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ABSTRACT

In this paper, we focus on the temporal robustness in the
hard real-time multiprocessor systems. This robustness is
the capacity to tolerate faults in such a way that no dead-
lines are missed. A model of sporadic and dependent tasks
is considered. Our contribution is to propose a partitioning
algorithm which assigns the tasks to processors in order to
maximize the robustness of the system to Worst Case Execu-
tion Time (WCET) overruns faults or Minimum Inter-arrival
Time (MIT) violations.

Keywords
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1. INTRODUCTION

We consider that an application consists of a set of tasks
where each task is recurring jobs. One of the main problems
in real-time scheduling is to guarantee that no task misses
its deadline. Uniprocessor scheduling attempts to solve the
priority problem: when, and in what order should each job
execute. In multiprocessor scheduling, to the priority prob-
lem is added the allocation problem: on which processor a
job should execute. Multiprocessor scheduling algorithms
can be classified according theses two problems.

We focus on the static-priority approach (for the priority
problem) for which each task has a single static priority ap-
plied to all of its jobs and on the partitioned approach (for
the allocation problem) for which each task is allocated on
a processor and no migration is allowed. The partitioned
scheduling approach consists in partitioning a taskset among
processors. Each subset of task is scheduled on in own pro-
cessor independently of others. The partitioning problem
can be seen as BIN-PACKING problem which is N P-hard in
the strong sense. Hence no optimal algorithm exists unless
P = NP. But several approaches are inspired by techniques
for BIN-PACKING and enable to solve partitioning problem.
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We also consider that the tasks are dependent in the sense
that they share resources. Then it is necessary to use a
synchronization protocol to avoid unbounded blocking times
due to priority inversion. In this context, we are interested
in supplying robustness by maximizing the capacity of tasks
to stand up to WCET overruns faults. The robustness is the
capacity to tolerate temporal faults such as WCET overruns
or MIT violations. When a temporal fault occurs (due to a
high priority task), the low priority and non faulty tasks are
protected against deadline missed (temporal failure). This
property is called the fault isolation.

1.1 Related work

One of the most prevalant strategies to provide fault toler-
ance is replication. Qin and Hong has proposed an algorithm
which generates distributed static schedules to handle pro-
cessor failures [14]. Emberson and Bate have proposed a
task allocation algorithm which takes into account static re-
dundancy to dispatch the tasks among the processors [10].
Our paper is concerned by a strategy of margin on the tem-
poral constraints of the tasks. Instead to replicate tasks to
deal with faults, we give them the possibility to continue
their execution beyond their WCET.

Echtle and Eusgeld used a genetic algorithm to find fault-
tolerant partitions [9]. However, their work does not focus
on real-time systems. Tindell, Burns and Wellings have pro-
posed a partitioning algorithm based on simulated anneal-
ing to allocate tasks on a multiprocessor distributed systems
[17]. Di Natale and Stankovic have also used this technique
to deal with systems of tasks with jitter [8]. These two works
are aimed at real-time systems but the fault-tolerance is not
taken into account.

Oh and Son discuss the need to consider schedulability and
fault-tolerance simultaneously [13]. They prove that finding
a schedule to handle a single processor failure is a NP-hard
problem. Their model does not include dependency con-
straints.

In this paper, we propose a partitioning algorithm which is
fault-tolerant in such a way that it dispatches the tasks in
order to maximize the margin (on WCET overruns or on
frequency increasing).

1.2 Terminology



We consider a set 7 = {71, T2, ..., Tn} of n sporadic real-time
tasks. A sporadic task is a recurring task for which only a
lower bound on inter-arrival time of the jobs is known. Each
task 7; is characterized by a minimum inter-arrival time T;
(also denoted period), a WCET C; and a relative deadline
D;. The considered tasks are tasks with constrained dead-
lines (i.e. D; < T;). The processor utilization of 7; is de-
noted U; and is defined as U; = C;/T;. This application
runs on a platform II = {7, 72, ..., mm } of m identical pro-
cessors (homogeneous case). A job J; is characterized by its
release time r;, its execution time e; (observed at run time)
and its absolute deadline d;. The processor utilization of the
7 is denoted U(7) and the total processor utilization of
is denoted U(m;). We consider a static-priority scheduling
on each processor. The priorities of the tasks are taken in
an increasing order (i.e. the priority of 7;41 is higher than
the priority of ;). The set of tasks with a priority lower
(resp. higher) than the priority of 7; is denoted Ip(7;) (resp.
hp(7:)). In this paper, we denote R; the response time of a
task 7; and B; the blocking factor incurred by the task 7;.
We also denote A (resp. Al) the value of WCET (resp.
frequency) margin of 7;.

