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Expectations for a new calorimetric
neutrino mass experiment
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@ Dipartimento di Fisica dell’Universita di Milano-Bicocca, Milano, Italia
YINFN, Sezione di Milano-Bicocca, Milano, Italia

Abstract

A large calorimetric neutrino mass experiment using thermal detectors is ex-
pected to play a crucial role in the challenge for directly assessing the neutrino
mass. We discuss and compare here two approaches to the estimation of the ex-
perimental sensitivity of such an experiment. The first method uses an analytic
formulation and allows to readily obtain a sensible estimate over a wide range of
experimental configurations. The second method is based on a frequentist Mon-
tecarlo technique and is more precise and reliable. The Montecarlo approach is
then exploited to study the main sources of systematic uncertainties peculiar to
calorimetric experiments. Finally, the tools are applied to investigate the op-
timal experimental configuration for a calorimetric experiment with Rhenium
based thermal detectors.

Key words: Neutrino mass, Beta decay, Low-temperature detectors, '*"Re,
Montecarlo simulations, Systematic errors

1. Introduction

Assessing the mneutrino mass scale is one of the major challenges in today
particle physics and astrophysics. This requires to measure the mass of one
of the three neutrinos and the kinematical neutrino mass measurement is the
only model independent method. In particular, the electron anti-neutrino mass
can be'measured by precisely analyzing the kinematics of electrons emitted in
beta decays. In practice this means measuring the minimum energy carried
away by the anti-neutrino, i.e. its rest mass, by observing the highest energy
electrons emitted in the decay. To date, the study of the H beta decay end-
point by means of electrostatic spectrometers has proved to be the most sensitive
approach, yielding an upper limit on the electron anti-neutrino mass of 2.2eV [1].
Starting from 2012 the new experiment KATRIN will analyze the 3H beta decay
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end-point with a much more sensitive electrostatic spectrometer and with an
expected statistical sensitivity of about 0.2eV [2]

However, these spectrometric experiments suffer from many systematic un-
certainties because the measured electron energy has to be corrected for the
energy lost in exciting atomic and molecular states, in crossing the source, in
scattering through the spectrometer, and more. To avoid these uncertainties it
was proposed to embed the beta source in a detector and to perform a so called
calorimetric measurement. Ideally, in such a configuration for each decay the
detector measures all the energy released except for the energy carried away by
the neutrino.!

A drawback of calorimetry is that a calorimeter is forced to detect all the
beta decays while only the ones very close to the end-point Ey are useful for mea-
suring the neutrino mass. The fraction of useful decays in a small interval AF
below Ej is approximately given by (AE/Ep)3, therefore it pays to select a beta
decaying isotope with the lowest Fy value. In the past, calorimetric neutrino
mass experiments have been performed implanting *H in Silicon diode detectors
[3]. The use of 187Re as beta source seems more promising since it is the beta-
active nuclide with the second lowest known transition energy (Ep ~ 2.5keV). In
the ’80s S. Vitale proposed to realize calorimetric neutrino mass measurements
using ®"Re as beta source and exploiting the thermal detection technique [4].
Since then two experiments of this kind have been carried out: the MANUJ[8, 7]
and MIBETA[5, 6] experiments. MANU used one detector with a NTD ther-
mistor glued to a 1.6 mg metallic rhenium ‘single erystal, while MIBETA used
an array of ten silicon implanted thermistors with AgReO, crystals for a total
mass of about 2.2mg. The two experiments collected statistics corresponding
to 107 and 1.7x107 decays respectively, yielding limits on m,, of about 26eV at
95% CL and 15eV at 90% CL respectively.

Thanks to the recent developments in the thermal detection technique, a
new very large calorimetric experiment aiming at a sub-eV sensitivity may be
feasible: this is what the MARE project is about [9, 10].

In this paper we present a comprehensive discussion of the potential sensitiv-
ity to the neutrino mass for a calorimetric experiment. We define the sensitivity
on the neutrino mass as the statistical and systematic uncertainties on m?2 [2].
First, through an analytical approach, we derive an algorithm to assess the sta-
tistical sensitivity for a given experimental configuration. Then a Montecarlo
method is described which allows to get more precise statistical sensitivity es-
timates: The results of the analytic approach are then validated through the
comparison with the Montecarlo results over a wide range of experimental pa-
rameters. The second part of this paper focuses on the systematic uncertainties
peculiar to the calorimetric technique by applying extensively the Montecarlo
approach to their investigation. We conclude with a discussion of the possible

n practice particles emitted at the detector surface or with enough energy may also escape
detection. In most cases, however, only a small fraction of the decays are affected by such an
effect.



experimental configurations for future large scale calorimetric experiments.
Before moving to the next sections, it is worth noting that, because of neu-
trino mixing, the electron (anti-)neutrino emitted in beta decays is a superpo-
sition of neutrino mass eigenstates. It can be shown that in the mass range of
interest for future kinematical experiments — m, > 0.1eV — the experimental
observable m,, could be written more correctly as m, = />, m12|Uei 2xmy ~
mo & mg where m; are the masses of the three neutrino mass eigenstates and
U, are the elements of the electron sector of the neutrino mixing matrix [11].

