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problems∗

Caroline Chaux†and Laure Blanc-Féraud‡
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Abstract

We consider the problem of image restoration/reconstruction where the acquisition sys-
tem is modeled by a linear operator with additive Gaussian noise. A variational approach is
adopted for image inversion in order to compute a restored/reconstructed image, consisting
in minimizing a convex criterion composed of two parts: a data fidelity term (e.g. quadratic)
and a regularization term (e.g. ℓ1-norm) expressed in the wavelet domain. The purpose of
this paper is to estimate the regularization hyperparameters (one per subband) based on a
Maximum Likelihood (ML) estimator, only knowing the observed data. A difficult task in
such estimation is to compute the expectation according to the a posteriori probability as
there is no analytical form. This expectation must be approximated numerically by sampling
the distribution. However, sampling the a posteriori distribution is a difficult task because of
pixel interactions introduced by the linear operator (image acquisition) in the same time as
the wavelet transform (regularization). Moreover, the possible different nature (ℓ2, ℓ1-norm
...) of the fidelity and regularization terms does not allow to easily process them simultane-
ously. We show that both operators can be separated using an auxiliary (hidden) variable
and splitting the a posteriori probability in two parts which are sampled alternately using
MCMC (Gibbs sampling and Metropolis-Hastings). We show the equivalence between both
formulations of the a posteriori distribution. Then a gradient method is used to estimate
the hyperparameters. Simulation results demonstrate the good performance and behavior of
the proposed approach.

1 Introduction

In various areas such as spatial or biomedical imagery, the acquisition system is modeled by a
linear operator which links the observed data to the image of interest. The observation model
considered in this work and widely used in image recovery is the following:

g = Au + n,

where g (vector of dimension k) denotes the observed image, degraded by a linear operator A
which is assumed to be known and an additive white Gaussian noise n ∼ N (0, σ2 I) of known
variance σ2. The linear operator A can model a blur due to diffraction or defocus or any other
stationary blurring process. It can also be a linear operator as Radon transform in tomography
reconstruction [1], or model irregular/regular sampling. The noise is assumed to be additive
white Gaussian noise which is uselly the case in high level intensity acquisition. Reconstructing
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u from the observed data g is an ill-posed inverse problem which must be regularized [2]. A
variational approach can be adopted considering the minimization of a convex criterion composed
of two parts: the data fidelity term which is a mean square error due to Gaussian hypothesis
on the noise, and a regularizing term. Standard regularizing term is TV semi-norm [3] or ℓ1-
norm on wavelet-type transform [4–9]. We adopt here a regularization in the wavelet transform
domain (e.g. a ℓ1-norm defined on the coefficients). The criterion J(u) to be minimized is then
defined by:

J(u) =
‖g − Au‖2

2σ2
+

M
∑

m=1

λmφm(Fmu) (1)

where Fmu denotes a subband and F represents the global wavelet transform operator. In this
work, we consider the case of an orthogonal basis [10]. Functions φm are ℓ1-norms on wavelet
coefficient subbands and ℓ2-norm on the approximation subband (low resolution image). The
resolution level of the decomposition determines the finite number M of subband m = 1, ...,M .

In such variational approach, the knowledge of λ = (λm=1,...,M)m which are called hyper-
parameters, is of crucial importance for the quality of the result and the question is to know
how to fix these parameters from observations. In some applications and when there are only
few hyperparameters, they can be empirically fixed by the user by trial and error. However,
when the convergence of the J(u) minimization algorithm is slow or when the number of hy-
perparameters to compute is more than one or two, this solution becomes difficult to apply.
Our objective is to propose a method to estimate automatically hyperparameters. Estimate λ

only knowing a degraded observation g is the difficult problem of hyperparameter estimation
in incomplete data [11]. Among the most popular methods, we can cite Maximum Likelihood
(ML) approaches [11,12], EM algorithms (Expectation Maximization) [6, 13] or cross-validation
methods [14]. More recently, in [8], authors proposed to use Stein principle in order to determine
regularization hyperparameters adaptively. An other approach consists of considering the pa-
rameters as random variables and thus to associate probability density function and to proceed
the estimation using MCMC sampling methods [15,16].

