
HAL Id: hal-00668726
https://hal.science/hal-00668726

Submitted on 10 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partitioned Scheduling of Parallel Real-time Tasks on
Multiprocessor Systems

Frédéric Fauberteau, Manar Qamhieh, Serge Midonnet

To cite this version:
Frédéric Fauberteau, Manar Qamhieh, Serge Midonnet. Partitioned Scheduling of Parallel
Real-time Tasks on Multiprocessor Systems. ACM SIGBED Review, 2011, 8 (3), pp.28-31.
�10.1145/2038617.2038623�. �hal-00668726�

https://hal.science/hal-00668726
https://hal.archives-ouvertes.fr

Partitioned Scheduling of Parallel Real-time Tasks on Multiprocessor Systems

Frédéric Fauberteau† Manar Qamhieh∗† Serge Midonnet†

†Université Paris-Est

LIGM, UMR CNRS 8049

{frederic.fauberteau,serge.midonnet}@univ-paris-est.fr
∗ECE

qamhieh@ece.fr

Abstract

In this paper, we focus on the scheduling of periodic

fork-join real-time tasks on multiprocessor systems.

Parallel real-time tasks of fork-join model have strict

parallel segments with no laxity. We propose a parti-

tioned scheduling algorithm which increases the laxity

of the parallel segments and therefore the schedula-

bility of tasksets of this model. A similar algorithm

has been proposed in the literature but it produces

job migrations. Ours avoid the use of job migrations

in order to create a portable algorithm that can be

implemented on a standard Linux kernel. Results of

extensive simulations are provided in order to analyze

the schedulability of the proposed algorithm compared

to the previous one.

1. Introduction

Chip manufacturers are tending to build multi-

processors and multi-core processors as a solution to

overcome the physical constrains of the manufacturing

process, such as chip’s size and heating. Because

of that, parallel programming has gained a higher

importance although it has been used for many years.

The concept of parallel programming is to write a

code that can be executed simultaneously on different

processors, and usually these programs are harder to

be written than sequential ones, since it is necessary

to keep the parallel partitions independent in order to

execute them correctly on different processors at the

same time. This condition might not be affected by

reasons like shortage in processors, which requires the

use of partitioning. In real-time systems and as we

found in literature [1], [2], a parallel task can be:

• rigid if the number of processors is assigned

externally to the scheduler and can’t be changed

during execution,

• moldable if the number of processors is assigned

by the scheduler and can’t be changed during

execution,

• malleable if the number of processors can be

changed by the scheduler during execution.

From practical implementation’s point of view, there

exist certain libraries, APIs and models created spe-

cially for parallel programming like POSIX threads[3]

and OpenMP [4], except those are not designed for

real-time systems normally, but in this paper we will

work on periodic real-time tasks of fork-join structure,

the same structure OpenMP is based on, and which

can be seen as a rigid type of real-time parallelism.

The remainder of this paper is organized as follows:

in Section 2, we present our task model. Section 3

describes a related work on the same model. Section 4

explains the proposed algorithm followed by the anal-

ysis in section 5. and we finish with perspective and

the conclusion in sections 6 and 7.

2. Fork-Join Model

As shown in Figure 1, the fork-join model defines a

task as a collection of several segments, both sequential

and parallel, and this task always starts by a sequential

segment, then it forks into several parallel independent

threads (parallel segment) to be joined finally in an-

other sequential segment. It is important to note that

all parallel segments in a task shares the same number

of processors, and it should be mentioned that tasks of

this model have implicit deadline (deadline of a task

equals its period).

Here is an example of the fork-join model: τi =
((C1

i , P
2
i , C

3
i , ..., P

si−1
i , Csi

i),mi, Ti) where:

• si is the total number of segments (sequential and

parallel) and it is an odd number according to

definition of the model,

• mi is the number of parallel threads on which

parallel segments will be executed. mi > 1 for

parallel segments, and equals to 1 for sequential

segments.

• Cs
i is the Worst-Case Execution Time (WCET)

of sequential segment, where s is an odd number

and 1 ≤ s ≤ si,

• P s
i is the WCET of parallel segment, where s is

an even number and 1 ≤ s ≤ si,

• Ti is the period of the task.