2. Statistical sensitivity

2.1. The analytic approach

In the following we derive an approximate analytic expression for the statis-
tical sensitivity of a calorimetric neutrino mass experiment. The primary effect
of a finite mass m, on the beta spectrum is to cause the spectrum to turn more
sharply down to zero an energy distance m,, below the end-point £y (lower panel
of Figure1). To rule out a finite mass, we must be sensitive to-the number of
counts expected in this interval. The fraction of the total spectrum within an
interval AE below the end-point Ejy is given by

Eo

FAE(mV):/EfAENﬁ(E7mV)dE (1)

where Ng(E,m,) is the beta energy spectrum for a neutrino mass m, and
normalized to unity. The signal to detect in counts is therefore

signal = AgNget|Eap(my) — Fap(0)|tm (2)

where Ag is the single detector source activity, Nge; is the number of identical
detectors and tps is the'measuring time (see lower panel of Figure1).

The detection of thissignal is impaired by the noise caused by the statistical
fluctuations of the total measured spectrum in the interval AE. For a calorime-
ter the total measured spectrum is obtained summing up — from all detectors
— the beta decay events, the counts due to unresolved pile-up of two or more
decays, and any additional background counts.

As a first approximation we can neglect the pile-up of more than two de-
cays. We can then crudely approximate the pile-up spectrum by assuming a
constant pulse-pair resolving time, 7r, such that events with greater separation
are always detected as being doubles, while those at smaller separations are
always interpreted as singles with an apparent energy equal to the sum of the
two events. In fact, the resolving time will depend on the amplitude of both
events, and the sum amplitude will depend on the separation time and the filter
used, so a proper calculation would have to be done as a Monte Carlo with
the actual filters and pulse-pair detection algorithm being used. However, this
approximation is good enough to get the correct scaling and an approximate
answer.
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Figure 1: Higher panel: beta spectrum as in (8) compared with pile-up spectrum (3). Lower
panel: zoom around the end point, with a comparison between 0 and finite-neutrino-mass
beta spectra

The parameter 7x is related to_the detector signal bandwith and high fre-
quency signal-to-noise ratio: in practice 7 is of the order of the detector rise
time.

The two event pile spectrum is given by

Npp(B) = (L e **"")N;(E,0) © Ny(E,0) (3)
and the fraction of this spectrum within the interval AE below the end-point

FE)y is obtained by
Eq Eo
[ N B~y [ N0 @ NaB 0 ()
Eo—AE Eo—AE
where; at first order, TrAg is the probability for the two event pile-up to occur,
i.e. the fraction of unresolved pile-up events, fp,. From (1) and (4) one can
write the noise in counts as

noise = \/ AgNact(Fan(0) + Fihg)tar + NactbAEty (5)

where b is the average background counting rate for unit energy and for a single
detector. We can then write the signal to noise ratio in a region within AE of
the end-point Ej, as

signal |Far(my) — Far(0)]
= /A5 Nert 6
noise prtdettM VFar(0) + FX, + bAE /A (6)
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It is now useful to introduce the exposure T = Nyt and total number of
events or total statistics of the experiment N., = AgNgettas.

The value of m, which makes this ratio equal to 1.7 is the sensitivity at 90%
confidence level, Ygg(m,). Therefore one has to solve for m, the following
equation

N~ Fap(my) — Fap(0)]
Nev VFar(0) + FR, £ bDAE/A; b (7)

To evaluate (7), we can consider approximate expressions for Fag(m, ) and
FR.. In particular if we restrict ourselves to 187Re, which has a first forbidden
unique beta transition, we can make use of the following empirical spectrum

No(Bm,) = (o = B 1= o= )

which is an extremely good approximation of the expected theoretical shape
[12] as well as a perfect description of the experimental observations [6, 7].
For a null mass, from (8) we can derive

Fap(0) = (%) o)

while, for a small but finite mass m,,, using a second order expansion in m, /AFE
we have approximately

3m? 3m?
Fag(my) =~ Fag(0) (1— SAL? +8AE’4) (10)

For the pile-up spectrum (3) using (8) we can calculate (between 0 and Ep)

1 E E? E3 E* 3 E°
Npp(E)=(1—e A8y = (9 — 18— + 12— —3=7 + — — 11
)= 1) o s ey v ) )
Between Ey and 2E the expression for N,,(E) is more complicated and it is of
no use in this context. Substituting (11) in (4) and carrying out the integration,
we obtain

FRbs = f a <6¥ + 15AE2 —|—20AE3 - 15AE4 - AB? - AEG) (12)
AE 2790\ Ey E? E3 E} E? ES
where we have used the approximation (1 — e~ 4¢7”) ~ AgTr = f,, because in
all interesting experimental configurations fp,, < 0.01.
Substituting (9), (10) and (12) in (7), keeping only the terms up to (AE/Ep)?
and considering that (1 + fp,) =~ 1, we obtain

m2 (3 3m?2 AE3 3AE 3AE?

v (SAE— 222 ) \/Noy = 1.7, == o ) 4 bAE/A

E3 (2 8AE> : 7\/ E3 +f””(10E0 LYo >+b /4
(13)




which can be solved for m, to give the sensitivity at 90% confidence level,
Yg0(m,). Considering only the leading terms in (10) and (12) then the solution
is

. E [AE By (3 Eo\]*
Yoo(my) = 1.13m [Eo + AL <10 fpp+bAﬁ>} (14)

In order to make meaningful use of (14) one has to interpret correctly the energy
interval AE. The same applies to the solution of (13).

