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in a dynamic competitive model∗
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Abstract

This paper investigates the technology adoption decision of a new satellite system aimed
at locating tuna shoals. We propose a dynamic imperfect competition model with vertical
differentiation in which each firm acts as a Cournot oligopolist and takes the evolution of
the natural resource into account. In this dynamic setting, the model cannot be solved
analytically and we rely on a numerical approach. Results are derived for the northern
bluefin tuna. We find that high quality firms value more the technology than low quality
firms. A direct implication of this result is that the market value of the new technology can
be maximized while serving only the highest quality firms. We then evaluate how individual
quotas can be used to increase the value that firms attach to the technology.
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1 Introduction

Production in the fishery industry —more particularly in the tuna industry— is largely contin-

gent on the migration of fish populations. Therefore, one of the prominent technological aspect

of the fishing activity is the time spent to locate favorable fishing grounds. Any technology

allowing for a sizeable acceleration of this localization process is usually viewed as a means

to reduce operating costs. Several companies1 have now launched new satellite systems that

facilitate the detection of tuna shoals in fishing grounds and offer this new service to fishing

firms. Such systems have enabled tuna purse seine and long line vessels worldwide to find good

fishing locations faster, reducing fuel costs in the process. Adopting such a technology is thus

a strategic decision for any firm acting in the fishing sector. This adoption process affects (i)

market competition and (ii) the evolution of the stock of tuna, which in turn modifies the tech-

nological adoption decision. Our objective in this paper is to analyze the incentives of adopting

these satellite systems in a setting that explicitly takes into account the dynamic aspects of

technology adoption that the evolution of the natural resource implies.

The tuna industry is a vertically differentiated industry where the quality of output is determined

by the type of boat used to fish tunas. More specifically, the two main types of boats used in

this industry are long lines and purse seine, long line firms producing the best quality of tuna.

The purse seine is a huge net that is cast into the sea, gathering fishes in its sweep. The fish is

beaten with a stick so that the fish is stressed and damaged. The long line consists of cable to

which smaller independent cables are attached at intervals of several meters. There is not much

stress involved. Holding the stock of tuna constant —i.e. leaving aside the dynamic aspects—

and given these characteristics, the technological adoption problem is akin to that analyzed in

Bester and Petrakis (1994). Therefore, the model we consider heavily builds on their analysis. It

however departs from their setting as we acknowledge the effects of technological adoption on the

evolution of the natural resource. This makes the problem explicitly dynamic. More precisely,

we focus on the relationship between the adoption of the new technology, the evolution of the

stock and market competition.

We develop an imperfect competition model in which vertically differentiated firms compete à la

Cournot. Following Bester and Petrakis (1994), firms are assumed to play a two–stage game. In

the first stage, each fishing firm decides wether or not to adopt the satellite system technology.

Adopting the technology yields a decrease in the marginal cost but triggers an adoption cost.

In the second stage, market competition takes place. Production plans decided in the second

stage of the game obviously affect the size of the fish population. Firms acknowledge this effect

1For example Collecte Localisation Satellites (http://www.cls.fr/) and Orbimage
(http://www.orbimage.com/) have both developed satellite system tracking tuna shoals over the world.
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and therefore take it into account when deciding their production plans. But, more importantly,

since the technology adoption decisions modifies firms’ cost and thus competition, the first stage

game also affects the future size of the fish population.

Our analysis is first concerned with the impact of cost reducing on firms’ competition and focuses

on pure profit motives for the adoption of the technology leaving aside its implications for the

dynamics of fish population. In such a static framework, the model corresponds to the case

studied in Bester and Petrakis (1994) as far as incentives of technology adoptions are concerned.

In particular, marginal returns to the technology adoption are increasing and a market analysis

has to be undertaken to understand the value that each firm attaches to this cost reducing

technology. We then derive clear cut decisions regarding technology adoption for a given stock

of fish as a function of the technology price. Our results suggest that differences in firms’ initial

costs or in firms’ product quality are key determinants of incentives to adopt the technology.

This implies that each category of firms attaches more value to the new technology if the other

type of fishing firms does not possess it. We show that the demand for the new technology

is perfectly elastic piecewise and may be partially decreasing for some value of the technology

price.

We then extend the analysis to a dynamic setting in order to take the impact of the new

technology on the level of the stock of fish into account. Adopting the cost reducing technology

affects market competition and the harvesting activity. This in turn modifies the evolution of

the renewable natural resource and therefore the future path of profits. In other words, adoption

technology affects the level of intertemporal profits, which obviously feedbacks on technology

decisions. It is therefore critical to explicitly model dynamics in such a setting. The modeling

of the evolution of the renewable resource builds on the pioneering work of Clark (1971), Clark

and Munro (1975), and Levhari and Mirman (1980). The evolution of resource depends on its

natural, or biological, growth function and on the harvesting activity. The stock of fish evolves

over time and firms take the impact of their decisions on the future stock of fish into account.

In such a dynamic setting, the model cannot be solved analytically. We therefore rely on a

numerical approach. Results are derived for the northern bluefin tuna and the two categories of

firms that we consider (long line and purse seine firms). We derive the demand function for the

satellite systems from the market harvest equilibrium. In our vertically differentiated model,

we obtain that high quality firms (long line) produce less whereas low quality firms produce

more than the socially optimal production level. Therefore, high quality firms should be the

first category of firms encouraged in the adoption of the technology. We show that it may be

more profitable for the technology provider to serve only high quality firm than all the market.

Individual quotas can be used to increase the value that both firms attach to the technology

and to modify the technology provider decision to serve only high quality firms.

3
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Section 2 presents a static model of technology adoption in which two types of firms compete on

the market but do not internalize the future effect of their decisions on the stock of fish. Section

3 extends the preceding analysis to a dynamic setting where the stock of tuna evolves over time

according to biological constraints and fishing activities. Section 4 discusses the calibration of

the model. Section 5 presents the numerical results for the dynamic version of the model. In

particular it discusses cost reducing technology adoption both in equilibrium and at the social

optimum. We then introduce quotas in the model to shed light on their role in the regulation

of the market.

2 A static model

We consider an economy with two types of fishing firms that exploit a single constant stock of

fish, x. The fishing industry consists of n1 > 1 (resp. n2 > 1) fishing firms of type 1 (resp.

type 2). We consider a vertically differentiated industry where the quality of fish is specific to

the type of firm and yields a specific market value. Type 1 firms (type 2 firms) are assumed to

produce fish with quality u1 (u2), with u1 > u2. Hereafter, we will consider the quality levels as

fixed. Given these assumptions, the system of inverse demand functions is given by2

p1 = v̄u1 − u1Q1 − u2Q2 (1)

p2 = v̄u2 − u2Q1 − u2Q2 (2)

where pi is the price paid to firm i when the aggregate production of type i firms is Qi and the

aggregate production of type j firms is Qj .

Let qij be the quantity harvested by firm j with type i. The aggregate harvest Q is thus given

by

Q =

n1∑
j=1

q1j +

n2∑
j=1

q2j = Q1 +Q2.

The cost function of type i firm for harvesting a quantity q when the level of the stock of fish,

x, is present is given by3

ciqx
αi .

where αi < 0 is the catch stock elasticity. This latter effect aims at capturing the fact that it is

easier and less expensive to catch fish when the population of fish is large. The parameter ci in

the cost function represents the harvest ability of each type of firm.

