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Abstract

This paper presents a methodology to build representaigay track geometries
thanks to a stochastic modelling. This modelling, which teasitegrate the statisti-
cal and spatial variabilities and dependencies, is a kayeigghen using simulation
for conception, maintenance or certification purposeshaslynamic behaviour of
the trains is mainly induced by the track geometry. The sistitb process theory is
used, combining Karhunen-Loéeve and polynomial exparssidrhrough a practical
example, this paper finally shows to what extent this metlaggogives rise to new
promising opportunities for the track geometry mainteanc

Keywords: stochastic modelling, track geometry, random procesgnoohial chaos
expansion.

1 Introduction

The dynamic behaviour of the trains is mainly induced by thek geometry.

Made up of straight lines and curves at its constructiontrédiek geometry is grad-
ually damaged and regularly subjected to maintenance tpesaluring its lifecycle.
The appearing irregularities may be different from onelrexan other, from one
country to an other, depending on the physical propertighetrack substructures,
on the traffic conditions (number, type of trains) and on thegyaphical locations
(which can be correlated with weather conditions).

Hence, the train may be confronted to very different runmwioigditions. In security
or certification prospects, the dynamic behaviour has tbex¢o be analysed not only
on a few track portions but on this whole realm of possileti



In reply to this concern, the measurement train IRIS 320 tes lyunning con-
tinuously since 2007 over the French railway network, meagwand recording the
track geometry of the main national lines. This measurerogtite railway network
guality and variability may then be implemented as an inpuliassical railway soft-
wares to characterise the dynamic behaviour of each tratrréims on the considered
network. However it would be too time-consuming to simulates on the whole rail-
way network, and it is difficult to find a portion of track thatiepresentative of the
network.

The work presented here therefore aims at building reptasemtrack geometries
thanks to a stochastic modelling.

In this paper a parameterisation of the track geometry isqomted at first. The for-
mulation of the stochastic modelling is then described. ifiegularity vector (gath-
ering the four types of irregularity) is considered as a candield. According to
the Karhunen-Loeve expansion theory, the irregularitstaeis then projected on a
determinist orthonormal basis. At last, the projectionficients, which are random
values, are expanded on a polynomial basis.

Finally, the track stochastic modelling, which integrattes statistical and spatial
variabilities and dependencies, allows to generate nwaillyi from a set of track
measurements, as many realistic and representative podfdrack as needed. These
latter can be used in any determinist railway dynamic codbd#vacterise the dynamic
behaviour of the train. It could thus bring innovative teickah answer to introduce
numerical methods and treatments in the maintenance atificegion processes.

2 Track irregularities modelling

In this part is formulated the track irregularities modwili

2.1 Parameterising the track geometry

Let Ry = (O, Xo, Yo, Zo) be the inertial reference frame. A railway tra€ks built up

of two rails, which can be modelled as two parallel curiggs= {M,(s), s € [0, 5]}
andR, = {M,(s),s € [0,S]}, wheres is the curvilinear abscissa of the track of
lengthsS:

T = R X R,. (1)

Let's call £ the rail gauge, an@,,, = {O,,.(s), s € [0, S]} the track mean line so
that:

Vs € [0,5], M,Om(s) = %MTMl(s). 2)

The Frenet fram¢O,,,(s), T(s),N(s), B(s)) is also introduced as:



_ doo,,

T(s) = =7 (s), )
M, .M,

N(S) = W’ (4)

B(s) = T(s) A N(s). (5)

The curvilinear inclination anglé(s) is therefore defined as the angle between
N (s) and the horizontal plangX,, Y).

The irregularities appearing during the track lifecycle af four types: vertical and
horizontal alignment irregularities on the one hand, gaugecross level irregularities
on the other hand. These irregularities are characterigedshort wavelength evolu-
tion (between 3 and 150 meters) whereas the geometry of mekstis characterised
by long wavelengths.

Hence, a curvilinear parameterisation which suits thisaloacale property is pro-
posed in this paper. The geometry of new tracks is charaetéhby the horizontal and
vertical curvaturesy(s) andcy (s) and the cross level, (s), which only depends on
s, whereas four curvilinear fields are defined to representdimaer described four
track irregularities:

e a(s) andg(s) for the horizontal and vertical alignment irregularities;

e j(s) ande(s) for the cross level and gauge irregularities.

It can be deduced that:

OM, = 00,, + A(s)N (6(s)), (6)

OM, = 00,, ~ A(s)N (4(s)). (7)

A = EEA) ®)

sin (0(s)) — %*égs) (©)

00, (s) = 001 (s) + als)N (8(s)) + B(s)B (6(s)). (10)
OOn1(s) = F (cacv.s). (1)
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Figure 1: Parameterisation of the track irregularities
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Figure 2: Long wavelengths track parameterisation (lefiprt wavelengths track param-
eterisation (right)

whereOO 7 (s) is the mean line description of the new track, without anggtiar-
ities. In Figure 1 is represented the chosen parametenisatithe track, whereas in
Figure 2 are plotted experimental measurements of thisypeteisation.