The two terms in the square bracket in (14) represent the contributions
to the noise from the statistical fluctuations of the beta and pile-up spectra
respectively (here we neglect the background term for sake of clarity). When
the pile-up term is negligible (because of the low rate Ag or of the short resolving
time 7g) the left term dominates and it is worth to keep AF as small as possible:
the limit is of course the detector energy resolution. On the other extreme, when
the end-point of the beta spectrum is buried in the pile-up spectrum, the noise
is dominated by the right term. In this case the signal-to-noise ratio improves
by enlarging the energy interval AFE.

It is then clear that there is no defined value of AE<to plug in (14): the
solution we have found is to choose AFE as the value that minimizes ¥g(m, )
for a given set of experimental parameters, with the boundary condition that
AFE cannot be smaller than the detector energy resolution A Ewwam-

In particular, for the simpler case of (14), by searching the positive zero of
the derivative with respect to AFE, we can obtain the following

3 E
AE =maz | Eoy| — fop + b—, AEpwau (15)
10 As

This approach for defining AF can be applied to the solution of (13) as well.
In this case AE can be evaluated numerically following the above prescriptions.
In particular to obtain the results presented in this paper, after making the
substitution AE — |AFEypt| + AEpwim, we have found numerically the AE,,;
which minimizes the solution of (13)

90 (ml/) - f(AEopt; AEFVVHM; TR, Aﬁa Ndetv ta, b) (16)

It is worth noting that, in this analysis, equations (15) and (16) are the only
places where the detector energy resolution A Epwpn shows up.

2.2. Montecarlo approach

In this section we describe a frequentist Montecarlo code developed to esti-
mate the statistical sensitivity of a neutrino mass experiment performed with
thermal calorimeters. The approach is to simulate the beta spectra that would
be measured by a large number of experiments carried out in a given configura-
tion: the spectra are then fit as the real ones [6] and the statistical sensitivity
is deduced from the distribution of the obtained m?2 parameters.

The Montecarlo parameters describing the experimental configuration are
the total statistics Ng,, the FWHM of the Gaussian energy resolution A Exwam,



the fraction of unresolved pile-up events fp, and the background B(E). These
input parameters can be derived from the ones actually characterizing a real
experiment: N, = NgetAgtar and, by recalling (4), fpp = Fg%:EO ~ AgTr,
where again Ng.; is the number of detectors, Ag is the beta decay activity of a
single detector, tys is the measuring time and 7x is the pile-up resolving time.

The procedure to estimate the statistical sensitivity goes through the follow-
ing steps:

e The theoretical spectrum S(E) which is expected to be measured by the
virtual experiments is evaluated:

S(E) = [Nev(Nﬁ(EvmV) + fppNﬁ(Evo) ® Ng(E,O)) + B(E)] ® R(E)

()

where Ng(E,m,) is again the ®"Re beta spectrum normalized to unity

(8), B(E) the background energy spectrum and R(E) is the detector en-

ergy response function. The B(E) function is usually taken as a constant

B(FE) = bT. The response function R(E) is assumed to be a symmetric
Gaussian

1 _ B2
G(E) = e 207 (18)
oV2m

with standard deviation ¢ = AEpwnm/2-35.

e The virtual outcome of a large number (between 100 and 1000) of exper-
iments is numerically generated by letting the spectrum S(E) fluctuate
according to a Poisson statistics. The simulated experimental spectra are
generated on an energy interval which is smaller than the full 0 — 2E,
interval.

e Each simulated spectrum is fitted using (17) and leaving m?2, Ey, Ne,
fpp and b as free paramaters. The fit is restricted to an energy interval
smaller than the one used for the simulated spectrum generation.

e The 90% C.L. m,, statistical sensitivity 3gg(m, ) of the simulated experi-
mental configuration is given by Ygo(m,) = /1.70,,2, where 0,2 is the
standard deviation of the distribution of the m?2 found by fitting the spec-
tra.

