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ABSTRACT

The design of a knee joint is a key issue in robotics and
biomechanics to improve the compatibility between prosthesis
and human movements and to improve the bipedal robot perfor-
mances. We propose a novel design for the knee joint of a planar
bipedal robot, based on a four-bar linkage. The dynamic model
of the planar bipedal robot is calculated. We design walking ref-
erence trajectories with double support phases, single support s
with a flat contact of the foot in the ground and single support
phases with rotation of the foot around the toe. During the dou-
ble support phase, both feet rotate. This phase is ended by an
impact on the ground of the toe of one foot, the other foot taking
off. The single support phase is ended by an impact of the swing
foot heel, the other foot keeping contact with the ground through
its toe. For both gaits, the reference trajectories of the rotational
joints are prescribed by polynomial functions in time. A para-
metric optimization problem is pres ented for the determination
of the parameters corresponding to the optimal cyclic walking
gaits. The main contribution of this paper is the design of a dy-
namical stable walking gait with double support phases with feet
rotation, impacts and single support phases for this novel bipedal
robot.

1 Introduction
The researchers in biomechanics have improved a lot the un-

derstanding of the human lower limb and especially the knee
joint [1] and the ankle joint [2]. Indeed, these two joints have
a complex architecture formed by non symmetric surfaces. Their
motion is more complex than a revolute joint motion. In the
case of the human knee, the joint is formed by different sur-
faces, the two non symmetrical femoral condyles and the tibial
plateau. This architecture probably appeared in the evolution of
many species of animals 320 million years ago. This common ar-
chitecture of the knee has not really changed the last 300 million
years despite an important diversity of the functional need [3].
The motions of the femur with respect to the tibia are limited
due to many ligaments and the patella. In addition to the flexion
in the sagittal plane, there is an internal rotation with a displace-
ment of the Instantaneous Center of Rotation (ICR) of the knee
joint and a posterior translation of the femur on the tibia. These
motions are guided by the cruciate ligaments and the articular
contacts [4], [1]. These motions cannot be represented by one
or two revolute joints. Different studies have confirmed these re-
sults by an observation of the motions of the human knee in the
3D space [5].

From these studies, a new kind of prosthetic knee was pro-
posed, called polycentric knee. The ICR of the polycentric knees
varies with the knee-flexion angle contrary to the axis of single
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knees. A classical polycentric knee is the four-bar linkage [6],
which is used in most prosthetic knees. This architecture forms
a closed-loop mechanism, which allows a combined rotation and
translation of the knee joint in the sagittal plane without any arti-
ficial ligament to keep the rigidity of the mechanism. In 1974, A.
Menschik [7] proposed to represent the knee joint by a cross four-
bar linkage. This mechanism is the dual solution of the classical
four-bar knee but does not have any singularity in the range of
motion typically used. As a matter of fact, the kinematic singu-
larities of the mechanismmay limit its range of motion of, mainly
when an important knee flexion is required. The dimensions of
the cross four-bar linkage can be chosen by measuring, on a real
subject: (i) the length of the anterior and posterior ligaments; (ii)
the position of the cross ligament attachments on the tibia and
the femur, projected on the sagittal plane in the maximum exten-
sion position [8]. As a result, the motions of the mechanical knee
joint in the sagittal plane should be similar to the motions of the
human knee [4]. In this case, we can reproduce the motion of the
knee joint with a posterior displacement of the contact point of
the femur on the tibia as shown in Figure 1.