1.3 Organization

The rest of this paper is organized as follows. In Section 2 we
present several synchronization protocols for multiprocessor
systems. In Section 3, we present the concept of robustness
to WCET overruns faults and MIT violations. We describe
how to compute the margin of the tasks on their WCET
and their period. In Section 4, we propose a partitioning
algorithm which maximize the robustness in terms of WCET
overruns faults. In Section 5, we compare by simulation our
approach with existing ones. Finally, we conclude and give
some perspectives in Section 6.

2.  SYNCHRONIZATION PROTOCOLS

In real-time systems, the synchronization protocols are used
to avoid the unbounded priority inversions which could oc-
cur with a simple lock mechanism. In the multiprocessor
context, three main protocols are often cited in the litera-
ture. We present them in the following sections.

2.1 MPCP

Multiprocessor Priority Ceiling Protocol (MPCP) is an ex-
tension to the multiprocessor case of the Priority Ceiling
Protocol (PCP) proposed by Sha, Rajkumar and Lehoczky
in [16]. MPCP has been proposed by Rajkumar in [15].

With PCP, a priority ceiling p(Rs) is associated with each
shared resource Ri. P(Rk) is defined as the priority of the
highest priority job which can lock Ry. At time ¢, the system
priority ceiling B(t) is given by the highest priority ceiling of
the locked resources at t. A job J; can lock a resource Ry
at time ¢ only if the priority of J; is strictly greater than the
system priority ceiling. Otherwise, the job which blocks J;
inherits the priority of J;.

With MPCP, two types of resources are distinguished: local
and global resources. The local resources are only shared
by jobs on the same processor whilst global ones are shared
by jobs which can be assigned on several processors. When
a job tries to lock a local resource, the behavior of MPCP

is the same as PCP. For the case of global resources, a set
of priorities higher than the highest priority ceiling is used.
Then, accesses to global resources are made uppermost to
limit indirect blocking.

2.2 MSRP

Multiprocessor Stack Resource Protocol (MSRP) is an ex-
tension to the multiprocessor case of the Stack Resource
Protocol (SRP) proposed by Baker in [1]. MSRP has been
proposed by Gai et al. in [11].

With SRP, each job J; is characterized by a preemption level
p(Ji). Ji is allowed to preempt J; only if p(J;) > p(J;).
Each resource Ry has a preemption ceiling p(Ry) defined
as the highest preemption level of the jobs which can lock
Ri. At time ¢, the system preemption ceiling is given by
the highest preemption ceiling among resources currently
locked. The activ jobs are stored in a stack in decreasing
order of their priority. J; is allowed to preempt J; if J; is
the highest active job and if its preemption level is strictly
greater than the system preemption ceiling.

With MSRP at time t, a preemption ceiling p(¢, 7;) is fixed
for each processor ;. For each global resource Ry, each
processor m; defines a preemption ceiling p(Rgr) higher
than the highest preemption ceiling on 7;. For local re-
sources, the MSRP behavior is the same as SRP. When a
job attempts to lock a global resource Rgy on 7j, p(t, ;) is
raised to p(Rgr) making J; non-preemptive.

23 FMLP

Flexible Multiprocessor Locking Protocol (FMLP) is a syn-
chronization protocol exclusively developed for the multipro-
cessor systems. It has been proposed by Block et al. in [3].
Initially, FMLP has been proposed to synchronized shared
resources in both partitioned and global EDF scheduling. It
has been extended to deal with the partitioned Fixed-Task-
Priority scheduling approach of Brandenburg and Anderson
in [5].

FMLP takes advantage of both busy-wait and by suspen-
sion approaches. To do that, two types of resource are con-
sidered: short (R) and long RY) resources. When a job
J; attempts to lock an already locked short resource Ry, it
busy waits non-preemptively for R7. This behavior tends to
reduce response-time of jobs when they use shared resources
for short time.

3. TASK MARGIN

We focus on temporal robustness which consists in tolerance
to temporal faults in systems. The schedulability analysis
of fault-tolerant systems has been studied by Burns, Davis
and Punnekkat [6]. More recently, Bougueroua, George and
Midonnet has proposed an approach to compute a margin
of tolerance on the WCET [4]. We present it in Section 3.1
and we propose its extension to the domain of periods in the
Section 3.2.