1 — N —
02, = — S (m2 —m2)? = —(md —m2) (19)

Vi

where N is the number of generated spectra and m?,i are the values found
in each fit for m? fit parameter.

e The statistical error on the 90% C.L. m,, statistical sensitivity is estimated
as follows. By defining y; = (m2, — m2)?, we have J ~ 02, and we can
write ’

N — _ N 1 —
oy = N——(y2 -7~ N1V Z(m?’i —m2)t — o, (20)



The error on /9 = 0,2 is given by

1 | of
- = _ 21
V7 2\ Nopyz (21)

and therefore the error on ¥gg(m, ) is obtained

1.7 e
€S90(m,) = 7% (22)

Using equation (22) one finds that the statistical error on the Montecarlo
results is around 3% and 1% for about 100 and 1000 simulated experiments
respectively.

2.8. Analytic vs. Montecarlo

We have compared the predictions of the two approaches described in the
previous sections for a wide range of experimental configurations suitable for
obtaining a sub-eV neutrino mass sensitivity (Figure2, 3, 4 and 5). In all plots
the continuous lines are obtained through equations<(14) and (15), while the
dashed lines are obtained from (13) as described at the end of the section on
the statistical sensitivity. The symbols are the results of the Montecarlos, which
have negligible errors on these scales (see equation (22)).

Figure2 shows how the sensitivity improves for increasing single detectors
activity Ag, with the other experimental parameters fixed and for an exposure
T of 10000det xyear. From this plot one can deduce that it pays to increase the
single detector activity at the expense of an increased fraction of pile-up events,
fpp- The upper panel of Figure 2 shows the value of the optimal energy interval
AFE,,: defined as discussed above.

Figure 3 demonstrates how the impact of the detector FWHM energy res-
olution AE on the sensitivity is reduced by a high pile-up fraction f,,. This
Figure shows also one of the limits of the analytic approach described above,
i.e. the poor consideration of the detector energy resolution which translates in
a too weak dependence of the sensitivity on this parameter.

From Figure4 it is possible to appreciate the importance of the total statis-
tics N, to reach a neutrino mass sensitivity of the order of 0.1eV. In particular
energy resolutions AE of about 1eV and pile-up fractions of the order of 10~6
are required. The fine dashed line on the plot corresponds to a Ne_vl/ * func-
tional dependence of the sensitivity (recall equation (14)): this dependence may
be exploited to scale the Montecarlo results.

In Figure5 the impact of the continuous background below the beta spec-
trum is shown. The abscissa is the ratio between N., and the total number
of background counts Nyig between 0 and Ep, i.e. Nppg = bE¢T. Clearly the
impact is lower for higher pile-up fractions f.

For more details on each plots the reader can refer to their captions. In the
final section of this paper these results will be used to assess the potential of a
calorimetric neutrino mass experiment using %"Re.
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Although the agreement is only partial, the comparison confirms that the
analytic formulation goes in the right direction to be used to make useful predic-
tions. Nevertheless we believe that the most accurate estimate of the sensitivity
is the one obtained through the Montecarlo frequentist approach. From the
Figures it is apparent that the formula tends to overestimate the sensitivity for
increasing AE,pt, 1.e. when the sensitivity is limited by the pile-up or the con-
tinuous background. To improve the predictive power of the analytical approach
it is possible to introduce free parameters in the formulas and to adjust them
to better reproduce the Montecarlo predictions, but this is out of the scope of
this paper.

As a general check, both approaches can be applied taking as input the exper-
imental parameters of the Milano experiment with an array of AgReOy, crystals
whose results are presented in [6]. For N, = 1.7 x 107, AEpwum = 28.5¢V,
fop = 2.3x107% and N, /Npry = 3.28 x 10% one obtains a sensitivity at 90% C.L.
of about 15 and 17eV, using equations (14) and the Montecarlo respectively,
while the limit on the neutrino mass reported in [6] is about 16eV at 90% C.L.
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3. Systematic uncertainties

Although, as mentioned in the introduction, a calorimetric neutrino mass
experiment is considered free from systematics related to the external source
effects, still it may be affected by other uncertainties.

As it will be discussed in the following, the origin of some of these effects
(electron escape, beta decay spectral shape and beta environmental fine struc-
ture) is indeed related to the beta source and may be unavoidable in spite of
the calorimetric configuration. In order to minimize the related uncertainties,
this kind of effects must be precisely modelled with the help of theoretical in-
vestigations, independent experiments and Montecarlo simulations.

Other systematic uncertainties arise from instrumental effects and can be
mitigated through an improved detector design and characterization as well as
a careful off-line data analysis.

The frequentist Montecarlo code described above can be readily adapted to
estimate the many systematic effects which in general fall under two categories.
To the first belong the uncertainties due to lack of accuracy with which the ex-
perimental parameters are determined. To assess the corresponding systematic
uncertainties in the generated spectra, the parameters are randomly fluctuated
— according to the given accuracy — while they are kept fixed to their average
value in the fitting function S(E) (see (17)). The second category consists in
the effects caused by an incomplete or incorrect modelling of the data. In this
case the adopted approach is to include the effects in the generated spectra, but

11



not in the fitting function S(E).