2See Motta (1993) for the detailed determination of the inverse demand functions.
3This cost function is derived from a Cobb Douglas production function with fishing effort and fish biomass as

production inputs of the form q = θiex
−αi where e is the effort of the firm. θi is productivity term that measures

the catchability per unit of effort.
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Given these specifications, the instantaneous profit function of a type i firm is written as

πi(q, x) = pi(Q)q − ciqxαi

We assume that before the market opens, each firm can invest, T , in a satellite system to support

fishing by enhancing the ability of firm i to detect shoals. When implemented, the technology

yields a cost reduction, which takes the form of a cut in the parameter ci, which is then reduced

by δi where 0 < δi < ci. The investment decision of the firm is a discrete decision — to invest or

not — denoted by µi where µi = {0, δi}. The value of the firm is then defined as the difference

between its instantaneous variable profit and the cost of the technology, T , when implemented

Vi(µi, x) = πi(q, x)− T 1I[µi=δi] (3)

where 1I[µ=δ] = 1 if µ = δ, 0 otherwise.

The behavior of type i firm is then determined by solving a two–stage game. In the fist stage

of the game, each firm decides whether or not to invest in the cost reducing technology. In

the second stage, all firms compete in the level of harvest. We look for a symmetric Nash

equilibrium in which each firm with the same type has the same technology adoption strategy

and produces the same level of harvest. The game is solved by backward induction. We first

solve the competition between firms as a function of the firms’ decisions to invest in the cost

reducing technology. We then analyze the decision to invest in the cost reducing technology as

a function of the technology cost.

We first present the Cournot equilibrium in which each firm decides on its harvesting level so as

to maximize its profit given the quantity harvested by its competitors. Therefore, the harvesting

decision of firm j with type i maximizes profits subject to the demand it faces. The first order

condition for each type is given by

∂π1j

∂q1j
= v̄u1 − u1q1j − u1

n1∑
j=1

q1j − u2

n2∑
j=1

q2j − (c1 − µ1)xα1 = 0 (4)

∂π2j

∂q2j
= v̄u2 − u2q2j − u2

n2∑
j=1

q2j − u2

n1∑
j=1

q1j − (c2 − µ2)xα2 = 0 (5)

In a symmetric equilibrium, we have q1i = q1j = q?1 and q2i = q2j = q?2 for all i, j. Then, we have

Q1 =
∑n1

j=1 q1j = n1q
?
1 and Q2 =

∑n2
j=1 q2j = n2q

?
2. Since technology adoption is dictated by

the firms’ payoffs in the first stage of the game, we now characterize the profit attained by each

firm in the symmetric equilibrium. It should be clear to the reader that firms’ payoffs depend

upon both firms’ costs and thus on the first period decision to adopt or not the cost reduction

5
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technology. Let us denote by πi(µ1, µ2) the profit attained by a type i = 1, 2 firm in a symmetric

equilibrium given the first period decisions of each type of firm µ1 and µ2. We have4

π?1(µ1, µ2) =
u1(v̄((n2 + 1)u1 − n2u2)− (n2 + 1)(c1 − µ1)xα1 + n2(c2 − µ2)xα2)2

(u1(n1 + 1)(n2 + 1)− u2n1n2)2
(6)

π?2(µ1, µ2) =
u2(v̄u1 − (n1 + 1)(u1/u2)(c2 − µ2)xα2 + n1(c1 − µ1)xα1)2

(u1(n1 + 1)(n2 + 1)− u2n1n2)2
(7)

It can be readily checked, using the enveloppe theorem, that an increase in ci (resp. cj) decreases

(resp. increases) type i firms’ profits.

We now consider the first period stage and look for a symmetric Nash equilibrium in which each

firm with the same type has the same technology adoption strategy.

Strategies and payoffs may be summarized by the following gain matrix where the strategy of

a firm of type 1 is indicated in each row, while firms of type 2 refer to each column. Ai (resp.

6Ai) indicates that type i firm adopts (resp. does not adopt) the new technology.

A2 6A2

A1 (π?1(δ1, δ2)− T ,π?2(δ1, δ2)− T ) (π?1(δ1, 0)− T ,π?2(δ1, 0))

6A1 (π?1(0, δ2),π?2(0, δ2)− T ) (π?1(0, 0),π?2(0, 0))

The Nash equilibrium of the game then determines the choice of the two types of firm.

Let ∆i(µj) = π?i (δ1, µj)−π?i (0, µj). If for a given type of firm ∆i(δj) and ∆i(0) are greater (resp.

lower) than the technology cost T , then adopting (resp. not adopting) the new technology is

a dominant strategy for the firm. Else, the choice of the firm is driven by the behavior of the

other firm.

We have

∆i(µj) =
ui(nj + 1)δi(q

?
i (δi, µj) + q?i (0, µj))

(u1(n1 + 1)(n2 + 1)− u2n1n2)
(8)

and

∆i(µj)−∆i(0) = − u1(n1 + 1)(n2 + 1)δ1δ2

(u1(n1 + 1)(n2 + 1)− u2n1n2)2
(9)

As in Bester and Petrakis (1994), the marginal return on investment in the cost reducing tech-

nology is increasing:

i) ∆i is a decreasing function of ci.

ii) ∆i an increasing function of cj .

4In the sequel, we denote π?i (µ1 = δ1, µ2 = δ2) by π?i (δ1, δ2).

6
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It is therefore more profitable for a firm to invest in the cost reducing technology when its

production cost is low. Part ii) indicates that a firm has more incentives to adopt the new

technology when the other firm has a high production cost — i.e. when the other firm is not

equipped with the new technology (∆i(δj) < ∆i(0)). In other words, the technology is less

profitable when the other firm also reduces its cost. These cost reducing strategies are strategic

substitutes.

The equilibrium of the game then depends on the relation between ∆i(µj) and ∆j(µi) (µi =

{0, δi}) and is specific to industry parameters. Assume that ∆2(δ1) < ∆1(δ2). We have from

(9) that ∆1(δ2) − ∆1(0) = ∆2(δ1) − ∆2(0), so there exist two possible configurations: either

∆2(δ1) < ∆2(0) < ∆1(δ2) < ∆1(0) or ∆2(δ1) < ∆1(δ2) < ∆2(0) < ∆1(0).

The next proposition summarizes all possible cases and indicates, for each value of the technology

price T , the equilibrium adoption decision of each firm.

Proposition 1 1. Assume that ∆2(δ1) < ∆2(0) < ∆1(δ2) < ∆1(0). The possible equilibria of

the game are given by

(a) (A1,A2) when T ≤ ∆2(δ1).

(b) (A1, 6A2) when ∆2(δ1) < T < ∆1(0).

(c) (6A1, 6A2) when ∆1(0) < T .

2. Assume that ∆2(δ1) < ∆1(δ2) < ∆2(0) < ∆1(0). The possible equilibria of the game are

given by

(a) (A1,A2) when T ≤ ∆2(δ1).

(b) (A1, 6A2) when ∆1(δ2) < T < ∆2(0).

(c) When ∆1(δ2) < T ≤ ∆2(0), there are two equilibria in pure strategies ( 6A1,A2) and

(A1, 6A2), and one equilibrium in mixed strategies. Type i firm probability to adopt the

new technology is ρi =
∆j(0)−T

∆j(0)−∆j(δi)
.

(d) (6A1, 6A2) when ∆1(0) < T .