In this work, we propose to consider λ = (λm)m as deterministic parameters to be estimated,
because we do not have any a priori on these parameters and we estimate it in the Maximum
Likelihood sense. On the one hand, this allows to exploit the good asymptotic properties of
the ML estimator and on the other hand, λ being deterministic, to avoid to introduce new
hyperparameters which would have been necessary if probabilistic laws have been fixed for λ.
ML estimation of λ is a difficult task as the gradient of the likelihood involves expectation
according to the a priori and a posteriori probabilities and there are no analytical forms. These
expectations must be approximated numerically by sampling these distributions. The main
difficulty is to be able to sample the a posteriori distribution because of large pixel interactions
introduced by the linear operator A inside the fidelity term in the same time as the regularization
realized in the wavelet transform domain [1]. The proposed method allows to sample the a
posteriori distribution by splitting it into two parts introducing an auxiliary (hidden) variable.
We show that it is equivalent to sample these two distributions where the linear operator A
and the wavelet transform Fm are now splitted. Then we can use MCMC (Gibbs sampling and
Metropolis-Hastings) in the Fourier domain for he term involving operator A, in the wavelet
domain for the term involving operator Fm. Finally a gradient method is proceeded to compute
the ML hyperparameter estimate.

This paper is organized as follows. Section 2, is the main section that describes the entire
process leading to parameter estimation. We show how to use an auxiliary variable to sample a
distribution modelising an image, which is, to our knowledge, impossible without the auxiliary
variable. Then, the algorithm based on a gradient method is given in Section 3 and the choice
of the step size, essential for the good behavior of the algorithm, is discussed. The efficiency of
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the proposed approach is shown in Section 4, performing tests on synthetic data. Finally, the
paper is concluded in Section 5.

2 Hyperparameter estimation

2.1 Maximum likelihood estimation

In order to proceed to λ = (λm)m=1,...,M parameter estimation in energy (1), this criterion is
interpreted in a stochastic setting. It corresponds to the energy of the a posteriori probability
in a Bayesian framework where the first term corresponds to the energy of the conditional
probability p(g|u) given by the noise n. This probability is assumed to be Gaussian

p(g|u) =
1

Kσ
exp

(−‖g − Au‖2

2σ2

)

(2)

where the normalization constant is Kσ = (2π)k/2σk with k the number of pixels. The second
term of (1), corresponds to the energy of an a priori model given by

pλ(u) =
1

Zλ

M
∏

m=1

exp (−λmφm(Fmu)) (3)

where the constant Zλ is a normalization constant defined by

Zλ =

∫

u
exp (−

M
∑

m=1

λmφm(Fmu))du (4)

The variable u is a discrete field of k real random variables which model a 2d image of k pixels.
Thus u takes values in R

k, which is the integration domain of (4). F being a projection onto a
basis, Ker(F ) = {0} and the integral (4) converges assuming that ∃m ∈ {1, ..M}, λm ≥ ǫ > 0,
which can be always assumed.

The maximum likelihood estimation of λ consists in maximizing pλ(g) w.r.t λ where pλ(g)
is given by inference:

pλ(g) =

∫

u
pλ(g, u)du =

∫

u
p(g|u)pλ(u)du =

Zσ,λ(g)

KσZλ

(5)

where Zσ,λ(g) =
∫

u exp
(

− ‖g−Au‖2

2σ2 −
∑M

m=1 λmφm(Fmu)
)

du.

Then the maximization of pλ(g) with respect to λ can be computed by a gradient method [11].
Let us derive these steps. We compute each derivative of (5) with respect to each λm. Note
that, as it is not possible to demonstrate the convexity of pλ(g) with respect to λ, a gradient
algorithm will probably give a local minimum, depending on the initial values of λ. For a given
application in image processing, these parameters are in a given range. Then our purpose is to
propose an algorithm which makes more accurate these values for each new observation.