Deadline Di

Ci
1

Pi
2,1

Ci
3 Ci

5
Ci

kPi
2,2

Pi
2,n

Pi
4,1

Pi
4,2

Pi
4,n

Figure 1. Fork-Join structure model.

What we can notice about this model is the fact

that by default all parallel segments have to finish

their execution before the following sequential segment

starts. Therefore these segments have strict laxity and

their execution times equal to their deadlines.

Figure 2 shows a fork-join task, which can be rep-

resented as well according to the previous definition:

(1, 2, 2, 3, 1), 3, 17).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1 P11

P12

P13

S2 P21

P22

P23

S3

Figure 2. Example of fork-join task.

3. Related work

Due to the strict laxity of the parallel segments

in the fork-join task model, Lakshmanan et al. in

[5] propose an algorithm to increase the laxity of

the parallel segments by reducing the parallelism in

the fork-join model when possible. Their algorithm

stretches the main thread to its deadline, as shown in

Figure 3. It aims to execute as much parallel segments

as possible in the master string thread (the thread

that contains the sequential segments and it is also

considered as the entry and end point of the program),

this master string will be stretched to its deadline so as

to be executed on an exclusive processor with 100%
processor’s utilization. What remains of the parallel

segments will be distributed on the available processors

using partitioning algorithm called FBB-FFD (stands

for Fisher Baruah Baker - First Fit Decreasing) [6].

This algorithm enhances the schedulability of par-

allel tasks of fork-join structure, by increasing the

parallel segments deadline and getting rid of their strict

execution time, as shown in the example of Figure 2

and 3, parallel segment P1,3′ has a deadline of 4 time

units instead of 2 which was exactly the worst case

execution time of that parallel segment, then it has to

migrate to the master string so as to fill the master

thread. This laxity in the deadline will increase the

chances of the parallel segments to be scheduled using

FBB-FFD as it will be clarified later in the analysis.

The number of job migrations in this algorithm

could be either 0, if the algorithm succeeded in

scheduling all the parallel segments into the master

string, creating a sequential task that will be executed

on one processor. The other possibility for the num-

ber of job migrations will be the number of parallel

segments in the task, as shown in Figure 3 , both P1,3

and P2,3 are used to fill the slack time in the master

string, and they both will migrate.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1 P11

P13’

P12 P13” S2 P21 P22

P23’

P23” S3

Figure 3. Task Stretch Transformation.

Task Stretch Transformation (TST) has a constraint

when it comes to practical implementation, that in

order to achieve a fully stretched master string, then

job migration is inevitable. As shown in the Figure

3, segments P1,3 and P2,3 have to start execution

on a certain processor then they will migrate to the

master string’s processor in order to fill it. According

to the paper, this can be easily implemented on a

specific Linux system called Linux/RK [7] (stands for

Linux Resource Kernel), which is a real-time extension

to the Linux kernel to support the abstractions of a

resource kernel. But our idea is to implement this

algorithm directly on a standard Linux enhanced with

PREEMPT_RT kernel patch.

4. Segment Stretch Transformation

In order to eliminate the use of job migration, some

modifications have to be done on the original pseudo-

code, which we called Segment Stretch Transformation

(SST), the basic idea of TST stayed the same, we will

keep trying to avoid the fork-join model by stretching

the master string, but now it will be filled only with

complete parallel segments with no migration, the fol-

lowing example will better explain the modifications.

We have a task τ1 = ((1, 2, 2, 3, 1), 3, 17) as shown

in Figure 2, which is a typical fork-join task. In Figure

2 we show the result of applying TST on τ1. We can

notice that segment P1,3 and P2,3 have to be executed

on 2 processors. But in SST and as shown in Figure 4,

the master string is only filled by complete parallel

segments. Even though the master string is not fully

stretched (there still a 1 unit of time not used before the

deadline), the parallel segment P2,3 will not be used.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1 P11 P12 P13 S2 P21

P23

P22 S3

Figure 4. Segment Stretch Transformation.