In general these procedures result in a shift of m2 away from zero and, in
some cases, in a sensible deterioration of the sensitivity as shown by the wider
error bars in the plots. The purpose of this analysis is to identify the size of the
inaccuracy or of the neglected effect for which the shift of m? remains within a
given limit. Table1 reports the results in terms of the systematic uncertainty
giving a shift of [m2| less than 0.01eV? - value for which the systematic uncer-
tainties remain smaller than the statistical error of an experiment aiming at a
sub-eV sensitivity.

In the following we analyze in more details the effects that are more likely to
introduce systematic uncertainties in calorimetric neutrino mass experiments.
Except where differently stated, the plots in this section are obtained for. 4V., =
1014, AFEprwum = 1.5eV and fpp =10"6.

3.1. Source related uncertainties

Ezcited final states. Beta decays to any kind of excited final state are not going
to perturb the beta spectrum end-point as long as the state lifetimes are shorter
than the detector integration time — which is always more than about 1 us.
In fact, while an excitation energy FE.,. lost in the beta decay shifts the beta
spectrum end-point to E) = Ey — Eeze < Ep, at the same time the coincident
detection of the energy E.,. released in the state de-excitation adds an energy
offset to the beta spectrum. The final outcome is that to each excited state
corresponds a beta spectrum starting at Fey. and with end-point Ey = E} +
Eeze. Thanks to its simple functional energy dependency (8) the 87Re beta
decay spectral shape above E.,. remains unperturbed.?

Electron escape. A fraction of electrons emitted in the decays of %"Re nuclei
close to the detector surface will not be contained in the calorimeter. We have
used the Geant4 toolkit [15] to estimate the type and magnitude of this effect
on the measured spectrum. Figure 6 shows the results for a 1 mg cubic Rhenium
detector - i.e. with linear dimensions of about 0.362mm - in terms of relative
deviation with respect to the spectrum given by (8). The simulation has been
repeated for the two available Geant4 low energy extensions (the results in
Figure6 are the ones obtained using the Penelope extension) and for different
low energy cuts applied in the electron transport. These tests has confirmed the
shape of the effect and its magnitude, while giving slightly different results. In
conclusion the Montecarlo simulation cannot be considered reliable to precisely
calculate the effect, also considering the uncertainties in the shape and size of
the_detector rhenium absorber. The effect on the measured spectrum can be

2This is not true for a more general beta spectrum shape as for example in the case of
allowed transitions with N(E) o< pE(Eo— E)?F(Z, E), where p is the electron momentum and
F(Z,FE) is the Fermi factor. For calorimeters, it is more generally true that at the end-point
the correction for the presence of excited final states vanishes approximately as Y~ ,(1+V;/E),
where V; are the final state energies.
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simulation for a 1 mg cubic Rhenium detector. The effect plotted in the graph is (N'(E) —
N(E))/N(E), where N(E) is given by equation (8) and N’(E) = N(E)fesc(E)

parametrized as a multiplicative factor to include in (8) given by

FE
fesc(E) =1- a'escE_O (23)

where the dimensionless a.s. parameter will have to be left free in the data
analysis. The solid line in Figure6 corresponds to adese = 1.9 x 107°. We
estimated the systematic error arising when this effect is not included in the
data analysis for various values of a.s.. The results are plotted in Figure7.

3.2. Beta spectrum uncertainties

Spectral shape. Although the use of equation (8) for the *®"Re beta decay spec-
trum is up to the purpose of the present work, future high statistic experiments
will need a-more precise description of the spectrum. In order to estimate the
sensitivity to deviations from the simple equation (8) we have considered the

corrective factor
feorr(E) =14 a1 E + ay E? (24)

which is actually an extension of the correction for the escape of beta elec-
trons (23). The effect of deviations of this kind has been investigated by
generating the experimental spectra according to a modified beta spectrum
N'(E) = N(E) feorr(E) and fitting them using the regular beta spectrum N (E)
in S(E) (17). Figure8 shows the effect on m?2 varying the a; coefficients (see
the caption for more details). Figure9 displays the results for positive values of
the a; coefficients.
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Figure 8: Systematic m? shift due to a deviation of the beta spectrum shape from the simple
quadratic form in (8). The four graphs represent the four quadrants of the (a1,a2) plane,
where a1 and ag are the correction coefficients introduced in (24). Starting from upper right
graph and going clockwise, they are the aj vs.ag2, ajvs. —a2, —aj vs. —ag, and —aj vs. a2
plots. The colour coded z-axis is the m2 value. The Montecarlo parameters are Ne, = 1014,
AEpwam = 1.5eV fpp = 1076 and bT = 0c/eV.
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Figure 9: Detail of the a1 > Ovs.az2 > 0 quadrant for a wider parameter range and with
logarithmic z-axis.

For sake of comparison, one can consider that the deviation of the approx-
imate beta spectrum shape described by equation (8) from the theoretical one
given in [12] can be parametrized as

feorr(B) 1.0 = 1.8 x 107°E+28x 107 E? —35x 107 PE* + ... (25)

Neglecting such a correction in the data analysis would systematically shift m?
by about -280eV2.