Roboticists have come up with new and better bipedal robots
recently. For instance, the HRP-2 [9] and the RABBIT [10],
which are able to run, are quite efficient in terms of energy con-
sumption. A. Grishin et al. [11] focused on the design of a
bipedal robot with telescopic legs. T. Yang et al. [12] used a
compliant parallel knee to improve the walking motion. Some
authors also dealt with the walking and running gaits using the
toe rotation [13], [14], [15]. Our objective is to improve the
bipedal robot performance thanks to a new design of the knee
joint. Several papers deal with the bipedal robots equipped with
complex knees, like G. Gini et al. [16] which used knee joints
based on the human knee surfaces. F. Wang et al. [17] developed
a bipedal robot with two different joints, namely, a revolute joint
and a four-bar linkage. However, the singularities of the common
four-bar linkage, i.e., non cross four-bar linkage, usually limit the
flexion of the knee. On the contrary, the flexion of the knee joint
based on a cross four-bar linkage is usually not too limited with
the kinematic singularities. We also proved in [18] that a a knee
based on a cross four-bar linkage is better than a knee designed
with a revolute joint in terms of energy consumption.

This paper aims to study the performance of a planar bipedal
robot equipped with knees based on cross four-bar linkages for
complex walking gait composed of double support phase, sin-
gle support phase with a flat contact of the foot on the ground
and a single support phase with a rotation of the foot around the
toe. We also present the dynamic model of a planar bipedal robot
whose knees are composed of a cross four-bar linkage. We devel-
oped a parametric optimization method to define a set of optimal
reference trajectories. We studied the energy consumption of the
bipedal robot for different velocities. The main contribution of
this paper is the design of a dynamical stable walking gait with
double support phases, impacts and single support phases for this

novel bipedal biped. Note that there is a feet rotation around the
front heel and the rear toe during the double support phases.

This paper is organized as follows. Section 2 presents the
novel planar bipedal robot whose knees are based on four-bar
linkages. Section 3 is devoted to the dynamic models. Section 4
deals with the trajectory planning. Section 5 presents numerical
results on the walking reference trajectories. Finally, Section 6
presents some conclusions and future works.

FIGURE 1. Representation of the human knee joint composed of a
four-bar linkage. Illustration of the posterior translation of the contact
point between the femur and the tibia.

2 Presentation of the bipedal robot with knees com-
posed of a four-bar linkage

Let us introduced the bipedal robot, which is depicted in
Figure 2. Table 1 gathers the physical data of the biped, which
are taken from Hydroid, a humanoid bipedal robot [19].

The dimensions of the four-bar linkage are chosen with re-
spect to the human characteristics measured by J. Bradley et al.
through radiography in [20].
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Masse (kg) Length (m) Inertia (kg.m2) Center of

mass (m)

foot 0.678 Lp = 0.207 0.002 0.0235

Hp = 0.059

shin 2.188 0.392 0.027 0.223

thigh 5.025 0.392 0.066 0.2234

trunk 24.97 0.403 1.036 0.281

four-bar mb = 0.3 la = AB= 0.029 m

knee md = 0.3 lb = BC = 0.030 m

lc =CD= 0.015 m

ld = AD= 0.025 m

TABLE 1. Physical parameters of the bipedal robot.
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FIGURE 2. Schematic of a planar bipedal robot. Absolute angular
variables and torques.

Figures 2; 3(a) and 3(b) depict the bipedal robot under study
and its cross four-bar knee linkage. Figure 3(a) represents the
cross four-bar knee linkage. The angular variable α1 is the actu-
ated variable of the four-bar linkage.

3 Dynamic model
3.1 General dynamic model in double support

The bipedal robot is equipped with two closed-loop knee.
Let us introduce the constraint equations solving the dynamic
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FIGURE 3. Details of the cross four-bar joint and position of the In-
stantaneous Center of Rotation (ICR)

model [21]. Equations for knee joints 1 and 2 are similar. For a
sake of clarity we consider knee joint 1 only. The equations of
the closed-loop geometric constraints are defined as follows:

la cos q1− lb sin qg11+ lc cos q2+ ld sin qg12 = 0
la sin q1+ lb cos qg11− lc sin q2− ld cos qg12 = 0

(1)

Their first and second time derivatives are

−laq̇1 sin q1− lbq̇g11 cos qg11− lcq̇2 sin q2+ ld q̇g12 cos qg12 = 0
laq̇1 cos q1− lbq̇g11 sin qg11− lcq̇2 cos q2+ ldq̇g12 sin qg12 = 0