In TST, the master string has to be filled with all

the parallel segments with equal partitions, which will

increase the laxity of all the segments equally. But

at the same time, it will increase the number of job

migrations as well. However, in SST, the master string

will be filled initially with the pre-calculated number

of parallel strings, then we check if we can add other

single parallel strings to the master string (like P1,3 in

Figure 4). The remaining parallel segments of the task

with the master string will be scheduled using FBB-

FFD partitioning algorithm. The laxity of the master

string will increase since we did not fill it completely

with parallel segments.

So, from a practical implementation point of view,

the SST can be fully implemented on a standard

Linux RT kernel with no special extensions or batches

added, and by only using an ordinary function like

sched_set_affinity(), each segment of the parallel task

can be assigned to a specific processor, according to the

scheduling results of any partitioning algorithm (e.g.

FBB-FFD).

5. Analysis

In order to provide a practical analysis for these al-

gorithms, we are going to use rtmsim (stands for Real-

Time Multiprocessor SIMulator). It is a free simulation

software developed at Université Paris-Est Marne-

la-Vallée, France [8]. This simulation software helps

analyzing the performance of real-time scheduling al-

gorithms by choosing one of the pre-coded approaches

and run in through extensive simulation.

For our extensive simulation analysis, we considered

4 identical processors with taskset utilization varies

from 0.025 to 0.975 times the number of processors in

steps of 0.025, and for each utilization value we run

10,000 tasksets each of 16 parallel tasks with implicit

deadline, which will be scheduled using FBB-FFD

partitioning algorithm.

We started the analysis by creating a dataset of par-

allel tasks of the fork-join model, and by using FBB-

FFD directly to schedule this dataset, we got the results

shown in Figure 5(a) (the curve with the rectangle

points). And as we can see from this result, FBB-

FFD failed to schedule the dataset after processors’

utilization of 0.1. This can be explained by knowing

that FBB-FFD is using the following condition. For

each task τi to be placed on processor k, the following

condition has to be true:

di −
∑

τj∈τ(πk)

RBF ∗(τj , di) ≥ ei

where τi is the task to be scheduled on processor k,

πk is the set of tasks already placed on processor k

and RBF ∗(τj , di) = ej +
ej
Pj

∗ di

 !"

!"

$!"

% !"

& !"

' !"

 ((' (# () ($ (* (% (+ (& (, '(

-./
012

345
30!6

768
09

6

:;<.066<;!28=3=>48=<?

@ABCD-!E@FFB@@CG@ABCD-!EH46I-8;08./J@FFB@@CG@ABCD-!E-0K90?8-8;08./J@FFB@@CG

(a) Curves of comparison.

Ui TST SST Ui TST SST

0.250 9991 9996 0.450 2477 2460

0.275 9967 9970 0.475 1380 1366

0.300 9887 9895 0.500 739 731

0.325 9614 9623 0.525 316 313

0.350 8889 8898 0.550 144 144

0.375 7596 7592 0.575 44 46

0.400 5872 5872 0.600 33 32

0.425 4110 4102 0.625 14 12

(b) Values of comparison.

According to this condition, if the task to be sched-

uled has both execution time and deadline of the same

value, then it will be executed on an empty processor,

considering the condition will fail if the processor al-

ready executes other tasks. And since parallel segments

in the fork-join model have execution times equal to

their deadlines always (Figure 2), then each parallel

segment will need to be executed on a processor

exclusively.

But by looking at the characteristics of the parallel

segments, we can notice that they have offsets which

means that they will not arrive all at the same time

to be scheduled, and by using a suitable type of

partitioning algorithm that can handle offsets we might

be able to enhance the results of the simulation. FDD-

RTA (First Fit Decreasing-Response Time Analysis)

could be a good choice.

A second analysis is performed to compare TST

and SST algorithms, by using the same model of

extensive simulation described previously, the result of

simulation is shown in Figure 5(a), where TST is the

curve with the round points and SST is the curve with

the square ones. As we can see, both curves are the

same with no noticeable difference. There is a slight

difference between these 2 algorithms as represented

in Figure 5(b). The interesting result we can notice is

the incomparability of these 2 algorithms.

6. Perspective

The temporal constraints of the theoretical real-time

systems such as the worst case execution time, the

deadline and the period, all these values can be esti-

mated and specified. But when it comes to commercial

real-time systems, some interferences and variations

affect those constraints, the causes vary from the

tasks to exceed their WCET, OS overheads to system

interrupts [9], those variations made the constraints

harder to be controlled and studied.