2.2 Definition of the stochastic model

As it has been presented in introduction, a trédc8f length.S contains several sources
of uncertainty, that we decide to gather in an unknown randestor . Conse-
qguently, 7", which depends oE, may be seen as a random field.

The goal of this paper is therefore to model the specific liekneen= and7 as:

M:EsT=ME). (12)

The lengthS can be seen as a description window of the model, and musttiner
be chosen carefully. Indeed, it has to be large enough tamékaccount all the track
irregularities wavelengths and correlations, withoubiring too many computational
costs. The lengtly is thus derived from experimental measures analysis.



Let’s be aware that two kinds of dependencies have to be takemaccount in the
modelM:

¢ the spatial dependencies, which characterise how twoulaeges at two dif-
ferent abscissa of the same track are related;

¢ the statistical dependencies, which describe the link detwtwo irregularities
of two different tracks at the same abscissa.

The following methodology allows to well-distinguish tleesvo kinds of depen-
dencies, and therefore to facilitate the interpretatiothefphysics of the geometry.
2.3 Theoretical frame of the modelling
2.3.1 Notations

Let (O, A, P) be a probability space. Ldt% (©,R*) be the space of all the second-
order random variables defined ¢®, A, P) with values inR?, equipped with the
inner product., .):

(U, V) :/@UT(G)V(Q)dP(Q):E(UTV), VU,V € L} (6,RY), (13

whereF (.) is the mathematical expectation.

We consider track irregularities modelled by a second+ofdevalued stochastic
processX = (a, 3,0, ¢), indexed bys € Q = [0, S], whose realisations are almost
surely in the Hilbert spacg?(Q2, R*) equipped with the inner produgt .):

(u,v) = /QuT(s)'v(s)ds, Vu,v € L*(Q,R?Y). (14)

It is assumed thaX is mean-square continuous.

It has to be noticed that gathering all the irregularitiegdhia same vector, and
adopting a vectorial approach certifies that the inner dépecies between different
irregularity fields are accurately taken into account.

2.3.2 Karhunen-Logve expansion

Let [Rx x| be the autocorrelation matrix of the random fieXd

[Rxx]: (s,8) € ¥ [Rxx(s,s)] = E (X(s)X7(s)). (15)

Under the asumptions aboV& x x| is continuous oif2 x 2 and can be written as:



[Rxx(s,s) Z)\ku s) (s, (16)

k>1

where (), u*) is an orthonormal basis df?(2, R*) solution of the Fredholm equa-
tion (see [1] for further details):

Vk > 1, /[RXX(S, b (s)ds' = MuP(s). (17)
Q
The eigenvalues, are non-negative, and can be arranged in decreasing order:

The Karhunen-Loeve expansion of the stochastic pro&essthen:

=V ub (), (19)

k>1

with:
I S
Uk—\/)\—k(X, ). (20)
Equations (15), (16), (19) imply:
E (nkm) = 6. (21)

Based on the eigenvalues decrease;an thus be approximated as:

Z VAU (). (22)
wherelV, is related to a chosen value of the normalized mean-squeme er

2 Ek>Nz

€ 23
KL — Zk21 ( )
Under a matricial form)X can be rewritten as:
X (s) =[Q(s)]n, (24)
with:
n= (7717---,771\71)7 (25)
[Q(s)] = [u(s)][A?], (26)



[u]:[ul u? - uNw}, (27)

VAL 0 0
=] O VRl 28)
0 0 AN,
The condition (21) can then be rewritten as:
E(nm") = [In.], (29)

where[Iy, | is the N,-dimension unitary matrix.

Let’s note that the more correlated the process is, the enthk needed number of
terms to achieve a given error is. Moreover, thanks to théai@en-Loeve expansion,
spatial and statistical correlation are clearly separai#fthereasu| emphasizes the
predominant track irregularity spatial shapgsgathers all the statistical variability.
In order to fully describeM, the statistical content af, and more specially its joint
probability density function (PDF), has to be focused on.