In this section, we use the notation C; which is defined by

3.1 WCET margin



The constraints in a hard real-time system are defined such
that no deadlines of any task are missed. Moreover, the
WCET of a task is estimated or computed in order to en-
sure that the task never runs for a duration longer than
its WCET. If a task commits a WCET overruns fault, the
system may fail unless the task has enough WCET margin.

DEFINITION 1 (WCET MARGIN). The WCET margin
AS of a task 7; is the additional ezecution time which can
be added to the WCET C; of 7; in such a way that no task
of T misses its deadline.

A value Aic is a correct WCET margin value for 7; on 7; if
it verify the inequalities:

A€
. <L
Ulm) + - <1 1)
k41 c Ry
L — CoF ) = < D,
RN =Ci+ AT+ > [TJC;_DZ (2)
Th €hp(T;)
V7 € lp(m),
. Ry Ry 3
R =i+ Y [T—Hcm{?ﬂﬁsm ®)
Th Ehp(T])

The maximum value of WCET margin for 7; can be com-
puted by binary search over the interval [0, min(D; —C;, (1—
U(m;))T3))-

3.2 Frequency margin

The sporadic (and periodic) tasks are characterized by a
minimum inter-arrival time. If a job is activated as earlier
as planed (e.g. faulty external component), the system may
fail unless the task has enough frequency margin.

DEFINITION 2  (FREQUENCY MARGIN). The frequency mar-
gin A{ of a task T; is a period of time which can be subtracted
to the period T; of T; in such a way that no task of T misses
its deadline.

A value A{ is a correct frequency margin value for 7; on ;
if it verify the inequalities:

Ci
k1 R} f
1 _ o v <T;—
R =00 Y [TJ Cn < T, — Al (5)
T €hp(T;)
V7 € lp(T:)
Rt =cr+ > R Ch + B lc<p
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T ERp(T)—T5 g

The maximum value of frequency margin for 7; can be com-
puted by binary search over the interval [0,T; — 1].

3.3 Margin of dependent tasks
For the case of independent tasks, if a fault occurs during
the execution of a job J;, J; can continue its execution for

[ Job [| Proc. [ ri | € | di |
Ji T | 2 1+2(RE) +1 12
Jo m | 3| 1+1(RG)+3+1(Rey)+1 ] 15
Js m |0 1+5RE) +1(RY,) +1 16
Ja T | 0 2+ 1(RLy) +1 14

Table 1: Parameters of jobs in Figure 1.

A€ If the tasks share resources, the WCET margin of J;
in a critical section can be less than AS. In Figure 1(a),
we represent the schedule of 4 jobs characterized by the pa-
rameters given in Table 1. The synchronization protocol is
FMLP and the resources are considered as long. We con-
sider each job executing for its WCET (e; = C). If a fault
occurs at the end of the execution of J3, it can continue until
time 16 in such a way that no job misses its deadline. Then
the value of WCET margin A is 5 units of time if it is used
at the end of the execution of J3.

In Figure 1(b), we represent an execution overrun in the crit-
ical section associated to RL;. Js can increase its budget of
time by just 1 unit of time. We notice that the WCET mar-
gin of a job in a critical section is bounded by the minimum
margin of all the jobs which share the resource guarded by
this section.

4. ROBUST PARTITIONING

Simulated annealing is a generic algorithm which has been
firstly proposed by Kirkpatrick, Gelatt and Vecchi [12] for
the optimization problems. The name and inspiration come
from annealing in metallurgy, a technique involving heating
and controlled cooling of a material to increase the size of
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Figure 1: WCET margin of dependent tasks.
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its crystals and to reduce their defects. In this work, we ap-
ply the simulated annealing technique to build an algorithm
which finds a feasible partition of a set of tasks where the ro-
bustness to the WCET overruns faults is maximized. We de-
scribe this algorithm, Robust Simulated Annealing (RPSA)
in Algorithm 1. The initialization is made as follows. At
line 1, the function random_partition() build a partition
P by allocating each of the n tasks on one of the m proces-
sors randomly. This partition may be unfeasible. At line 2,
an initial temperature is computed such as 99% of the par-
titions are kept even if they do not improve the solution. By
cooling the system (decreasing the temperature), the unsat-
isfying solutions will be eliminated. At line 3, we initialize
the max_try value to an integer which depends both of the
number of tasks and of the number of processors. The loop
at line 4-21 performs max_try iterations of the loop at line 6-
19. After each iteration, the system is cooled by dividing the
temperature by 2. The main part of the algorithm is the
loop at line 6-19. At line 7, the function compute_energy ()
computes the energy of the partition P. This function is
more detailed later in Algorithm 2. At line 8, a partition
P, which is the neighbor of the partition P is computed.
This partition P, is obtained either by randomly swapping
two tasks of P or by randomly moving a task of P from a
processor to another. The energy of this new partition is
computed at line 9. If the value E, of the energy of P, is
less than the value E), of the energy of P then P is replaced
by P,. Otherwise, a random number is drawn between 0
and 1. The more the temperature temp high is, the more
the probability that the value e® (x = Efe;ni”) is greater
than the random number is. If e* > random(0,1) then P
is also replaced by P, else P, is discarded. This behavior
avoids that the energy converge to a local minimum. We