(2)
and

−laq̈1 sin q1− lbq̈g11 cos qg11− lcq̈2 sin q2+ ldq̈g12 cos qg12
−laq̇21 cos q1+ lbq̇2g11 sin qg11− lcq̇22 cos q2− ldq̇2g12 sin qg12 = 0

laq̈1 cos q1− lbq̈g11 sin qg11− lcq̈2 cos q2+ ld q̈g12 sin qg12
−laq̇21 sin q1− lbq̇2g11 cos qg11+ lcq̇22 sin q2+ ldq̇2g12 cos qg12 = 0.

(3)
By using the virtual work principle, these constraints equations
can be expressed in the dynamic model by adding the Lagrange
multipliers Jt1λ . Here J1 is the 2× 13 Jacobian matrix such as
equations (2) and (3) can be rewritten under the compact forms

J1ẋ= 0 (4)
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and

J1ẍ+ J̇1ẋ= 0. (5)

and vector λλλ = fc1 = [ fx1 , fy1 ]t defines the two Lagrange multi-
pliers vector associated to the constraint of the closed structure.
These multipliers represent the exerted forces on point A of the
knee joint 1 (Figure 3(a)). We apply the same principle for the
knee joint 2 to obtain the dynamic model of the bipedal robot
with the cross four-bar knees:

A(x)ẍ + h(x, ẋ) =
[

DΓ Jt1 Jt2
]

[

ΓΓΓmmm
fc

]

+ Jtr1r1 + Jtr2r2 (6)

with the constraint equations:

Jri ẍ+ J̇ri ẋ= 0 for i= 1 to 2
[

J1
J2

]

ẍ+
[

J̇1
J̇2

]

ẋ= 0 (7)

ΓΓΓmmm = [Γp1 ,Γp2 ,Γ1,Γ2,Γ3,Γ4]
t is the vector of the applied joint

torques and fc = [ftc1 , f
t
c2 ]
t. The generalized vector x is such as

x= [qp1 ,qp2 ,q1, · · · ,q5,qg11 ,qg12 ,qg21 ,qg22 ,xh,yh]
t

where xh and yh are the hip coordinates. Jr1 and Jr2 are the 3×
13 jacobian matrix of the constraint equations in position and
orientation for the two feet, respectively. A(x) is the 13× 13
symmetric positive definite inertia matrix, h(x, ẋ) is the 13× 1
vector, which groups the centrifugal, Coriolis effects, and the
gravity forces. DΓ is a 13× 6 matrix composed of the 0 and ±1
given by the principle of virtual works [22].

This dynamic model (6) with constraints (7) is valid in sin-
gle support and double support phases. During a single support
phase the ground reaction force is zero on the swing foot.

3.2 Reduced model in single support
The aim is to propose a dynamic model with an implicit li-

aison of the stance foot with the ground to calculate the torques
during the optimization process, with the knowledge of the ref-
erence trajectories for the generalized coordinates. This reduced
dynamic model is only valid if the stance foot does not take off
and there is no sliding during the swing phase.

Then, during the single support phase, the stance foot is as-
sumed to remain in flat contact on the ground, i.e., there is no
sliding motion, no take-off, no rotation (qp1 = 0). We can use a
new generalized vector q= [qp2 ,q1, · · · ,q5,qg11 ,qg12 ,qg21 ,qg22 ]t.

The reduced dynamic model does not depend on the ground re-
action force, which is applied in the stance flat-foot. The dy-
namic model in single support phase for the biped equipped with
the four-bar knees is given by the simplification of the dynamic
model (6) and (7):

A(q)q̈+h(q, q̇) =
[

DΓ Jt1 Jt2
]

[

ΓΓΓmmm
fc

]

. (8)

with the constraints equation,

[

J1
J2

]

q̈+
[

J̇1
J̇2

]

q̇= 0. (9)

Here vector fc is such as fc = [ftc1 , f
t
c2 ]
t.
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FIGURE 4. Details of the foot.