The derivative of (5) with respect to each λm is (applying the Lebesgue dominate convergence
theorem in order to invert derivative and integral operators):

∂ log pλ(g)

∂λm

=
∂ log Zσ,λ(g)

∂λm

−
∂ log(Zλ)

∂λm
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and

∂ log Zσ,λ(g)

∂λm

=
−1

Zσ,λ(g)

∫

u
φm(Fmu) exp

(−‖g − Au‖2

2σ2
−

M
∑

m=1

λmφm(Fmu)
)

du

= −Eσ,λ[φm(Fmu)] (6)

∂ log(Zλ)

∂λm

=
−1

Zλ

∫

u
φm(Fmu) exp

(

−
M
∑

m=1

λmφm(Fmu)
)

du

= −Eλ[φm(Fmu)] (7)

The expectation in (6) is defined according to the a posteriori law

pλ(u|g) =
1

Zσ,λ(g)
exp

(−‖g − Au‖2

2σ2
−

M
∑

m=1

λmφm(Fmu)
)

(8)

whereas the one in (7) is defined according to the a priori law pλ(u) defined in (3).
Following [11], our aim is to apply a gradient type algorithm to estimate λ in the ML sense.

Then we must be able to compute the gradient

∂ log pλ(g)

∂λm

= Eλ[φm(Fmu)] − Eσ,λ[φm(Fmu)] (9)

2.2 Difficulties

In order to apply a gradient method, one has to numerically compute the two expectations in (9).
The difficulty comes from the second expectation of (9), defined by (6) which explicitely involves
the a posteriori probability pλ(u|g) given in (8). Actually, this expectation is not analytically
computable and we have to estimate it by an empirical mean, computed on samples generated
along with this law. However, sampling by Gibbs or Metropolis algorithms is not possible due
to the linear operator A which creates pixel interaction on a large neighborhood, whatever it
models a blur [12] or a Radon transform [1]. Due to this large interaction between pixels,
sampling algorithm will not converges in reasonable computing time, see [1] for details. A way
to tackle this problem, in the case of a convolution operator, is to make the calculations in the
Fourier domain (or cosine transform) in order to diagonalize the A operator. The problem is that
F cannot be diagonalized in the Fourier domain too because of its composition with functions
φm which can be non necessarily quadratic. The difficulty comes from the simultaneous presence
of A and F with different norms, that cannot be diagonalized in the same space. Consequently,
these twooperators have to be separated in the probability energy.

2.3 Auxiliary variable

We propose to dissociate both terms with operators A and F by introducing an auxiliary variable
w which acts as a hidden variable. This work is inspired from [7], where the following result is
used

‖g − Au‖2

2σ2
= min

w

1

2σ2µ

(

‖u − w‖2 + 〈Cw,w〉
)

+
1

2σ2

(

‖g‖2 − 2〈Au, g〉
)

, (10)

where C = B(I − B)−1 et B = µA∗A (µ such that µ‖A∗A‖ < 1).
We thus consider a new criterion J(u,w) which is defined by

J(u,w) =
1

2σ2µ

(

‖u − w‖2 + 〈Cw,w〉
)

+
1

2σ2

(

‖g‖2 − 2〈Au, g〉
)

+

M
∑

m=1

λmφm(Fmu) (11)
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In [7], it is shown that minimizing J(u) w.r.t u is equivalent to minimize J(u,w) w.r.t (u,w).
In this work, we show that pλ(g) =

∫

u,w pλ(g, u,w)dwdu, where the joint probability pλ(g,w, u)

is a Gibbs distribution whose energy is J(u, v) defined in (11). This property, adding the fact
that the operators A and F are no longer applied on the same variables in energy (11) due to
〈Au, g〉 = 〈u,A∗g〉, allows to derive a new Markov Chain to sample the distributions involved
in the ML estimation of λ hyper-parameter.