2.4 Computation of the joint PDF ofny
2.4.1 Gathering ofv“*? realisations ofn

As it has been showed in introduction, the measurement liRd 320 has recently
given access to huge data bases, and motivated statistedgkes of the network. In
the following, it is considered that all the measurementsgiten period can be seen
as a set5e*? of v’ track portions of same lengtt

S = {Tei 1 < i < v (30)

In reference to the stochastic description given in se@i@neach element:
in $¢*? is then regarded as an independent realisation of the rapdoress/ . More
precisely, the corresponding s&t*? = {x®?* 1 < i < v*?} is defined such that
x*P refers to the measured track irregularitie§6fr#, and is such that*»:1, ... geer»="
arev’? independant realisations of random fied

Consequently, the autocorrelation matrix as well'ds realisationg ne=?*, 1 < i < v}
of random vector; can be assessed as:

peTp

Z me:cp )i exp,i(S/)T’ (31)

[RXX S, S

Veq:p



VI<i<v? V1<k<N,, nptt="__"7 (32)

2.4.2 Polynomial chaos expansion of random vectoy

From equation (21), random variables...,y, are orthogonal, but are generally not
independent. Hence, the joint PRFis difficult to characterise in high dimensioN{
large) using non-parametric statistical estimators figf# realisations of the vector
n. The maximum entropy principle, discussed in [2], has bedmduced to build
a priori stochastic model, by focusing on the only usable and aveailaformation.
Very relevant when dealing with small dimension problemthwiven small avaiblable
data, this method is limited in high dimension. More recgmiblynomial chaos ex-
pansion methods have underlined very promising resultggim-tiimension (see [3]).
Based on the projections of the considered random vegton known and chosen
orthonormal polynomial basig),, o € A,}, these methods aim at building a chaos
representation that makes explicit the link between théovesf interest and an other
random vecto€ of known dimension and joint PDF:

nr (V) = 3 g @ (), (33)
acA,
5 = wa(é) = Hal (§1> ®.. & HaNg (&Vg)u (34)

NQ
A, = {a: (o1, ra,) [al =) o gp}, (35)
i=1

whereg is aN,-dimensional normalized gaussian random vectos: (N, + p)!/ (N,!p!)
is the dimension of4,, andz — H, () is the normalized Hermite polynomial of
degreen,. By carrying out a different index ordering, equation (38hde rewritten
as:

n ~ Zijj(é) = [y ®(¢), (36)
in which:
vl =1[y' - y"]. (37)

It can be noticed that condition (21) now implies that:

[yl € O = {[b] € My, n(R) | [D][B]” = [In,]} - (38)



2.4.3 Identification of the polynomial chaos expansion cogtients

Based on the maximum likelihood principle, and tfé” independant realisations
{neert 1 <1 < v**?} of i, the optimal polynomial chaos expansion coefficients gath-
ered in matri{y°?] may be found as the result of a maximization problem (seeoj4] f
further details):

[y™'] = argmax L ([y]) , (39)
[y]eO

where/ is the log-likelihood:

perp

L(y]) = Z In pyenacs () (1P, [y]) - (40)

Using the kernel estimation method, the PRy of n*“>*() can be esti-
mated fromy“"*>* independent realisatiofs(6,), 1 < p < v<hes} of £ for any [y
in O andx in RN+:

Vchaos

N, 2
1 1 z X — nghaos(]\/" gp)
p chaos(N) (m, [y]) ~ -~ - E 6xp - ( ,
n (271_)1\7@/2 pchaos Hévzl hy. o1 2 P hy,
(41)

n (N, 0,) = [y] ¥ (£(6,)) (42)

whereh = (hy,--- , hy,) is the optimal bandwith vector with respect to the AMISE
criteria (see [5]) of the Kernel smoothing estimatiompgi.... ). Equations (40) and
(41) yield:

£([y) ~ L() = Lo + Ly, (43)
N,
Lo =—1P]n <(27r)N””/2 pehaos H hk) ; (44)
k=1
LETP ychaos Ny exp,i _  chaos 2
£VZIH<Z exp (;Z( . 77';% (N’ep)> )) (45)
i=1 p=1 k=1

As £ is non concave, random maximization algorithms are usesttmate[y ).



2.5 Post-processing of the track modelling

Finally, once[y°"] has been computed, it can be deduced from equations (24) and
(36):

V(s,0) € Qx 0, X(s,0) = [Q(s)]ly""]® (£(0)) - (46)

By focusing only on the track irregularities, and by ideyitiy respectively/ and
= to X andg, the stochastic modeM of equation (12) becomes:

M: &= T =M(§) =[Qly™]¥ (§). (47)

The parameterd’, andp being chosen thanks to convergence studéglsand[y |
being computed, any independant realisatiof lefads to a representative and realistic
realisation of the irregularity vector of a potential trgmfrtion of lengthS. Hence,
any statistical post-treatment can be carried out on thehatiic modeiM.

3 Application

In this part, the previously described methodology is aupsitep by step to the com-
putation of realistic track portions, whose irregulastare representative of the global
quality of the network. In a certification prospect, thegaesentative tracks could be
used to numerically homologate a train.

This study being confidential, very few normalized values@esented.