Beta Environmental Fine Structure. The Beta Environmental Fine Structure
(BEFS) is a modulation of the beta emission probability due to the atomic and
molecular surrounding of decaying nuclei: it is the analogous of the oscillation
observed in the Extended X-ray Absorption Analysis (EXAFS) and it is ex-
plained by the electron wave structure in terms of reflection and interference.
Although the phenomenon is completely understood, its description is quite
complex and the parameters involved are not known a-priori. Because of its
faintness, so far the BEFS has been observed in metallic Rhenium [13] and in
AgReO4 [14] only below 1.5keV where it is larger. It is clear that future neu-
trino mass experiments will cope with the need of a very accurate description
of the BEFS modulation up to the beta spectrum end-point. The parameters
presently available are still affected by large statistical errors: for a safe extrap-
olation up to the end-point the BEFS must be characterized using much higher
statistics spectra. Meanwhile the Montecarlo approach can be used to show
the shift on m?2 when data with BEFS included are fitted to a model without
BEFS. For the BEFS function it is assumed that the one used to interpolate the
data up to 1.5keV can be used up to the end-point without modifications. A
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Figure 10: Residuals from the fit of a Montecarlo generated beta spectrum-with BEFS using a
fit function without BEFS. The Montecarlo is for Ne, = 100, AEpwim = 5€V, fpp = 107°
and bT = 0c/eV.

Montecarlo simulation of the Rhenium BEES in a measurement with a statistics
of about 10'° events is shown in Figure 10 in terms of residuals of the fit. Fig-
ure 11 shows what happens to m?2 when fitting spectra like the one in Figure 10
with different left boundaries of the fitting energy interval. The effect worsens
when the left boundary is moved to lower energies where the BEFS gets larger.
The plot confirms that the inclusion of the BEFS in the end-point analysis is
mandatory.

Pile-up spectrum. As‘discussed in §2.1, formula (3) holds only under the as-
sumption of a constant resolving time 7r. For real detectors 7 depends on the
pulse shape and on the noise level: in practice 7z tends to increase for smaller
pulses. The detailed behavior of the resolving time is difficult to predict and
must be modelled by Montecarlo methods taking in account both the actual
pulse and noise frequency spectra and the algorithm used to identify the double
pulses. Examples of such analysis can be found in [16, 17]. In order to get a
sensible idea of the systematics related to this effect, we have used the results
presented in [16]. We have numerically evaluated the pile-up spectrum intro-
ducing a variable pile-up rejection efficiency described by an effective resolving
time Tgﬁ

T}ezﬁ =7r [14 (Nrp — 1)67”)‘?} (26)

where r4 < 1 is the ratio between the amplitudes of the two events to discrim-
inate, n,, is 2 and A, is 4.0. The function (26) roughly approximates the one
described in [16], even though it neglects the time ordering of the two events.
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Figure 11: Systematic effect caused on m?2 by neglecting the BEFS when fitting the Montecarlo
generated spectra with different left energy boundaries (see Figure 10).

With this approximation we find about 30% more unresolved pile-up events and
a good description of the resulting pile-up spectrum for Agrr < 0.1 is given by

0.35
—AgT
Npp(E) = (1= e °T) N (B,0) @ N (E, 0) (1 t B as00eY) 1) 1)

Figure 12 shows that the systematic shift caused by neglecting this deviation
increases with the pile-up probability TR Ag. In particular it is apparent as a
proper modelling of the pile-up spectrum is crucial for a pile-up rate as low as
1076.

3.8. Instrumental uncertainties

Response function uncertainty. In (17) the simplest response function R(FE)
used to model the data is a Gaussian G(FE) (18) which is completely determined
by its standard deviation 0 = AE/2.35. The detector FWHM energy resolution
AFE is usually determined by means of a calibration procedure using radioactive
sources. The accuracy with which AE, and therefore R(E), is known is mainly
limited by statistics.

Assuming a purely Gaussian R(F), the systematics due to the finite accuracy
with which the detector FWHM energy resolution AE is known have been
evaluated by letting fluctuate the detector energy resolution in the simulated
spectra around a central value AE which is the fixed resolution used to fit
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1.5eV, and bT = 0c/eV.
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Figure 13: Instrumental systematic uncertainties for Ne, = 104, AEpwum = 1.5eV, fpp =
1076 and bT = 0c/eV: response function uncertainty (left), energy calibration errors in an
array (center) and detector energy resolution spread in an array (right).

the spectra. The detector energy resolution fluctuates according to a Gaussian
distribution centered in AE with standard deviation oe,.(AE). The resulting
shift of m?2 is shown in the left panel of Figure 13.

With the number of events N, and the pile-up fraction f,, considered in
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the present analysis, a calibration peak at an energy just above the beta decay
end-point Fy would have only the pile-up spectrum as background. In these
conditions, a perfectly Gaussian peak with 10 counts would allow an estimation
of the FWHM energy resolution AE with an accuracy of about 1%.