In case a, adopting the new technology is a dominant strategy for both firms and we observe a

joint adoption. In this case, type i firms are willing to pay ∆i(δj) which represents the increases

in firm i profit after the adoption given that firm j is also equipped. Conversely, in case 1.c or

2.d, not adopting the new technology is a dominant strategy for both types of firm.

In case 1.b and 2.b, adopting the new technology is a dominant strategy for type 1 firms and

type 2 firms value positively the technology only if they invest alone. We thus obtain a unique

adoption from type 1 firms.

7
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In case 2.c, each type of firms value positively the technology only if they invest alone in the

new technology. As a consequence, and because marginal returns in the technology increases

with the competitor costs, there is a coordination problem between the two types of firms and

the game admits two pure strategy equilibria. In the mixed equilibrium, the mean number of

technology adoption is n2
∆1(0)−T

∆1(0)−∆1(2) +n1
∆2(0)−T

∆2(0)−∆2(1) . Observe that it is linearly decreasing with

T , that it exceeds n1 when T = ∆1(δ2) and is strictly lower than n1 when T = ∆2(0).

Given these firms adoption decision choices, we obtain that the demand function for the new

technology is perfectly elastic piecewise and may partially decrease over the interval ∆1(δ2) <

T ≤ ∆2(0) when the game admits a coordination problem. This demand function is depicted in

Figure 1.

Figure 1: Demand function for the technology
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An attractive feature of this model is that it delivers clear cut decisions regarding technology

adoption for a given stock of fish and thus allows to derive the demand function for the new

technology. However, the model implies myopic decision from the firms as it does not take into

account the impact of the new technology on the level of the stock. This is clearly a shortcoming

of this approach and it calls for an explicitly dynamic model that let firms take the impact of

the new technology on the reproduction rate of the stock of fish. The next section deals with

this problem and proposes a dynamic model in which the stock of tuna evolves over time and

depends on harvesting behavior.
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3 A Dynamic Fishing Model

This section develops a model in the lines of the model of the previous section. We consider a

two–stage game where, in the first stage, each firm decides whether or not to invest in the cost

reducing technology and, in the second stage, all firms engage in a dynamic competition in the

level of harvest. We however depart from the previous modeling in that we allow the stock of

fish to evolve over time and let agents take the impact of their decisions on the future stock of

fish into account. The model is then explicitly dynamic.

3.1 The Evolution of the Stock of Fish

We now consider that the stock of fish, x, is a dynamic variable. The resource depends on its

natural, or biological, growth function and on the harvesting activity. More precisely, denoting

by xt the stock of fish at date t, the stock in period t+ 1 is the difference between the biological

evolution of the stock and the harvest

xt+1 = F (xt)−Qt

Qt denotes the aggregate production of the fishery industry in the economy. It therefore accounts

for the harvesting activity of firms and exerts a negative effect on the stock of fish. F (xt)

corresponds to the natural evolution of the stock of fish, and hence accounts for the biological

component. This latter component has been extensively studied in the biological literature (See

e.g. Clark and Conrad (1987)). In the sequel, F (·) is borrowed from this literature and takes

the form

F (xt) = rxt

(
1− xt

k

)
+ xt

where r is the intrinsic growth rate of the resource stock and k denotes the environmental

carrying capacity. Note that the knowledge of the current period stock, xt and the production

level suffice to fully characterize the next period stock of tuna. xt is then a predetermined

variable. Hence, the dynamics of the stock of fish are described by the following law of motion

xt+1 = rxt

(
1− xt

k

)
+ xt −Qt (10)

3.2 The Nash–Cournot Equilibrium

We first solve the dynamic competition between firms to compute the present value of each firm

profit. We then perform the same exercise as in the static problem: we consider the choice of

each firm to adopt the cost reducing technology through a matrix that indicates the value of

firms’ profits according to the strategy of each type of firm.

9
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In a dynamic setting the firm takes into account the impact of its action on its current profit but

also on the discounted flow of profits it will get in the future. Therefore, the objective function

of a type i firm is given by

Π(µi) =
∞∑
t=1

βt−1(pi(Qt)qit − (ci − µi)qitxαit ) (11)

where β ∈ (0, 1) is the discount factor of the firm. The optimal production plan of the firm

— the sequence {qit}∞t=1 of harvest levels — maximizes (11) subject to the demand functions

it faces, the biological constraint, positivity constraints on harvests and the stock of fish, and

taken the harvest of type j firms as given. Therefore, the program of the firm writes

max
qijt

Π(µi) =

∞∑
t=1

βt−1(pi(Qt)qijt − (ci − µi)qijtxαit ) (12)

s.t. p1(Qt) = v̄u1 − u1

n1∑
j=1

q1jt − u2

n2∑
j=1

q2jt (13)

p2(Qt) = v̄u2 − u2

n1∑
j=1

q1jt − u2

n2∑
j=1

q2jt (14)

qijt > 0 (15)

qijt 6 ki (16)

xt+1 = rxt(1−
xt
k

) + xt −

 n1∑
j=1

q1jt +

n2∑
j=1

q2jt

 (17)

xt+1 > 0 (18)

We thus consider that fishing firms are rational and take the appropriate notice of all variables

and relationships affecting their profit functions including the resource growth constraint and

each other’s fishing activity.5 Note that the behavior of competitors is constrained by the

fact that they have to keep next period stock of fish positive. The price at time t, pi(Qt), is

determined by total harvest Qt. Though each firm will manipulate the price schedule via the

quantities it send to the market, each firm takes the price vector as given. These prices may be

thought of as determined in future markets under conditions of perfect foresight and are given

by the inverse demand function as determined in the static model. Also note that, through

equation (16), we include the possibility that the industry is regulated by means of individual

catch quotas. As a consequence, firms may be constrained in their harvest level.

The set of all first order conditions for this problem is reported in Appendix B. Although we

will not discuss all of them in details, some — evaluated in a symmetric equilibrium — call for

5In the fisheries economic literature, there is some ambiguity about the firms’ perception of the biomass
constraint. Some studies retain the assumption that firms compete in the level of harvest and ignore the biomass
growth constraint. Firms thus behave myopically. See for instance Okugushi (2003), Sandal and Steinshamn
(2004) or Szidarovsky, Ilieva and Okuguchi (2002).
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some comments

λ1t = vu1 − u1(1 + n1)q1t − n2u2q2t − (c1 − µ1)xα1
t (19)

λ2t = vu2 − u2n1q1t − (1 + n2)u2q2t − (c2 − µ2)xα2
t (20)

λ1t = β
[
λ1t+1

(
1 + r

(
1− 2

kxt+1

))
− α1q1t+1(ci − µi)xα1−1

t+1

]
(21)

λ2t = β
[
λ2t+1

(
1 + r

(
1− 2

kxt+1

))
− α2q2t+1(ci − µi)xα2−1

t+1

]
(22)

for all i and t for which qit > 0, xt+1 > 0 and ignoring quotas. Parameter λit is type i firms

marginal valuation of an additional unit of biomass. The first two equations therefore indicate

that the firm will fish tuna up to the point where the marginal net profit gain from extracting

one additional tuna from the stock equates its marginal valuation. The marginal net profit

gain is the sum of three components: (i) a direct effect stemming from the fact that the firm

sells an additional unit, (ii) an indirect competition effect pertaining to the manipulation of the

price scheme by the oligopolist and (iii) a negative marginal cost effect. The two last relations

actually rule the dynamics of the marginal valuation of the stock of fish and reflect the forward

looking behavior of firms. This actually determines the dynamic fishing decision. The firm can

fish an additional tuna in period t, in which case it can obtain λit extra units of net profits. But

it may also wait an additional period and let tuna reproduce, in which case it will be able to fish(
1 + r

(
1− 2

kxt+1

))
extra tunas in the next period which will both raise its net profits by λi,t+1.