Let us show that pλ(g) =
∫

u,w pλ(g, u,w)dwdu. After computations, we can show that the

energy in (11) can be written as:

J(u,w) =
1

2σ2µ

(

(w−(I+C)−1u)T(I+C)(w−(I+C)−1u)
)

+
1

2σ2

(

‖g−Au‖2
)

+

M
∑

m=1

λmφm(Fmu)

(12)
as (I + C)−1 = I − µA∗A.

Form this equation, one can note that variables g and w are independant conditionally to u,
i.e. p(g,w|u) = p(g|u)p(w|u), and that

p(w|u) =
1

Kµ
exp

(

−
(w − (I + C)−1u)T(I + C)(w − (I + C)−1u)

2σ2µ

)

(13)

is a Gaussian law N
(

(I + C)−1u, σ2µ(I + C)−1
)

, with Kµ = (2πσ2µ)k/2(det(I + C))−1/2.
Then due to (12) and (13), we have

pλ(g, u,w) = pλ(g|u,w)pλ(u,w) = p(g|u)p(w|u)pλ(u). (14)

As p(w|u) is a (Gaussian) normalized distribution, we have
∫

w
p(w|u)dw = 1, (15)

then we deduce from (14) and (15) that

pλ(g) =

∫

u,w
pλ(g, u,w)dwdu =

∫

u
p(g|u)pλ(u)du.

We now proceed similarly to the previous section, but now by inferring w.r.t u and w vari-
ables. In order to make the ML estimation of the parameters, we have to maximize the proba-
bility law pλ(g) w.r.t λ.

pλ(g) =

∫

u,w
pλ(g, u,w)dudw =

∫

u,w
p(g|u)p(w|u)pλ(u)dudw

and using (11) we have

pλ(g) =
1

KσKµZλ

∫

u,w
exp

(

−
1

2σ2µ

(

‖u − w‖2 + 〈Cw,w〉
)

−
1

2σ2

(

‖g‖2 − 2〈u,A∗g〉
)

−
M
∑

m=1

λmφm(Fmu)
)

dudw

We now compute the partial derivatives of the log-likelihood with respect to each parameter
λm invoking again the Lebesgue dominated convergence theorem:

∂ log pλ(g)

∂λm

= Eλ[φm(Fmu)] − Eσ,λ,µ[φm(Fmu)]. (16)
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where

Eλ[φm(Fmu)] =
1

Zλ

∫

u
φm(Fmu) exp

(

−
M
∑

m=1

λmφm(Fmu)
)

du (17)

Eσ,λ,µ[φm(Fmu)] =
1

Zσ,λ(g)

∫

u
φm(Fmu) exp

(−‖g − Au‖2

2σ2
−

M
∑

m=1

λmφm(Fmu)
)

du (18)

(19)

The partial derivatives of the log-likelihood with respect to parameter λm in (16) involves two
expectations. The first expectation, defined in (17), involves the a priori law pλ(u) which can
be analytically computed in some particular cases. For example, when φm(Fmu) = ‖Fmu‖1,
pλ(u) reduces to a Laplace law in the subbands and thus this expectation can be computed
easily and is equal to 1/λm. The second expectation, defined in (18) involves the a posteriori
law pλ(u,w|g). Contrary to the previous case in (5) where A and F were both applied on u,
now only F is applied on u, and A is applied on g and w. Then it be possible to build a sampler
acting on u and w alternately, each sampling can now be diagonalized in a given space (Fourier
and wavelet respectively). Then the second expectation in (16) is numerically approximated
using a sequence of samples ul, l = l0, ..., L which follows the a posteriori probability density
pλ(u,w|g)

Eσ,λ,µ[φm(Fmu)] ≃

(

1

L − l0 + 1

) L
∑

l=l0

φm

(

Fmul

)

(20)

where ul is the lth sample generated according to the a posteriori probability density pλ(u,w|g).
L is the number of samples computed and l0 defines the number of samples needed to initialize
the chain.

The precise sampling algorithm as well as the entire estimation algorithm are described in
the next section.