Response function tails. The actual response function R(E) may be as simple
as a Gaussian, though presenting additional extra features which are difficult to
identify in the calibration peaks. One example are small tails on the left side of
the main Gaussian peak. For a Gaussian with variance o, the function

oo ()] -5 - )

represents an exponential tail with area A;q;; and decay constant \: The effect
of such an exponential tail has been studied using a response function R(E) =
G(E)+T(F) in S(E) when generating the experimental spectra, while keeping
the standard Gaussian response function in the fit: Figure 14 shows the effect
for various values of A and A;qy < 1.

Of course, identifying an exponential tail with a relative area A;q; as small
as 107 requires a main Gaussian peak with statistics much larger than 10*
counts.

A
T(E) = Atail§ exp

[ @-8)-01ev'| A
e-®)-02eV'|
A-a)-05ev"

2.2
m,; [eV]

-0.25 L M| L Y | A P
) 10t 107 10
tail area Atail

Figure 14: Systematic effect caused on m,% by an undetected exponential tail in a Gaussian
response function R(F). The Montecarlo parameters are Ne, = 10, AEpwumMm = 1.5€V,
fop = 1076 and bT = Oc/eV.

Calibration error in array. Future calorimetric experiments will be carried out
with large arrays of thermal detectors (> 10* channels). Since each individual
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channel has to be energy calibrated prior to be summed up, a systematic effect
may arise because of the finite calibration accuracy. For this analysis each simu-
lated experimental spectrum is the sum of 10000 slightly mis-calibrated spectra.
The mis-calibration is simulated shifting the energy calibration according to a
Gaussian distribution centered in K with standard deviation o(K), where K is
the correct calibration factor. The center panel of Figure 13 displays the effect
on m2.

In the simplest hypothesis of a linear energy calibration without pedestal,
a couple of calibration peaks close to beta end-point with about 10 counts
each and with a background arising solely from the pile-up spectrum would in
principle allow to determine the calibration factor with an accuracy better than
0.1%.

Response function dispersion in array. A second effect that can be observed
when summing up many channels is due to the spread in the Gaussian response
functions of the single detectors: the response function of the sum spectrum
will not be Gaussian. In this case the simulated spectrum is the sum of 10000
ones whose Gaussian response functions have FWHMSs varying according to a
Gaussian distribution centered in AFE with standard deviation ospreqa(AE).
The sum spectrum is analyzed assuming a response function with FWHM equal
to AE. The results is shown in the left panel of Figure13.3

The dispersion of the energy resolution in an array strictly depends on the
detector technology and it is therefore difficult to predict. Nevertheless, based
on the experience with running arrays of thermal detectors, a ospreaq better
than 10% should be realistic.

Hidden background. In calorimetric experiments, since the beta source cannot
be switched off, the background in the energy range of the beta spectrum cannot
directly assessed. Therefore a costant background is usually included in the fit
model S(FE) as the safest hypothesis. Nevertheless we have analyzed the effect
of neglecting this term. Figure 15 shows the effect for various levels of constant
background 0T and confirms the importance of including the background term
in S(E).

If no specific measure will be taken to reduce the background, future ex-
periments.are expected to have a signal-to-noise ratio similar to the one of the
Milano experiment, i.e. about 10*-10°. In fact increasing the size of the single
detector-is unlikely to improve much the ratio since the background is expected
to scale approximately as the detector mass.

Eventually the background hidden below the beta spectrum could be not flat.
We have explored this more critical situation making the simple hypothesis of
a linear deviation from flatness starting just on the left of the pile-up spectrum

3A similar effect due the spread in the resolving time 7p is negligible since it affects only
the total pile-up spectrum normalization.
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Figure 15: Systematic shift caused on m2 by an undetected constant background bT under
the beta spectrum. The Montecarlo parameters are Nep, = 10, AEpwanm = 1.5€eV and
fop = 1076, The Milano experiment signal-to-background ratio of about 3 x 10* would
translates in to a constant background bT of about 108 ¢/eV-on this plot.

end-point at 2Fy, expressed as

b
B(E) =T (1 + Fl(on - E)> (29)

0
The experimental spectra generated with the above linear background were fit
with only the constant term in S(E): the results are shown in Figure16 for
various values of constant background bT and various values for the deviation
from flatness b .

4. Future calorimetric experiments

Given that the single channel activity Ag is limited by technical considera-
tions concerning the performance of the thermal detector (heat capacity, quasi-
particle diffusion length, ...) the question is whether it is desirable to keep the
pile-up negligible or not. There is no unique answer, although increasing the
pile-up by increasing Az allows to accumulate more quickly large statistics, and,
when pile-up dominates, the dependence on the energy resolution - which tends
to degrade when Ag increases - is attenuated (see Figure 2 and 3). On the other
hand the background caused at the end-point by the pile-up, together with a
degraded energy resolution, may impair the ability to recognize and understand
systematic effects. As a conclusion the optimal design of a neutrino mass ex-
periment depends on the detection technique and, in particular, it depends on
the effect of large absorbers on the detector performance. Nevertheless it may
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Figure 16: Systematic shift caused on m2 by an undetected deviation from flatness of
the background under the beta spectrum. The Montecarlo parameters are Ne, = 1014,
AErpwnuM = 1.5eV and fpp = 1076. The Milano experiment signal-to-background ratio cor-
responds to a constant background bT of about 106 c/eV, therefore one order of magnitude
higher than the worst constant background considered in this analysis.