3.1 Step 1: computation of the matrix-valued autocorrelaton func-
tion [RXX]
For this study, track irregularity measurements on arousiitd = 1850 portions of

same lengtlt have been gathered.
From equation (31),Rx x| was evaluated. As an illustration, in Figure 3 is repre-

Sentequx(S, 5/)]11-
3.2 Step 2: Karhunen-Lave expansion

The solutions(u, \) of the Fredholm equation (17) were then computed thanks to
a Finite Element approach. Indeed, we defihe= {s; =0, s9, ..., sy, = S} and
eigenvectors are projected on linear shape functions:

u(s) =Y b"hy(s) = [H]d(s), (48)
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Figure 3: Representation ¢f, ') — [Rxx (s, s')]11

d(s) = (b1, b, ..., by, by, ..., b)S) (49)
hy oo hng 0
T | O R | R
[H] = 0 ... ... oo oo 0 h ... hyg O . .| (50)
0 .0 hy ... hyg

where{s — h,(s),1 <n < Ng} are unidimensional linear shape functions. Solu-
tions of (17) are finally looked for from the classical eigalue problem:

(K]~ A[M)) D = 0, (51)

where:
// TIRxx(s,8)][H(s")])ds ds, (52)
M] = / [ ()] [H(s))ds. (53)

11
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Figure 4: Characterisation of the Mean-Square Efgrwith respect to the truncation
parameterV,

Given acceptable values of truncation for the mean-squaoe €., of equation
(23) (whose evolution is represented in Figure 4), the @tinoo parameterV, of

equation (22) is assessed:
o 2, =01+ N, =452
e 2, =0.05 < N, = 807,
o ¢, =0.01 & N, = 1423.

N, can be directly compared to the truncation valié; x 4Ng due to the finite
element approximation. We verify the inequality << 4Ng x 4Ng, which justifies
the importance of the Karhunen-Loéve expansion in terneddiction efficiency.

From equation (32), the**? realisationg n**?*, 1 < i < v*?} of y are computed.
The PDF ofny can thus be estimated and analysed. For instance, in Figleriel
smoothing estimations of the PDF #f, 7, andn; are compared to the normal distri-
bution. Marginal distributions ofy being non-gaussian, the random procAsg non
gaussian. The joint PDF of needs therefore to be properly characterised.

3.3 Step 3: polynomial chaos expansion
In agreement with the mathematical frame of section 4.4, expanded on a known

polynomial basis of parametefg, andp:

(Ng+p)!/(Ng'p!) '
n= n0haOS(Ng7p) = Z y]7opt\:[jj (517 "'7£Ng) = [yOpt]‘I’ (517 "'7£Ng) .

jZI (54)

12
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Figure 5: Estimation of the PDF of three elementg)of

The values ofV, et p stems from convergence analysis. As described in [4], for

each componenf(N,, p), the L'-log error functiorerry, is introduced:

V1<k<N,, erry(Ng,p) = / llog1o <pn;zp (x)) — logo <pnzhaos (x)) |dx, (55)
BI}

where:

e BI, is the bounded domain which is adapted to the valueg 6f

® pyeer Andp,cnaos are the PDF ofy. "7 andng"es respectively.

For instance, evolution ofrr (N, p) is represented in Figure 6. It can be no-
ticed that the choice ofN,, p) is not easy: the higher the values(d¥,, p) are, the
more complex the polynomial basis is, the more accuratertbjegiion should be, but
unfortunately the more difficult and less precise the idexation is.

The multidimensional error functioarr(N,, p) is deduced from the unidimen-
sional L'-log error function to evaluate the final, andp:

Ny
err(N,,p) = Zerrk(Ng,p) (56)
k=1

3.4 Step 4: realisation of representative track irregularties

Once the polynomial projection matriy°*'] of equation (54) has been computed,
equation (47) allows to generate a representative trackgay from any realisation
of € = (&, ,&y,). InFigure 7 are plotted two realisations of the stochastic@ss
X. Inorder to be clearer, the graphs of each componeXi oivhose mean values are
equal to zero, have been translated.

13
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4 Conclusions and prospects

At a time when the numerical power and the mechanical sinanalgorithms preci-
sion keep increasing, the introduction of the simulatiotharailway maintenance and
certification would represent an important progress. Thmearical characterisation of
the track geometry is therefore bound to play a key role is éwblution.

From a sample of track measurements, a complete methodamgpnerate realis-
tic and representative track geometries has been desdniltieid paper.

Coupled with any railway software without requiring an a&séo the sources
codes, these track geometries should allow to charactdreselynamic behaviour
without simulating runs on the whole network.

At last, the influence of the evolution of the vertical andihontal curvatures on
the track irregularities could enrich this study.
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