Beside this direct effect, by letting the fish stock renew, postponing fishing triggers a reduction

in the cost that makes it more beneficial to wait an extra period. The non–arbitrage principle

implies that the intertemporal allocation of the fishing activity is such that the current and the

next period marginal valuation of the stock of fish equate.

Just alike in the static model, the quantity harvested by each firm is a function of the current

value of the stock and the technology decision of each type of firms. Strategies and payoffs of

each type of firms may be then summarized, as in the previous section, by a matrix indicating

firms’ values in the four possible cases : (Ai,Aj), (Ai, 6Ai), ( 6Ai,Ai) and (6Ai, 6Aj).

3.3 The social optimum

For comparative purposes it is interesting to investigate the dynamic properties of the social

optimum. We thus define the instantaneous consumer surplus by

S(Q) =

∫ v12t

v∅2t

(vu2 − p2t)dv +

∫ v̄t

v12t

(vu1 − p1t)dv

with v12t − v∅2t = n2q2t and v̄t− v12t = n1q1t.

Social welfare at date t is then given by

W (Qt) = S(Qt)− C(Qt) (23)

11

Page 12 of 32

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

where C(Qt) is the total production cost.

The problem of the social planner is (i) to find the sequence of harvest that maximizes the

present value of social surplus subject to the biological constraints and (i) to decide whether

firms should be equipped with the new technology or not given the production cost of the

technology.6 More formally, denoting Γ(n) the total cost to equip a number of n firms with the

technology,7 the problem of the social planner is

max
q1t,q2t,µ1,µ2

∞∑
t=1

βt−1

(
S(n1q1t + n2q2t)− n1(c1 − µ1)q1x

α1 + n2(c2 − µ2)q2x
α2

− Γ
(
n1 1I[µ1=δ1] + n2 1I[µ2=δ2]

))
s.t. xt+1 = rxt(1−

xt
k

) + xt −Qt

xt+1 > 0

The problem can be decomposed in two steps and solved by backward induction. First, we

determine socially optimal harvest levels as a function of productions costs. Second, given the

value of social welfare associated to each costs levels, we determine the optimal equipment of

each type of firms. First order conditions that determine optimal harvest levels are reported

in Appendix C. Although we will not discuss all of them in details, some — evaluated in a

symmetric equilibrium — are worth discussing:

λt = vu1 − u1n1q1t − n2u2q2t − n1(c1 − µ1)xα1
t

λt = vu2 − u2n1q1t − n2u2q2t − n2(c2 − µ2)xα2
t

λt = β

[
λt+1

(
1 + r

(
1− 2

k
xt+1

))
−

2∑
i=1

(
αiqit+1ni(ci − µi)xαi−1

t+1

)]
for all i and t for which qit > 0 and xt+1 > 0. Parameter λt represents the social current

shadow value of an additional unit of stock along the optimal path. Observe that the first order

conditions pertaining to the harvesting policy departs from the corresponding decisions in an

equilibrium in at least two aspects. First, no matter the type of the firm we consider, firms

have the same marginal valuation of an extra unit of fish, which dynamics is given by the last

equation. Second, firms are not allowed to manipulate the price schedule, therefore eliminating

the distorsion stemming from imperfect competition. This therefore fundamentally alters the

harvesting policy of firms. Finally, the central planner chooses an intertemporal allocation of

production that minimizes the distorsions stemming from coordination failures on the stock of

fish. This is reflected by (i) the fact that the marginal valuation of the stock is equated across

firms (λ1t = λ2t = λt) and (ii) the fact that the central planner acknowledges the total impact

6Note that this cost differs from the price paid by firms to obtain the technology.
7Γ is assumed to be increasing with n
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of postponing fishing on the total production cost (last part of the right hand side of the Euler

equation). This can be simply illustrated looking at the steady state of the model. Indeed, for

a given stock of fish x and two production levels (q1, q2) = (q1, q2), it can be easily checked that

the social shadow value of an additional unit of biomass, λ, is a linear combination of the private

shadow values, λ1 and λ2

λ = n1λ1 + n2λ2 (24)

Since ni > 1, i = 1, 2, Ceteris Paribus, the steady state social marginal valuation of the stock of

fish is greater than the private marginal valuation of the stock.

Technology adoption decisions are then taken by evaluating and comparing the value of the

social optimum in the four possible cases we described in the previous sections.

It should be noted that the model is fundamentally non-linear and forward looking. It cannot

be solved analytically. We therefore rely on a numerical evaluation of the model which requires

to assign values to the structural parameters of the model.8

4 Parametrization

The model is parameterized for the Northern Atlantic bluefin tuna fisheries using data collected

by Barry and Kirkwood (1997) from the ICCAT for the year 1995. The Northern Atlantic bluefin

tuna fishery is rather complex, as it is harvested by a variety of fishing gears. The fishing gears

are the long line, purse seine, trap, and baitboat. The two types of fishing firms we consider are

long line (type 1 firms) and purse seine (type 2 firms) firms as they are representative of the

tuna fishing industry. Indeed, the aggregate production of these two types of firms exceeds 75%

of the total catch of the 1995 year. In the following LL refers to long line firms and PS refers to

purse seine firms. The values of the structural parameters are reported in Table 1.

The discount factor β is set such that firms discount the future at a 4% annual rate, implying β

equals 0.96. This is in accordance with other applied studies, using similar investment horizons,

such as the US department of Commerce, National Marine and Fisheries Service (1995). The

taste parameter v̄ and the quality parameters u1 and u2 are not directly observable. We therefore

assume that the economy was at its steady state in 1995 and set these parameters such that the

model generates the observed catch of the 1995 year.

The number of each type of firms targeting bluefin tuna is relatively small, and we assume that

n1 = n2 = 10. We checked the robustness of our results against alternative numbers of firms and

8We use a projection method that is detailed in Appendix C.
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Table 1: Calibration

Parameter Mnemonic Value Units

Preferences:
Discount factor β 0.96
Taste parameter v̄ 100000
High quality parameter u1 0.029
Low quality parameter u2 0.0179

Long line firms:
price p1 17000 USD/ton
number of firms n1 10
marginal cost c1 440 USD/ton
cost reducing δ1 44
catch stock elasticity α1 -0.2

Purse Seine firms:
price p2 9000 USD/ton
number of firms n2 10
marginal cost c2 233 USD/ton
cost reducing δ2 23
catch stock elasticity α2 -0.2

Resource stock:
intrinsic growth rate r 0.25
environmental carrying capacity k 1200000 tons

did not find any major change in the quantitative implications of the model to a change in either

n1 or n2. The fishing technology, as specified in the model, requires some parameters to be set.