Table 1: Analysis of systematic uncertainties for an experiment with Ne, = 104 events,
AFE = 1.5eV and fpp = 1076: for each uncertainty; the upper value which keeps the systematic
shift of m2 smaller than 0.01eV? is given.
source of quantity maximum effect
the uncertainty describing for
the effect Am?2 < 0.01eV?
electron escape Qese 1x107°
correction to la1| (a2 =0) ~107%eV~!
theoretical spectral shape laz| (a1 = 0) ~ 107 12eV—2
error on energy resolution AE Oerr(AE)/AE 0.02
tail 1r(1)\re:s;())(.);12i/ flllr;ctlon Ayait 1 x10—4
€rror on s1r%g1e cbannel energy o(K)/K 4% 104
d %aflhgﬁg}g] rle(solution
Vv AF in the array Ospread(AE)/AE 0.1
hidden costant background New/Nbig 1 x 108
hidden background linear b ~0.1
deviation (bT = 10°c/eV) ! '
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be worth to increase the single channel activity as much as possible, therefore
relaxing the need of a high energy resolution.

As an example, Table2 and 3 report the scaled Montecarlo results for a
target neutrino mass sensitivity 3gg(m, ) equal to 0.2eV and 0.1V respectively.
Results are obtained in absence of background. The first line is a sort of baseline
experimental configuration characterized by very demanding energy and time
resolution and by very limited pile-up fraction f,, obtained by keeping the
single detector activity Ag at 1Hz: in this conditions the target sensitivity is
achieved with a relatively low statistics IV, at the expenses of a large required
exposure 7. In the other lines of the tables a larger activity of 10 Hz is considered
together with a progressive degradation of energy and time resolution. While a
larger activity implies a lower required exposure, the poorer performances are
compensated by the need of a larger statistics. From the tables it is clear that
one can find a compromise between performances and exposure which is‘more
convenient than the baseline high performance experimental configuration.

For example a target neutrino mass sensitivity of 0.1eV could be expected
running for 10years 3 x 10® rhenium detectors, each with a mass of 10mg —
giving an activity of about 10Hz — and with energy and time resolutions of
about 1eV and 1 us respectively. The total required mass of rhenium is about
3kg.

Table 2: Experimental exposure required fora 0.2 eV m, statistical sensitivity.

Ag 1™ AFE Ney exposure T’

[Hz] [us] [eV] _[counts]  [detectorxyear]
1 1 1 02x10™ 7.6 x 10°

10 1 1 0.7x10" 2.1 x 10°
10 3 3 1.3 x 104 4.1 x 10°

10 5 5 1.9 x 104 6.1 x 10°

10 10 10 3.3x10" 10.5 x 10°

Table 3: Experimental exposure required for a 0.1eV m, statistical sensitivity.

Ag 1™ AE Ney exposure T’

[Hz] [us] [eV] [counts] [detector x year]
1 01 01 17x10" 5.4 x 10°

10 01 01 53x10H 1.7 x 10°

10 1 1 10.3 x 1014 3.3 x 108
10 3 3 21.4x 10 6.8 x 106
10 5 5  43.6 x 1014 13.9 x 106
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5. Conclusions

In this paper we have thoroughly discussed the statistical sensitivity of calori-
metric Rhenium based neutrino mass experiments.

To estimate the statistical sensitivity, two methods have been developed.
They are based respectively on an analytic and a Montecarlo approach: the
results presented and compared in § 2.3 show the prominent importance of the
total statistics collected by such an experiment in order to reach a sub-eV sen-
sitivity.

Extending the application of the Montecarlo approach, we have then ana-
lyzed the expected sources of systematic uncertainties peculiar to this kind of
experiments. In particular, in §3.1 we have shown how crucial is for future ex-
periments the understanding of the theoretical '3”Re beta decay spectrum and
of BEFS. On the other hand, in § 3.3 we have shown how instrumental system-
atic uncertainties may be kept under control by a proper characterization of the
response function R(FE) and by an accurate detector calibration: tasks that may
be accomplished by controlling the calibration peak statistic.

Finally, in §4, we have exploited the statistical analysis to devise a plausible
experimental configuration capable to achieve a sensitivity of about 0.1eV on
the neutrino mass.

As a concluding remarks, we believe we have demonstrated that calorimetric
neutrino mass experiments with Rhenium based detectors offer a realistic chance
to reach sensitivities comparable, or even beyond, the KATRIN goal. Moreover
we have shown that, although systematics related to '®"Re beta decay theory
and to BEFS require further investigations, these experiments should not be
plagued by large systematic uncertainties.

The authors wish to thank Prof. Dan McCammon for the many stimulating
discussions on the topic of this paper.
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