Algorithm 1: RPSA
P = random_partition(n, m);
temp =

ln(?)%Q) )
maz_try =n -m;
while temp > 107° do

k=0;
while k # maz_try do
E, = compute_energy(P);
P,, = neighbor(P);
E, = compute_energy(Pr);
if £, < E, then
P=PF,;
else
= Tl
if e > random(0,1) then
P = Pp;
end
end
k=k+1;
end
temp = te%;
end

now describe the function compute_energy(). The aim of
this function is to compute a value of energy for a partition
such that the more the minimum value of margin for the
system is great, the less the value of energy is. The value
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of energy is computed as follows. For each processor mj, if
the processor is empty then the value of energy is increased
by 1. This behavior increase the probability that the tasks
are well distributed among the processor and no processors
stay empty. If the set of tasks allocated on this processor is
unschedulable then the value of energy is also increased by 1
to eliminate the unfeasible partitions. For each processor 7;
where the set of tasks is schedulable, the sum of margin on
the execution duration values of each task is stored in the
array margin at index j. At the end of the loop at line 3-10,
the value of energy is increased by the sum of all the val-
ues stored in the array margin. Consequently the more the
value of margin of each task great is, the less the value of
energy is.

Algorithm 2: compute_energy(P)

energy = 0;
margin[m];
foreach 7; € P do
if mjisempty or m;isunschedulable then
energy = energy + 1;
margin[j] = 0;
else
marginlj] = ¥y, cr(x,) A
end
end

energy = energy + S
k=1

margin[k]|

5. SIMULATION
5.1 Methodology

We implemented a simulator of real-time systems which pro-
vides several partitioning algorithms. Among others, it im-
plements both RPSA and SPA algorithms.

We also implemented a taskset generator which randomly
makes sets of tasks with shared resources. The tasks gen-
eration process is based on the UUniFast-Discard algorithm
proposed by Davis and Burns [7]. This algorithm is the ex-
tension to the multiprocessor case of the UUniFast algorithm
proposed by Bini and Buttazzo [2].

For each value of processor utilization in [0.025,0.05, ...,0.975],
we randomly generated 1,000 tasksets with constrained dead-
lines. Each simulation consists in the partitioning of a taskset
of 16 tasks on 4 processors. Each task has a random num-
ber of critical section in {0,1,2}. There are half as many
resources as critical sections.

SPA has been initially proposed in order to use MPCP as
synchronization protocol. In the context of our simulations,
we have modified it to be based on FMLP.

5.2 Results

In Figure 2, we represent the comparison between RPSA
and SPA in terms of schedulability and minimum margin.
In Figures 2(a) and 2(c), RPSA has been implemented to
maximize the WCET margin. The compute_energy () func-
tion of RPSA uses the Equations (1), (2) and (3) (described
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Figure 2: Simulations of RPSA and SPA on 4 processors.

in Section 3.1). In Figures 2(b) and 2(d), it has been imple-
mented using the Equations (4), (5) and (6) (described in
Section 3.2).

We show that RPSA outperforms on average SPA in terms
of schedulability. Our algorithm takes advantage of the sim-
ulated annealing technique. Then it find solutions which can
not be found by the BF algorithm (the one on which SPA is
based).

In terms of robustness, RPSA produces partitions for which
the margin of the tasks is increased compared to SPA.

6. CONCLUSION

We have proposed the partitioning algorithm RPSA based
on the simulated annealing technique. We have considered
a model of sporadic tasks with shared resources. The syn-
chronization of data is performed by the FMLP protocol.
Our algorithm allocates the tasks on the processors in order
to maximize the robustness to the WCET overruns faults
and MIT violations. We have implemented our algorithm in
our simulator of real-time systems and we compare it with
the SPA heuristic. We have shown that our solution outper-
forms the heuristic approach in terms of both schedulability
and robustness.
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