To define the constraints about the ground reaction, the no
take-off of the stance flat-foot during the optimization process,
we recall the calculation of position of the Zero Momentum
Point. The center of mass Gf of the foot is assumed located on
the vertical axis, crossing the joint ankle, Figure 4. The resultant
force R of the ground reaction can be calculated by applying the
second Newton law at the center of mass of the biped:

mγγγ = r+mg, (10)

where m is the global mass of the biped, γγγ = [ẍg, ÿg]t are the hor-
izontal and vertical components of the acceleration for its center
of mass in the world frame. g = [0,−g]t is the vector of the ac-
celeration of the gravity. This equation allows directly to get r
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during the single support. Assuming the center of mass Gf of
the foot has for coordinates (spx, spy), see Figure 4. Let mf be
the mass of the foot. The application point P of this resultant
force r = [rx,ry,rz]t of the ground reaction, where the moment
m = [mx,my,mz]t has its components, which are null following
axes x and z, mx = mz = 0, is called the Zero Moment Point.
One necessary and sufficient condition for the foot to keep the
flat contact is, that P belongs to the convex hull of the support-
ing area (Vukobratovic [23]). In this case the ZMP is merged
with the center of pressure. Let fO and mO be the force and the
moment exerted by the mechanism above the ankle, defined by
pointO, of the supporting foot. Let us state the static equilibrium
in rotation for the supporting foot:

mO+OO×FO+OG f ×mfg+OP× r+m= 0, (11)

where OP, OG f and OO are radius vectors from the origin of
the coordinate system O. For the planar biped the coordinate of
the ZMP can be obtained through the calculation of the global
equilibrium of the bipedal robot around axis z, which gives:

lZMP =
Γp1+ spxmf g−Hprx

ry
, (12)

where Γp1 is the applied torque on the ankle.
To calculate the applied joint torques, which are used to ob-

tain the energy consumption of each bipedal robot during the op-
timization process, we use the dynamic model (8).

We assume the friction effects due to the cross four-bar
mechanism are negligible with respect to those in the gearbox
of the actuators. Then only the performances of actuators are
considered to compare the energy consumption for the biped
equipped with both types of knee joints successively. No fric-
tion terms are included in the model.

3.3 Impact model
During the biped’s gait, impacts occur, when the sole, the

heel or the toe of the swing foot swing touches the ground. Let
T be the instant of an impact. We assume that the impact is ab-
solutely inelastic and that the foot does not slip. Given these
conditions, the ground reactions at the instant of an impact can
be considered as impulsive forces and defined by Dirac delta-
functions r j = i jδ (t − T ) ( j = 1,2). Here i j = [i jx, i jy]t is the
magnitudes vector of the impulsive reaction in foot j (see [24]).
Impact equations can be obtained through integration of the ma-
trix motion equation (6) for the infinitesimal time from T− to
T+. The torques provided by the actuators in the joints, Coriolis
and gravity forces have finite values. Thus they do not influence
the impact. Consequently the impact equations can be written in

the following matrix form:

A(x(T ))(ẋ+− ẋ−) =
[

Jt1 Jt2
]

i fc + Jtr1 i1+ J
t
r2 i2 (13)

Here x(T ) denotes the configuration of the biped at instant
t = T , (this configuration does not change at the instant of the
impact), ẋ− and ẋ+ are respectively the velocity vectors just be-
fore and just after an inelastic impact. To take into account of
the closed-loop of the four-bar knee linkage we have to complete
(13) with:

[

J1
J2

]

ẋ+ = 0 (14)

The velocity of the contact part of the stance foot ( j = 1) before
an impact is null.