Just like preferences, most of the parameters are not all directly observable. We therefore follow

the approach we used to set preference parameters and set the costs parameters, ci, so as to

match observed costs and prices in the tuna market for the year 1995. Data pertaining to prices

and costs behavior are borrowed from the applied literature that has used a similar economic

model (see Pintassilgo and Costa Duarte (2002) or Bjørndal, and Brasão (2004)). In the bluefin

tuna fishery, LL and PS use advanced method of detection so that catches do not depend much

upon the stock. Therefore, a low catch stock elasticity, αi, is often used in the literature. We

follow this line and assume α1 = α2 = −0.2. Using this information together with the observed

price levels and costs, c1 and c2 are set to the values reported in Table 1. Using satellite systems

to support fishing allows firms to increase their catch per unit effort around 10 %. This implies

that marginal production costs can decrease, δi/ci by 10 %. This led to values for δi, i = 1, 2,

of, respectively, 44 and 23.
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The model of population dynamics borrows from Bjørndal et al. (2004) who propose a model of

the evolution of the resource. According to their calculation, the total biomass should increase

until 2040 and stabilize thereafter at a steady state level of about 1200000 MT. This led us to

set k=1200000. Then, the intrinsic growth rate, r, is set so as to match the average growth rate

over the period they consider.

Using this set of values, the model is then solved using a modified minimum weighted residuals

method as advocated by Judd (1992) and Christiano and Fisher (2000).9

5 The results

5.1 The unregulated economy

We first consider a benchmark situation in which none of the firms has access to the new

technology and cannot therefore implement a cut in its costs. Figure 2 presents the harvesting

decision rule of each type of firm and the associated present value.10 More precisely, it reports,

for each level of the stock of fish, xt, the equilibrium level of harvesting for each type of firm,

niqit.

Figure 2: Market equilibrium
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9The reader is left to refer to Appendix D for a detailed description of the method.
10The evolution of equilibrium market prices that supplements this benchmark can be found in Appendix A.
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Two main observations can be drawn from Figure 2. First, LL firms perform better than PS

firms both in terms of production and in terms of present value. Second, LL firms benefit from

an increase in the resource stock while PS firms experience both production and profit losses

as the biomass increases. These two observations are actually accounted for by productivity

differences. Indeed, as the resource increases, production costs decrease for both type of firm

(αi < 0) and therefore affect the degree of competition in the economy. Since LL firms are less

productive than PS firms (c1 > c2), LL firms loose part of their oligopolistic power and become

more competitive. They therefore have to produce more in order to maintain their profits. On

the contrary, Ceteris Paribus, PS firms can charge a high price while lowering their harvesting

level.

Figure 3 reports the comparison of optimal and equilibrium level of harvesting as well as the

implied social surplus. Such a comparison is of great interest as it is well known that as soon

Figure 3: Optimal versus Equilibrium harvest
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as several agents simultaneously exploit a productive common–property resource, the resulting

externality generally leads to over–exploitation of the resource relative to the social optimum.

This is so–called tragedy of the commons is important as it calls for a regulation of the equilibrium

to bring the economy back to efficiency. In this competition model with quality differentiation,

LL firms are found to under–produce whereas PS firms over–produce. The global effect is

however ambiguous as over–production obtains for relatively low levels of the biomass and turns

into under–production as the stock of fish is high. This latter under–exploitation of the resource
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has already been underlined and discussed by Dutta and Sundaram (1993). In this model, this

phenomenon arises because firms internalize the effect of their own production level on the price

schedule. Indeed, when the resource is relatively abundant, firms limit their harvest so as to

avoid the price cut — which would limit the rent they can extract from consumers — that would

follow an increase in their production.

Table 2 reports steady state harvests contingent on the technology adoption strategy of firms.

In the table, ALL (resp. 6ALL) indicates that type i firm adopts (resp. does not adopt) the

new technology. The technology adoption clearly increases aggregate harvest but leaves the

Table 2: Steady state values

LL harvest PS harvest Aggregate harvest Resource Stock

(6ALL, 6APS) 29250 20220 49470 949979
(ALL, 6APS) 35780 14280 50060 945927
(6ALL,APS) 26020 25740 51760 933976
(ALL,APS) 32550 19790 52340 929719

Note: All quantities are expressed in tons.

asymptotical behavior of the steady state fish stock essentially unaffected.11 At the firm level,

an increase in production depends on market competition. A single adoption makes the firm

more competitive and increases its production level. When all firms adopt the new technology,

LL firms increase their production but PS firms produce less than without the technology. Such

an increase in aggregate harvest ought to lower social surplus. But, the adoption of the new

technology has important consequences in terms of efficiency. Indeed, this induces a reallocation

of harvests from less efficient toward more efficient firms. The over and under production results

described above are therefore softened. This suggests a trade–off in the technology adoption

decision, which we now investigate.

5.1.1 Technology adoption in an equilibrium

Figure 4 illustrates the effects of technology adoption on the payoffs of the firms in an equilibrium

situation. The figure reports the gains in terms of net present value of adopting the new

technology for each type of firm — i.e. the firms willingness to pay for the new technology

for each possible value of the stock of fish. For instance, ∆LL(δPS) (resp. ∆LL(0)) plots the

gains in terms of net present value for the long line firm (LL) of adopting the new technology

when the Purse Seine has (resp. not) already adopted. As expected from the static analysis,

the marginal returns of the cost reducing technology are larger when the other firm has not yet

11Szidarovsky et al. (2002) perform a static comparative analysis of the steady state to a change in the harvest
quantity. They find that an increase in the aggregate production either does not affect the asymptotic behavior
of the steady state stock of fish or makes it more unstable.
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Figure 4: cost reducing technology and increase in firms’ profits
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adopted the new technology. It is worth noting that the gains are decreasing functions of the

stock of fish as the larger the stock the lower the need for a new technology since fish abundance

lowers the cost of harvesting.

Strategies and payoffs (in thousands of $) in the steady state can be represented by the following

gain matrix,

APS 6APS

ALL (220.9− T , 50.4− T ) (265.8− T , 26.3)

6ALL (141.9 , 85.1− T ) (178.5 , 52.7)

where the strategy of a LL firm is indicated in each row, while firms of type PS refer to each

column. ALL (resp. 6ALL) indicates that type i firm adopts (resp. does not adopt) the new

technology. T represents the adoption cost of the new technology. The increase in firms’ profits

due to the technology adoption are then given by

∆LL(0) = 87.3

∆LL(δPS) = 79.0

and

∆PS(0) = 32.4

∆PS(δLL) = 24.1

LL firms are willing to pay 87.3 $M to be equipped with the new system when PS firms do

not possess it. Their willingness sharply drops to 79$M when the other type of firm is already

equipped. Likewise, PS firms are willing to pay 32.4$M when LL firms are not equipped with

the new technology while their valuation of the technology gain reduces to 24.1$M when LL
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firms are also equipped. This analysis allows to derive the following inverse demand function

for the new technology.

Figure 5: The inverse demand function for the new technology
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Given the discontinuity in the inverse demand function, it may be more profitable to serve only

high quality firms. Indeed, serving all the market yields a maximal revenue of 482$M whereas

serving PS firms only allows for 873 $M.

5.1.2 Socially Optimal Technology Adoption

As in the equilibrium case, the technology adoption decision in the social optimum depends on

the social value of the cost reducing technology. The next gain matrix reports the social surplus

attained at the optimal harvest in the four possible cases

APS 6APS

ALL 24002.4− Γ(nLL + nPS) 23650.4− Γ(nLL)

6ALL 21641.3− Γ(nPS) 20945.7

As can be seen from the matrix, the joint adoption of the technology yields an increase in the

social surplus of [24002.4−Γ(nLL + nPS)] − 20945.7 = 3056.7 − Γ(nLL + nPS) relative to the

use of the old technology. This therefore suggests that the joint adoption of the technology is

preferred to a status quo as long as the total production cost of the technology does not exceed

3056.7$M.

