

}
> 0,

since ψ(A) > 0 and (Yn)n≥1 is ψ-irreducible. 2

B.1.2 Discussion under a minorization condition for (Yn)n≥1

To avoid the assumption of the existence of an accessible atom (and hence the strong con-
ditions of Lemma 10), we may use the regeneration method constructed via the splitting
technique under a minorization condition. However in the same way, supposing that P satis-
�es a minorization condition induces also very restrictive conditions on the model.
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Under the ψ-irreducibility assumption, we suppose that (Yn)n≥1 is Harris-recurrent and sat-
is�es a minorization condition, i.e. there exist a measurable function 0 ≤ h < 1 on E×E and
a positive measure ν on (E × E, E ⊗ E) such that ν(h) > 0 and:

∀(x, y) ∈ E × E, ∀F ∈ E ⊗ E , P
(
(x, y);F

)
≥ h(x, y) ν(F ). (42)

Lemma 11. The Markov kernel P of (Yn)n≥1 satis�es a minorization condition if and only
if there exists b ∈ E such that Q(b, {b}) > 0.

Proof of Lemma 11. Assume that there exists b ∈ E such that Q(b, {b}) > 0. De�ne
h(x, y) := 1{(b,b)}(x, y) and ν := Q(b, {b}) δ(b,b). Let F ∈ E ⊗ E . If (b, b) /∈ F , then ν(F ) = 0
and P

(
(b, b);F

)
≥ 0. If (b, b) ∈ F , then

P
(
(b, b);F

)
≥ P

(
(b, b); {(b, b)}

)
= Q(b, {b}) = ν(F ).

Hence the desired minorization condition holds.
Conversely, assume that P satis�es a minorization condition. At a �rst stage, assume that

∃ b ∈ E such that [ h(b, y) > 0 ⇒ y = b ] . (43)

Then from h(b, ·)1E\{b}(·) ≡ 0 and (42), we obtain

h(b, b)Q(b, {b}) =

∫
E
h(b, z)Q(b, dz) = Ph(b, b) ≥ h(b, b)ν(h),

thus Q(b, {b}) ≥ ν(h) > 0, which ends the proof of Q(b, {b}) > 0. Then it only remains
to prove (43): let (a, b) ∈ E2 be such that h(a, b) > 0, de�ne the following set T := {y ∈
E; h(b, y) > 0}, and let us prove that T = {b}. Let g(x, y) := h(x, y)1E\{b}(x), then we
obtain from g(b, ·) ≡ 0 and (42):

0 =

∫
E
g(b, z)Q(b, dz) = Pg(a, b) ≥ h(a, b)ν(g),

thus ν(g) = 0. Let us de�ne f(x, y) := h(x, y)1{b}(x). Since ν(h) > 0, we obtain ν(f) =
ν(h)− ν(g) > 0, which implies in particular that T is not empty. Let y0 ∈ T , then we obtain
from f(x, ·)1E\{b}(x) ≡ 0 and (42):

δb(y0)Pf(b, b) =

∫
E
f(y0, z)Q(y0, dz) = Pf(b, y0) ≥ h(b, y0)ν(f) > 0,

which implies y0 = b, and thus (43). 2

In conclusion, since P ((x, y); .) does not depend on x ∈ E, (Yn)n≥1 can possess an accessible
atom or satisfy a minorization condition only under very restrictive conditions on (Xn)n≥0 (cf.
Lemmas 10 and 11). For instance, whenever (Xn)n≥0 is dominated by the Lebesgue measure
on IRd (as the AR(1) processes de�ned in (28)), (Yn)n≥1 cannot possess an accessible atom
and cannot satisfy a minorization condition: in these quite usual models, the results of [BC11]
cannot be applied to (Yn)n≥1.
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B.2 Application of the results of [Jen89]

As explained just before, the application of [BC11] to the double sequence (Yn)n≥1 fails to
provide Berry-Esseen theorem for many general models. That is why in this subsection, we
directly deal with the simple sequence (Xn)n≥0.

B.2.1 Discussion under existence of an atom for (Xn)n≥0

By now, assume that (Xn)n≥0 is ψ-irreducible, Harris-recurrent and that (Xn)n≥0 has an
accessible atom denoted by A, i.e. ψ(A) > 0 and

∀x ∈ A, ∀x′ ∈ A, ∀F ∈ E , Q
(
x;F

)
= Q

(
x′;F

)
.

De�ne

TA(1) := inf{n ≥ 0;Xn ∈ A} and ∀j ≥ 2, TA(j) := inf{n > TA(j − 1);Xn ∈ A},

and for all n ≥ 0, ln :=
∑n

i=0 1A(Xi). Then, for all n ≥ 1, we have:

Sn =

TA(1)∑
i=1

ξ(Xi−1, Xi) +

ln−1∑
j=1

ξ̃(Bj−1,Bj) +

n∑
i=1+TA(ln)

ξ(Xi−1, Xi),

where the blocks of observations between consecutive visits to the atom A are denoted by

Bj := (X1+TA(j), . . . , XTA(j+1)), and where ξ̃(Bj−1,Bj) :=
∑TA(j+1)

i=1+TA(j) ξ(Xi−1, Xi).