Jr1 ẋ
− = 0 (15)

The swing foot ( j = 2) after the impact becomes a stance foot.
Therefore, the velocity of its contact part with the ground be-
comes zero after the impact,

Jr2 ẋ
+ = 0 (16)

Generally speaking, two results are possible after the impact, if
we assume that there is no slipping of the stance feet. The stance
foot lifts off the ground or both feet remain on the ground. In the
first case, the vertical component of the velocity of the taking-off
foot just after the impact must be directed upwards. Also there
is no interaction (no friction, no sticking) between the taking-off
foot and the ground. The ground reaction in this taking-off leg
tip must be null. In the second case, the stance foot velocity has
to be zero just after the impact. The ground produces impulsive
reactions (generally, i j $= 0, j = 1,2) and the vertical compo-
nents of the impulsive ground reactions in both feet are directed
upwards. For the second case, the passive impact equation (13)
must be completed by one matrix equations.

Jr1 ẋ
+ = 0 (17)

In general, the result of an impact depends on two factors: the
biped’s configuration at the instant of an impact and the direc-
tion of the swing foot velocity just before impact [24]. After an
impact for a biped, there are two possible phases: a single sup-
port or a finite time double support.

The resolution of the system composed (13), (14), (16) and
eventually (17) gives the velocity vector ẋ+ just after the im-
pact, the impulsive reaction forces i1, i2 and the impulsive forces
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i fc = [itfc1 , i
t
fc2 ]

t relatively to the velocity vector ẋ− just before the
impact.

To calculate the position of the ZMP at the impact with flat-
foot, we have to take into account of the impulsive ground re-
action in the global equilibrium of the stance foot and the result
is:

lZMP =−
Hp i jx
i jy

. (18)

4 Gait optimization for the cyclic walking
4.1 Principle

The biped is driven by six torques, and its configuration is
given by vector q of generalized coordinates. To transform the
optimization problem into a finite dimension problem, the joint
motion is described as a parametric function. We choose, for
each phase, a cubic spline function of time.

To insure continuity between two successive phases, the po-
sition and velocity of the biped at the beginning and at the end of
each phase must be taken into account by the parameters of the
cubic spline functions.

To design a cyclic walking gait, the behavior of the actuated
joint variables are prescribed using cubic spline functions. The
set of parameters are used to calculate these cubic spline func-
tions, taking into account the properties of continuity between
each step. From the final state of a step to the initial state of the
following step, there is an exchange of the number of the joints,
since the legs swap their roles, we have:

qp1i = qp2 f , q1i = q4 f , q2i = q3 f and q5i = q5 f . (19)

Values for these parameters are calculated by minimizing a
criterion based on the energy consumption. Physical conditions
of contact between the feet and the ground and limits on the ac-
tuators define non-linear constraints of this optimization process.

4.2 Studied gait
The studied gait is composed of three different phases : a

double support phase with rotation of both feet, a single support
phase with a flat contact foot on the ground and single support
phase with rotation of the foot around the toe. The double sup-
port phase ends by the flat contact of the forward foot on the
ground that occurred an impact. The single support phase with
rotation of the foot ends by the contact on the ground of the swing
foot on the heel that also occurred an impact.

During the single support phase with rotation of the foot, the
biped is under actuated. The time evolution of the biped cannot
be prescribed directly. To determine the evolution of the biped
during this phase, it is possible to parametrise the evolution of

each joint i, (i = 1, · · ·,7) according to a configuration param-
eter that depends on the biped dynamic [19]. The evolution of
each joint is given by a fourth order polynomial function of the
configuration parameter s:



















qi(s) = a0i + a1i s+ a2is2+ a3is3+ a4is4
∂qi(s)
∂ s

= a1i + 2 a2i s+ 3 a3i s2+ 4 a4i s3

∂ 2qi(s)
∂ s2

= 2 a2i + 6 a3i s+ 12 a4i s2
(20)

The evolution of s, ṡ et s̈ is obtained by the computation of
the angular momentum around the point of rotation. The angu-
lar momentum is a linear function with respect to the velocity
components. Then tacking into account of (20) we can write the
angular momentum as a function of s and ṡ such that:

σO(s, ṡ)! I(s)ṡ (21)

Moreover, the dynamic momentum is given by :