Since there are as many LL as PS firms, the adoption of the new technology by the sole LL firms

is always preferred to the adoption by the sole PS firms (23650.4−Γ(nLL) > 21641.3−Γ(nPS)).

The choice between a joint and a single adoption is driven by the level and the form of the

technology production cost. Technology adoption by LL firms only yields an increase in the

total surplus of 2704.7 − Γ(nLL). The joint adoption increases the surplus by 352−Γ(nLL +

nPS) + Γ(nLL). Therefore, the joint adoption of the technology is preferred to a situation where
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LL firms only adopt it as long as the increase in the surplus (352) exceeds the increase in the

cost Γ(nLL + nPS) + Γ(nLL). Assuming that the market value of the technology exceeds its

production cost, a joint adoption is preferable.

This analysis rests on a first best evaluation of the surplus. Social surplus is evaluated at the

optimal level of harvest. It is however informative to evaluate the social value of the technology

when harvesting levels are set to their equilibrium values. The gain matrix then takes the form

APS 6APS

ALL 23875−Γ(nLL + nPS) 23450−Γ(nLL)

6ALL 21611− Γ(nPS) 20884

A technology adoption by LL firms only yields an gain in the total surplus of 2566 − Γ(nLL)

which is smaller than in the first best analysis. But the joint adoption increases this surplus to

a larger extent as it amounts to 425−Γ(nLL +nPS) + Γ(nLL). Again, assuming that the market

value of the technology exceeds its production cost, joint adoption is preferable.

5.2 Quotas and the market value of the technology

Fishing is a highly regulated economic activity. In particular, international agreements impose

some quotas on harvesting. It is then important to assess the impact of these quotas on the

market valuation of the cost reducing technology. We therefore replicate the preceding analysis

introducing quotas on one or both type of firms. More precisely, we consider three cases. In

case 1, PS firms only are restricted by the quota. In case 2, LL firms only are restricted by

the quota. In case 3, both types of firm are restricted by the quotas. Figure 6 depicts the

market equilibrium in case 2. As can be seen from the figure, imposing quotas on LL firms not

only affect their production level but also the production level of PS firms. More precisely, as

soon as LL firms hit the quotas, PS firms are able to capture a larger share of the market such

that (i) they increase their production level in order to satisfy the demand side of the market

and (ii) are able to increase their profit. This contrasts with the situation where no quotas are

implemented as in this case PS firms profits are decreasing. Indeed, as soon as the quota is hit

by the LL firm, only PS firms can indeed manipulate the price schedule. Therefore, only PS

firms can fully benefit from any increase in the biomass. Their profit increase. Not to say that

LL firms do not benefit from an increase in the stock of fish. Indeed, even if LL firms cannot

increase their production, they benefit from the fact that the market price, as fixed by PS firms

increase. Their profits do increase too.

Technology adoption is also affected by the existence of quotas. This is investigated in Figure 7

that represents the inverse demand function of the technology for the different cases.

A firm that hits the quota can benefit from the cost reducing technology since each units are
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Figure 6: Market equilibrium — k1 = 2500
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Figure 7: Quotas and inverse demand functions for the new technology
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produced at a lower cost without any negative impact on the price. The willingness to pay for

the new technology then increases. The opposite result obtains when the adoption of the new

technology initially allows for a significative increase in the production. In this case, quotas

prevent firms from increasing their production level, which reduces the value that they attach

to the cost reducing technology. Quotas can thus be used to finance firms in their technology

adoption when there are not too strict so that the first effect dominates the second. Observe

also that quotas can decrease the difference between firms’ willingness to pay. The maximal

revenue from serving all the market may then exceed the revenue obtained from PS firms.

6 Conclusion

This paper provides a framework to evaluate satellite systems to support tuna fishing. Valuing

this technology requires to evaluate the market equilibrium because marginal returns in the

technology adoption are not constant.

We obtain that high quality firms value more the technology than low quality firms. The socially

optimal analysis yields similar results : the technology is more valuable for high quality firms

than for low quality firms. If the technology cost is not too important, both types of firms should

be equipped. Else, only high quality firms should adopt it. Finally, we show that individual

quotas can be used to increase the value that both firms attach to the technology.
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— Appendix —

A Equilibrium market prices evolution
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B Equilibrium conditions

Recall that the profit maximization problem of firm i is given by

max
qit

Π(µi) =

∞∑
t=1

βt−1(pi(Qt)qit − (ci − µi)qitxαi
t ) (B.1)

subject to (B.2)

p1(Qt) = v̄u1 − u1Q1t − u2Q2t (B.3)

p2(Qt) = v̄u2 − u2Q1 − u2Q2 (B.4)

0 ≤ qit (B.5)

qit ≤ ki (B.6)

xt+1 = rxt(1−
xt
k

) + xt −Qt (B.7)

0 ≤ xt+1 (B.8)

The set of optimality conditions is given by

λ1t − ν1t + ζ1t = vu1 − u1(1 + n1)q1t − n2u2q2t − (c1 − µ1)xα1
t (B.9)

λ2t − ν2t + ζ2t = vu2 − u2n1q1t − (1 + n2)u2q2t − (c2 − µ2)xα2
t (B.10)

λit − ϕt = β

[
λit+1

(
1 + r

(
1− 2

k
xt+1

))
− αiqit+1(ci − µi)xαi−1

t+1

]
(B.11)

ϕtxt+1 = 0 (B.12)

νitqit = 0 (B.13)

ζit(qit − k1) = 0 (B.14)

ϕt > 0 (B.15)

νit > 0 (B.16)

ζit > 0 (B.17)

for i = {1, 2}.

C Socially optimal conditions

Recall that the socially optimal quantities are derived from.

max
q1t,q2t

∞∑
t=1

βt−1 (S(n1q1t + n2q2t)− n1(c1 − µ1)q1x
α1 + n2(c2 − µ2)q2x

α2)

subject to (C.1)

xt+1 = rxt(1−
xt
k

) + xt −Qt (C.2)

0 ≤ xt+1 (C.3)

The set of optimality conditions is given by

λt = vu1 − u1n1q1t − n2u2q2t − n1(c1 − µ1)xα1
t (C.4)

λt = vu2 − u2n1q1t − n2u2q2t − n2(c2 − µ2)xα2
t (C.5)

λt − ϕt = β

[
λt+1

(
1 + r

(
1− 2

k
xt+1

))
−

2∑
i=1

[αiqit+1ni(ci − µi)xαi−1
t+1 ]

]
(C.6)

ϕtxt+1 = 0 (C.7)

ϕt > 0 (C.8)
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D Approximation Method

Recall that the set of optimality conditions for the problem is given by

λ1t − ν1t + ζ1t = vu1 − u1(1 + n1)q1t − n2u2q2t − (c1 − µ1)xα1
t (D.1)

λ2t − ν2t + ζ2t = vu2 − u2n1q1t − (1 + n2)u2q2t − c2xα2
t (D.2)

λ1t − ϕt = β

[
λ1t+1

(
1 + r

(
1− 2

k
xt+1

))
− α1q1t+1(c1 − µ1)xα1−1

t+1

]
(D.3)

λ2t − ϕt = β

[
λ2t+1

(
1 + r

(
1− 2

k
xt+1

))
− α2q2t+1(c2 − µ2)xα2−1

t+1

]
(D.4)