There exist some mechanisms to compute the vari-

ations in the temporal constraints and to analyze the

interferences, among those we can mention as example

the sensitivity analysis, which "provides useful infor-

mation for changing the implementation by giving a

measure of those computation times that must be re-

duced to achieve feasibility"[10]. And task’s allowance

which is defined as the maximum extra duration that

can be granted to a faulty task without compromising

the timeliness constraint of the task [11].

The principal idea of the algorithm TST is to design

a full master string, where the processor’s utilization

is 100%, and there is no laxity which means the

worst execution time of the task equals to its deadline.

However, in our proposed algorithm SST, we stopped

the migration and created a non-full master string by

filling it with complete segments, which increased the

laxity of the master string as well as the parallel

segments, and it is a step forward to build a robust

system.

In the future, we aim to provide an algorithm which

computes a robust partitioning, in which we maximize

the acceptable variations of the temporal constraints,

taking into account the variations of possible WCET

overruns. As well as maximizing the duration of a task

without compromise missing its deadline [12].

7. Conclusion

In this paper, we presented an algorithm that trans-
forms parallel tasks of fork-join structure in order
to increase the laxity of the parallel segments, and
eliminate the use of job migration, which makes it
possible to be implemented on standard Linux ker-
nel. The analysis of this algorithm is performed by
using extensive simulations in order to compare its
performance with the original taskset model and TST
algorithm. Our next step will be to study the possibility
of proposing a robust partitioning algorithm so as to
maximize the laxity of the segments and tolerate the
execution overruns of the parallel task model.

References

[1] J. Goossens and V. Berten, “Gang ftp scheduling of
periodic and parallel rigid real-time tasks,” in Proc. of
RTNS, 2010, pp. 189–196.

[2] S. Kato and Y. Ishikawa, “Gang edf scheduling of
parallel task systems,” in Proc. of RTSS, 2009, pp. 459–
468.

[3] “Posix threads programming.” [Online]. Available:
https://computing.llnl.gov/tutorials/pthreads/

[4] “Openmp.” [Online]. Available: http://www.openmp.
org

[5] K. Lakshmanan, S. Kato, and R. (Raj) Rajkumar,
“Scheduling parallel real-time tasks on multi-core pro-
cessors,” in Proc. of RTSS, 2010, pp. 259–268.

[6] N. Fisher, S. Baruah, and T. P. Baker, “The parti-
tioned scheduling of sporadic tasks according to static-
priorities,” in Proc. of ECRTS, 2006, pp. 118–127.

[7] S. Oikawa and R. Rajkumar, “Portable rk: A portable
resource kernel for guaranteed and enforced timing
behavior,” in Proc. of RTAS, 1999, p. 111.

[8] “rtmsim.” [Online]. Available: http://igm.univ-mlv.fr/
AlgoTR/rtmsim

[9] R. I. Davis and A. Burns, “Robust priority assignment
for fixed priority real-time systems,” in Proc. of RTSS,
2007, pp. 3–14.

[10] E. Bini, M. Di Natale, and G. C. Buttazzo, “Sensitivity
analysis for fixed-priority real-time systems,” in Proc.
of ECRTS, 2006, pp. 13–22.

[11] L. Bougueroua, L. George, and S. Midonnet, “Deal-
ing with execution-overruns to improve the temporal
robustness of real-time systems scheduled fp and edf,”
in Proc. of ICONS, 2007, p. 8pp.

[12] F. Fauberteau, S. Midonnet, and L. George, “A robust
partitioned scheduling for real-time multiprocessor sys-
tems,” in Proc. of DIPES, 2010, pp. 193–204.

https://computing.llnl.gov/tutorials/pthreads/
http://www.openmp.org
http://www.openmp.org
http://igm.univ-mlv.fr/AlgoTR/rtmsim
http://igm.univ-mlv.fr/AlgoTR/rtmsim

	Introduction
	Fork-Join Model
	Related work
	Segment Stretch Transformation
	Analysis
	Perspective
	Conclusion
	References