σ̇O(s) =−m g xg(s) (22)

So, we have :

σO(s, ṡ) dσO(s) =−m g xg(s) I(s) ds (23)

where m is the mass of the robot, g is gravity acceleration and xg
is the horizontal coordinate of the biped center of mass.
By integration from 0 to s :

1
2
[

σ20 (s, ṡ)−σ20 (0, ṡ0)
]

=−

∫ s

0
m g xg(ξ ) I(ξ ) dξ (24)

which gives :

1
2
I2(0) ṡ20 =

1
2
I2(s) ṡ2+V(s) (25)

with :

V (s) = m g
∫ s

0
I(ξ )xg(ξ ) dξ (26)

So, we can determine the evolution of ṡ in function of its initial
value for s= 0 with :

ṡ=

√

I2(0) ṡ20− 2 V (s)
I(s)

(27)
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From equations (21) and (22), we obtain s̈ :

s̈=
−m g xg(s)− I(s)2 ṡ2

I(s)
(28)

4.3 Parametric optimization problem
By parameterizing the joint motion in terms of cubic spline

functions, the optimization problem is reduced to a constrained
parameter optimization problem of the form:

MinimizeCW (P)
subject to gj (P) ≤ 0 for j = 1,2, ...l (29)

where P is the set of optimization variables. CW (P) is the crite-
rion to minimize with l inequality constraints g j(P) ≤ 0 to sat-
isfy. The criterion and constraints are given in the following sec-
tions.

We used the SQP method (Sequential Quadratic Program-
ming) [25], [26] with the fmincon function of Matlab R© to solve
this problem.

4.3.1 The criterion Many criteria can be used to pro-
duce an optimal trajectory. A sthenic criterion is chosen to obtain
optimal trajectories:

CW =
1
d

∫ T

0

6

∑
i=1

ΓtmiΓmidt, (30)

where T is the step duration and θ̇i is the joint velocities asso-
ciated to torque Γmi . During an optimization process the step
length d is an optimization variable and the walking speed v is
fixed, such as the step duration is directly given through the rela-
tion T = d/v.

However, the duration of the single support phase with rota-
tion of the foot cannot be fixed on the optimization process, but
the integration of the function ṡ gives the duration of this phase.
To set the walking velocities, we add to the optimization crite-
rion the error between the the desired velocities and the obtained
velocities with a penalty factor :

C =CW + 108(vd− v) (31)

where vd is the desired velocity and v is the velocity deduce from
the step duration.

The resulting optimal control is continuous and cancels the
risks of a jerky functioning [27]. This smoothness property also
guarantees a better numerical efficiency for the algorithm used
for the optimization problem-solving.

4.3.2 Optimization parameters To describe the evo-
lution of the articular variable q, we use polynomial functions.
During the double support phase the configuration of the biped is
described by 7 variables and we use third order polynomial func-
tions to prescribe their trajectories. During the single support
phase the configuration of the biped is described by 6 variables
and we use also third order polynomial function. Finally, for the
single support phase with rotation of the foot around the toe, the
configuration of the biped is given by 7 variables and we use
fourth order polynomial function of the configuration parameter
s to describe the biped trajectory.

In consequence, the 3 different functions used to describe
the evolution of an articular variable allow to prescribe the initial
and final position and velocity for each phase of a step and a in-
termediate position during the single support phase with rotation
of the foot.

The objective of the optimization algorithm is to determine
the different initial and final position and velocities and the in-
termediate position to minimize the optimization criteria and to
respect the constraints. To reduced the complexity of this prob-
lem and to develop cyclic trajectories we take into account the
continuity between the different phases and between the differ-
ent step. So, finally the number of optimization variables needed
to describe a trajectory is given on the table 2.