ϕtxt+1 = 0 (D.5)

ν1tq1t = 0 (D.6)

ν2tq2t = 0 (D.7)

ζ1t(q1t − k1) = 0 (D.8)

ζ2t(q2t − k2) = 0 (D.9)

ϕt > 0 (D.10)

ν1t > 0 (D.11)

ν2t > 0 (D.12)

ζ1t > 0 (D.13)

ζ2t > 0 (D.14)

The algorithm is very close to the procedure suggested in Marcet and Lorenzoni (1999) and Christiano
and Fisher (2000). The basic idea of this approach is to approximate the expectation function — the
right hand side of (D.3)–(D.4) — of each player — rather than attempting to recover directly the decision
rules — by a smooth function (a polynomial function). This amounts to replace (D.3)–(D.4) by

λ1t − ϕt = Φ1(xt,Θ1)

λ2t − ϕt = Φ2(xt,Θ2)

where Φ1(xt,Θ1) and Φ2(xt,Θ2) approximate the quantities

β

[
λ1t+1

(
1 + r

(
1− 2

k
xt+1

))
− α1q1t+1(c1 − µ1)xα1−1

t+1

]
and

β

[
λ2t+1

(
1 + r

(
1− 2

k
xt+1

))
− α2q2t+1(c2 − µ2)xα2−1

t+1

]
respectively.

The two approximating functions are given by linear combinations of Chebychev polynomials

Φ`(xt; Θ`) ≡
n∑
j=0

θ`,jTj (Ψ(xt)) for ` = 1, 2

where Tj(·) is the Chebychev polynomial of order j. This class of polynomial possesses a discrete or-
thogonality property which has proven extremely efficient and useful in approximation theory. Since
Chebychev polynomials are defined over [−1; 1], while xt is not, xt is transformed by means of function

Ψ(x) = 2
x− x
x− x

− 1

which maps [x;x] into [−1; 1].
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The parameters of the approximating functions, Θ1 and Θ2, are then revealed by imposing identifying re-
strictions dictated by economic theory. More precisely, they are determined by imposing an orthogonality
condition on the residuals of the Euler equations.

Note that in the sequel a ′ will denote a variables evaluated in the next period (t+1).

The algorithm then works as follows.

1. Choose an order of approximation n, compute the m > n roots of the Chebychev polynomial of
order mx as

zi = cos

(
(2i− 1)π

2(n+ 1)

)
for i = 1, . . . ,m

2. Compute the matrix T (z)

T (z) =

 T0(z1) · · · T0(zm)
...

. . .
...

Tn(z1) · · · Tn(zm)


3. Compute xi as

xi = log(x) + (zi + 1)
log(x)− log(x))

2
for i = 1, . . . ,m

to map [−1; 1] into [x;x].

4. Compute the approximating expectation function of each player, `, at each node xi, i = 1, . . . ,m

Φ`(xi; Θ`) ≡
n∑
j=0

θ`,jTj (zi) for ` = 1, 2

5. Using this expectation function, obtain quantities fished by each player in an unconstrained equi-
librium for each value of the stock, xi. In such a situation, we have 0 < q1i < k1, 0 < q2i < k2, and
x′i > 0. This implies that ν1i = ν2i = ζ1i = ζ2i = ϕi = 0. A direct consequence of this is that λ1i
and λ2i are simply given by

λ1i = Φ1(xi,Θ1)

λ2i = Φ2(xi,Θ2)

and q1i ≡ Q1(xi,Θ1,Θ2) and q2i = Q2(xi,Θ1,Θ2) are obtained by solving the simple linear system

u1(1 + n1)q1i + n2u2q2i = vu1 − λ1i − (c1 − µ1)xα1
i (D.15)

u2n1q1i − (1 + n2)u2q2i = vu2 − λ2i − (c2 − µ2)xα2
i (D.16)

Then the unconstrained future value of tuna stock, x′i ≡ (xi,Θ1,Θ2) is given by

x′i = rxi

(
1− xi

k

)
+ xi − n1q1i − n2q2i

6. Check whether any constraint, on q1i, q2i or x′i is binding for each xi, i = 1, . . . , n

• If the constraint is not binding then keep the computed values for q1i, q2i, x
′
i, and set ν1i =

ν2i = ζ1i = ζ2i = ϕi = 0

• If any constraint is binding, then adapt the equilibrium values accordingly.12

12This is described in appendix E.
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At this step we have equilibrium values for each quantity and price in the current period. We also
have next period tuna stock. We are then in a position to compute the next period values.

7. For each value x′i = X(xi,Θ1,Θ2) apply the transformation

Ψ(x) = 2
x− x
x− x

− 1

which maps [x;x] into [−1; 1]. Then build the matrix

T ′(x) =

 T0(Ψ(x1)) · · · T0(Ψ(xm))
...

. . .
...

Tn(Ψ(x1)) · · · Tn(Ψ(xm))


8. Compute next period approximating expectation function of each player, `, at each node x′i, i =

1, . . . ,m

Φ`(x
′
i; θ) ≡

n∑
j=0

θ`,jTj (Ψ(x′i)) for ` = 1, 2

and obtain next period equilibrium values as obtained in steps 5 and 6.

9. Evaluate the residuals R1(xi,Θ1,Θ2) and R2(xi,Θ1,Θ2) obtained as

R1(xi,Θ1,Θ2) = β

[
λ′1i

(
1 + r

(
1− 2

k
x′i

))
− α1q

′
1i(c1 − µ1)x′i

α1−1
]
− Φ1(xi; Θ1)

R2(xi,Θ1,Θ2) = β

[
λ′2i

(
1 + r

(
1− 2

k
x′i

))
− α2q

′
2i(c2 − µ2)x′i

α2−1
]
− Φ2(xi; Θ2)

for each i = 1, . . . ,m.

10. Compute the inner products
T (z)R1(x,Θ1,Θ2) = 0

T (z)R2(x,Θ1,Θ2) = 0

11. if all inner products are close enough to zero then stop, else update Θ1 and Θ2 and go back to 4.

Note that, as in the standard PEA algorithm, we treat νit, ζit and ϕt as technical variables which are just
used to compute the residuals. We therefore do not need to compute explicitly its interpolating function.

From a practical point of view, we use 30th order Chebychev polynomials and 1000 nodes. These values
are actually very high but allow us to achieve high accuracy of the approximation over the support
[(1−∆)x; (1 + ∆)x] where x is the steady state of the model and ∆ = 0.5.
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E Constrained Equilibrium

This section presents the possible equilibria that may occur, given the constraints imposed on the problem.