3 Algorithm

A gradient method is used in order to compute the parameters λm [11]:

λ
(n+1)
m = λ

(n)
m + αn

[

Eλ[φm(Fmu)] −
2

L

L
∑

l=L/2+1

φm

(

Fmu(n)
σ,λ(n),µ

)

l
)
]

(21)

where Eλ[φm(Fmu)] is computed explicitly as mentioned previously and
(

u(n)
σ,λ(n),µ

)

l
is the lth

sample generated according to the a posteriori probability density p
λ

(n)(u,w|g). αn is here the
step-size of the algorithm and can vary along with the iterations (this point is discussed in the
next subsection).

3.1 Global algorithm

The pseudo-code of the resulting algorithm is given in Algorithm 1.

Remark: In practice, µ is taken equal to 0.99/‖A∗A‖. Furthermore, to initialize λ
(0)
m in the

gradient algorithm 1, we perform a Wiener filtering on the degraded image g and estimate the
parameters by a classical maximum likelihood approach on the resulting image.
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Algorithm 1 General form of the gradient algorithm

1: Set µ < 1/‖A∗A‖.
2: Set u(−1) = g.
3: for every subbands m, do

4: Initialize λ
(0)
m .

5: end for

6: for n = 0, 1, . . . do

7: Fix an algorithm step-size αn

8: for l = 1, . . . , L do

9: Generate wl directly in the frequency domain according to p(w|u(n−1)) (see Algo. 2).
10: for every subbands m do

11: Generate
(

Fmu(n)
σ,λ(n),µ

)

l
in the wavelet transform domain according to

pλ(u(n−1)|wl, g) (see Algo. 3)
12: end for

13: (u(n) is obtained applying an inverse wavelet transform on coefficients Fmu(n))
14: end for

15: for every subbands m do

16: λ
(n+1)
m = λ

(n)
m + αn

[

Eλ[φm(Fmu)] − 2
L

∑L
l=L/2+1 φm

(

Fmu(n)
σ,λ(n),µ

)

l

]

.

17: end for

18: end for

3.2 Gibbs sampler and Metropolis-Hastings algorithm

We focus here on the second term of iteration (21). The sampling has to be done according to
pλ(u,w|g) for λ = λ

(n). For that, we proceed in two successive steps as described bellow:

(a) we first generate (Gibbs sampler) samples according to p(w|u) given by (13) (Gaussian law).
The variable w is directly expressed in the Fourier transform domain as the covariance matrix
can be diagonalized easily. The Gibbs sampler is described by Algorithm 2.

Algorithm 2 Gibbs sampler: generation of w samples according to p(w|u)

1: Given u, compute the mean (I + C)−1u = (I − µA∗A)u and the variance σ2µ(I − µA∗A) of
the Gaussian distribution.

2: Generate first w as N (0, 1) and then compute the Fourier transform of w.
3: Restore the mean of the distribution and then the variance.
4: w is obtain applying an inverse Fourier transform on the obtained coefficients.

(b) secondly, having a generation of w samples, we generate u samples according to pλ(u|w, g)
where:

pλ(u|w, g) ∝ exp
(

−
1

2σ2µ
‖u − w‖2 +

1

σ2
〈u,A∗g〉 −

∑

m

λmφm(Fmu)
)

(22)

In that case, we use a Metropolis-Hastings algorithm directly in the wavelet transform
domain which is equivalent to write (22) as

pλ(u|w, g) ∝ exp
(

−
1

2σ2µ
‖Fu − Fw‖2 +

1

σ2
〈Fu,FA∗g〉 −

∑

m

λmφm(Fmu)
)

The Metropolis-Hastings algorithm is described by Algorithm 3.

This operation compound of two steps is done I times and a mean over the I/2 last samples
is taken into account.
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Algorithm 3 Metropolis-Hastings algorithm: generation of u samples according to pλ(u|w, g)

1: Let km be the subband size.
2: Fix the proposal density to N (0, σ2

p) and generate coefficients Fmc according to this law.
3: Generate km uniformly distributed random values v in [0, 1].

4: if
pλ(c|w,g)
pλ(u|w,g) > v (component-wise computation) then

5: u = c (component-wise acceptation)
6: end if

3.3 Choice of the step-size αn

The simplest way to define αn is to fix it to some small value to insure the algorithm convergence.
The drawback of this approach is that the convergence speed can be highly suboptimal thus
leading to a very slow convergence rate.