Let τA(j) denote τA(j) := TA(j) − TA(j − 1) for all j ≥ 2. Let us remark that although
(Bj , τA(j + 1))j≥1 is an i.i.d. sequence, the sequence (ξ̃(Bj−1,Bj), τA(j + 1))j≥1 is no longer
i.i.d. but one-dependent.

We obtain for all Borel set B

Pµ
{
Sn(p)√

n
∈ B

}
:=

n∑
a,b,c=0

Pµ
{
Z1,a + Z2,b + Z3,c ∈

√
n√

b− 1
B

}
where Z1,a, Z2,b and Z3,c are distributed according to the following measures

Pµ
{
Z1,a ∈ B

}
:= Pµ

{
1√
b− 1

a∑
i=1

ξ(Xi−1, Xi) ∈ B, TA(1) = a

}

Pµ
{
Z2,b ∈ B

}
:= PA

{
1√
b− 1

b−1∑
j=1

ξ̃(Bj−1,Bj) ∈ B,
b∑

j=2

τA(j) = n− a− c
}

Pµ
{
Z3,c ∈ B

}
:= PA

{
1√
b− 1

c∑
i=1

ξ(Xi−1, Xi) ∈ B, τA(2) > c

}
.

Notice that Z1,a, Z2,b and Z3,c are no longer independent and that (ξ̃(Bj−1,Bj), τA(j+ 1))j≥1

is a two-dimensional one-dependent sequence which is lattice in one component. To establish a
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limit theorem when b→ +∞ in spite of this one-dependence, we can apply the usual Nagaev-
Guivarc'h method, as in [Jen89, th. 2] where Jensen manages to obtain non-parametric results
on bivariate functions thanks to a judicious combination between regeneration and Fourier
methods.

However, this method induces an unusual Cramér assumption (this condition concerns equally
the lattice v.a. τA(j)) as well as an intricate covariance matrix (in particular, this matrix
depends on the variance of τA(j)).

Furthermore, as explained in Introduction, Jensen must assume some block moment conditions
which are far from being easy to be veri�ed, except when the initial probability µ is either
concentrated at one point in the atom A (i.e. there exists x0 ∈ A such that µ = δx0), or is
dominated by some multiple of the stationary probability π.

B.2.2 Discussion under a minorization condition for (Xn)n≥0

From now on, assume that (Xn)n≥0 is ψ-irreducible, Harris-recurrent, has no accessible atom
but satis�es a minorization condition, i.e there exist a measurable function 0 ≤ h < 1 on E
and a positive measure ν on (E, E) such that ν(h) > 0 and:

∀x ∈ E, ∀F ∈ E , Q
(
x;F

)
≥ h(x) ν(F ). (44)

When assuming that the chain (Xn)n≥0 only satis�es the minorization condition (44), we must
construct a new Markov chain (X̆n)n≥0 whose state space is E×{0, 1} and which possesses the
atom A := E×{1} using the splitting method of Nummelin. Then we make all the preceding
job with this new chain (X̆n)n≥0. In particular, (X̆n)n≥0 must satisfy some complex block
moment conditions which can be easily veri�ed only under the following strong restrictions
on the initial probability µ̆ of this split chain: the initial probability µ̆ is either concentrated
at one point in E × {1}, or dominated by some multiple of the stationary probability of the
split chain (X̆n)n≥0.

Let us recall that µ̆ is de�ned as follows:

∀F ∈ E , µ̆((F, i)) :=


∫
F (1− h(x)) µ(dx) if i = 0∫
F h(x) µ(dx) if i = 1.

Then, it is easy to see 5 that, whatever x0 ∈ E, there exist no probability measure µ for the
chain (Xn)n≥0 which can match with µ̆ := δ{x0}×{1} for the split chain (X̆n)n≥0. In other
words, applying regeneration method with explicit moment condition whenever the chain only
satis�es a minorization condition imposes the domination of the initial probability µ by some
multiple of the stationary probability π.

In conclusion, even in non-parametric cases, the regeneration method is not as e�cient as our
method. Unlike regeneration results, our results are obtained under weak conditions on the

5Indeed, if µ̆(E × {0}) = 0, then h = 1 µ-a.s, which is in contradiction with the fact that h < 1.
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initial probability µ of the chain (Xn)n≥0. In particular, they hold true in the simple case
where µ is a Dirac distribution at x0 ∈ E. Furthermore, the e�ective control of constants
in the regenerative method probably still needs much work to be done (even for univariate
theorem, cf. [BC11]).
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