Case 1: 0 < q1t < k1, 0 < q2t < k2, and xt+1 > 0. This implies that ν1t = ν2t = ζ1t = ζ2t = ϕt = 0 and

λ1t = Φ1(xt,Θ1)

λ2t = Φ2(xt,Θ2)

Then q1i ≡ Q1(xi,Θ1,Θ2) and q2i = Q2(xi,Θ1,Θ2) are obtained by solving the simple linear
system

u1(1 + n1)q1i + n2u2q2i = vu1 − λ1i − (c1 − µ1)xα1
i (E.1)

u2n1q1i − (1 + n2)u2q2i = vu2 − λ2i − (c2 − µ2)xα2
i (E.2)

Case 2: Given the unconstrained equilibrium: 0 < q1t < k1, 0 < q2t < k2, and xt+1 < 0. This implies that
ν1t = ν2t = ζ1t = ζ2t = 0 and ϕt > 0. Then we set

xt+1 = 0

The other variables are a solution of the following system
λ1t − ν1t + ζ1t = vu1 − u1(1 + n1)q1t − n2u2q2t − (c1 − µ1)xα1

t

n1q1t + n2q2t = rxt
(
1− xt

k

)
+ xt

λ2t − ν2t + ζ2t = vu2 − u2n1q1t − (1 + n2)u2q2t − (c2 − µ2)xα2
t

λ1t − ϕt = Φ1(xt,Θ1)
λ2t − ϕt = Φ2(xt,Θ2)

Case 3: Given the unconstrained equilibrium: q1t < 0, 0 < q2t < k2, and xt+1 > 0. This implies that
ν1t > 0, ν2t = ζ1t = ζ2t = ϕt = 0. Then we set

q1t = 0 and q2t =
vu2 − (c2 − µ2)xα2

t − λ2t
u2(1 + n2)

with

λ1t = Φ1(xt,Θ1)

λ2t = Φ2(xt,Θ2)

Case 4: Given the unconstrained equilibrium: q1t < 0, 0 < q2t < k2, and xt+1 < 0. This implies that
ν1t > 0, ν2t = ζ1t = ζ2t = 0 and ϕt > 0. Then we set

q1t = 0 and q2t =
1

n2

(
rxt

(
1− xt

k

)
+ xt

)
and

λ2t = vu2 − (1 + n2)u2q2t − (c2 − µ2)xα2
t

ϕt = λ2t − Φ2(xt,Θ2)

λ1t = ϕt + Φ1(xt,Θ1)

Case 5: Given the unconstrained equilibrium: q1t < 0, q2t < 0, and xt+1 > 0. This implies that ν1t > 0,
ν2t > 0, ζ1t = ζ2t = ϕt = 0. Then we set

q1t = q2t = 0 and xt+1 = rxt

(
1− xt

k

)
+ xt

and

λ1t = Φ1(xt,Θ1)

λ2t = Φ2(xt,Θ2)
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Case 6: Given the unconstrained equilibrium: q1t < 0, q2t < 0, and xt+1 < 0. This is clearly not an
equilibrium

Case 7: Given the unconstrained equilibrium: q1t < 0, q2t > k2, and xt+1 > 0. This implies that ν1t > 0,
ζ2t > 0, ζ1t = ν2t = ϕt = 0. Then we set

q1t = 0, q2t = k2 and xt+1 = rxt

(
1− xt

k

)
+ xt − n2k2

and

λ1t = Φ1(xt,Θ1)

λ2t = Φ2(xt,Θ2)

Case 8: Given the unconstrained equilibrium: q1t < 0, q2t > k2, and xt+1 < 0. This case is equivalent to
case 4.

Case 9: Given the unconstrained equilibrium: q1t > k1, 0 < q2t < k2, and xt+1 > 0. This implies that
ζ1t > 0, , ν1t = ν2t = ζ2t = ϕt = 0. Then we set

q1t = k1, q2t =
vu2 − n1u2k1 − (c2 − µ2)xα2

t − λ2t
u2(1 + n2)

and xt+1 = rxt

(
1− xt

k

)
+ xt − n1k1 − n2q2t

and

λ1t = Φ1(xt,Θ1)

λ2t = Φ2(xt,Θ2)

Case 10: Given the unconstrained equilibrium: q1t > k1, 0 < q2t < k2, and xt+1 < 0. This implies that
ζ1t > 0, , ν1t = ν2t = ζ2t = 0 and ϕt > 0. Then we set

q1t = k1 and xt+1 = 0

We have

q2t =
1

k2

(
rxt

(
1− xt

k

)
+ xt − n1k1

)
λ2t = vu2 − n1u2k1 − (1 + n2)u2q2t − (c2 − µ2)xα2

t

ϕt = λ2t − Φ2(xt,Θ2)

λ1t = ϕt + Φ1(xt,Θ1)

Case 11: Given the unconstrained equilibrium: q1t > k1, q2t > k2, and xt+1 > 0. This implies that ζ1t > 0,
ζ2t > 0, ν1t = ν2t = ϕt = 0. Then we set

q1t = k1, q2t = k2 and xt+1 = rxt

(
1− xt

k

)
+ xt − n1k1 − n2k2

We have

λ1t = Φ1(xt,Θ1)

λ2t = Φ2(xt,Θ2)

Case 12: Given the unconstrained equilibrium: q1t > k1, q2t > k2, and xt+1 < 0. This case is identical to
case 2.

Case 13: Given the unconstrained equilibrium: 0 < q1t < k1, q2t < 0, and xt+1 > 0. This implies that
ν2t > 0, and ν1t = ζ2t = ζ2t = ϕt = 0. Then we set

q1t =
vu1 − (c1 − µ1)xα1

t − λ1t
u1(1 + n1)

, q2t = 0 and xt+1 = rxt

(
1− xt

k

)
+ xt − n1q1t

We have

λ1t = Φ1(xt,Θ1)

λ2t = Φ2(xt,Θ2)
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Case 14: Given the unconstrained equilibrium: 0 < q1t < k1, q2t < 0, and xt+1 < 0. This implies that
ν2t > 0, ν1t = ζ2t = ζ2t = 0 and ϕt > 0. Then we set

q1t =
1

n1

(
rxt

(
1− xt

k

)
+ xt

)
, q2t = 0 and xt+1 = 0

We have

λ1t = vu1 − (1 + n1)u1q1t − (c1 − µ1)xα1
t

λ2t = Φ2(xt,Θ2)

ϕt = λ1t + Φ1(xt,Θ1)

Case 15: Given the unconstrained equilibrium: q1t > k1, q2t < 0, and xt+1 > 0. This implies that ζ1t > 0,
ν2t > 0, ν1t = ζ2t = ϕt = 0. Then we set

q1t = k1, q2t = 0 and xt+1 = rxt

(
1− xt

k

)
+ xt − n1k1

We have

λ1t = Φ1(xt,Θ1)

λ2t = Φ2(xt,Θ2)

Case 16: Given the unconstrained equilibrium: q1t > k1, q2t < 0, and xt+1 < 0. This case is identical to
case 14.

Case 17: Given the unconstrained equilibrium: 0 < q1t < k1, q2t > k2, and xt+1 > 0. This implies that
ζ2t > 0, ν1t = ζ1t = ν2t = ϕt = 0. Then we set

q1t =
vu1 − n2u2k2 − (c1 − µ1)xα1

t − λ1t
u1(1 + n1)

, q2t = k2 and xt+1 = rxt

(
1− xt

k

)
+ xt − n1q1t − n2k2

We have

λ1t = Φ1(xt,Θ1)

λ2t = Φ2(xt,Θ2)

Case 18: Given the unconstrained equilibrium: 0 < q1t < k1, q2t > k2, and xt+1 < 0. This implies that
ζ2t > 0, ν1t = ζ1t = ν2t = 0 and ϕt > 0. Then we set

q1t =
1

n1

(
rxt

(
1− xt

k

)
+ xt − n2k2

)
, q2t = k2 and xt+1 = 0

We have

λ1t = vu1 − u1(1 + n1)q1t − n2u2k2 − (c1 − µ1)xα1
t

λ2t = Φ2(xt,Θ2)

ϕt =λ1t + Φ1(xt,Θ1)

32

Page 33 of 32

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