4.3.3 The constraints Two types of constraints are
used to obtain a realistic gait.

The necessary constraints, which ensure a valid walking
gait. The first constraint ensures the supporting leg tip does
not take off or slide on the ground. So, the ground reaction
force is inside a friction cone, defined with the coefficient of
friction f :

{

max(− f riy− rix)≤ 0
max(− f riy+ rix)≤ 0

(32)

j = 1 or 2. rx and ry are the normal and tangential com-
ponent of the reaction force. Moreover, we can introduce a
constraint on the ground reaction at the impact:

{

(− f i1y− i1x)≤ 0
(− f i2y+ i2x)≤ 0

(33)

To ensure the non rotation of the supporting foot we in-
troduce a constraint on the ZMP during the single support
phase and at the instant of the impact:

(lp−Lp)≤ lZMP ≤ lp (34)
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Phase Variables Parameters

Double
support

q(0)

q(Tds)

q̇(0)

q̇(Tds)

R2x
Tds

7

7

7

7

3

1

5

5

3

1

Single
support

q(Tds)

q(Tss)

q̇(Tds)

q̇(Tss)

Tss

6

6

6

6

1

6

6

1

Single
support
with
rota-
tion

q(Tss)

q(T )

q((T +Tss)/2)

q̇(Tss)

q̇(T )

ṡ0

7

7

7

7

7

1

5

7

7

1

Total 93 47

TABLE 2. Table of the optimization parameters. Tss is the instant of
the end of the single support phase. Tds is the instant of the end of the
double support phase. T is the step duration.

Here Lp is the length of the foot and lp is the distance be-
tween the heel and the ankle along the horizontal axis, see
Figure 4.
Just after the impact, the velocity of the taking-off foot
should be directed upward. In consequence, the positivity
of the vertical component of the velocities for the heel and
the toes is added to the set of constraints.
The last constraint allows to ensure the non penetration of
the swinging foot in the ground.
The unnecessary constraints, which ensure a technological
realistic gait. We introduced mechanical stops on the joint
variables. Moreover, we limited the torques with a con-
straint, which sets a template of the maximum torque of the
motor relatively to the velocity [10].

FIGURE 5. Stick diagram of a walking trajectory for a walking ve-
locity of 2.2 Km/h.

5 Results
In this part, we use the parametric optimization method, pre-

sented previously, to produce a set of optimal reference walking
trajectories for the biped with four-bar knees.

The figure 5 present a walking trajectory obtains for a walk-
ing velocity of 2.2 Km/h. We can see the three different phases.
The value of the optimization criterion for this gait is CΓ =
1942 N.m.s−1.

On figure 6, we can see the evolution of the energy criterion
according to the walking velocity. We can note a minimum en-
ergy consumption for a velocity of 2.35 Km/h. Moreover, we
can see the energy criterion increases quickly when we reduce
the walking velocities. This result can be explained by the diffi-
culty to produce walking trajectories with rotation of the foot for
low speed. A walking trajectory without rotation would probably
be more effective.

The figure 7 gives the orientation of the support foot at the
end of the step in function of the walking velocities. This figure
shows the rotation of the support foot during the single support
phase increased when you increase the walking velocity.

6 Conclusions
As a conclusion of this work, we present a planar bipedal

robot equipped of four-bar linkages for the knee joints. We
present the dynamic model of this robot and a parametric op-
timization method to produce optimal walking trajectories com-
posed of double support phase, single support phase with a flat
contact of the foot on the ground and a single support phase with
a rotation of the support foot around the toe. Models of impul-

8 Copyright c© 2012 by ASME
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FIGURE 6. Evolution of the energie criterion CW according to the
walking velocities. Quadratic fitting of the evolution of the optimization
criterion (solid line).
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FIGURE 7. Evolution of the orientation of the support foot at the end
of the step according to the walking velocities.

sive impacts are presented and used during the transition of the
different phases. The numerical results have shown this original
biped can performed human like walking with a rotation of the
foot without actuation of the toe during the single support phase.

In perspective of this work an extension in 3D can be done.
Moreover, a comparison of the walking trajectories obtained for
this biped with human movement can proved the higher compat-

ibility of this biped than a classical biped equipped of revolute
knee joints.
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