As already mentioned, the step-size of the gradient algorithm could be chosen adaptively at

each iteration. One can think in using αn =
α

n + 1
where α is some initial fixed value. However,

in our simulations, this stategy was not always satisfactory, the step-size becoming too small.
This led us to consider an adaptive strategy similar to the one used in [17, p. 3835]. However,

at some point, the criterion to be fulfilled in order the step-size to be updated by αn+1 =
1

1
αn

+ 1
was difficult the reach and thus the algorithm became very time consuming, the calculation of
the step-size becoming very long.

In the next section, we considered the simplest strategy, fixing a small step-size. However, it
can be noticed that instead of having an iteration adaptive step-size, one could think in having
a subband adaptive step-size strategy. The related developments are under investigations and
appear encouraging.

4 Numerical experiments on synthetic data

In a first time, in order to test our algorithm performances, we randomly generate wavelet
coefficients according to the a priori law (3) with realistic (for natural images) subband fixed
parameters λm.

We use Symlets [18] of length 8 over J = 2 resolution levels and each subband m is repre-
sented by the triplet (j, l, c) where j is the resolution level index, and (l, c)l∈{0,1},c∈{0,1} represents
the low/high-pass filtered subbands (the couple (1, 1) thus represents the diagonal coefficients).
The corresponding size of the generated image is 128 × 128.

We applied our method on a degraded image g where A is a Gaussian blur of standard
deviation equal to 0.5 and the noise has a variance σ2 equal to 25 (the resulting Signal to Noise
Ratio (SNR) is about 10.68 dB). The gradient algorithm is launched over L = 2000 iterations
using a fixed step-size αn = 0.0001, and is initialized by applying a Wiener filter on g and then
estimating the parameters by a maximum likelihood approach on the Wiener filtered image.
Some obtained numerical results are given in Tab. 1; more precisely, we give: the theoretical
value, the value estimated by maximum likelyhood on the ground truth (complete data) and for
the proposed method, we give the mean value over the 500 last values (l0 = 1501) generated by
the gradient algorithm.

The results given above are encouraging since the estimated values given by our approach are
very close from those obtained by maximum likelihood on the ground truth. Moreover, looking
at Fig.1, one can note that the proposed gradient algorithm quickly converges to the theoretical
value. However, it still slightly oscillating thus justifying that the final value is obtained by
computing a mean over the 500 last generated values.
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Subband m (1, 0, 1) (1, 1, 0) (1, 1, 1)
Theoretical value 0.0611 0.0547 0.0551

Maximum likelihood on ground truth 0.0609 0.0548 0.0555
Maximum likelihood on degraded data (proposed method) 0.0606 0.0544 0.0555

Subband m (2, 0, 0) (2, 0, 1) (2, 1, 0) (2, 1, 1)

Theoretical value 0.0124 0.0256 0.0247 0.0255
Maximum likelihood on ground truth 0.0123 0.0255 0.0251 0.0266

Maximum likelihood on degraded data (proposed method) 0.0123 0.0256 0.0250 0.0265

Table 1: Numerical results.

0 100 200 300 400 500 600 700 800 900 1000
0.055

0.06

0.065

0.07

Figure 1: λm behavior (over the first 1000 iterations) associated to the subband (m = (1, 1, 1)).
Theoretical value (dash-dot line), maximum likelihood value (dot line) and iteratively estimated
values along with the gradient algorithm iteration (continuous line).

5 Conclusion

A regularization parameter estimation approach has been proposed within a variational frame-
work. The considered parameters to be estimated are considered as deterministic and a max-
imum likelihood based estimator is used. However, it could have been possible to include the
samplings of λ and σ by associating them adapted laws and hyper hyperarameters (fully Bayesian
framework). Moreover, under certain conditions, this approach can be extended to more general
regularization functions.

Tests on real natural data as well as applications to data restoration are under investigation.
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